JP2004259977A - Electronic circuit module - Google Patents

Electronic circuit module Download PDF

Info

Publication number
JP2004259977A
JP2004259977A JP2003049550A JP2003049550A JP2004259977A JP 2004259977 A JP2004259977 A JP 2004259977A JP 2003049550 A JP2003049550 A JP 2003049550A JP 2003049550 A JP2003049550 A JP 2003049550A JP 2004259977 A JP2004259977 A JP 2004259977A
Authority
JP
Japan
Prior art keywords
integrated circuit
housing
gap
conductive sheet
heat conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003049550A
Other languages
Japanese (ja)
Other versions
JP3956866B2 (en
Inventor
Kinya Yamazaki
欣哉 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003049550A priority Critical patent/JP3956866B2/en
Publication of JP2004259977A publication Critical patent/JP2004259977A/en
Application granted granted Critical
Publication of JP3956866B2 publication Critical patent/JP3956866B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electronic circuit module without causing unnecessary stress and capable of securely radiating heat. <P>SOLUTION: The electronic circuit module includes a metal hermetically sealed housing 4 for storing a board 3 on which an integrated circuit 2 is packaged, and a thermal conductive member 6 inserted in a gap 5 formed between the integrated circuit 2 and the housing 4. The thermal conductive member 6 is deformed to absorb the stress by forming convexities 7, 13 on either one or the both of the place of an inner wall of the housing 4 opposed to the integrated circuit 2 or the integrated circuit 2, or by forming convexities on the thermal conductive member 6. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、集積回路を密閉筐体に収容した電子回路モジュールに係り、特に、不要な応力をもたらすことなく、しかも確実に放熱を図ることができる電子回路モジュールに関するものである。
【0002】
【従来の技術】
光通信に用いる光トランシーバは、光電変換及び電光変換のための光素子と電気信号を処理する電子回路とを複合した電子回路モジュールの一種である。電子回路は、基板上に半導体集積回路パッケージ(以下、単に集積回路という)や抵抗器を実装して実現されている。本発明が対象とする電子回路モジュールは、この基板を金属製の密閉された筐体に収容したものである。筐体を金属製とし、かつ密閉するのは、主として集積回路の高速動作による高周波の輻射を遮蔽するためである。
【0003】
高周波を確実に遮蔽するために、筐体は隙間が極力小さくなるように作られている。例えば、光通信用の光ファイバが光結合した状態で予め光素子に取り付けられている場合、その光ファイバを筐体の外に導き出すための穴は、光軸合わせのための位置ずれを許容できる程度のクリアランスを残して極力小さく作られている。このように、高周波を発生する基板を収容した電子回路モジュールの筐体は、高周波の輻射を遮蔽するため、密閉度が高くしてある。
【0004】
一方、集積回路は、論理信号を処理する個々の論理素子の論理反転動作による充放電電流等のため発熱が伴うものであり、高速動作する集積回路は当然発熱も顕著である。とりわけ、多数の論理素子が集積されているICやLSIでは、多数の熱源が狭い面積に密集していることになるため、高熱になりやすい。従って、集積回路を熱による劣化から保護するためには、放熱をよくする必要がある。しかるに、前述した電子回路モジュールでは密閉度が高い筐体に基板を閉じ込めているため、放熱がよくない。
【0005】
この問題を解決するために、従来は、集積回路の上面から筐体の天井部分に熱伝導で熱が逃げるようにしている。筐体は金属でできているので放熱には最適である。ただし、固い集積回路(一般にセラミック若しくは樹脂からなる外装パッケージに半導体チップを埋め込んである)と固い筐体(一般にアルミダイキャストで作られる)とを直接当接するのは好ましくない。そこで、熱伝導性を持たせたエラストマ(弾性体)からなる熱伝導シートを集積回路の上面に載せ、その熱伝導シートの上に筐体の天井が接触するようにしている。このためには、集積回路の上面と天井との間に熱伝導シートを入れるギャップが必要になる。
【0006】
図3に示されるように、基板3に実装されている種々の集積回路2(2a,2b,2c)は、それぞれ高さが異なる。即ち、集積回路2は、外装パッケージの底面に半田接続用端子を並べて半田ボールで基板3に半田付けするタイプ、外装パッケージの外周に半田接続用端子を並べて基板3に部品面側から半田付けするタイプ、外装パッケージから突き出したリードを基板3のスルーホールに挿入して半田面側から半田付けするタイプなどがあり、タイプによって高さはまちまちである。互換性のある集積回路2でも製造メーカによって高さが異なる。これら集積回路2の高さに合わせて各ギャップ5が均一になるよう筐体4の天井の高さを場所ごとに決めてある。これらのギャップ5に熱伝導シート6が挟み込まれることになる。熱伝導シート6は、筐体5の天井12により若干押さえ付けられる。
【0007】
【特許文献1】
特開平10−308484号公報
【0008】
【発明が解決しようとする課題】
集積回路2の高さには、個体によるばらつきがあり、例えば、同じ製造メーカが製造した同一型式の集積回路2同士でも少しずつ高さが異なる。また、基板3に実装したときに基板3に対する集積回路2の高さも半田付けの仕上がりによりばらつく。そのほかに、筐体4の基板3取り付け位置から天井12までの高さ、基板3の厚み、熱伝導シート6の厚みにもそれぞれ個体によるばらつきがある。よって、集積回路2の上面と筐体4の天井12との間のギャップ5は基板3を筐体4に取り付けた状態で個体によって一定でない。
【0009】
前記ばらつきのために集積回路2の上面の高さが設計で狙った高さより高いと、相対的にギャップ5が狭くなり、熱伝導シート6を目論見よりも余計に圧縮しなければならない。そうすると集積回路2に余計な応力が加わる。しかし、ギャップ5を広めに設計すると、逆に集積回路2の高さが設計より足りないときに、ギャップ5が広くなりすぎて熱伝導シート6が筐体4に接触しない。熱伝導シート6が筐体4に接触しないものは、所期の放熱効果が得られない。
【0010】
設計者は、複数箇所のギャップ5がいずれも狭すぎず広すぎないように筐体4を設計しなければならないので、大きな労働負荷を強いられることになる。
【0011】
そこで、本発明の目的は、上記課題を解決し、不要な応力をもたらすことなく、しかも確実に放熱を図ることができる電子回路モジュールを提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するために本発明は、集積回路を実装した基板を金属製の密閉筐体に収容してなり、前記集積回路と前記筐体の内壁との間にギャップを形成して、このギャップに熱伝導部材を挟み込んだ電子回路モジュールにおいて、前記筐体の内壁の前記集積回路に対向する箇所に凹凸を形成したものである。
【0013】
また、本発明は、集積回路を実装した基板を金属製の密閉筐体に収容してなり、前記集積回路と前記筐体の内壁との間にギャップを形成して、このギャップに熱伝導部材を挟み込んだ電子回路モジュールにおいて、前記集積回路に凹凸を形成したものである。
【0014】
また、本発明は、集積回路を実装した基板を金属製の密閉筐体に収容してなり、前記集積回路と前記筐体の内壁との間にギャップを形成して、このギャップに熱伝導部材を挟み込んだ電子回路モジュールにおいて、前記熱伝導部材に凹凸を形成したものである。
【0015】
【発明の実施の形態】
以下、本発明の一実施形態を添付図面に基づいて詳述する。
【0016】
図1に示されるように、本発明に係る電子回路モジュールとしての光トランシーバは、光素子1及び集積回路2を実装したプリント回路基板(以下、基板という)3を金属製で密閉された筐体4に収容してなり、集積回路2と筐体4の内壁との間にギャップ5を形成して、このギャップ5にシート状に形成した熱伝導部材(以下、熱伝導シートという)6を挟み込んだものであり、筐体4の内壁には集積回路2に対向する箇所それぞれに凹凸7が形成されている。なお、図示した熱伝導シート6は、片面が凹凸になっているが、これは後述するように筐体4の凹凸7により変形したもので、応力が印加されない自然状態では平坦である。
【0017】
偏平な直方体状を呈する筐体4は、基板3の部品面に平行な面を上にして上下に2分割形成されており、下側筐体4aに基板3を取り付け、その上から上側筐体4bを被せるように取り付けて筐体4内空間の密閉を図っている。
【0018】
基板3に実装された部品のうち代表的なものが図示されている。即ち、2aは高さが高く上面の辺が長いIC、2bは高さが低く上面の辺が長いLSI、2cは高さが低く上面の辺が短いICである。光素子1は、略円柱若しくは角柱状の外装パッケージに収容されており、長手方向一端より光信号を入出射するので基板3の端部に横倒しにして実装されている。光素子1には、光通信用の光ファイバ8が光結合した状態で予め取り付けられており、光ファイバ8を折れ曲がり等から保護するブーツ9が取り付けられている。下側筐体4bに形成された窓10から筐体4外へ露出するコネクタ11は、基板3の裏面に実装されている。このコネクタ11を介して他の電子機器と電気的に通信をすることができる。
【0019】
ブーツ9が貫通する筐体4の穴及び窓10は、ブーツ9やコネクタ11に対する隙間が極力小さくなるように作られている。
【0020】
上側筐体4aの上部内壁(以下、天井という)12は、基板3上の集積回路2の配置箇所ごとに高さ(凹凸を均した高さ、或いは凸部における高さ)を段違いにすることで配置箇所ごとのギャップ5が大体同じ距離になるようにしてある。後述する理由により従来ほど厳密にギャップ5を均一に設計する必要はない。そして、この天井12には、集積回路2の配置箇所ごとに、集積回路2に対向する範囲に亘り複数の凹部及び凸部を有する凹凸7が形成されている。凹凸7は、熱伝導シート6を介して筐体4へ放熱することが必要な集積回路2(2a,2b,2c)の各々について設けられている。例えば、集積回路2aのための凹凸7は、当該集積回路2aの上面に対向する範囲に亘り、集積回路2aに近い複数の凸部と集積回路2aから遠い(即ち、凸部より高さが高い)複数の凹部とが交互に配置されている。各凸部及び凹部の幅は、凸部で押圧された熱伝導シート6が凹部へ変形できる程度としてある。これにより、熱伝導シート6は複数の凸部により飛び飛びに押圧されることになる。
【0021】
図示例では、凹凸7は、凹部となる複数の溝を筐体4の縦方向(紙面奥行き方向)に延ばして平行線状に形成されている。溝を横方向(紙面左右方向)にも走らせて格子状に形成してもよい。凹部または凸部の形状は角型に限らず、円筒状、ドーム状、テーパ状等など任意形状としてもよい。また、凹部となる窪みを多数設けてもよく、凸部となる突起を多数設けてもよい。また、凹凸7の粗密は場所によらず一定としてもよいし、図示のように上面の辺が長い集積回路2a,2bに対しては凹凸7の粗密を粗くし、上面の辺が短い集積回路2cに対しては凹凸7の粗密を細かくしてもよい。
【0022】
集積回路2の各配置箇所における天井12の高さの設計値は、集積回路2の上面の高さのばらつきによらず熱伝導シート6が筐体に十分接触するよう、熱伝導シート6の自然状態における厚みよりギャップ5が狭めに決定されている。
【0023】
図1の光トランシーバにおける本発明の作用効果を説明する。
【0024】
筐体4の天井12に凹凸7が設けられているため、ギャップ5に熱伝導シート6を挟み込むと、凹凸7の凸部は熱伝導シート6を圧して応力を加えることになる。一方、凹凸7の凹部からは熱伝導シート6に圧力がかからない。凸部で押圧された熱伝導シート6が凹部へ変形するので、熱伝導シート6は凹凸7の凸部に接している部分が凹み、凹凸7の凹部に臨む部分が盛り上がって食い込むようになる。このように、熱伝導シート6が凹凸7に食い込むよう変形して応力を吸収するので、集積回路2に伝わる応力を緩和することができる。
【0025】
