JP2004260939A - Control device for winding-type motor - Google Patents

Control device for winding-type motor Download PDF

Info

Publication number
JP2004260939A
JP2004260939A JP2003049528A JP2003049528A JP2004260939A JP 2004260939 A JP2004260939 A JP 2004260939A JP 2003049528 A JP2003049528 A JP 2003049528A JP 2003049528 A JP2003049528 A JP 2003049528A JP 2004260939 A JP2004260939 A JP 2004260939A
Authority
JP
Japan
Prior art keywords
semiconductor switch
phase
switch means
motor
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003049528A
Other languages
Japanese (ja)
Other versions
JP4133434B2 (en
Inventor
Yoshinobu Asano
義信 浅野
Satoru Yoshida
悟 吉田
Katsumi Furuta
勝己 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Engineering Co Ltd
Original Assignee
Mitsubishi Electric Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Engineering Co Ltd filed Critical Mitsubishi Electric Engineering Co Ltd
Priority to JP2003049528A priority Critical patent/JP4133434B2/en
Publication of JP2004260939A publication Critical patent/JP2004260939A/en
Application granted granted Critical
Publication of JP4133434B2 publication Critical patent/JP4133434B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Motor And Converter Starters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a control device for a winding-type motor improved in connection and high in withstand voltage by using a semiconductor as a switch means used at the secondary side of the winding-type motor. <P>SOLUTION: The control device for the winding-type motor comprises resistors 4, 5 and 6 connected to phases at the secondary side of the three-phase winding-type motor each having a plurality of taps; semiconductor switch means 12 to 16 that are composed of semiconductor elements each of which is arranged at each tap of the resistor of each phase, which turns on a short circuit between the taps between the phases, and are back-to-back connected to one another; and a means 18 that accelerates the three-phase winding-type motor by gradually reducing the resistance of each resistor by sequentially turning on the semiconductor switch means. The control device is also characterized in that the semiconductor switch means 12 at the tap of a first stage, which is firstly turned on when accelerating the motor in common at each phase, is connected in series to each of the semiconductor switch means 13 to 16 of the taps on and after a second stage. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明はクレーンの巻き上げ駆動などに用いられる巻線形電動機の制御装置に関し、特に巻線形電動機の二次側制御を半導体化しメンテナンスフリーにした巻線形電動機の制御装置に関するものである。
【0002】
【従来の技術】
従来の巻線形電動機の制御装置を図5によって説明する。図5おいて、三相交流電源に一次端子R1、S1、T1が接続されており、この端子R1、S1、T1には運転用の常開接点2、3の一端が接続されていて、常開接点2、3の他端は、三相巻線形電動機1の一次側に接続されている。
【0003】
三相巻線形電動機1の二次側には、二次端子u2、v2、w2が設けられており、この二次端子u2、v2、w2には、抵抗器4、5、6がスター結線で接続されている。各抵抗器4、5、6のタップTa11〜Ta15、Ta21〜Ta25、Ta31〜Ta35には、常開接点7、8、9、10、11が開閉可能に接続されている。
【0004】
上記のように構成された巻線形電動機の制御装置の動作を図5の構成図、及び図7のタイミングチャートに従って説明する。運転開始前には、すべての常開接点2、3、7、8、9、10、11が開放しており、制御器17により運転指令が与えられると制御部18で処理され制御指令が作られる。その制御指令により常開接点2が閉成して三相交流電源が巻線形電動機1の一次側に印加されて、抵抗器4、5、6を巻線形電動機1の二次側に接続された状態から緩起動する。制御器17により順次加速指令を与えることにより常開接点7、8、9、10、11を順に閉成し、抵抗器4、5、6の抵抗値を段階的に少なくして巻線形電動機1の回転数を徐々に上昇して高速運転する(図7参照)。
【0005】
また、制御部18には限時回路も含まれており、常開接点7〜11を順次閉成する場合に最小限必要な時限が設定できる。制御器17を一気に常開接点7〜11を閉成するよう操作しても、常開接点2が閉成したのち、時間T1後に常開接点7が閉成する。常開接点7が閉成後、時間T2後に常開接点8が閉成、更に時間T3後に常開接点9が閉成する。常開接点9が閉成後、時間T4後に常開接点10が閉成し、時間T5後に常開接点11が閉成する。
【0006】
やがて、制御器17からの加速指令を段階的に解除していくと常開接点11、10、9、8、7の順で開放され、最後に巻線形電動機1の運転指令がオフする常開接点2を開放するとともに時間T6後に逆転用常開接点3を閉成し逆相制動を行う。速度低下にて、逆転用常開接点3を開放することで電源を遮断し機械式ブレーキ(図示せず)によって巻線形電動機1を拘束しながら停止する。
【0007】
しかしながら、上記のように構成された巻線形電動機1の制御装置は、常開接点2、3、7、8、9、10、11のオン、オフにより電流を開閉する接点の保守を頻繁にしなければならなかった。
【0008】
また近年では上記のような保守をなくすため常開接点7、8、9、10、11の変わりに、半導体素子を逆並列に接続し用いることも行なわれている。
【0009】
半導体素子を使用した構成を図6、そのタイミングチャートを図8に示す。図6は図5の常開接点7、8、9、10、11を半導体素子を逆並列に接続した半導体スイッチ手段としたスイッチングユニット12、13、14、15、16に置換えたものであり、常開接点7、8、9、10、11への短絡指令を制御部18でスイッチング指令に変換し、常開接点2が閉成後、時間T1〜T5後にスイッチングユニット12、13、14、15、16を順次オンさせて回路を閉成させ、抵抗器4、5、6の抵抗値を段階的に少なくして巻線形電動機1の回転数を徐々に上昇して高速運転する。このように図6の従来技術の構成の動作は図5のものと基本的に同じである。
【0010】
以上のように構成された図5の巻線形電動機の制御は二次側に接続された抵抗器を常開接点7、8、9、10、11を順に閉成し、抵抗器4、5、6の抵抗値を段階的に少なくして巻線形電動機1の回転数を徐々に上昇して高速運転となる。この常開接点7、8、9、10、11には主に電磁接触器が用いられてきた。電磁接触器は有接点であるため、接点が閉状態から開状態に変わる際に、電弧が生じ、その電弧により接点が徐々に溶解、飛散により消耗するため、定期的に保守・点検をしなければならならず、これを解消するために図6のように構成された巻線形電動機の制御では有接点である電磁接触器の変わりとしての半導体スイッチ手段からなるスイッチングユニット12、13、14、15、16とした。半導体スイッチ手段には主にサイリスタが用いられている。
【0011】
巻線形電動機の減速停止方法において、全ての常開接点を解放後、時間T6後に逆転用常開接点3を閉成し、電気的に制動をかける逆相制動を行う場合の電動機二次側の発生電圧について説明する。巻線形電動機1が100%速度のすべりS=0に近い値で運転されている時は、二次電圧はほぼE=0[V]であるが、その状態から逆相制動に移行した瞬時のすべりはS=2となり二次電圧は、図9に示すように最大電圧2E[V]となる。
【0012】
また、半導体スイッチ手段からなるスイッチングユニットの部分を整流手段とこれらの出力側をオン・オフさせるスイッチ手段で構成したものがある(例えば特許文献1参照)。
【0013】
【特許文献1】
特開2000−23478号公報
【0014】
【発明が解決しようとする課題】
従来、大容量の巻線形電動機の制御装置において二次側が比較的高電圧となり、逆耐電圧の低い安価なサイリスタなどの半導体素子では大容量の巻線形電動機に使用できないという問題点があった。また耐電圧の高い半導体素子では非常に高価となり汎用性の必要な巻線形電動機の制御には向かないという問題点があった。
【0015】
この発明は上記問題点を解決するためになされたもので、巻線形電動機の二次側回路に逆耐電圧の低いサイリスタなどの半導体素子を用いることができる巻線形電動機の制御装置を提供することを目的とする。
【0016】
【課題を解決するための手段】
上記の目的に鑑みこの発明は、三相巻線形電動機の二次側の各相に接続されそれぞれ複数のタップを有する抵抗器と、各相間毎のタップ間の短絡をオン・オフさせるための、各相の抵抗器の各タップ毎に設けられたそれぞれ逆並列接続された半導体素子からなる半導体スイッチ手段と、これらの半導体スイッチ手段を順にオンさせて各抵抗器の抵抗値を漸減させて三相巻線形電動機を加速させる手段と、を備え、各相共通に加速の際に最初にオンされる1段目のタップの半導体スイッチ手段が2段目以降のタップの半導体スイッチ手段とそれぞれ直列に接続されていることを特徴とする巻線形電動機の制御装置にある。
【0017】
また、三相巻線形電動機の二次側の各相に接続されそれぞれ複数のタップを有する抵抗器と、各相毎のタップ間の短絡をオン・オフさせるための、各相の抵抗器の各タップ毎に設けられたそれぞれ逆並列接続された半導体素子からなる半導体スイッチ手段と、これらの半導体スイッチ手段を順にオンさせて各抵抗器の抵抗値を漸減させて三相巻線形電動機を加速させる手段と、を備え、各相毎に加速の際に最初にオンされる1段目のタップの半導体スイッチ手段が2段目以降のタップの半導体スイッチ手段とそれぞれ直列に接続されていることを特徴とする巻線形電動機の制御装置にある。
【0018】
【発明の実施の形態】
以下この発明を各実施の形態に従って説明する。
実施の形態1.
図1はこの発明の一実施の形態による巻線形電動機の制御装置の結線図である。図中、従来技術と同一符号で示した部分は同一または相当部分を示す。図1において、巻線形電動機の制御装置は、三相巻線形電動機1の二次端子u2、v2、w2には、抵抗器4、5、6がスター結線で接続されている。
【0019】
各抵抗器4、5、6のタップTa11、Ta21、Ta31と中性点の間には、サイリスタ(半導体素子)を逆並列接続した開閉手段である各相毎の半導体スイッチ手段を含むスイッチングユニット12(1段目)が接続されている。各抵抗器4、5、6のタップTa12、Ta22、Ta32は同様に各相毎の半導体スイッチ手段を含むスイッチングユニット13(2段目)の一端に接続されており、他端はスイッチングユニット12に接続されている。これによりスイッチングユニット12とスイッチングユニット13が直列接続となり分圧することが可能となる。
【0020】
同様にして各抵抗器4、5、6のタップTa13、Ta23、Ta33は同様の構造のスイッチングユニット14(3段目)の一端に接続され、各抵抗器4、5、6のタップTa14、Ta24、Ta34はスイッチングユニット15(4段目)の一端に接続され、各抵抗器4、5、6のタップTa15、Ta25、Ta35はスイッチングユニット16(5段目)の一端に接続されている。各スイッチングユニット13〜16の他端は各相ごとにまとめて、スイッチングユニット12に接続することで直列接続となり分圧することが可能となる。
【0021】
上記のように構成された巻線形電動機の制御装置の動作を図1及び図3のタイミングチャートによって説明する。運転開始前には、常開接点2が開放していて、スイッチングユニット12、13、14、15、16がオフしており、制御器17により運転指令が与えられと制御部18を介して常開接点2が閉成して三相交流電源が巻線形電動機1の一次側に印加される。巻線形電動機1は二次側に抵抗器4、5、6が接続された状態から緩起動する。
【0022】
制御器17により加速指令を順次入れていくと制御部18より各半導体(スイッチングユニット)へのスイッチング指令が出力され、時間T1後にスイッチングユニット12がオンする。次に時間T2後にスイッチングユニット13がオンする。この時点でスイッチングユニット12と13が直列接続となる。更に時間T3後にスイッチングユニット14がオンし、スイッチングユニット12と14が直列接続となる。更に時間T4後にスイッチングユニット15がオンし、スイッチングユニット12と15が直列接続となり、時間T5後にスイッチングユニット16がオンし、スイッチングユニット12と16が直列接続となる。このように2段目以降は必ず2個のスイッチングユニットが直列接続となるよう構成されている。
【0023】
このように時間T1〜T5後にスイッチングユニット12、13、14、15、16が順次オンし二次側に接続されている抵抗器4、5、6の各タップ間を短絡していき、抵抗値を減少(漸減)させ巻線形電動機1の回転数を上昇させる。やがて、制御器17からの加速指令を段階的に解除していくとスイッチングユニット16、15、14、13、12の順でオフし、最後に巻線形電動機1の運転指令がオフすると、常開接点2を開放するとともに時間T6後に逆転用常開接点3を閉成し逆相制動を行う。速度低下にて、逆転用常開接点3開放することで電源を遮断し、機械式ブレーキ電源を遮断し機械式ブレーキ(図示せず)によって巻線形電動機1を拘束しながら停止する。
【0024】
ここで、巻線形電動機の減速停止方法について説明する。制御器17からの指令を段階的に解除していき、最後に巻線形電動機1の運転指令がオフすると常開接点2を開放することで電源を遮断し、機械式ブレーキ(図示せず)によって巻線形電動機1を拘束しながら停止する手段と、逆相制動と機械式ブレーキを併用する手段とがある。
【0025】
逆相制動とは運転中の巻線形電動機1に制御器17からの運転指令がオフすると、全てのスイッチングユニットの半導体スイッチ手段がオフし、更に常開接点2が開放された後、時間T6後に逆転用常開接点3を閉成し、電気的に制動をかけることである。例えば、巻線形電動機1が100%速度のすべりS=0に近い値で運転されている場合、二次電圧もほぼE=0[V]であるが、逆相制動を行った場合の瞬時のすべりはS=2となり二次電圧は、図9に示すように2E[V](最大電圧)となる。またスイッチングユニットが半導体スイッチ手段であることから、耐電圧に制限がある。この発生電圧は定格二次電圧(E)×2×√2倍(波高値)の電圧となり、この電圧が半導体スイッチ手段にかかってくる。
【0026】
しかしながら、スイッチングユニット13、14、15、16がスイッチングユニット12と直列接続となっており定格二次電圧(E)×2×√2倍(波高値)の電圧を2個の半導体スイッチ手段で分圧が可能となる。
【0027】
実施の形態2.
図2はこの発明の別の実施の形態による巻線形電動機の制御装置の結線図である。図中、上記実施の形態と同一符号で示した部分は同一または相当部分を示す。図2において、巻線形電動機の制御装置は、三相巻線形電動機1の二次端子u2、v2、w2には抵抗器4、5、6がスイッチングユニット111、121、131を介しスター結線されている。スイッチングユニット111、121、131内には各々複数個の半導体スイッチ手段が装備されている。
【0028】
抵抗器4の各タップの短絡用にはスイッチングユニット111が用いられている。タップTa10とTa11間には半導体スイッチ手段111aが接続されている。タップTa11とTa12、Ta13、Ta14、Ta15間には各々半導体スイッチ手段111b、111c、111d、111eが接続されている。
【0029】
抵抗器5の各タップの短絡用にはスイッチングユニット121が用いられている。タップTa20とTa21間には半導体スイッチ手段121aが接続されている。タップTa21とTa22、Ta23、Ta24、Ta25間には各々半導体スイッチ手段121b、121c、121d、121eが接続されている。
【0030】
抵抗器6の各タップの短絡用にはスイッチングユニット131が用いられている。タップTa30とTa31間には半導体スイッチ手段131aが接続されている。タップTa31とTa32、Ta33、Ta34、Ta35間には各々半導体スイッチ手段131b、131c、131d、131eが接続されている。
【0031】
1段目の半導体スイッチ手段111a、121a、131a、2段目の半導体スイッチ手段111b、121b、131b,3段目の半導体スイッチ手段111c、121c、131c,4段目の半導体スイッチ手段111d、121d、131d,5段目の半導体スイッチ手段111e、121e、131e,は制御部18のスイッチング指令により、各段は同一タイミングでオン、オフするものとする。
【0032】
上記のように構成された巻線形電動機の制御装置の動作を図2及び図4のタイミングチャートによって説明する。運転開始前には、常開接点2が開放していて、半導体スイッチ手段全てがオフしており、制御器17により運転指令が与えられと、制御部18を介して常開接点2が閉成して三相交流電源が巻線形電動機1の一次側に印加される。巻線形電動機1の二次側には抵抗器4、5、6が接続された状態から緩起動する。
【0033】
制御器17により加速指令を順次入れていくと制御部18より各半導体へのスイッチング指令が出力され、時間T1後に半導体スイッチ手段111a、121a、131aがオンする。次に時間T2後に半導体スイッチ手段111b、121b、131bがオンする。この時点で半導体スイッチ手段111aと111b、121aと121b、131aと131bがそれぞれ直列接続となる。更に時間T3後に半導体スイッチ手段111c、121c、131cがオンし、半導体スイッチ手段111aと111c、121aと121c、131aと131cがそれぞれ直列接続となる。
【0034】
更に時間T4後に半導体スイッチ手段111d、121d、131dがオンし、半導体スイッチ手段111aと111d、121aと121d、131aと131dがそれぞれ直列接続となり、時間T5後に半導体スイッチ手段111e、121e、131eがオンし、半導体スイッチ手段111aと111e、121aと121e、131aと131eが直列接続となる。このように2段目以降は必ず2個の半導体スイッチ手段が直列接続となるよう構成されている。
【0035】
上記のように構成された巻線形電動機の制御装置の動作は、実施の形態1の構成を各相ごとにまとめたものであり、スイッチングの順序、巻線形電動機の二次電圧の分圧手段は実施の形態1と同一である。
【0036】
【発明の効果】
このようにこの発明に係る巻線形電動機の制御装置では、三相巻線形電動機の二次側の各相に接続された各抵抗器と、複数の半導体素子からなる半導体スイッチ手段と、この半導体スイッチ手段を順にオンさせる制御手段とを備え、この半導体スイッチ手段で各相間をスター結線する際に変則した直列接続(1段目を2段目以降の直列接続用に使用する)を行うことにより半導体素子にかかる電圧を分圧することができる。これにより巻線形電動機の二次側回路に逆耐電圧の低いサイリスタなどの半導体素子を用いることができる。また二次側電圧が高い大容量の三相巻線形電動機においても容易に制御でき、接点の保守がほとんど必要がない。
【0037】
またこの発明の別の実施の形態に係る巻線形電動機の制御装置では、上記実施の形態では各相間で半導体スイッチ手段が直列接続されているのに対し、各相ごとに1段目を2段目以降の直列接続用に使用することで、半導体素子にかかる電圧を分圧することができる。
【図面の簡単な説明】
【図1】この発明の実施の形態1による巻線形電動機の制御装置を示す結線図である。
【図2】この発明の実施の形態2による巻線形電動機の制御装置を示す結線図である。
【図3】この発明の実施の形態1の動作を示すタイミングチャートである。
【図4】この発明の実施の形態2の動作を示すタイミングチャートである。
【図5】従来の巻線形電動機の制御装置を示す結線図である。
【図6】従来の別の巻線形電動機の制御装置を示す結線図である。
【図7】図5の巻線形電動機の制御装置の動作を示すタイミングチャートである。
【図8】図6の巻線形電動機の制御装置の動作を示すタイミングチャートである。
【図9】すべりに対する二次電圧を示す図である。
【符号の説明】
1 三相巻線形電動機、2,3,7,8,9,10,11 常開接点(開閉手段)、4,5,6 抵抗器、 12,13,14,15,16,111,121,131 スイッチングユニット、17 制御器、18 制御部、111a,111b,111c,111d,111e,121a,121b,121c,121d,121e,131a,131b,131c,131d,131e 半導体スイッチ手段。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control device for a winding type motor used for hoisting driving of a crane, and more particularly to a control device for a winding type motor in which the secondary side control of the winding type motor is made semiconductor and maintenance-free.
[0002]
[Prior art]
A conventional winding motor control device will be described with reference to FIG. In FIG. 5, primary terminals R1, S1, and T1 are connected to a three-phase AC power supply, and one end of a normally open contact 2, 3 for operation is connected to the terminals R1, S1, and T1. The other ends of the open contacts 2 and 3 are connected to the primary side of the three-phase wound motor 1.
[0003]
On the secondary side of the three-phase winding type electric motor 1, secondary terminals u2, v2, w2 are provided, and the resistors 4, 5, 6 are connected to the secondary terminals u2, v2, w2 in a star connection. It is connected. The normally open contacts 7, 8, 9, 10, and 11 are connected to the taps Ta11 to Ta15, Ta21 to Ta25, and Ta31 to Ta35 of the resistors 4, 5, and 6, respectively, so as to be openable and closable.
[0004]
The operation of the control device for the wound motor configured as described above will be described with reference to the configuration diagram of FIG. 5 and the timing chart of FIG. Before the start of operation, all the normally open contacts 2, 3, 7, 8, 9, 10, and 11 are open, and when an operation command is given by the controller 17, it is processed by the control unit 18 to generate the control command. Can be The normally open contact 2 is closed by the control command, the three-phase AC power is applied to the primary side of the wound motor 1, and the resistors 4, 5 and 6 are connected to the secondary side of the wound motor 1. Start slowly from the state. The normally open contacts 7, 8, 9, 10, and 11 are sequentially closed by sequentially giving an acceleration command by the controller 17, and the resistance values of the resistors 4, 5, and 6 are gradually reduced to reduce the resistance of the wound motor 1. The rotation speed is gradually increased to perform high-speed operation (see FIG. 7).
[0005]
The control unit 18 also includes a time limit circuit, and can set a minimum time limit required when the normally open contacts 7 to 11 are sequentially closed. Even if the controller 17 is operated to close the normally open contacts 7 to 11 at a stretch, the normally open contact 7 is closed after the time T1 after the normally open contact 2 is closed. After the normally open contact 7 is closed, the normally open contact 8 is closed after time T2, and the normally open contact 9 is closed after time T3. After the normally open contact 9 is closed, the normally open contact 10 is closed after time T4, and the normally open contact 11 is closed after time T5.
[0006]
Eventually, when the acceleration command from the controller 17 is gradually released, the normally open contacts 11, 10, 9, 8, and 7 are opened in this order, and finally, the operation command of the wound motor 1 is turned off. The contact 2 is opened, and after a time T6, the normally open contact 3 for reverse rotation is closed to perform reverse-phase braking. When the speed is reduced, the power supply is shut off by opening the normally open contact 3 for reverse rotation, and the motor 1 is stopped while restraining the wound motor 1 by a mechanical brake (not shown).
[0007]
However, the control device for the wound motor 1 configured as described above must frequently maintain the contacts that open and close the current by turning on and off the normally open contacts 2, 3, 7, 8, 9, 10, and 11. I had to.
[0008]
In recent years, in order to eliminate the above-mentioned maintenance, instead of the normally open contacts 7, 8, 9, 10, and 11, semiconductor elements are connected in anti-parallel and used.
[0009]
FIG. 6 shows a configuration using a semiconductor element, and FIG. 8 shows a timing chart thereof. FIG. 6 is a diagram in which the normally open contacts 7, 8, 9, 10, and 11 of FIG. 5 are replaced with switching units 12, 13, 14, 15, and 16 as semiconductor switch means in which semiconductor elements are connected in anti-parallel. The short-circuit command to the normally-open contacts 7, 8, 9, 10, 11 is converted into a switching command by the control unit 18, and after the normally-open contact 2 is closed, the switching units 12, 13, 14, 15 after time T1 to T5. , 16 are sequentially turned on to close the circuit, and the resistance values of the resistors 4, 5, and 6 are gradually reduced to gradually increase the rotation speed of the wound motor 1 to perform high-speed operation. As described above, the operation of the conventional configuration shown in FIG. 6 is basically the same as that of FIG.
[0010]
Control of the wound-type motor of FIG. 5 configured as described above closes the normally connected contacts 7, 8, 9, 10, and 11 of the resistor connected to the secondary side in order, and connects the resistors 4, 5,. 6, the resistance value of the winding motor 6 is gradually reduced, and the rotation speed of the winding motor 1 is gradually increased to achieve high-speed operation. Electromagnetic contactors have been mainly used for the normally open contacts 7, 8, 9, 10, and 11. Since the magnetic contactor is a contact, an electric arc is generated when the contact changes from the closed state to the open state, and the electric contact gradually melts and scatters due to the electric arc, so regular maintenance and inspection must be performed. In order to solve this problem, switching units 12, 13, 14, 15 each comprising a semiconductor switch instead of an electromagnetic contactor which is a contact in the control of the wound motor configured as shown in FIG. , 16. Thyristors are mainly used for semiconductor switch means.
[0011]
In the method of decelerating and stopping the wound motor, on the secondary side of the motor in the case where the normally open contact 3 for reverse rotation is closed after time T6 after all the normally open contacts are released and reverse phase braking for electrically braking is performed. The generated voltage will be described. When the winding motor 1 is operated at a value close to the slip S = 0 at 100% speed, the secondary voltage is almost E 2 = 0 [V]. And the secondary voltage becomes the maximum voltage 2E 2 [V] as shown in FIG.
[0012]
In addition, there is a configuration in which a portion of a switching unit composed of semiconductor switch means is constituted by rectification means and switch means for turning on and off the output side of the rectification means (for example, see Patent Document 1).
[0013]
[Patent Document 1]
JP 2000-23478 A
[Problems to be solved by the invention]
Conventionally, in a control device for a large-capacity wound-type motor, the secondary side has a relatively high voltage, and there has been a problem that a semiconductor element such as an inexpensive thyristor having a low reverse withstand voltage cannot be used for a large-capacity wound-type motor. Further, there is a problem that a semiconductor element having a high withstand voltage is very expensive and is not suitable for controlling a wound-type motor requiring versatility.
[0015]
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and it is an object of the present invention to provide a control device for a wound-type motor in which a semiconductor element such as a thyristor having a low reverse withstand voltage can be used in a secondary circuit of the wound-type motor. With the goal.
[0016]
[Means for Solving the Problems]
In view of the above object, the present invention provides a resistor connected to each phase on the secondary side of a three-phase winding type motor and having a plurality of taps, and for turning on and off a short circuit between taps for each phase. A semiconductor switch means composed of semiconductor elements connected in anti-parallel and provided for each tap of a resistor of each phase, and these semiconductor switch means are sequentially turned on to gradually reduce the resistance value of each resistor to form a three-phase resistor. Means for accelerating the wound motor, wherein the semiconductor switch means of the first stage tap which is turned on first during acceleration for each phase is connected in series with the semiconductor switch means of the second and subsequent taps, respectively. A control device for a wire-wound electric motor, characterized in that:
[0017]
Further, a resistor connected to each phase on the secondary side of the three-phase winding type motor and having a plurality of taps, and a resistor of each phase for turning on and off a short circuit between the taps of each phase. Semiconductor switch means provided for each tap and comprising semiconductor elements connected in anti-parallel with each other; and means for sequentially turning on these semiconductor switch means to gradually reduce the resistance value of each resistor to accelerate the three-phase winding type motor Wherein the semiconductor switch means of the first tap which is turned on first at the time of acceleration for each phase is connected in series with the semiconductor switch means of the second and subsequent taps, respectively. In the control device of the winding type electric motor.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described according to embodiments.
Embodiment 1 FIG.
FIG. 1 is a connection diagram of a control device for a wound motor according to an embodiment of the present invention. In the figure, portions denoted by the same reference numerals as those of the prior art indicate the same or corresponding portions. In FIG. 1, in the control device of the winding type electric motor, resistors 4, 5, 6 are connected to secondary terminals u2, v2, w2 of the three-phase winding type electric motor 1 by star connection.
[0019]
Between the taps Ta11, Ta21, Ta31 of the resistors 4, 5, 6 and the neutral point, a switching unit 12 including a semiconductor switch means for each phase, which is an opening / closing means in which a thyristor (semiconductor element) is connected in anti-parallel. (First stage) is connected. The taps Ta12, Ta22, and Ta32 of the resistors 4, 5, and 6 are similarly connected to one end of a switching unit 13 (second stage) including semiconductor switch means for each phase, and the other end is connected to the switching unit 12. It is connected. As a result, the switching unit 12 and the switching unit 13 are connected in series, and the voltage can be divided.
[0020]
Similarly, the taps Ta13, Ta23, and Ta33 of the resistors 4, 5, and 6 are connected to one end of the switching unit 14 (third stage) having the same structure, and the taps Ta14 and Ta24 of the resistors 4, 5, and 6 are connected. , Ta34 are connected to one end of the switching unit 15 (fourth stage), and the taps Ta15, Ta25, Ta35 of the resistors 4, 5, and 6 are connected to one end of the switching unit 16 (fifth stage). The other ends of the switching units 13 to 16 are collectively connected for each phase and connected to the switching unit 12 so that they are connected in series and can be divided.
[0021]
The operation of the control device for the wound motor configured as described above will be described with reference to the timing charts of FIGS. Before the start of operation, the normally open contact 2 is open, the switching units 12, 13, 14, 15, and 16 are off, and when an operation command is given by the controller 17, The open contact 2 is closed, and the three-phase AC power is applied to the primary side of the wound motor 1. The wound motor 1 starts slowly from a state in which the resistors 4, 5, and 6 are connected to the secondary side.
[0022]
When an acceleration command is sequentially input by the controller 17, a switching command to each semiconductor (switching unit) is output from the control unit 18, and the switching unit 12 is turned on after a time T1. Next, after a time T2, the switching unit 13 is turned on. At this point, the switching units 12 and 13 are connected in series. Further, after the time T3, the switching unit 14 turns on, and the switching units 12 and 14 are connected in series. Further, after the time T4, the switching unit 15 is turned on, the switching units 12 and 15 are connected in series, and after the time T5, the switching unit 16 is turned on, and the switching units 12 and 16 are connected in series. Thus, the second and subsequent stages are configured so that two switching units are always connected in series.
[0023]
As described above, after the times T1 to T5, the switching units 12, 13, 14, 15, and 16 are sequentially turned on, and the taps of the resistors 4, 5, and 6 connected to the secondary side are short-circuited. Is decreased (gradually decreased) to increase the rotation speed of the wound motor 1. Eventually, when the acceleration command from the controller 17 is gradually released, the switching units 16, 15, 14, 13, and 12 are turned off in this order. The contact 2 is opened, and after a time T6, the normally open contact 3 for reverse rotation is closed to perform reverse-phase braking. When the speed decreases, the power is shut off by opening the normally open contact 3 for reverse rotation, the mechanical brake power is shut off, and the wound motor 1 is stopped while being restrained by the mechanical brake (not shown).
[0024]
Here, a method of decelerating and stopping the wound motor will be described. The command from the controller 17 is gradually released, and when the operation command of the wound motor 1 is finally turned off, the power is shut off by opening the normally open contact 2 and the mechanical brake (not shown) is used. There are a means for stopping the wound motor 1 while restraining it, and a means for using the reverse phase braking and the mechanical brake together.
[0025]
When the operation command from the controller 17 is turned off to the winding type electric motor 1 during operation, the semiconductor switch means of all the switching units are turned off, and after the normally open contact 2 is opened, after the time T6, That is, the normally open contact 3 for reverse rotation is closed to electrically apply braking. For example, when the winding type electric motor 1 is operated at a value close to the slip S = 0 at 100% speed, the secondary voltage is also almost E 2 = 0 [V]. Is S = 2, and the secondary voltage is 2E 2 [V] (maximum voltage) as shown in FIG. Further, since the switching unit is a semiconductor switch means, there is a limit in withstand voltage. This generated voltage is a voltage of rated secondary voltage (E 2 ) × 2 × √2 times (peak value), and this voltage is applied to the semiconductor switch means.
[0026]
However, the switching units 13, 14, 15, and 16 are connected in series with the switching unit 12, and a voltage of the rated secondary voltage (E 2 ) × 2 × √2 times (peak value) is applied by two semiconductor switch means. Partial pressure becomes possible.
[0027]
Embodiment 2 FIG.
FIG. 2 is a connection diagram of a control device for a wound motor according to another embodiment of the present invention. In the figure, portions denoted by the same reference numerals as those of the above-described embodiment indicate the same or corresponding portions. In FIG. 2, the control device of the wound motor is such that resistors 4, 5, and 6 are star-connected to the secondary terminals u2, v2, and w2 of the three-phase wound motor 1 via switching units 111, 121, and 131. I have. Each of the switching units 111, 121 and 131 is provided with a plurality of semiconductor switch means.
[0028]
A switching unit 111 is used for short-circuiting each tap of the resistor 4. Semiconductor switch means 111a is connected between the taps Ta10 and Ta11. Semiconductor switch means 111b, 111c, 111d and 111e are connected between the taps Ta11 and Ta12, Ta13, Ta14 and Ta15, respectively.
[0029]
The switching unit 121 is used for short-circuiting each tap of the resistor 5. Semiconductor switch means 121a is connected between the taps Ta20 and Ta21. Semiconductor switch means 121b, 121c, 121d, and 121e are connected between the tap Ta21 and Ta22, Ta23, Ta24, and Ta25, respectively.
[0030]
The switching unit 131 is used for short-circuiting each tap of the resistor 6. Semiconductor switch means 131a is connected between the taps Ta30 and Ta31. Semiconductor switch means 131b, 131c, 131d and 131e are connected between the taps Ta31 and Ta32, Ta33, Ta34 and Ta35, respectively.
[0031]
First-stage semiconductor switch units 111a, 121a, 131a, second-stage semiconductor switch units 111b, 121b, 131b, third-stage semiconductor switch units 111c, 121c, 131c, fourth-stage semiconductor switch units 111d, 121d, The semiconductor switch means 111e, 121e, 131e in the fifth stage 131d are turned on and off at the same timing by the switching command of the control unit 18.
[0032]
The operation of the control device for the wound motor configured as described above will be described with reference to the timing charts of FIGS. Before the start of operation, the normally open contact 2 is open, all the semiconductor switch means are off, and when an operation command is given by the controller 17, the normally open contact 2 is closed via the control unit 18. Then, the three-phase AC power is applied to the primary side of the wound motor 1. The motor starts slowly from a state in which the resistors 4, 5, and 6 are connected to the secondary side of the wound motor 1.
[0033]
When an acceleration command is sequentially input by the controller 17, a switching command to each semiconductor is output from the control unit 18, and the semiconductor switch units 111a, 121a, 131a are turned on after a time T1. Next, after a time T2, the semiconductor switch units 111b, 121b, and 131b are turned on. At this point, the semiconductor switch means 111a and 111b, 121a and 121b, and 131a and 131b are connected in series, respectively. Further, after the time T3, the semiconductor switch units 111c, 121c, and 131c are turned on, and the semiconductor switch units 111a and 111c, 121a and 121c, and 131a and 131c are connected in series.
[0034]
Further, after the time T4, the semiconductor switch means 111d, 121d, and 131d are turned on, the semiconductor switch means 111a and 111d, 121a and 121d, and 131a and 131d are respectively connected in series. After the time T5, the semiconductor switch means 111e, 121e, and 131e are turned on. The semiconductor switch means 111a and 111e, 121a and 121e, and 131a and 131e are connected in series. In this manner, the second and subsequent stages are configured so that two semiconductor switch means are always connected in series.
[0035]
The operation of the control device of the wound-type motor configured as described above is a summary of the configuration of the first embodiment for each phase, and the order of switching and the means for dividing the secondary voltage of the wound-type motor are as follows. This is the same as the first embodiment.
[0036]
【The invention's effect】
As described above, in the winding motor control apparatus according to the present invention, each resistor connected to each phase on the secondary side of the three-phase winding motor, semiconductor switch means including a plurality of semiconductor elements, and the semiconductor switch Control means for sequentially turning on the means, and performing an irregular series connection (the first stage is used for the second and subsequent series connection) when the semiconductor switch means performs star connection between the phases. The voltage applied to the element can be divided. As a result, a semiconductor element such as a thyristor having a low reverse withstand voltage can be used in the secondary circuit of the wound motor. In addition, even a large-capacity three-phase winding motor having a high secondary voltage can be easily controlled, and contact point maintenance is almost unnecessary.
[0037]
Further, in the control device for the wound motor according to another embodiment of the present invention, the semiconductor switch means is connected in series between the respective phases in the above embodiment, but the first stage is replaced by two stages for each phase. The voltage applied to the semiconductor element can be divided by using it for serial connection after the first element.
[Brief description of the drawings]
FIG. 1 is a connection diagram showing a control device for a wire-wound electric motor according to Embodiment 1 of the present invention.
FIG. 2 is a connection diagram showing a control device for a wire-wound electric motor according to Embodiment 2 of the present invention.
FIG. 3 is a timing chart showing the operation of the first embodiment of the present invention.
FIG. 4 is a timing chart showing an operation of the second embodiment of the present invention.
FIG. 5 is a connection diagram showing a conventional control device for a wound motor.
FIG. 6 is a connection diagram showing another conventional control device for a wound-type electric motor.
FIG. 7 is a timing chart showing the operation of the control device for the wound motor of FIG. 5;
FIG. 8 is a timing chart showing the operation of the control device for the wound motor of FIG. 6;
FIG. 9 is a diagram showing a secondary voltage for slip.
[Explanation of symbols]
1 three-phase wound motor, 2, 3, 7, 8, 9, 10, 11 normally open contacts (switching means), 4, 5, 6 resistors, 12, 13, 14, 15, 16, 111, 121, 131 switching unit, 17 controller, 18 control unit, 111a, 111b, 111c, 111d, 111e, 121a, 121b, 121c, 121d, 121e, 131a, 131b, 131c, 131d, 131e Semiconductor switch means.

Claims (2)

三相巻線形電動機の二次側の各相に接続されそれぞれ複数のタップを有する抵抗器と、
各相間毎のタップ間の短絡をオン・オフさせるための、各相の抵抗器の各タップ毎に設けられたそれぞれ逆並列接続された半導体素子からなる半導体スイッチ手段と、
これらの半導体スイッチ手段を順にオンさせて各抵抗器の抵抗値を漸減させて三相巻線形電動機を加速させる手段と、
を備え、
各相共通に加速の際に最初にオンされる1段目のタップの半導体スイッチ手段が2段目以降のタップの半導体スイッチ手段とそれぞれ直列に接続されていることを特徴とする巻線形電動機の制御装置。
A resistor connected to each phase on the secondary side of the three-phase winding motor and having a plurality of taps,
Semiconductor switch means comprising a semiconductor element connected in anti-parallel and provided for each tap of a resistor of each phase, for turning on and off a short circuit between taps for each phase,
Means for sequentially turning on these semiconductor switch means to gradually reduce the resistance value of each resistor to accelerate the three-phase winding type motor;
With
The semiconductor switch means of the first stage tap which is turned on first during acceleration for each phase is connected in series with the semiconductor switch means of the second and subsequent taps, respectively. Control device.
三相巻線形電動機の二次側の各相に接続されそれぞれ複数のタップを有する抵抗器と、
各相毎のタップ間の短絡をオン・オフさせるための、各相の抵抗器の各タップ毎に設けられたそれぞれ逆並列接続された半導体素子からなる半導体スイッチ手段と、
これらの半導体スイッチ手段を順にオンさせて各抵抗器の抵抗値を漸減させて三相巻線形電動機を加速させる手段と、
を備え、
各相毎に加速の際に最初にオンされる1段目のタップの半導体スイッチ手段が2段目以降のタップの半導体スイッチ手段とそれぞれ直列に接続されていることを特徴とする巻線形電動機の制御装置。
A resistor connected to each phase on the secondary side of the three-phase winding motor and having a plurality of taps,
Semiconductor switch means comprising a semiconductor element connected in anti-parallel and provided for each tap of a resistor of each phase, for turning on and off a short circuit between taps of each phase,
Means for sequentially turning on these semiconductor switch means to gradually reduce the resistance value of each resistor to accelerate the three-phase winding type motor;
With
A first-stage tap semiconductor switch means which is first turned on at the time of acceleration for each phase is connected in series with a second-stage or later tap semiconductor switch means, respectively; Control device.
JP2003049528A 2003-02-26 2003-02-26 Winding motor control device Expired - Fee Related JP4133434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049528A JP4133434B2 (en) 2003-02-26 2003-02-26 Winding motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049528A JP4133434B2 (en) 2003-02-26 2003-02-26 Winding motor control device

Publications (2)

Publication Number Publication Date
JP2004260939A true JP2004260939A (en) 2004-09-16
JP4133434B2 JP4133434B2 (en) 2008-08-13

Family

ID=33115227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049528A Expired - Fee Related JP4133434B2 (en) 2003-02-26 2003-02-26 Winding motor control device

Country Status (1)

Country Link
JP (1) JP4133434B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161547A2 (en) * 2011-05-26 2012-11-29 주식회사 자이벡 Apparatus for controlling rotor current in a wound-rotor type induction motor
CN112462293A (en) * 2020-10-20 2021-03-09 江苏大学 On-vehicle motor turn-to-turn short circuit fault diagnosis device and method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161547A2 (en) * 2011-05-26 2012-11-29 주식회사 자이벡 Apparatus for controlling rotor current in a wound-rotor type induction motor
WO2012161547A3 (en) * 2011-05-26 2013-01-17 주식회사 자이벡 Apparatus for controlling rotor current in a wound-rotor type induction motor
CN112462293A (en) * 2020-10-20 2021-03-09 江苏大学 On-vehicle motor turn-to-turn short circuit fault diagnosis device and method thereof
CN112462293B (en) * 2020-10-20 2022-12-16 江苏大学 On-vehicle motor turn-to-turn short circuit fault diagnosis device and method thereof

Also Published As

Publication number Publication date
JP4133434B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
JP5349304B2 (en) Discrete frequency soft start method and apparatus for electrical equipment
CN108258948A (en) A kind of magneto umber of turn dynamic configuration circuit and control method
JPS6032596A (en) Control system of pole change motor
JP4133434B2 (en) Winding motor control device
JP2008043017A (en) Kondorfer starting device for electric motor
JP6382160B2 (en) Drive device for hysteresis motor
JPH01278281A (en) Automatic controller for dust removing facility
CN104617820B (en) Motor start saturation reactor
JPS63245296A (en) Scherbius equipment
JP2008043018A (en) Starter of three-phase motor
JP3105231B2 (en) 2 stator induction motor
JP2646822B2 (en) Inverter operation state switching method
RU80082U1 (en) ELECTRIC MOTOR CONTROL DIAGRAM FOR BRIDGE CRANE
JPH07203695A (en) Star-delta starter for main motor
JPS63117678A (en) Method for starting wound-rotor induction machine
RU2306233C2 (en) Diesel locomotive dc electrical transmission
JPH05336775A (en) Method and apparatus for starting wound type motor
RU2298520C2 (en) Electric drive of crane load lifting and lowering mechanism
SU985909A1 (en) Induction motor control device
JPS5989594A (en) Controlling method of low speed operation for mechanical apparatus
JPH0698470A (en) Operating method of ac power generator installation
JPH02241324A (en) Power conversion device
Myles et al. DC magnetic crane hoist control for AC powered cranes
NO343095B1 (en) Drive system with multiphase electric machine, and method for controlled transition thereof
JPS6077608A (en) Controller of electric railcar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4133434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees