JP2004259997A - GaN GROUP COMPOUND SEMICONDUCTOR LASER ELEMENT - Google Patents

GaN GROUP COMPOUND SEMICONDUCTOR LASER ELEMENT Download PDF

Info

Publication number
JP2004259997A
JP2004259997A JP2003049772A JP2003049772A JP2004259997A JP 2004259997 A JP2004259997 A JP 2004259997A JP 2003049772 A JP2003049772 A JP 2003049772A JP 2003049772 A JP2003049772 A JP 2003049772A JP 2004259997 A JP2004259997 A JP 2004259997A
Authority
JP
Japan
Prior art keywords
gan
active layer
refractive index
layer
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003049772A
Other languages
Japanese (ja)
Inventor
Jun Komiyama
純 小宮山
Yoshihisa Abe
芳久 阿部
Shunichi Suzuki
俊一 鈴木
Hideo Nakanishi
秀夫 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2003049772A priority Critical patent/JP2004259997A/en
Publication of JP2004259997A publication Critical patent/JP2004259997A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a GaN group compound semiconductor laser element capable of continuously carrying out oscillation at room temperature. <P>SOLUTION: The GaN group compound semiconductor laser element comprises a GaN, InGaN, AlGaN, or AlInGaN semiconductor, and has a structure wherein an active layer 5 with a single quantum well or multiple quantum well structure is sandwiched between a first clad layer 4 made of an n-type Al<SB>X</SB>Ga<SB>1-X</SB>N (0.5<X≤1) semiconductor with greater band gap and smaller refractive index than those of the active layer and a second clad layer 6 made of a p-type Al<SB>Y</SB>Ga<SB>1-Y</SB>N (0.5<Y≤1) semiconductor, and the ratio of a difference between the refractive index of the active layer and the refractive index of the clad layers to the refractive index of the active layer is 7% or over with respect to the wavelength of laser. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、短波長のレーザー光を発振するGaN(窒化ガリウム)系化合物半導体レーザー素子に関する。
【0002】
【従来の技術】
GaN系化合物半導体は、直接遷移型の広いバンドギャップ半導体であるため、紫外線から赤色までの発光素子の材料として知られており、最近、この材料で高輝度の青色LED(発光ダイオード)、緑色LEDが実現され、次の目標としてレーザー素子の実現が望まれている。
【0003】
従来、GaN系化合物半導体レーザー素子としては、閾値電流を下げるため、n型GaN層の表面に導波路として少なくともn型GaN系化合物半導体よりなるnクラッド層と、n型あるいはp型のGaN系化合物半導体よりなる活性層と、p型GaN系化合物半導体よりなるpクラッド層とが順にストライプ形状で積層されて成るダブルヘテロ構造のレーザー素子であり、前記導波路のストライブ幅が50μm以下であるものが開示されている(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開平07−176826号公報
【0005】
【発明が解決しようとする課題】
しかし、従来のGaN系化合物半導体レーザー素子では、閾値電流を低くして室温での連続発振が望まれているものの、現状の閾値電流は実用に供するには未だ高い。
【0006】
そこで、本発明は、室温での連続発振を可能とし得るGaN系化合物半導体レーザー素子の提供を課題とする。
【0007】
【課題を解決するための手段】
前記課題を解決するため、本発明の第1のGaN系化合物半導体レーザー素子は、GaN、InGaN、AlGaN又はAlInGaN半導体からなり、単一量子井戸又は多重量子井戸構造を有する活性層が、この活性層よりもバンドギャップが大きく、かつ,屈折率が小さいn型AlGa1−XN(0.5<X≦1)半導体からなる第1のクラッド層及びp型AlGa1−YN(0.5<Y≦1)半導体からなる第2のクラッド層で挾み込まれる構造を備え、活性層とクラッド層との屈折率差の割合がレーザー波長において7%以上であることを特徴とする。
【0008】
ここで、活性層とクラッド層との屈折率差の割合の値Pは、次式で算出されるものをいう。
【数1】

Figure 2004259997
【0009】
又、第2のGaN系化合物半導体レーザー素子は、第1のものにおいて、前記活性層と両クラッド層との間にGaN、InGaN、AlGaN又はAlInGaN半導体からなり、屈折率が活性層より小さく、かつ、両クラッド層より大きい光導波層が介在されていることを特徴とする。
【0010】
一方、前記第1のクラッド層は、n型AlN半導体からなり、かつ、第2のクラッド層は、p型AlN半導体からなることが好ましい。
又、前記活性層とクラッド層との屈折率差の割合は、レーザー波長において10%以上であることが好ましい。
【0011】
【作用】
本発明の第1のGaN系化合物半導体レーザー素子においては、閾値電流が、10mA台と従来の1/5程度になる。
【0012】
又、第2のGaN系化合物半導体レーザー素子においては、第1のものによる作用の他、さらに閾値電流が5mA台と従来の1/10程度となる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
図1は本発明に係るGaN系化合物半導体レーザー素子の実施の形態の一例を示す概念的な断面図である。
【0014】
図中1はSi(シリコン)単結晶からなる基板で、この基板1上にはc−BP(立方晶リン化ホウ素)単結晶からなる厚さ1〜100nm程度のバッファ(緩衝)層2を介在してn型のc−GaN(立方晶窒化ガリウム)単結晶膜からなる厚さ0.1〜10μm程度の第1のコンタクト層3が形成されている。
なお、基板1は、Si単結晶からなるものに限らず、サファイア、SiC(炭化ケイ素)、ZnO(酸化亜鉛)等からなるものであってもよく、又、バッファ層は、c−BP単結晶層からなるものに限らず、基材1の材料に応じて、AlN(窒化アルミニウム)、GaN(窒化ガリウム)、AlGaN(窒化アルミニウムガリウム)等からなるものであってもよい。
【0015】
第1のコンタクト層3上には、n型AlGa1−XN(0.5<X≦1)半導体からなる厚さ0.01〜5μm程度の第1のクラッド層4、GaN、InGaN(窒化インジウムガリウム)、AlGaN又はAlInGaN(窒化アルミニウムインジウムガリウム)半導体からなり、単一量子井戸又は多重量子井戸構造を有する厚さ0.01〜0.1μm程度の活性層5及びp型AlGa1−YN(0.5<Y≦1)半導体からなる厚さ0.01〜5μm程度の第2のクラッド層6を順次積層し、活性層5を第1、第2のクラッド層4,6で挾み込む構造の導波路が形成されている。
この導波路の第1、第2のクラッド層4,6は、活性層5よりもバンドギャップEg(活性層:2.6〜4.5eV,クラッド層:4.6〜6.2eV)が大きく、かつ、屈折率n(活性層:2.8〜2.5、クラッド層:2.3〜2.1)が小さいものであり、又、活性層5とクラッド層4,6との屈折率差の値は、レーザー波長において7%以上、好ましくは10%以上とされている。
【0016】
そして、導波路の第2のクラッド層6上には、p型のc−GaN単結晶膜からなる厚さ0.01〜1μm程度の第2のコンタクト層7が形成されており、この第2のコンタクト層7上には、Au(金)からなる電極8が形成されている一方、第1のコンタクト層3上には、Al(アルミニウム)からなる電極9が形成されているものである。
【0017】
ここで、第1のクラッド層4の組成を変えて屈折率nを測定したところ、図2に示すように、Xを0.5から1へ変化させることにより、すなわち、AlGaN三元混晶からAlN二元混晶とすることにより、レーザー波長における屈折率nが2.3程度から2.1程度に小さくなった。
したがって、活性層5とクラッド層4,6との屈折率差の割合が7%以上となり、閾値電流を10mA台と従来の1/5程度とすることができ、室温での連続発振が実現可能であることが分かる。
【0018】
なお、上述した実施の形態においては、導波路の活性層5を第1、第2のクラッド層4,6で直に挾み込む構造とする場合について説明したが、これに限定されるものではなく、図3に示すように、活性層5と第1、第2のクラッド層4,6との間に、GaN、InGaN、AlGaN又はAlInGaN半導体からなり、屈折率が活性層5より小さく、かつ、両クラッド層4,6より大きい厚さ0.01〜1μm程度の第1、第2の光導波層10,11を介在させるようにしてもよい。
このようにすることにより、光の閉込め作用強化となるので、閾値電流をさらに低減(1/10程度)できる。
又、導波路における活性層5を挟み込む第1、第2のクラッド層4,6及び第1、第2のコンタクト層3,7におけるp型、n型の関係は、上下の位置を入れ換えてもよい。
【0019】
【発明の効果】
以上説明したように、本発明の第1のGaN系化合物半導体レーザー素子によれば、閾値電流が10mA台と従来の1/5程度となるので、室温での連続発振を可能とすることができる。
【0020】
又、第2のGaN系化合物半導体レーザー素子によれば、第1のものによる作用効果の他、光の閉込め作用強化となるので、閾値電流をさらに低減(1/10程度)できる。
【図面の簡単な説明】
【図1】本発明に係るGaN系化合物半導体レーザー素子の実施の形態の一例を示す概念的な断面図である。
【図2】図1のGaN系化合物半導体レーザー素子における第1のクラッド層の組成を変えた場合の屈折率の説明図である(第2のグラッド層の場合も同様であり、又、活性層にAlGa1−XNを用いる場合も同様であるが、活性層をAlGa1−XNに限定するものではない)。
【図3】本発明に係るGaN系化合物半導体レーザー素子の実施の形態の他の例を示す概念的な断面図である
【符号の説明】
1 基板
2 バッファ層
3 第1のコンタクト層
4 第1のクラッド層
5 活性層
6 第2のクラッド層
7 第2のコンタクト層
8 電極
9 電極
10 第1の光導波層
11 第2の光導波層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a GaN (gallium nitride) -based compound semiconductor laser device that oscillates short-wavelength laser light.
[0002]
[Prior art]
A GaN-based compound semiconductor is a direct transition type wide bandgap semiconductor, and is therefore known as a material for light-emitting elements from ultraviolet to red. Recently, high-brightness blue LEDs (light-emitting diodes) and green LEDs have been developed using this material. The realization of a laser device is desired as the next goal.
[0003]
Conventionally, as a GaN-based compound semiconductor laser device, an n-cladding layer made of at least an n-type GaN-based compound semiconductor as a waveguide on the surface of an n-type GaN layer, A laser device having a double hetero structure in which an active layer made of a semiconductor and a p-cladding layer made of a p-type GaN-based compound semiconductor are sequentially laminated in a stripe shape, wherein the stripe width of the waveguide is 50 μm or less. Is disclosed (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP-A-07-176826 [0005]
[Problems to be solved by the invention]
However, in the conventional GaN-based compound semiconductor laser device, although it is desired to reduce the threshold current and continuously oscillate at room temperature, the current threshold current is still high for practical use.
[0006]
Therefore, an object of the present invention is to provide a GaN-based compound semiconductor laser device capable of continuous oscillation at room temperature.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a first GaN-based compound semiconductor laser device according to the present invention comprises a GaN, InGaN, AlGaN or AlInGaN semiconductor, and has an active layer having a single quantum well or a multiple quantum well structure. A first cladding layer made of an n-type Al X Ga 1-X N (0.5 <X ≦ 1) semiconductor having a larger band gap and a smaller refractive index, and a p-type Al Y Ga 1-Y N ( 0.5 <Y ≦ 1) a structure sandwiched by a second cladding layer made of a semiconductor, wherein the ratio of the refractive index difference between the active layer and the cladding layer is 7% or more at the laser wavelength. I do.
[0008]
Here, the value P of the ratio of the refractive index difference between the active layer and the cladding layer is calculated by the following equation.
(Equation 1)
Figure 2004259997
[0009]
Further, the second GaN-based compound semiconductor laser element according to the first aspect, comprises a GaN, InGaN, AlGaN or AlInGaN semiconductor between the active layer and both cladding layers, has a smaller refractive index than the active layer, and An optical waveguide layer larger than both clad layers is interposed.
[0010]
On the other hand, it is preferable that the first cladding layer is made of an n-type AlN semiconductor, and the second cladding layer is made of a p-type AlN semiconductor.
Further, the ratio of the difference in the refractive index between the active layer and the cladding layer is preferably 10% or more at the laser wavelength.
[0011]
[Action]
In the first GaN-based compound semiconductor laser device of the present invention, the threshold current is on the order of 10 mA, which is about 1/5 of the conventional value.
[0012]
In addition, in the second GaN-based compound semiconductor laser device, in addition to the action of the first device, the threshold current is further reduced to about 5/10, which is on the order of 5 mA.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a conceptual sectional view showing an example of an embodiment of a GaN-based compound semiconductor laser device according to the present invention.
[0014]
In the drawing, reference numeral 1 denotes a substrate made of a single crystal of Si (silicon), and a buffer (buffer) layer 2 of a single crystal of c-BP (cubic boron phosphide) having a thickness of about 1 to 100 nm is interposed on the substrate 1. Then, a first contact layer 3 having a thickness of about 0.1 to 10 μm made of an n-type c-GaN (cubic gallium nitride) single crystal film is formed.
The substrate 1 is not limited to a single crystal of Si, but may be a single crystal of sapphire, SiC (silicon carbide), ZnO (zinc oxide), or the like. The material is not limited to a layer and may be made of AlN (aluminum nitride), GaN (gallium nitride), AlGaN (aluminum gallium nitride), or the like, depending on the material of the base material 1.
[0015]
On the first contact layer 3, a first cladding layer 4 of n-type Al X Ga 1-X N (0.5 <X ≦ 1) semiconductor having a thickness of about 0.01 to 5 μm, GaN, InGaN (Indium gallium nitride), AlGaN or AlInGaN (aluminum indium gallium nitride) semiconductor, active layer 5 having a single quantum well or multiple quantum well structure and having a thickness of about 0.01 to 0.1 μm, and p-type Al Y Ga A second cladding layer 6 made of 1-YN (0.5 <Y ≦ 1) semiconductor and having a thickness of about 0.01 to 5 μm is sequentially laminated, and the active layer 5 is formed into a first cladding layer 4 and a second cladding layer 4. A waveguide having a structure sandwiched by 6 is formed.
The first and second cladding layers 4 and 6 of this waveguide have a larger band gap Eg (active layer: 2.6 to 4.5 eV, cladding layer: 4.6 to 6.2 eV) than the active layer 5. And the refractive index n (active layer: 2.8 to 2.5, clad layer: 2.3 to 2.1) is small, and the refractive index between the active layer 5 and the clad layers 4 and 6 is small. The difference value is 7% or more, preferably 10% or more at the laser wavelength.
[0016]
Then, on the second cladding layer 6 of the waveguide, a second contact layer 7 made of a p-type c-GaN single crystal film and having a thickness of about 0.01 to 1 μm is formed. An electrode 8 made of Au (gold) is formed on the contact layer 7, while an electrode 9 made of Al (aluminum) is formed on the first contact layer 3.
[0017]
Here, when the refractive index n was measured while changing the composition of the first cladding layer 4, as shown in FIG. 2, by changing X from 0.5 to 1, that is, from the AlGaN ternary mixed crystal, The AlN binary mixed crystal reduced the refractive index n at the laser wavelength from about 2.3 to about 2.1.
Therefore, the ratio of the refractive index difference between the active layer 5 and the cladding layers 4 and 6 is 7% or more, the threshold current can be reduced to about 10 mA, which is about 10 mA, and continuous oscillation at room temperature can be realized. It turns out that it is.
[0018]
In the above-described embodiment, the case where the active layer 5 of the waveguide is directly sandwiched between the first and second cladding layers 4 and 6 has been described. However, the present invention is not limited to this. Instead, as shown in FIG. 3, between the active layer 5 and the first and second cladding layers 4 and 6, the active layer 5 is made of a GaN, InGaN, AlGaN or AlInGaN semiconductor, has a lower refractive index than the active layer 5, and Alternatively, the first and second optical waveguide layers 10 and 11 having a thickness of about 0.01 to 1 μm larger than the cladding layers 4 and 6 may be interposed.
By doing so, the effect of confining light is enhanced, so that the threshold current can be further reduced (about 1/10).
Further, the relationship between the p-type and the n-type in the first and second cladding layers 4 and 6 and the first and second contact layers 3 and 7 sandwiching the active layer 5 in the waveguide can be changed even if the upper and lower positions are exchanged. Good.
[0019]
【The invention's effect】
As described above, according to the first GaN-based compound semiconductor laser device of the present invention, since the threshold current is on the order of 10 mA, which is about 1/5 of the conventional value, continuous oscillation can be performed at room temperature. .
[0020]
Further, according to the second GaN-based compound semiconductor laser device, in addition to the effect of the first device, the effect of confining light is enhanced, so that the threshold current can be further reduced (about 1/10).
[Brief description of the drawings]
FIG. 1 is a conceptual sectional view showing an example of an embodiment of a GaN-based compound semiconductor laser device according to the present invention.
FIG. 2 is an explanatory diagram of a refractive index when the composition of a first cladding layer in the GaN-based compound semiconductor laser device of FIG. 1 is changed (the same applies to the case of a second cladding layer; Al Although the case of using the X Ga 1-X N is the same, is not intended to limit the active layer to the Al X Ga 1-X N) on.
FIG. 3 is a conceptual cross-sectional view showing another example of the embodiment of the GaN-based compound semiconductor laser device according to the present invention.
DESCRIPTION OF SYMBOLS 1 Substrate 2 Buffer layer 3 First contact layer 4 First cladding layer 5 Active layer 6 Second cladding layer 7 Second contact layer 8 Electrode 9 Electrode 10 First optical waveguide layer 11 Second optical waveguide layer

Claims (4)

GaN、InGaN、AlGaN又はAlInGaN半導体からなり、単一量子井戸又は多重量子井戸構造を有する活性層が、この活性層よりもバンドギャップが大きく、かつ、屈折率が小さいn型AlGa1−X(0.5<X≦1)半導体からなる第1のクラッド層及びp型AlGa1−YN(0.5<Y≦1)半導体からなる第2のクラッド層で挾み込まれる構造を備え、活性層とクラッド層との屈折率差の割合がレーザー波長において7%以上であることを特徴とするGaN系化合物半導体レーザー素子An active layer made of a GaN, InGaN, AlGaN or AlInGaN semiconductor and having a single quantum well or multiple quantum well structure has an n-type Al X Ga 1-X having a larger band gap and a smaller refractive index than this active layer. (0.5 <X ≦ 1) A structure sandwiched between a first cladding layer made of a semiconductor and a second cladding layer made of a p-type Al Y Ga 1-Y N (0.5 <Y ≦ 1) semiconductor Wherein the ratio of the difference in the refractive index between the active layer and the cladding layer is 7% or more at the laser wavelength. 前記活性層と両クラッド層との間に、GaN、InGaN、AlGaN又はAlInGaN半導体からなり、屈折率が活性層より小さく、かつ、両クラッド層より大きい光導波層が介在されていることを特徴とする請求項1記載のGaN系化合物半導体レーザー素子An optical waveguide layer made of a GaN, InGaN, AlGaN or AlInGaN semiconductor, having a refractive index smaller than that of the active layer, and larger than both clad layers is interposed between the active layer and both clad layers. 2. The GaN-based compound semiconductor laser device according to claim 1, 前記第1のクラッド層がn型AlN半導体からなり、かつ、第2のクラッド層がp型AlN半導体からなることを特徴とする請求項1又は2記載のGaN系化合物半導体レーザー素子3. The GaN-based compound semiconductor laser device according to claim 1, wherein the first cladding layer is made of an n-type AlN semiconductor, and the second cladding layer is made of a p-type AlN semiconductor. 前記活性層とクラッド層との屈折率差の割合がレーザー波長において10%以上であることを特徴とする請求項1、2又は3記載のGaN系化合物半導体レーザー素子4. The GaN-based compound semiconductor laser device according to claim 1, wherein a ratio of a refractive index difference between the active layer and the cladding layer is 10% or more at a laser wavelength.
JP2003049772A 2003-02-26 2003-02-26 GaN GROUP COMPOUND SEMICONDUCTOR LASER ELEMENT Pending JP2004259997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049772A JP2004259997A (en) 2003-02-26 2003-02-26 GaN GROUP COMPOUND SEMICONDUCTOR LASER ELEMENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049772A JP2004259997A (en) 2003-02-26 2003-02-26 GaN GROUP COMPOUND SEMICONDUCTOR LASER ELEMENT

Publications (1)

Publication Number Publication Date
JP2004259997A true JP2004259997A (en) 2004-09-16

Family

ID=33115398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049772A Pending JP2004259997A (en) 2003-02-26 2003-02-26 GaN GROUP COMPOUND SEMICONDUCTOR LASER ELEMENT

Country Status (1)

Country Link
JP (1) JP2004259997A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106961071A (en) * 2017-04-27 2017-07-18 中国科学院长春光学精密机械与物理研究所 A kind of semiconductor optical amplifier led based on ridged active area smooth sea

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106961071A (en) * 2017-04-27 2017-07-18 中国科学院长春光学精密机械与物理研究所 A kind of semiconductor optical amplifier led based on ridged active area smooth sea
CN106961071B (en) * 2017-04-27 2019-12-24 中国科学院长春光学精密机械与物理研究所 Semiconductor optical amplifier based on ridge active region weak waveguide

Similar Documents

Publication Publication Date Title
JP4816434B2 (en) Nitride semiconductor device
JP3863177B2 (en) Gallium nitride light emitting device
JP2004521495A (en) III-nitride LED with undoped cladding layer
TWI408832B (en) Light emitting device having pillar structure with hollow structure and the forming method thereof
JP2005116794A (en) Nitride semiconductor light emitting element
JPH11298090A (en) Nitride semiconductor element
JP2002033512A (en) Nitride semiconductor light emitting diode
JP2003101154A (en) Nitride semiconductor element
JP3224020B2 (en) Nitride semiconductor light emitting device and method of manufacturing the same
JP4917301B2 (en) Semiconductor light emitting diode
JP3951973B2 (en) Nitride semiconductor device
JP3314641B2 (en) Nitride semiconductor laser device
KR20050096010A (en) Nitride semiconductor light emitting diode and fabrication method thereof
JP3537984B2 (en) Nitride semiconductor laser device
JPH1146038A (en) Nitride semiconductor laser element and manufacture of the same
JP2011171431A (en) Semiconductor light-emitting device and method for manufacturing the same
JP2004259997A (en) GaN GROUP COMPOUND SEMICONDUCTOR LASER ELEMENT
JP4481385B2 (en) Semiconductor light emitting device and manufacturing method thereof
US8189637B2 (en) Semiconductor light-emitting device and method for manufacturing the same
JP3857417B2 (en) Nitride semiconductor device
JP4254373B2 (en) Nitride semiconductor device
JP2006135001A (en) Semiconductor element and its manufacturing method
JP4084787B2 (en) Gallium nitride light emitting diode
JP2002324946A (en) Iii group nitride semiconductor light emitting element
JP4492013B2 (en) Nitride semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041026

A621 Written request for application examination

Effective date: 20050908

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Effective date: 20070711

Free format text: JAPANESE INTERMEDIATE CODE: A712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Effective date: 20081031

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090326