従来は筐体4の天井12が凹凸のない平坦面であったので、ギャップ5が狭い場合に熱伝導シートに加わった応力がそのまま集積回路2にも及んでしまったが、本発明によれば、天井12に凹凸7があるので、熱伝導シート6が変形して応力を吸収し集積回路2を応力から保護することができる。これにより、ギャップ5を従来より狭めに設計することができる。よって、集積回路2の高さが設計より足りなくても筐体4に接触させられないという事態が回避される。その結果、ギャップ5を従来ほど厳密に設計する必要がなくなり、設計が容易になる。また、熱伝導シート6が凹凸7に食い込むので、熱伝導シート6と筐体4との接触面積が増え、熱伝導効率が向上する効果もある。
【0026】
なお、集積回路2以外でも抵抗器などの電気部品において発熱が問題になるときは、その電気部品の箇所の天井12に凹凸7を設け、熱伝導シート6を挟み込めば筐体12を介した放熱効果が得られる。
【0027】
次に、他の実施形態を説明する。
【0028】
図2に示される光トランシーバは、集積回路2の上面に凹凸13が設けられている。他の部分の構成については図1の構成と全く同じであるから説明を省略する。作用効果もほぼ図1の光トランシーバと同じである。図2の場合、筐体4の天井12の凹凸7に加えて集積回路2の上面にも凹凸13が設けられているので、熱伝導シート6と集積回路2との接触面積が増え、熱伝導効率が向上する。なお、天井12には従来同様凹凸を設けず、集積回路2だけに凹凸13を設けても前述した作用効果が得られる。
【0029】
熱伝導シート6を押圧変形させる目的で外装パッケージの上面に凹凸13を設けた集積回路2は従来存在しないが、外装パッケージを成型する型を変更するだけで集積回路2の内部構造を変更することなく製造することは実施可能である。
【0030】
次に、他の実施形態を説明する。
【0031】
図1、図2の実施形態では、自然状態で平坦な熱伝導シート6を使用し、筐体4の天井12、若しくは集積回路2の上面、若しくはその両方に凹凸7、凹凸13を形成したが、この実施形態(図示せず)では、筐体4も集積回路2も従来どおり平坦面とし、代わりに熱伝導シート6に凹凸を付ける。凹凸は熱伝導シート6の片面だけに付けてもよいし、両面に付けてもよい。このように熱伝導シート6に凹凸を設けた場合も、集積回路2と筐体4の内壁との間のギャップ5に熱伝導シート6を挟み込むと、凸部が潰れるように変形して応力を吸収するので、集積回路2に伝わる応力を緩和することができる。
【0032】
熱伝導シート6を押圧変形させる目的で凹凸を設けた熱伝導シート6は従来存在しないが、シート製造用の型を変更すれば凹凸を設けた熱伝導シート6を製造することは実施可能である。
【0033】
図1、図2及び図示しない実施形態の光トランシーバの組み立て方法は、まず、集積回路2を基板3に実装し、各集積回路2に熱伝導シート6を載せる。熱伝導シート6にはタック性(貼り付いてずり落ちない性質)があるので、基板3に傾斜や軽微な振動が生じても熱伝導シート6が脱落することはない。この基板3を下側筐体4aに取り付け、その上から上側筐体4bを被せるように取り付けて完成する。
【0034】
以上の実施形態では、電子回路モジュールとして光トランシーバを例にとったが、本発明は、高速動作する電子回路を密閉度の高い筐体に収容した種々の電子回路モジュールに適用することができる。
【0035】
【発明の効果】
本発明は次の如き優れた効果を発揮する。
【0036】
(1)筐体内壁、集積回路或いは熱伝導部材に凹凸を形成したので、熱伝導部材が変形して応力を吸収し集積回路に不要な応力をもたらすことがなくなり、しかも、筐体内壁、熱伝導部材及び集積回路を密着させて確実に放熱を図ることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す光トランシーバの断面図である。
【図2】本発明の一実施形態を示す光トランシーバの断面図である。
【図3】従来の光トランシーバの断面図である。
【符号の説明】
1 光素子
2、2a、2b、2c 集積回路
3 基板
4 筐体
5 ギャップ
6 熱伝導部材(熱伝導シート)
7 筐体の凹凸
12 筐体の上部内壁(天井)
13 集積回路の凹凸
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electronic circuit module in which an integrated circuit is housed in a closed casing, and more particularly to an electronic circuit module capable of reliably releasing heat without causing unnecessary stress.
[0002]
[Prior art]
2. Description of the Related Art An optical transceiver used for optical communication is a type of electronic circuit module in which an optical element for photoelectric conversion and light-to-light conversion and an electronic circuit for processing an electric signal are combined. An electronic circuit is realized by mounting a semiconductor integrated circuit package (hereinafter, simply referred to as an integrated circuit) and a resistor on a substrate. The electronic circuit module to which the present invention is applied is one in which this substrate is housed in a sealed metal case. The reason why the casing is made of metal and hermetically sealed is mainly to shield high-frequency radiation due to high-speed operation of the integrated circuit.
[0003]
In order to reliably shield high frequencies, the housing is made such that the gap is as small as possible. For example, when an optical fiber for optical communication is attached to an optical element in a state where the optical fiber is optically coupled, a hole for guiding the optical fiber out of the housing can allow a positional shift for optical axis alignment. It is made as small as possible, leaving some clearance. As described above, the enclosure of the electronic circuit module accommodating the substrate generating the high frequency has a high degree of sealing in order to shield high-frequency radiation.
[0004]
On the other hand, integrated circuits generate heat due to charge / discharge currents and the like due to the logical inversion operation of individual logic elements that process logic signals, and integrated circuits that operate at high speed naturally generate significant heat. In particular, in an IC or LSI in which a large number of logic elements are integrated, a large number of heat sources are densely packed in a small area, so that the heat is likely to be high. Therefore, in order to protect the integrated circuit from deterioration due to heat, it is necessary to improve heat dissipation. However, in the above-described electronic circuit module, since the substrate is confined in a housing with a high degree of sealing, heat radiation is not good.
[0005]
Conventionally, in order to solve this problem, heat is released from the upper surface of the integrated circuit to the ceiling of the housing by heat conduction. Since the case is made of metal, it is optimal for heat dissipation. However, it is not preferable to directly contact a hard integrated circuit (in which a semiconductor chip is embedded in an exterior package generally made of ceramic or resin) and a hard housing (generally made of aluminum die-cast). Therefore, a heat conductive sheet made of an elastomer (elastic body) having heat conductivity is placed on the upper surface of the integrated circuit, and the ceiling of the housing is brought into contact with the heat conductive sheet. This requires a gap between the top surface of the integrated circuit and the ceiling to accommodate the heat conducting sheet.
[0006]
As shown in FIG. 3, the various integrated circuits 2 (2a, 2b, 2c) mounted on the substrate 3 have different heights. That is, the integrated circuit 2 is of a type in which the solder connection terminals are arranged on the bottom surface of the exterior package and soldered to the substrate 3 with solder balls, and the solder connection terminals are arranged on the outer periphery of the exterior package and soldered to the substrate 3 from the component side. There are a type and a type in which a lead protruding from an exterior package is inserted into a through hole of the substrate 3 and soldered from the solder surface side, and the height varies depending on the type. The height of the compatible integrated circuit 2 differs depending on the manufacturer. The height of the ceiling of the housing 4 is determined for each location so that the gaps 5 are uniform according to the height of the integrated circuit 2. The heat conductive sheet 6 is sandwiched between these gaps 5. The heat conductive sheet 6 is slightly pressed down by the ceiling 12 of the housing 5.
[0007]
[Patent Document 1]
JP-A-10-308484
[Problems to be solved by the invention]
The height of the integrated circuits 2 varies depending on the individual. For example, the heights of the integrated circuits 2 of the same type manufactured by the same manufacturer slightly differ from each other. Further, when the integrated circuit 2 is mounted on the substrate 3, the height of the integrated circuit 2 with respect to the substrate 3 also varies due to the finish of the soldering. In addition, the height of the housing 4 from the mounting position of the substrate 3 to the ceiling 12, the thickness of the substrate 3, and the thickness of the heat conductive sheet 6 also vary among individuals. Therefore, the gap 5 between the upper surface of the integrated circuit 2 and the ceiling 12 of the housing 4 is not constant depending on the individual when the substrate 3 is mounted on the housing 4.
[0009]
If the height of the upper surface of the integrated circuit 2 is higher than the height intended in the design due to the variation, the gap 5 becomes relatively narrow, and the heat conductive sheet 6 must be compressed more than expected. Then, extra stress is applied to the integrated circuit 2. However, if the gap 5 is designed to be wider, on the contrary, when the height of the integrated circuit 2 is less than the design, the gap 5 becomes too wide and the heat conductive sheet 6 does not contact the housing 4. If the heat conductive sheet 6 does not contact the housing 4, the expected heat radiation effect cannot be obtained.
[0010]
Since the designer must design the housing 4 so that none of the gaps 5 at a plurality of locations is too narrow or too wide, a large work load is imposed.
[0011]
Therefore, an object of the present invention is to solve the above-mentioned problems and to provide an electronic circuit module that can reliably release heat without causing unnecessary stress.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method in which a substrate on which an integrated circuit is mounted is housed in a metal hermetic housing, and a gap is formed between the integrated circuit and an inner wall of the housing. In an electronic circuit module having a heat conductive member sandwiched in a gap, irregularities are formed in a portion of the inner wall of the housing facing the integrated circuit.
[0013]
Further, according to the present invention, a substrate on which an integrated circuit is mounted is housed in a metal hermetic housing, a gap is formed between the integrated circuit and an inner wall of the housing, and a heat conducting member is formed in the gap. In an electronic circuit module sandwiching the above, an unevenness is formed on the integrated circuit.
[0014]
Further, according to the present invention, a substrate on which an integrated circuit is mounted is housed in a metal hermetic housing, a gap is formed between the integrated circuit and an inner wall of the housing, and a heat conducting member is formed in the gap. In the electronic circuit module sandwiching the above, unevenness is formed on the heat conductive member.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
[0016]
As shown in FIG. 1, in an optical transceiver as an electronic circuit module according to the present invention, a printed circuit board (hereinafter, referred to as a board) 3 on which an optical element 1 and an integrated circuit 2 are mounted is sealed by a metal enclosure. 4, a gap 5 is formed between the integrated circuit 2 and the inner wall of the housing 4, and a sheet-like heat conductive member (hereinafter referred to as a heat conductive sheet) 6 is sandwiched in the gap 5. In the inner wall of the housing 4, irregularities 7 are formed at locations facing the integrated circuit 2. Although the illustrated heat conductive sheet 6 has irregularities on one side, it is deformed by irregularities 7 of the housing 4 as described later, and is flat in a natural state where no stress is applied.
[0017]
The housing 4 having a flat rectangular parallelepiped shape is formed vertically into two parts with the surface parallel to the component surface of the board 3 facing upward. The board 3 is attached to the lower housing 4a, and the upper housing is 4b so as to cover the inside of the housing 4 for sealing.
[0018]
Representative components among components mounted on the substrate 3 are illustrated. That is, 2a is an IC having a high height and a long upper side, 2b is an LSI having a low height and a long upper side, and 2c is an IC having a low height and a short upper side. The optical element 1 is housed in a substantially cylindrical or prismatic outer package, and receives and emits an optical signal from one end in the longitudinal direction. An optical fiber 8 for optical communication is attached to the optical element 1 in a state where it is optically coupled, and a boot 9 for protecting the optical fiber 8 from bending or the like is attached. The connector 11 exposed to the outside of the housing 4 from the window 10 formed in the lower housing 4 b is mounted on the back surface of the board 3. Via this connector 11, it is possible to electrically communicate with other electronic devices.
[0019]
The hole of the housing 4 and the window 10 through which the boot 9 passes are formed such that the gap between the boot 9 and the connector 11 is as small as possible.
[0020]
An upper inner wall (hereinafter referred to as a ceiling) 12 of the upper housing 4a has a different height (a leveled unevenness or a height at a convex portion) for each arrangement position of the integrated circuit 2 on the substrate 3. The gap 5 at each location is set to be approximately the same distance. It is not necessary to design the gap 5 more strictly and uniformly than in the past for the reasons described below. The ceiling 12 is provided with irregularities 7 having a plurality of concave portions and convex portions over a range opposed to the integrated circuit 2 for each arrangement position of the integrated circuit 2. The unevenness 7 is provided for each of the integrated circuits 2 (2a, 2b, 2c) that need to radiate heat to the housing 4 via the heat conductive sheet 6. For example, the unevenness 7 for the integrated circuit 2a extends over a range opposed to the upper surface of the integrated circuit 2a and a plurality of protrusions close to the integrated circuit 2a and far from the integrated circuit 2a (that is, higher than the protrusions). ) A plurality of concave portions are alternately arranged. The width of each convex portion and concave portion is set so that the heat conductive sheet 6 pressed by the convex portion can be deformed into a concave portion. As a result, the heat conductive sheet 6 is scattered and pressed by the plurality of protrusions.
[0021]
In the illustrated example, the concavities and convexities 7 are formed in a parallel line shape by extending a plurality of grooves serving as concave portions in the longitudinal direction of the housing 4 (the depth direction in the drawing). The grooves may be formed in a lattice shape by running in the horizontal direction (the left-right direction on the paper). The shape of the concave portion or the convex portion is not limited to a square shape, and may be an arbitrary shape such as a cylindrical shape, a dome shape, and a tapered shape. Further, a large number of depressions serving as concave portions may be provided, and a large number of protrusions serving as convex portions may be provided. Further, the density of the unevenness 7 may be constant regardless of the location, or as shown in the figure, the integrated circuit 2a, 2b having a long upper surface may have a roughened unevenness 7 and an integrated circuit having a short upper surface. For 2c, the roughness of the unevenness 7 may be fine.
[0022]
The design value of the height of the ceiling 12 at each location of the integrated circuit 2 is set so that the heat conductive sheet 6 can sufficiently contact the housing regardless of the variation in the height of the upper surface of the integrated circuit 2. The gap 5 is determined to be narrower than the thickness in the state.
[0023]
The operation and effect of the present invention in the optical transceiver of FIG. 1 will be described.
[0024]
Since the unevenness 7 is provided on the ceiling 12 of the housing 4, when the heat conductive sheet 6 is sandwiched in the gap 5, the convex portion of the unevenness 7 applies pressure by pressing the heat conductive sheet 6. On the other hand, no pressure is applied to the heat conductive sheet 6 from the concave portions of the concave and convex portions 7. Since the heat conductive sheet 6 pressed by the convex portion is deformed into the concave portion, the portion of the thermal conductive sheet 6 in contact with the convex portion of the concave and convex 7 is concave, and the portion of the thermal conductive sheet 6 facing the concave portion rises and bites. As described above, since the heat conductive sheet 6 deforms so as to cut into the unevenness 7 and absorbs the stress, the stress transmitted to the integrated circuit 2 can be reduced.
[0025]
Conventionally, since the ceiling 12 of the housing 4 was a flat surface without irregularities, when the gap 5 was narrow, the stress applied to the heat conductive sheet directly applied to the integrated circuit 2, but according to the present invention, The unevenness 7 on the ceiling 12 deforms the heat conductive sheet 6 to absorb the stress and protect the integrated circuit 2 from the stress. As a result, the gap 5 can be designed to be narrower than before. Therefore, a situation where the integrated circuit 2 cannot be brought into contact with the housing 4 even if the height of the integrated circuit 2 is less than the design is avoided. As a result, it is not necessary to design the gap 5 as strictly as before, and the design becomes easy. Further, since the heat conductive sheet 6 bites into the unevenness 7, the contact area between the heat conductive sheet 6 and the housing 4 increases, and there is also an effect that the heat transfer efficiency is improved.
[0026]
When heat is a problem in electrical components such as resistors other than the integrated circuit 2, the unevenness 7 is provided on the ceiling 12 at the location of the electrical component, and the heat conductive sheet 6 is sandwiched between the casings 12. A heat radiation effect is obtained.
[0027]
Next, another embodiment will be described.
[0028]
The optical transceiver shown in FIG. 2 has an unevenness 13 on the upper surface of the integrated circuit 2. The configuration of the other parts is exactly the same as the configuration of FIG. The operation and effect are almost the same as those of the optical transceiver of FIG. In the case of FIG. 2, since the unevenness 13 is provided on the upper surface of the integrated circuit 2 in addition to the unevenness 7 on the ceiling 12 of the housing 4, the contact area between the heat conductive sheet 6 and the integrated circuit 2 is increased, Efficiency is improved. It should be noted that the above-described operation and effect can be obtained even if the unevenness 13 is provided only on the integrated circuit 2 without providing the unevenness on the ceiling 12 as in the related art.
[0029]
Conventionally, there has been no integrated circuit 2 provided with irregularities 13 on the upper surface of the outer package for the purpose of pressing and deforming the heat conductive sheet 6, but changing the internal structure of the integrated circuit 2 only by changing the mold for molding the outer package. Manufacturing without is feasible.
[0030]
Next, another embodiment will be described.
[0031]
In the embodiment of FIGS. 1 and 2, the unevenness 7 and the unevenness 13 are formed on the ceiling 12 of the housing 4, the upper surface of the integrated circuit 2, or both using the heat conductive sheet 6 which is flat in a natural state. In this embodiment (not shown), both the housing 4 and the integrated circuit 2 have a flat surface as before, and the heat conductive sheet 6 is provided with irregularities instead. The irregularities may be provided on only one side of the heat conductive sheet 6 or on both sides. Even when the thermal conductive sheet 6 is provided with irregularities, when the thermal conductive sheet 6 is sandwiched in the gap 5 between the integrated circuit 2 and the inner wall of the housing 4, the convex portion is deformed so as to be crushed and stress is reduced. Because of the absorption, the stress transmitted to the integrated circuit 2 can be reduced.
[0032]
Conventionally, there is no heat conductive sheet 6 provided with unevenness for the purpose of pressing and deforming the heat conductive sheet 6, but it is possible to manufacture the heat conductive sheet 6 provided with unevenness by changing the mold for manufacturing the sheet. .
[0033]
In the method of assembling the optical transceiver according to the embodiment shown in FIGS. 1 and 2, first, the integrated circuit 2 is mounted on the substrate 3, and the heat conductive sheet 6 is placed on each integrated circuit 2. Since the heat conductive sheet 6 has tackiness (property of sticking and not falling down), the heat conductive sheet 6 does not fall off even if the substrate 3 is inclined or slightly vibrated. The substrate 3 is mounted on the lower housing 4a, and is mounted so as to cover the upper housing 4b from above.
[0034]
In the above embodiments, an optical transceiver is taken as an example of an electronic circuit module. However, the present invention can be applied to various electronic circuit modules in which high-speed operating electronic circuits are housed in a highly sealed housing.
[0035]
【The invention's effect】
The present invention exhibits the following excellent effects.
[0036]
(1) Since the unevenness is formed on the inner wall of the housing, the integrated circuit, or the heat conductive member, the heat conductive member is not deformed and absorbs the stress, so that unnecessary stress is not given to the integrated circuit. The conductive member and the integrated circuit are brought into close contact with each other to reliably release heat.
[Brief description of the drawings]
FIG. 1 is a sectional view of an optical transceiver showing one embodiment of the present invention.
FIG. 2 is a sectional view of an optical transceiver showing one embodiment of the present invention.
FIG. 3 is a sectional view of a conventional optical transceiver.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Optical element 2, 2a, 2b, 2c Integrated circuit 3 Substrate 4 Housing 5 Gap 6 Heat conduction member (heat conduction sheet)
7 Concavity and convexity of housing 12 Upper inner wall (ceiling) of housing
13 Unevenness of integrated circuit

Claims (3)

集積回路を実装した基板を金属製の密閉筐体に収容してなり、前記集積回路と前記筐体の内壁との間にギャップを形成して、このギャップに熱伝導部材を挟み込んだ電子回路モジュールにおいて、前記筐体の内壁の前記集積回路に対向する箇所に凹凸を形成したことを特徴とする電子回路モジュール。An electronic circuit module in which a substrate on which an integrated circuit is mounted is housed in a metal hermetic housing, a gap is formed between the integrated circuit and an inner wall of the housing, and a heat conducting member is sandwiched in the gap. 3. The electronic circuit module according to claim 1, wherein irregularities are formed on a portion of the inner wall of the housing facing the integrated circuit. 集積回路を実装した基板を金属製の密閉筐体に収容してなり、前記集積回路と前記筐体の内壁との間にギャップを形成して、このギャップに熱伝導部材を挟み込んだ電子回路モジュールにおいて、前記集積回路に凹凸を形成したことを特徴とする電子回路モジュール。An electronic circuit module in which a substrate on which an integrated circuit is mounted is housed in a metal hermetic housing, a gap is formed between the integrated circuit and an inner wall of the housing, and a heat conducting member is sandwiched in the gap. 3. The electronic circuit module according to claim 1, wherein the unevenness is formed on the integrated circuit. 集積回路を実装した基板を金属製の密閉筐体に収容してなり、前記集積回路と前記筐体の内壁との間にギャップを形成して、このギャップに熱伝導部材を挟み込んだ電子回路モジュールにおいて、前記熱伝導部材に凹凸を形成したことを特徴とする電子回路モジュール。An electronic circuit module in which a substrate on which an integrated circuit is mounted is housed in a metal hermetic housing, a gap is formed between the integrated circuit and an inner wall of the housing, and a heat conducting member is sandwiched in the gap. 3. The electronic circuit module according to claim 1, wherein the heat conducting member has irregularities.
JP2003049550A 2003-02-26 2003-02-26 Electronic circuit module Expired - Fee Related JP3956866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049550A JP3956866B2 (en) 2003-02-26 2003-02-26 Electronic circuit module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049550A JP3956866B2 (en) 2003-02-26 2003-02-26 Electronic circuit module

Publications (2)

Publication Number Publication Date
JP2004259977A true JP2004259977A (en) 2004-09-16
JP3956866B2 JP3956866B2 (en) 2007-08-08

Family

ID=33115242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049550A Expired - Fee Related JP3956866B2 (en) 2003-02-26 2003-02-26 Electronic circuit module

Country Status (1)

Country Link
JP (1) JP3956866B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008047713A (en) * 2006-08-16 2008-02-28 Fujitsu Ltd Apparatus, arithmetic device, and heat dissipation member
JP2009512203A (en) * 2005-10-18 2009-03-19 ヴィディーオー オートモーティヴ アクチエンゲゼルシャフト IC component with cooling assembly
JP2010129954A (en) * 2008-12-01 2010-06-10 Kenwood Corp Heat dissipating structure
US7821125B2 (en) 2007-06-08 2010-10-26 Opnext Japan, Inc. Semiconductor device
US8222729B2 (en) 2010-05-20 2012-07-17 Denso Corporation Electric power converter
JP2013080835A (en) * 2011-10-04 2013-05-02 Denso Corp Semiconductor device and manufacturing method of the same
CN104076651A (en) * 2013-03-26 2014-10-01 京瓷办公信息系统株式会社 Optical scanning device and image forming apparatus including the same
JP2014203998A (en) * 2013-04-05 2014-10-27 日立オートモティブシステムズ株式会社 In-vehicle electronic controller
JP2021092657A (en) * 2019-12-10 2021-06-17 住友電気工業株式会社 Optical transceiver

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009512203A (en) * 2005-10-18 2009-03-19 ヴィディーオー オートモーティヴ アクチエンゲゼルシャフト IC component with cooling assembly
JP2008047713A (en) * 2006-08-16 2008-02-28 Fujitsu Ltd Apparatus, arithmetic device, and heat dissipation member
US7821125B2 (en) 2007-06-08 2010-10-26 Opnext Japan, Inc. Semiconductor device
JP2010129954A (en) * 2008-12-01 2010-06-10 Kenwood Corp Heat dissipating structure
US8222729B2 (en) 2010-05-20 2012-07-17 Denso Corporation Electric power converter
JP2013080835A (en) * 2011-10-04 2013-05-02 Denso Corp Semiconductor device and manufacturing method of the same
CN104076651A (en) * 2013-03-26 2014-10-01 京瓷办公信息系统株式会社 Optical scanning device and image forming apparatus including the same
JP2014190996A (en) * 2013-03-26 2014-10-06 Kyocera Document Solutions Inc Optical scanner, and image forming apparatus including the optical scanner
CN104076651B (en) * 2013-03-26 2016-06-01 京瓷办公信息系统株式会社 Photoscanning device and possess the image processing system of photoscanning device
JP2014203998A (en) * 2013-04-05 2014-10-27 日立オートモティブシステムズ株式会社 In-vehicle electronic controller
JP2021092657A (en) * 2019-12-10 2021-06-17 住友電気工業株式会社 Optical transceiver
JP7500959B2 (en) 2019-12-10 2024-06-18 住友電気工業株式会社 Optical Transceiver

Also Published As

Publication number Publication date
JP3956866B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
US6813154B2 (en) Reversible heat sink packaging assembly for an integrated circuit
US5548481A (en) Electronic module containing an internally ribbed, integral heat sink and bonded, flexible printed wiring board with two-sided component population
KR100297226B1 (en) Heat sink and memory module with heat sink
KR100924547B1 (en) Semiconductor package module
KR100632459B1 (en) Heat-dissipating semiconductor package and manufacturing method
EP3051584B1 (en) Heat spreader with down set leg attachment feature
JP4228753B2 (en) Electronic control unit
CN104303289A (en) Electronic module and method for manufacturing same
KR20130121402A (en) Semiconductor package module
US6392887B1 (en) PLGA-BGA socket using elastomer connectors
JP2004259977A (en) Electronic circuit module
US20110174526A1 (en) Circuit module
KR20020011321A (en) Electronic apparatus provided with an electronic circuit substrate
JPH0680911B2 (en) Heat dissipation structure of printed wiring board with electronic components
JP5409344B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2004247724A (en) System and method for radiating heat from electronic board
EP0822595B1 (en) Hybrid module
US20050088827A1 (en) Electrical card having heatsink device
JP2004221248A (en) Semiconductor device
CN112151081B (en) Data storage device and connector therefor
KR200325122Y1 (en) heat sink in semiconductor package
JP3631193B2 (en) Heat dissipation device
TWI396337B (en) Electrical connector assembly
JP2007043011A (en) Heat dissipation structure of electronic apparatus
JP4078400B2 (en) Heat dissipation system for electronic devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees