JP2004259602A - Electroluminescent light - Google Patents

Electroluminescent light Download PDF

Info

Publication number
JP2004259602A
JP2004259602A JP2003049270A JP2003049270A JP2004259602A JP 2004259602 A JP2004259602 A JP 2004259602A JP 2003049270 A JP2003049270 A JP 2003049270A JP 2003049270 A JP2003049270 A JP 2003049270A JP 2004259602 A JP2004259602 A JP 2004259602A
Authority
JP
Japan
Prior art keywords
electrode
electroluminescent lamp
upper electrode
insulating layer
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003049270A
Other languages
Japanese (ja)
Inventor
Naoyuki Mori
尚之 森
Masato Hayashi
正人 林
Masaharu Ono
正晴 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP2003049270A priority Critical patent/JP2004259602A/en
Publication of JP2004259602A publication Critical patent/JP2004259602A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroluminescent light of high quality and low cost with brightness and luminous efficiency improved and capable of displaying characters or the whole figure uniformly by the whole face emission, without bringing forth dielectric breakdown between electrodes. <P>SOLUTION: An electroluminescent light 1 is structured with a rear electrode 3 formed on an insulated base film 2, a reflective insulation layer 4 formed so as to cover the entire part of the rear electrode 3, an upper electrode 5 formed in a lattice shape on the reflective insulation layer 4, a luminous layer 6 formed on the upper electrode 5, a transparent film 7 to be a protective layer formed on the luminous layer 6, and a transparent electrode 8 consisting of any character, for instance, 'N', formed on the transparent film 7 according to user's preference. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は装飾や看板、玩具、インテリア等として好適な電界発光灯に関し、特に任意の文字や図形を容易に発光できるとともに発光効率及び消去性、信頼性を向上させ、かつ安定して量産できる安価な電界発光灯に関するものである。
【0002】
【従来の技術】
透明電極と裏面電極間に交流電圧を印加して、両電極間に挟まれた発光層から出た光を透明電極を介して全面発光させる電界発光灯は、液晶ディスプレイのバックライト等に使用されている。これとは別に、文字や図形などのキャラクタ表示を目的として、裏面電極を分割し、この分割した裏面電極に交流電圧を印加して、発光層を発光させる電界発光灯があり、例えば、特開平8−153582号公報に開示されている。
【0003】
図17は、従来の電界発光灯101の構成を示す要部断面図である。従来の電界発光灯101は、ポリエチレンテレフタレート、ポリイミド等から成る絶縁性ベースフィルム102上に、銅、アルミニウム等の導電性材料を接着剤等で接着し、エッチング等の手段により電気的に分割された裏面電極103a、103bを櫛型状に形成し、この裏面電極103a、103b上に反射絶縁層104と発光層105を順次積層形成し、さらに発光層105の上面に、例えば可視光線透過性のある導電性微粉末としてインジウム錫酸化物をアクリルメラミン樹脂に分散させた導電性ペーストを塗布や印刷により、使用者が好みに応じた所定形状に成膜乾燥させた透明電極106を形成する。そして、裏面電極103a、103bの電極端子107a、107bが外部に露出するように一対の封止フィルム108、109で包囲してラミネート処理するものである。
【0004】
次に、かかる構成の電界発光灯101の動作について説明する。裏面電極端子107a、107bに所定の交流電圧を印加すると、反射絶縁層104と発光層105が容量性を有するために、裏面電極103a、103bと透明電極106間に電位差が生じる。その結果、発光層105に高電界がかかり、使用者が塗布や印刷等の手段により好みの所定形状に成膜した表示電極である透明電極106を通して、発光層105から光が取り出される。
【0005】
【特許文献1】
特開平8−153582号公報(第2,3頁、0012段落〜0016段落、図1,図3)
【0006】
【発明が解決しようとする課題】
しかしながら、上述した従来の電界発光灯101は、同一面状から給電できるという利点を有する反面、透明電極と裏面電極に交流電圧を印加して発光させるタイプの電界発光灯に比較して発光効率が悪く、同一電圧で点灯させると輝度が低下するという問題があった。
【0007】
これは図18の電界発光灯101の等価回路図に示すように、従来の電界発光灯101は、裏面電極103a、103b間に、それぞれ静電容量を有する2層分の反射絶縁層104及び発光層105が、透明電極106を介して直列接続されているためである。外部から印加される交流電圧は、これらの容量で分割されてそれぞれの層にかかることになるが、裏面電極103a、103b間には、2つの電界発光灯が形成されており、発光層105にかかる電界強度が従来の1/2に低下することになる。発光層105にかかる電界強度を上げるために、反射絶縁層104や発光層105の厚みを薄くすることも考えられるが、反射絶縁層104や発光層105の膜厚は、チタン酸バリウムや蛍光体の大きさで決まり、発光効率を考慮して出来るだけ薄く設計しているために、これ以上薄くすることはできない。
【0008】
また、従来の電界発光灯101には、発光面がストライプ状に発光し、文字や図形の視認性を損なうという問題もあった。これは、図19に示すように、裏面電極103a、103b上部に位置する発光層105aには、裏面電極103a、103bと透明電極106を介して垂直方向に電気力線110が形成され高電界がかかるが、裏面電極103a、103b間の上部に位置する発光層105bは、裏面電極103a、103bとの距離が離れているため、電気力線が形成されずに高電界がほとんどかからないことによる。その結果、文字や図形がストライプ状の発光111になる。
【0009】
図20は、従来の電界発光灯101の平面図及び文字を発光させたときの状態図である。図20(a)に示すように、従来の電界発光灯101の電極端子107a、107bに交流電圧を印加して透明電極106で形成した文字「N」を発光させると、図20(b)に示すように裏面電極103a、103bの間が未発光のストライプ状の文字「N」112が表示されることになる。従って、裏面電極103a、103bの間隔はできるだけ狭くなるよう設計されるが、裏面電極103a、103bの極性が異なるため100〜300μmが限界であり、これ以上に近づけると裏面電極103a、103bの間に位置する反射絶縁層104が絶縁破壊を起こし、正常な表示が不能となる。
【0010】
本発明は上記問題を解決するために考えられたもので、電界発光灯の輝度、発光効率を改善するとともに、電極間に絶縁破壊を起こすことなく、文字や図形全体を均一に全面発光表示させることができる高品質で安価な電界発光灯を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1記載の電界発光灯は、透明電極と裏面電極の間に発光層と反射絶縁層を形成した電界発光灯であって、前記発光層と前記反射絶縁層の間に上部電極を格子状、網目状、あるいはストライプ状に形成するとともに、前記裏面電極と前記上部電極に交流電圧を印加して駆動することを特徴とする。この構成により、裏面電極と上部電極の間には、透明電極を介して静電容量を有する1層の反射絶縁層と2層の発光層が直列接続された状態になるので、従来と比較して反射絶縁層1層分の容量成分が少なくなり、発光層にかかる電圧が増えて電界強度が上がり、輝度を向上させることができる。また、上部電極に印加される電圧は同極性であるので、上部電極の幅や間隔を小さくすることができ、文字や図形を均一に全面発光させることができる。
【0012】
また、請求項2記載の電界発光灯は、透明電極と裏面電極の間に発光層と反射絶縁層を形成した電界発光灯であって、前記発光層と前記反射絶縁層の間に上部電極を設け、前記裏面電極と前記上部電極をそれぞれストライプ状に形成し、それらのストライプが発光面から見て重ならないよう配置されるとともに、前記裏面電極と前記上部電極に交流電圧を印加して駆動することを特徴とする。この構成により、裏面電極と上部電極の間には、透明電極を介して静電容量を有する1層の反射絶縁層と2層の発光層が直列接続された状態になるので、従来と比較して反射絶縁層1層分の容量成分が少なくなり、発光層にかかる電圧が増えて電界強度が上がり、輝度を向上させることができる。また、上部電極に印加される電圧は同極性であるので、上部電極の幅や間隔を小さくすることができ、文字や図形を均一に全面発光させることができる。また、上部電極下部に裏面電極が形成されていないので、上部電極下部の反射絶縁層に無効電流が流れることがなく、発光効率と絶縁耐圧が大幅に向上する。
【0013】
また、請求項3記載の電界発光灯は、透明電極と裏面電極の間に発光層と反射絶縁層を形成した電界発光灯であって、前記発光層と前記反射絶縁層の間に上部電極と中間絶縁層を格子状、網目状、あるいはストライプ状に形成するとともに、前記裏面電極と前記上部電極に交流電圧を印加して駆動することを特徴とする。この構成により、裏面電極と上部電極の間には、透明電極を介して静電容量を有する1層の反射絶縁層と2層の発光層が直列接続された状態になるので、従来と比較して反射絶縁層1層分の容量成分が少なくなり、発光層にかかる電圧が増えて電界強度が上がり、輝度を向上させることができる。また、上部電極に印加される電圧は同極性であるので、上部電極の幅や間隔を小さくすることができ、文字や図形を均一に全面発光させることができる。また、上部電極下部に低誘電率の中間絶縁層が形成されているので、上部電極下部の中間絶縁層と反射絶縁層に無効電流が流れることがなく、発光効率と絶縁耐圧が大幅に向上する。
【0014】
また、請求項4記載の電界発光灯は、請求項1〜3記載の電界発光灯であって、前記上部電極が、カーボン、銀、銅、ニッケル、アルミニウムのうちの一種類以上を含む金属ペーストをスクリーン印刷して形成されたことを特徴とする。この構成により、上部電極を含めた各層を同一のスクリーン印刷装置により形成できるので、製造コストを低減させることができる。
【0015】
また、請求項5記載の電界発光灯は、請求項1〜3記載の電界発光灯であって、前記上部電極が、銅、アルミニウムのうちの一種類以上を含む導電性材料の薄膜をエッチングして形成されたことを特徴とする。この構成により、より抵抗値の低い上部電極を、フォトレジストをマスクとしたエッチングにより高精細なパターンに形成できるので、高精細な発光表示が可能になるとともに、電界発光灯の大型化にも好適する。
【0016】
また、請求項6記載の電界発光灯は、請求項1〜3記載の電界発光灯であって、前記上部電極が、被覆銅線の一部を研磨して形成されたことを特徴とする。この構成により、より抵抗値の低い上部電極を貼付けなどの方法により容易に形成できるので、印刷、乾燥等の工程が不要になり、製造コストが低減するとともに、電界発光灯の大型化にも好適する。
【0017】
また、請求項7記載の電界発光灯は、請求項3記載の電界発光灯であって、前記中間絶縁層が、ポリエステル系樹脂、アクリル系樹脂、ウレタン系樹脂、フェノール系樹脂、メラミン系樹脂、エポキシ系樹脂のうちの一種類以上を含む絶縁性ペーストをスクリーン印刷して形成されたことを特徴とする。この構成により、上部電極下部に低誘電率の中間絶縁層が形成されるので、上部電極下部の中間絶縁層と反射絶縁層に無効電流が流れることがなく、発光効率と絶縁耐圧が大幅に向上する。
【0018】
また、請求項8記載の電界発光灯は、請求項3記載の電界発光灯であって、前記中間絶縁層が、ポジ型フォトレジストを露光、現像して形成されたことを特徴とする。この構成により、低誘電率の中間絶縁層をスクリーン印刷よりもさらに高精細に形成できるので、より高精細な発光表示が可能になる。
【0019】
また、請求項9記載の電界発光灯は、請求項3記載の電界発光灯であって、前記中間絶縁層が、ポリエステル繊維とそれに塗布されたポリエステル繊維により形成されたことを特徴とする。この構成により、低誘電率の中間絶縁層をスクリーン印刷よりもさらに高精細に形成できるので、より高精細な発光表示が可能になる。
【0020】
また、請求項10記載の電界発光灯は、請求項1〜9記載の電界発光灯であって、前記透明電極と前記発光層の間に保護層を形成したことを特徴とする。この構成により、保護層が透明電極の発光層への染み込みを防止するので、高品質な表示が可能となるとともに、透明電極の拭き取りも可能になって、消去性も向上する。
【0021】
また、請求項11記載の電界発光灯は、請求項10記載の電界発光灯であって、前記保護層が、PVDF(ポリフッ化ビニリデン)、PVDC(ポリ塩化ビニリデン)、PET(ポリエチレンテレフタレート)のいずれかの透明フィルムからなることを特徴とする。この構成により、比誘電率が高く、厚みの薄い透明フィルムを使用するので、発光層に十分な電界強度が加わり輝度低下が抑制される。また、発光層に使用される樹脂材料との接着性もよいので、使用中に剥がれて不点灯になることがない。
【0022】
また、請求項12記載の電界発光灯は、請求項11記載の電界発光灯であって、前記保護層が、厚み2μm〜17μmのPVDF(ポリフッ化ビニリデン)、厚み2μm〜13μmのPVDC(ポリ塩化ビニリデン)、厚み2μm〜9μmのPET(ポリエチレンテレフタレート)のいずれかの透明フィルムからなることを特徴とする。この構成により、フィルム強度を低下させることなく、必要な輝度を得ることができる。
【0023】
【発明の実施の形態】
以下、本発明の好ましい実施の形態を図面を参照して説明する。図1は、本発明の第1実施例の電界発光灯1の構成を示す要部断面図及び平面図である。本実施例の特徴は、発光層と反射絶縁層の間に上部電極を設けるとともに、上部電極をカーボン、銀、銅、ニッケル、アルミニウムのうちの一種類以上を含む金属ペーストをスクリーン印刷等の手段により格子状に形成したことである。
【0024】
図1(a)、(b)に示すように、本発明の電界発光灯1は、絶縁性ベースフィルム2上に形成された裏面電極3と、裏面電極3全面を覆うように形成された反射絶縁層4と、反射絶縁層4上に格子状に形成された上部電極5と、上部電極5上に形成された発光層6と、発光層6上に形成された保護層となる透明フィルム7と、透明フィルム7上に使用者の好みに応じて形成された任意の文字、例えば「N」からなる透明電極8により構成される。そして、裏面電極3と上部電極5には、各々電極端子3a、5aが接続されている。
【0025】
次に、本発明の電界発光灯1の製造方法について、図2、図3の要部断面図を参照しながら説明する。先ず、図2(a)に示すように、ポリエチレン、ポリエステル、ポリエチレンテレフタレート、ポリイミド等から成る絶縁性ベースフィルム2上に、銀やカーボンを含む導電ペーストからなる裏面電極3をスクリーン印刷で形成する。次に、図2(b)に示すように、裏面電極3上に、チタン酸バリウムからなる白色高誘電体粉末とフッ素ゴムとを有機溶剤中に分散させた反射絶縁層用インキを用いて、反射絶縁層4をスクリーン印刷で形成する。次に、図2(c)に示すように、反射絶縁層4上に、カーボン、銀、ニッケル、アルミニウムのうちの一種類以上を含む金属ペーストからなる上部電極5をスクリーン印刷で形成する。平面的には、図1(b)に示すように、格子状の上部電極5が形成される。次に、図2(d)に示すように、上部電極5上に、硫化亜鉛を銅で付活した蛍光体とフッ素ゴム等からなるバインダを有機溶剤に分散させた発光層用インキを用いて、発光層6をスクリーン印刷で形成する。
【0026】
次に、図3(e)に示すように、微粘着層を設けた厚手のベースフィルム(例えば厚み50μmのPET(ポリエチレンテレフタレート)フィルム)9の上に発光層6の保護層となる薄手の透明フィルム(例えば厚み10μmのPVDF(ポリフッ化ビニリデン)フィルム)7を貼り付けた別体の複合フィルム10を用意し、この複合フィルム10の透明フィルム7(保護層)側を発光層6に合わせるように配置し、熱圧着することにより発光層6中の樹脂分を溶融させ、発光層6と透明フィルム7(保護層)を接着させる。その後、図3(f)に示すように、ベースフィルム9のみを剥離除去する。このとき、ベースフィルム9は透明フィルム7(保護層)と微粘着で密着しているだけなので容易に剥離除去することができる。次に、図3(g)に示すように、透明フィルム7(保護層)の上に導電性インク(例えば酸化インジウム等の透明電極材料を水の中に分散させたもの)を含有したペンで、任意の文字や図形を描いて透明電極8を形成することにより、電界発光灯1を得る。
【0027】
次に、本実施例の電界発光灯1の発光原理について、図4を参照して説明する。図4(a)に示すように、裏面電極3と上部電極5には、それぞれ電極端子3a、5aが接続されており、これら電極端子3a、5a間に所定の交流電圧を印加すると、裏面電極3−透明電極8−上部電極5間に電気力線11が形成され、上部電極5の上部及び周辺部に位置する発光層6aに高電界がかかり、透明電極8を通して発光6bが得られる。このとき、図4(b)の等価回路図に示すように、裏面電極3と上部電極5の間には、静電容量を有する1層の反射絶縁層4と2層の発光層6が、透明電極8を介して直列接続された状態になるので、従来と比較して反射絶縁層4の1層分の容量成分が少なくなる。その結果、発光層6にかかる電圧が増えて電界強度が上がり、輝度を向上させることができる。
【0028】
本実施例の電界発光灯1では、上部電極5に印加される電圧が同極性であるので、上部電極5の幅や間隔を小さくすることができる。そのため、未発光部分がなくなって、文字や図形を均一に全面発光させることができる。
【0029】
また、本実施例では、発光層6上に、保護層としてPVDFフィルムからなる透明フィルム7を設けているので、透明電極8(導電性インク)が発光層6に染み込むのを防止できるとともに、透明電極8(導電性インク)を何度でも容易に消去でき、文字や図形の書き換えが可能になる。さらに、PVDFフィルムの比誘電率は10〜12と高く、かつ厚みが10μmと薄いので、発光層6にかかる電界強度が上がり、電界発光灯1の輝度が更に向上する。
【0030】
また、透明フィルム7(保護層)として、PVDFフィルム(ポリフッ化ビニリデン、比誘電率10〜12)の他にも、透明性が高い、透明電極8の濡れ性がよい、薄膜化が容易、防汚性に優れるという観点から、PVDCフィルム(ポリ塩化ビニリデン、比誘電率6〜7)やPETフィルム(ポリエチレンテレフタレート、比誘電率2〜3)を使用することができる。
【0031】
図5は、透明フィルム7(保護層)の種類、厚みと輝度の関係を示す図である。横軸は透明フィルム7(保護層)の厚み、縦軸は電界発光灯1の輝度である。図5に示すように、透明フィルム7(保護層)の比誘電率が高く、かつ厚みが薄くなるほど、発光層6にかかる電界強度が上がるために、電界発光灯1の輝度が向上する。しかし、厚みが2μm以下ではフィルム強度が低下し、熱圧着により発光層6に貼り付けるときに亀裂が生じる。その結果、亀裂を通して透明電極8が発光層6内に染み込み、裏面電極3、上部電極5に達してショートを引き起こす。裏面電極3、上部電極5に達しない場合でも、透明フィルム7(保護層)の裏側に回り込むため、透明電極8を完全に拭き取ることができなくなり、文字や図形の消去性が損なわれる。したがって、透明電極8の染み込みをなくして実用輝度40cd/cmを確保するため、PVDFフィルムの場合は2μm〜17μm、PVDCフィルムの場合は2μm〜13μm、PETフィルムの場合は2μm〜9μm程度の厚みが適切である。
【0032】
また、透明電極8として導電性インク(酸化インジウム等の透明電極材料を水の中に分散させたもの)を用いたが、一時的に描いた文字や図形を光らせる場合には導電性の高い水や親水性の溶剤、イオン性の界面活性剤等が安価であるため有効であり、使用後ドライヤ等で乾燥させたりウエスで拭き取ることにより容易に除去でき、消灯させることができる。文字や図形をインクの乾燥後も長期間光らせたい場合は、酸化インジウムの他、酸化錫、アンチモン、酸化亜鉛等の透明導電性の金属粉末等を溶剤中に分散させたものやポリアニリンやポリエチレンジオキシチオフェン等の透明導電性ポリマーあるいは前記金属粉末、透明導電性ポリマーの混合系等が有効である。
【0033】
次に、本発明の他の実施の形態について図面を参照して説明する。図6は、本発明の第2実施例の電界発光灯21の製造方法を示す要部断面図である。本実施例の特徴は、発光層と反射絶縁層の間に上部電極を設けるとともに、上部電極を銅やアルミニウム等のうちの一種類以上を含む導電性材料の薄膜をエッチング等の手段により格子状に形成したことである。
【0034】
先ず、図6(a)に示すように、本発明の電界発光灯21は、ポリエチレン、ポリエステル、ポリエチレンテレフタレート、ポリイミド等から成る絶縁性ベースフィルム22上に、銀やカーボンを含む導電ペーストからなる裏面電極23をスクリーン印刷により形成する。次に、図6(b)に示すように、裏面電極23上に、チタン酸バリウムからなる白色高誘電体粉末とフッ素ゴムとを有機溶剤中に分散させた反射絶縁層用インキを用いて、反射絶縁層24をスクリーン印刷により形成する。次に、図6(c)に示すように、反射絶縁層24上に、銅、アルミニウム等のうちの一種類以上を含む導電性材料を接着剤等で接着し、フォトレジストをマスクとしてエッチング等の手段により、上部電極25を格子状に形成する。次に、図6(d)に示すように、上部電極25上に硫化亜鉛を銅で付活した蛍光体とフッ素ゴム等からなるバインダを有機溶剤に分散させた発光層用インキを用いて、発光層26をスクリーン印刷により形成する。次に、図6(e)に示すように、上述した第1実施例の場合と同様にして、発光層26上に、厚み10μmのPVDFフィルムからなる透明フィルム27(保護層)と導電性インク(例えば酸化インジウム等の透明電極材料を水の中に分散させたもの)を含有したペンで、任意の文字や図形を描いて透明電極28を形成することにより、電界発光灯21を得る。
【0035】
本実施例によれば、銅、アルミニウム等のうちの一種類以上を含む導電性材料の薄膜をフォトレジストをマスクとしたエッチングにより上部電極25を形成するので、金属ペーストをスクリーン印刷する場合よりも、さらに抵抗値の低い上部電極25を高精細なパターンに形成することができる。従って、高精細な発光表示が可能になるとともに、電界発光灯の大型化にも好適する。
【0036】
次に、本発明の他の実施の形態について図面を参照して説明する。図7は、本発明の第3実施例の電界発光灯31の製造方法を示す要部断面図である。本実施例の特徴は、発光層と反射絶縁層の間に上部電極を設けるとともに、上部電極を被覆銅線の一部を研磨等の手段により格子状に形成したことである。
【0037】
先ず、図7(a)に示すように、本実施例の電界発光灯31は、ポリエチレン、ポリエステル、ポリエチレンテレフタレート、ポリイミド等から成る絶縁性ベースフィルム32上に、銀やカーボンを含む導電ペーストからなる裏面電極33をスクリーン印刷で形成した後、裏面電極33上に、チタン酸バリウムからなる白色高誘電体粉末とフッ素ゴムとを有機溶剤中に分散させた反射絶縁層用インキを用いて、反射絶縁層34をスクリーン印刷で形成する。次に、図7(b)に示すように、反射絶縁層34上に、被覆銅線35を接着剤等で、格子状に一定間隔に貼り付ける。次に、図7(c)に示すように、被覆銅線35の上部1/4〜1/3程度を研磨により除去して、内部銅線を露出させた上部電極36を形成する。次に、図7(d)に示すように、上部電極36上に、硫化亜鉛を銅で付活した蛍光体とフッ素ゴム等からなるバインダを有機溶剤に分散させた発光層用インキを用いて、発光層37をスクリーン印刷で形成する。次に、図7(e)に示すように、上述した第1実施例の場合と同様にして、発光層37上に、厚み10μmのPVDFフィルムからなる透明フィルム38(保護層)と導電性インク(例えば酸化インジウム等の透明電極材料を水の中に分散させたもの)を含有したペンで、任意の文字や図形を描いて透明電極39を形成することにより、電界発光灯31を得る。
【0038】
本実施例によれば、被覆銅線35の一部を研磨して貼付けることにより上部電極36を形成するので、金属ペーストをスクリーン印刷する場合よりも、さらに抵抗値の低い上部電極36を容易に形成できる。また、印刷、乾燥等の工程が不要になるのでスループットが向上して製造コストが低減するとともに、電界発光灯の大型化にも好適する。
【0039】
次に、本発明の他の実施の形態について図面を参照して説明する。図8は、本発明の第4実施例の電界発光灯41の構成を示す要部断面図及び平面図である。本実施例の特徴は、発光層と反射絶縁層の間に上部電極を設けるとともに、裏面電極と上部電極をカーボン、銀、銅、ニッケル、アルミニウムのうちの一種類以上を含む金属ペーストをスクリーン印刷等の手段により、それぞれストライプ状に形成し、それらのストライプが発光面から見て重ならないよう配置したことである。
【0040】
図8(a)、(b)に示すように、本発明の電界発光灯41は、絶縁性ベースフィルム42上にストライプ状に形成された裏面電極43と、裏面電極43全面を覆うように形成された反射絶縁層44と、反射絶縁層44上に裏面電極43と交互になるようストライプ状に形成された上部電極45と、上部電極45上に形成された発光層46と、発光層46上に形成された保護層となる透明フィルム47と、透明フィルム47上に使用者の好みに応じて形成された任意の文字例えば「N」からなる透明電極48により構成される。そして、裏面電極43と上部電極45には、各々電極端子43a、45aが接続されている。
【0041】
次に、本発明の電界発光灯41の製造方法について、図9の要部断面図を参照しながら説明する。先ず、図9(a)に示すように、ポリエチレン、ポリエステル、ポリエチレンテレフタレート、ポリイミド等から成る絶縁性ベースフィルム42上に、銀やカーボンを含む導電ペーストからなる裏面電極43をスクリーン印刷によりストライプ状に形成する。次に、図9(b)に示すように、裏面電極43上に、チタン酸バリウムからなる白色高誘電体粉末とフッ素ゴムとを有機溶剤中に分散させた反射絶縁層用インキを用いて、反射絶縁層44をスクリーン印刷により形成する。次に、図9(c)に示すように、反射絶縁層44上に、カーボン、銀、銅、ニッケル、アルミニウムのうちの一種類以上を含む金属ペーストからなる上部電極45をスクリーン印刷により、裏面電極43と交互に配置されたストライプ状に形成する。具体的には、図8(b)に示すように、裏面電極43と上部電極45が、互いに重なることがないよう、ストライプ状に形成される。次に、図9(d)に示すように、上部電極45上に、硫化亜鉛を銅で付活した蛍光体とフッ素ゴム等からなるバインダを有機溶剤に分散させた発光層用インキを用いて、発光層46をスクリーン印刷により形成する。次に、図9(e)に示すように、上述した第1実施例の場合と同様にして、発光層46上に、厚み10μmのPVDFフィルムからなる透明フィルム47(保護層)と導電性インク(例えば酸化インジウム等の透明電極材料を水の中に分散させたもの)を含有したペンで、任意の文字や図形を描いて透明電極48を形成することにより、電界発光灯41を得る。
【0042】
次に、本実施例の電界発光灯41の発光原理について、図10を参照して説明する。図10(a)に示すように、裏面電極43と上部電極45には、それぞれ電極端子43a、45aが接続されており、これら電極端子43a、45a間に所定の交流電圧を印加すると、裏面電極43−透明電極48−上部電極45間に電気力線49が形成され、上部電極45の上部及び周辺部に位置する発光層46aに高電界がかかり、透明電極48を通して発光46bが得られる。このとき、図10(b)の等価回路図に示すように、裏面電極43と上部電極45の間には、静電容量を有する1層の反射絶縁層44と2層の発光層46が、透明電極48を介して直列接続された状態になるので、従来と比較して反射絶縁層44の1層分の容量成分が少なくなる。その結果、発光層46にかかる電圧が増えて電界強度が上がり、輝度を向上させることができる。
【0043】
また、上部電極45の下部には裏面電極43が形成されていないので、上部電極4下部の反射絶縁層44に電圧がかからない。これにより、無効電流が流れず電力ロスがなくなるので、発光効率と絶縁耐圧が大幅に向上する。また、上部電極56に印加される電圧は同極性であるので、上部電極56の幅や間隔を小さくすることができ、文字や図形を均一に全面発光させることができる。また、裏面電極43と上部電極45を、銅、アルミニウム等のうちの一種類以上を含む導電性材料の薄膜をエッチング等の手段により形成すれば、より高精細な電極パターンの形成が可能になる。
【0044】
次に、本発明の他の実施の形態について図面を参照して説明する。図11は、本発明の第5実施例の電界発光灯51の製造方法を示す要部断面図である。本実施例の特徴は、発光層と反射絶縁層の間に上部電極と中間絶縁層を形成するとともに、中間絶縁層をポリエステル系樹脂、アクリル系樹脂、ウレタン系樹脂、フェノール系樹脂、メラミン系樹脂、エポキシ系樹脂のうちの一種類以上を含む絶縁性ペーストをスクリーン印刷等の手段により格子状に形成し、上部電極をカーボン、銀、銅、ニッケル、アルミニウムのうちの一種類以上を含む金属ペーストをスクリーン印刷等の手段により格子状に形成したことである。
【0045】
先ず、図11(a)に示すように、本実施例の電界発光灯51は、ポリエチレン、ポリエステル、ポリエチレンテレフタレート、ポリイミド等から成る絶縁性ベースフィルム52上に、銀やカーボンを含む導電ペーストからなる裏面電極53をスクリーン印刷で形成する。次に、図11(b)に示すように、裏面電極53上に、チタン酸バリウムからなる白色高誘電体粉末とフッ素ゴムとを有機溶剤中に分散させた反射絶縁層用インキを用いて、反射絶縁層54をスクリーン印刷で形成する。次に、図11(c)に示すように、反射絶縁層54上に、ポリエステル系樹脂、アクリル系樹脂、ウレタン系樹脂、フェノール系樹脂、メラミン系樹脂、エポキシ系樹脂のうちの一種類以上を含む絶縁性ペーストからなる中間絶縁層55をスクリーン印刷で格子状に形成した後、中間絶縁層55と同じ位置にカーボン、銀、ニッケル、アルミニウムのうちの一種類以上を含む金属ペーストからなる上部電極56をスクリーン印刷で格子状に形成する。次に、図11(d)に示すように、上部電極56を埋めるように硫化亜鉛を銅で付活した蛍光体とフッ素ゴム等からなるバインダを有機溶剤に分散させた発光層用インキを用いて、発光層57をスクリーン印刷で形成する。次に、図11(e)に示すように、上述した第1実施例の場合と同様にして、発光層57上に、厚み10μmのPVDFフィルムからなる透明フィルム58(保護層)と導電性インク(例えば酸化インジウム等の透明電極材料を水の中に分散させたもの)を含有したペンで、任意の文字や図形を描いて透明電極59を形成することにより、電界発光灯51を得る。
【0046】
次に、本実施例の電界発光灯51の発光原理について、図12を参照して説明する。図12(a)に示すように、裏面電極53と上部電極56には、それぞれ電極端子53a、56aが接続されており、これら電極端子53a、56a間に所定の交流電圧を印加すると、裏面電極53−透明電極59−上部電極56間に電気力線60が形成され、上部電極56上部及び周辺部に位置する発光層57aに高電界がかかり、透明電極59を通して発光57bが得られる。このとき、図12(b)の等価回路図に示すように、裏面電極53と上部電極56の間には、静電容量を有する1層の反射絶縁層54と2層の発光層57が、透明電極59を介して直列接続された状態になるので、従来と比較して反射絶縁層54の1層分の容量成分が少なくなる。その結果、発光層57にかかる電圧が増えて電界強度が上がり、輝度を向上させることができる。
【0047】
また、上部電極56と下部の裏面電極53の間にも電圧がかかるが、上部電極56下部に低誘電率の中間絶縁層55が形成されているので、無効電流が流れることがない。これにより、電力ロスがなくなるので、発光効率と絶縁耐圧が大幅に向上する。また、上部電極56に印加される電圧は同極性であるので、上部電極56の幅や間隔を小さくすることができ、文字や図形を均一に全面発光させることができる。
【0048】
次に、本発明の他の実施の形態について図面を参照して説明する。図13、図14は、本発明の第6実施例の電界発光灯61の製造方法を示す要部断面図である。本実施例の特徴は、発光層と反射絶縁層の間に上部電極と中間絶縁層を設けるとともに、上部電極を銅やアルミニウム等の導電性材料の薄膜をエッチング等の手段により格子状に形成し、中間絶縁層をポジ型フォトレジストを露光・現像等の手段により格子状に形成したことである。
【0049】
先ず、図13(a)に示すように、ポリエチレン、ポリエステル、ポリエチレンテレフタレート、ポリイミド等から成る絶縁性ベースフィルム62上に、銅、アルミニウム等の導電性材料の薄膜を接着剤等で接着し、フォトレジストをマスクとしてエッチング等の手段により、上部電極63を格子状に形成する。次に、図13(b)に示すように、上部電極63上にポジ型フォトレジストからなるDFR(ドライフィルムレジスト)64を熱圧着法により貼付ける。次に、図13(c)に示すように、絶縁性ベースフィルム62を上部電極63から剥離除去した後、上部電極63側から紫外線を照射し、DFR64を露光する。次に、図13(d)に示すよう、DFR64の露光した部分を現像により除去し、中間絶縁層65を形成する。
【0050】
次に、図13(e)に示すように、別体のポリエチレン、ポリエステル、ポリエチレンテレフタレート、ポリイミド等から成る絶縁性ベースフィルム66上に、カーボン、銀、ニッケル、アルミニウムのうちの一種類以上を含む金属ペーストからなる裏面電極67をスクリーン印刷で形成する。次に、図13(f)に示すように、裏面電極67上に、チタン酸バリウムからなる白色高誘電体粉末とフッ素ゴムとを有機溶剤中に分散させた反射絶縁層用インキを用いて、反射絶縁層68をスクリーン印刷で形成する。
【0051】
次に、図14(g)に示すように、反射絶縁層68が乾燥する前に、反射絶縁層68と中間絶縁層65を密着させて配置した後、乾燥して接着させる。次に、図14(h)に示すように、上部電極63上に、硫化亜鉛を銅で付活した蛍光体とフッ素ゴム等からなるバインダを有機溶剤に分散させた発光層用インキを用いて、発光層69をスクリーン印刷で形成する。次に、図14(i)に示すように、上述した第1実施例の場合と同様にして、発光層69上に、厚み10μmのPVDFフィルムからなる透明フィルム70(保護層)と導電性インク(例えば酸化インジウム等の透明電極材料を水の中に分散させたもの)を含有したペンで、任意の文字や図形を描いて透明電極71を形成することにより、電界発光灯61を得る。
【0052】
本実施例によれば、導電性材料のエッチングにより上部電極63を形成し、その上部電極63をマスクとして、DFR64の露光、現像により中間絶縁層65を形成するので、スクリーン印刷よりもさらに細かい電極パターンを容易に形成でき、より高精細な発光表示が可能になる。
【0053】
次に、本発明の他の実施の形態について図面を参照して説明する。図15、図16は、本発明の第7実施例の電界発光灯81の製造方法を示す平面図及び要部断面図である。本実施例の特徴は、発光層と反射絶縁層の間に上部電極と中間絶縁層を設けるとともに、中間絶縁層としてポリエステルメッシュを使用し、その上に上部電極をカーボン、銀、銅、ニッケル、アルミニウムのうちの一種類以上を含む金属ペーストをスクリーン印刷等の手段により格子状に形成したことである。
【0054】
先ず、図15(a)の平面図に示すようなポリエステル繊維であるポリエステルメッシュ82を使用し、図15(b)に示すように、ポリエステルメッシュ82上にポリエステル樹脂83を予備塗布することにより、中間絶縁層84を形成する。尚、図15(b)は、図15(a)のX−X断面図である。次に、図15(c)に示すように、中間絶縁層84上にカーボン、銀、ニッケル、アルミニウムのうちの一種類以上を含む金属ペーストを塗布し、上部電極85を形成する。このとき、予めポリエステル樹脂83がポリエステルメッシュ82の重なり部分を埋めているので、上部電極85がスクリーンメッシュ82の裏面に回り込むことがない。
【0055】
次に、図15(d)に示すように、別体のポリエチレン、ポリエステル、ポリエチレンテレフタレート、ポリイミド等から成る絶縁性ベースフィルム86上に、銅、アルミニウム等の導電性材料の薄膜を接着剤等で接着して裏面電極87を形成する。次に、図15(e)に示すように、裏面電極87上に、チタン酸バリウムからなる白色高誘電体粉末とフッ素ゴムとを有機溶剤中に分散させた反射絶縁層用インキを用いて、反射絶縁層88をスクリーン印刷で形成する。
【0056】
次に、図16(f)に示すように、反射絶縁層88が乾燥する前に、反射絶縁層88と中間絶縁層84を密着させて配置した後、乾燥して接着させる。次に、図16(g)に示すように、上部電極85上に、硫化亜鉛を銅で付活した蛍光体とフッ素ゴム等からなるバインダを有機溶剤に分散させた発光層用インキを用いて、発光層89をスクリーン印刷で形成する。次に、図16(h)に示すように、上述した第1実施例の場合と同様にして、発光層89上に、厚み10μmのPVDFフィルムからなる透明フィルム90(保護層)と導電性インク(例えば酸化インジウム等の透明電極材料を水の中に分散させたもの)を含有したペンで、任意の文字や図形を描いて透明電極91を形成することにより、電界発光灯81を得る。
【0057】
本実施例によれば、ポリエステル繊維からなるポリエステルメッシュ82を使用して中間絶縁層84を形成し、その上に上部電極85を形成するので、スクリーン印刷よりもさらに細かい電極パターンを容易に形成でき、より高精細な発光表示が可能になる。
【0058】
尚、上述した各実施例では、PVDFフィルムを発光層に貼り付けることにより透明フィルム(保護層)を形成したが、PVDF樹脂を溶剤に溶かしたPVDFインクを用いて塗布や印刷により形成するようにしてもよい。このとき、絶縁ベースフィルム上に裏面電極/〜/発光層を形成した後、PVDFインクを印刷してもよく、また離型材の形成された絶縁性ベースフィルム上にPVDFインクを印刷した後、発光層/〜/裏面電極/裏面絶縁層を形成し、絶縁層ベースフィルムをPVDFフィルムから剥離除去するようにしてもよい。
【0059】
また、発光層と反射絶縁層の間に上部電極や中間絶縁層を格子状に形成する場合について説明したが、形状はこれに限定されるものではなく、例えば、網目状あるいはストライプ状に形成するようにしてもよい。
【0060】
また、発光層や反射絶縁層の樹脂材料は、フッ素ゴムなどのフッ素系樹脂以外にもシアノエチルプルラン、シアノエチルセルロースなどのシアノエチル系樹脂も使用できる。
【0061】
【発明の効果】
本発明の電界発光灯によれば、任意の文字や図形を描いた瞬間に発光させることができ、描いた部分だけが発光するため、配線等のパターンが不要となる。
【0062】
また、保護層と発光層の間に上部電極を格子状、網目状、あるいはストライプ状に形成するとともに、裏面電極と上部電極に交流電圧を印加して駆動するようにしたので、裏面電極−透明電極−上部電極の間の容量成分を減少させることができ、発光層にかかる電圧が増えて電界強度が上がり、輝度を向上させることができる。
【0063】
また、発光層と反射絶縁層の間に上部電極を設け、裏面電極と上部電極をそれぞれストライプ状に形成し、それらのストライプが発光面から見て重ならないよう配置されるとともに、裏面電極と上部電極に交流電圧を印加して駆動するようにしたので、裏面電極−透明電極−上部電極の間の容量成分を減少させることができ、発光層にかかる電圧が増えて電界強度が上がり、輝度を向上させることができる。さらに、上部電極下部の反射絶縁層に電圧がかからず、従って反射絶縁層に無効電流が流れないので、発光効率と絶縁耐圧が大幅に向上する。
【0064】
また、発光層と反射絶縁層の間に上部電極と中間絶縁層を格子状、網目状、あるいはストライプ状に形成するとともに、裏面電極と上部電極に交流電圧を印加して駆動するようにしたので、裏面電極−透明電極−上部電極の間の容量成分を減少させることができ、発光層にかかる電圧が増えて電界強度が上がり、輝度を向上させることができる。さらに、上部電極下部の中間絶縁層と反射絶縁層に無効電流が流れないので、発光効率と絶縁耐圧が大幅に向上する。
【0065】
また、上部電極に印加される電圧は同極性であるので、上部電極の幅や間隔を小さくすることができ、透明電極下部の発光層を均一に全面発光させることができる。
【0066】
また、上部電極を銅やアルミニウム等の導電性材料の薄膜をエッチングして形成したり、被覆銅線の一部を研磨して形成したので、細線でも抵抗が高くならず、容易に電界発光灯の大型化が可能となる。
【0067】
また、発光層上に、保護層としてPVDFフィルムからなる透明フィルムを設けたので、透明電極が発光層に染み込むのを防止できるとともに、透明電極を水や洗剤などで何度でも容易に消去でき、文字や図形の書き換えが可能になる。さらに、PVDFフィルムの比誘電率が10〜12と高く、かつ厚みが10μmと薄いので、発光層にかかる電界強度が上がり、電界発光灯の輝度が更に向上する。
【図面の簡単な説明】
【図1】本発明の第1実施例の電界発光灯の要部断面図及び平面図
【図2】本発明の第1実施例の電界発光灯の製造方法を示す要部断面図
【図3】本発明の第1実施例の電界発光灯の製造方法を示す要部断面図
【図4】本発明の第1実施例の電界発光灯の発光原理を説明する要部断面図及び等価回路図
【図5】本発明の第1実施例の電界発光灯における透明フィルムの種類、厚みと輝度の関係を示す図
【図6】本発明の第2実施例の電界発光灯の製造方法を示す要部断面図
【図7】本発明の第3実施例の電界発光灯の製造方法を示す要部断面図
【図8】本発明の第4実施例の電界発光灯の要部断面図及び平面図
【図9】本発明の第4の実施例の電界発光灯の製造方法を示す要部断面図
【図10】本発明の第4実施例の電界発光灯の発光原理を説明する要部断面図及び等価回路図
【図11】本発明の第5実施例の電界発光灯の製造方法を示す要部断面図
【図12】本発明の第5実施例の電界発光灯の発光原理を説明する要部断面図及び等価回路図
【図13】本発明の第6実施例の電界発光灯の製造方法を示す要部断面図
【図14】本発明の第6実施例の電界発光灯の製造方法を示す要部断面図
【図15】本発明の第7実施例の電界発光灯の製造方法を示す平面図及び要部断面図
【図16】本発明の第7実施例の電界発光灯の製造方法を示す要部断面図
【図17】従来の電界発光灯の要部断面図
【図18】従来の電界発光灯の等価回路図
【図19】従来の電界発光灯の発光原理を説明する要部断面図
【図20】従来の電界発光灯の平面図及び文字を発光させたときの状態図
【符号の説明】
1 本発明の第1実施例の電界発光灯
2 絶縁性ベースフィルム
3 裏面電極
3a 電極端子
4 反射絶縁層
5 上部電極
5a 電極端子
6 発光層
6a 上部電極上及び周辺部に位置する発光層
6b 発光
7 透明フィルム
8 透明電極
9 ベースフィルム
10 複合フィルム
11 電気力線
21 本発明の第2実施例の電界発光灯
22 絶縁性ベースフィルム
23 裏面電極
24 反射絶縁層
25 上部電極
26 発光層
27 透明フィルム
28 透明電極
31 本発明の第3実施例の電界発光灯
32 絶縁性ベースフィルム
33 裏面電極
34 反射絶縁層
35 被覆銅線
36 上部電極
37 発光層
38 透明フィルム
39 透明電極
41 本発明の第4実施例の電界発光灯
42 絶縁性ベースフィルム
43 裏面電極
43a 電極端子
44 反射絶縁層
45 上部電極
45a 電極端子
46 発光層
46a 上部電極上及び周辺部に位置する発光層
46b 発光
47 透明フィルム
48 透明電極
51 本発明の第5実施例の電界発光灯
52 絶縁性ベースフィルム
53 裏面電極
53a 電極端子
54 反射絶縁層
55 中間絶縁層
56 上部電極
56a 電極端子
57 発光層
57a 上部電極上及び周辺部に位置する発光層
57b 発光
58 透明フィルム
59 透明電極
60 電気力線
61 本発明の第6実施例の電界発光灯
62 絶縁性ベースフィルム
63 上部電極
64 DFR(ドライフィルムレジスト)
65 中間絶縁層
66 絶縁性ベースフィルム
67 裏面電極
68 反射絶縁層
69 発光層
70 透明フィルム
71 透明電極
81 本発明の第7実施例の電界発光灯
82 ポリエステルメッシュ
83 ポリエステル樹脂
84 中間絶縁層
85 上部電極
86 絶縁性ベースフィルム
87 裏面電極
88 反射絶縁
89 発光層
90 透明フィルム
91 透明電極
101 従来の電界発光灯
102 絶縁性ベースフィルム
103a、103b 裏面電極
104 反射絶縁層
105 発光層
105a 裏面電極上の発光層
105b 裏面電極間の発光層
106 透明電極
107a、107b 電極端子
108、109 封止フィルム
110 電気力線
111 ストライプ状の発光
112 ストライプ状の文字「N」
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electroluminescent lamp suitable as a decoration, a signboard, a toy, an interior, etc., and in particular, can easily emit any character or figure, improve luminous efficiency, erasability, reliability, and inexpensively stably mass-produce. The present invention relates to a simple electroluminescent lamp.
[0002]
[Prior art]
An electroluminescent lamp that applies an AC voltage between a transparent electrode and a back electrode and emits light emitted from a light emitting layer sandwiched between the two electrodes through the transparent electrode over the entire surface is used for a backlight of a liquid crystal display or the like. ing. Separately, there is an electroluminescent lamp in which a back electrode is divided for the purpose of displaying characters such as characters and figures, and an AC voltage is applied to the divided back electrode to cause a light emitting layer to emit light. No. 8,153,582.
[0003]
FIG. 17 is a cross-sectional view of a main part showing a configuration of a conventional electroluminescent lamp 101. In a conventional electroluminescent lamp 101, a conductive material such as copper or aluminum is adhered to an insulating base film 102 made of polyethylene terephthalate, polyimide, or the like with an adhesive or the like, and is electrically divided by means such as etching. The back electrodes 103a and 103b are formed in a comb shape, and the reflective insulating layer 104 and the light emitting layer 105 are sequentially laminated on the back electrodes 103a and 103b. Further, the upper surface of the light emitting layer 105 has, for example, visible light transmitting property. By applying or printing a conductive paste in which indium tin oxide is dispersed in an acrylic melamine resin as conductive fine powder, the transparent electrode 106 is formed into a predetermined shape according to the user's preference and dried. Then, lamination is performed by surrounding the pair of sealing films 108 and 109 so that the electrode terminals 107a and 107b of the back electrodes 103a and 103b are exposed to the outside.
[0004]
Next, the operation of the electroluminescent lamp 101 having such a configuration will be described. When a predetermined AC voltage is applied to the back electrode terminals 107a and 107b, a potential difference is generated between the back electrodes 103a and 103b and the transparent electrode 106 because the reflective insulating layer 104 and the light emitting layer 105 have capacitance. As a result, a high electric field is applied to the light-emitting layer 105, and light is extracted from the light-emitting layer 105 through the transparent electrode 106, which is a display electrode formed into a desired predetermined shape by a user such as coating or printing.
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 8-153581 (pages 2, 3; paragraphs 0012 to 0016; FIGS. 1 and 3)
[0006]
[Problems to be solved by the invention]
However, the above-described conventional electroluminescent lamp 101 has an advantage that power can be supplied from the same plane, but has a higher luminous efficiency than an electroluminescent lamp of a type in which an AC voltage is applied to the transparent electrode and the back electrode to emit light. Unfortunately, there is a problem that the brightness is reduced when the lighting is performed at the same voltage.
[0007]
As shown in the equivalent circuit diagram of the electroluminescent lamp 101 in FIG. 18, the conventional electroluminescent lamp 101 has two layers of the reflective insulating layer 104 and the luminescent layer between the back electrodes 103a and 103b. This is because the layer 105 is connected in series via the transparent electrode 106. The AC voltage applied from the outside is divided by these capacitances and applied to the respective layers, but two electroluminescent lamps are formed between the back electrodes 103a and 103b. Such an electric field intensity is reduced to half of the conventional one. In order to increase the electric field intensity applied to the light emitting layer 105, the thickness of the reflective insulating layer 104 or the light emitting layer 105 may be reduced. It is determined by the size of the light emitting device and is designed to be as thin as possible in consideration of the luminous efficiency.
[0008]
In addition, the conventional electroluminescent lamp 101 has a problem in that the light emitting surface emits light in a stripe shape, which impairs the visibility of characters and figures. This is because, as shown in FIG. 19, lines of electric force 110 are formed vertically on the light emitting layer 105 a located above the back electrodes 103 a and 103 b via the back electrodes 103 a and 103 b and the transparent electrode 106, and a high electric field is generated. However, since the light emitting layer 105b positioned above the back electrodes 103a and 103b is far from the back electrodes 103a and 103b, lines of electric force are not formed and a high electric field is hardly applied. As a result, the character or figure becomes the stripe-shaped light emission 111.
[0009]
FIG. 20 is a plan view of a conventional electroluminescent lamp 101 and a state diagram when characters are emitted. As shown in FIG. 20A, when an AC voltage is applied to the electrode terminals 107a and 107b of the conventional electroluminescent lamp 101 to cause the letter "N" formed by the transparent electrode 106 to emit light, the result is shown in FIG. As shown in the figure, a stripe-shaped character "N" 112 that does not emit light between the back electrodes 103a and 103b is displayed. Therefore, the distance between the back electrodes 103a and 103b is designed to be as narrow as possible. However, since the polarity of the back electrodes 103a and 103b is different, the limit is 100 to 300 μm. The located reflective insulating layer 104 causes dielectric breakdown, and a normal display becomes impossible.
[0010]
The present invention has been conceived in order to solve the above-described problem. In addition to improving the luminance and luminous efficiency of an electroluminescent lamp, the entire characters and figures can be uniformly illuminated and displayed without causing dielectric breakdown between electrodes. It is an object of the present invention to provide a high-quality and inexpensive electroluminescent lamp that can be used.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the electroluminescent lamp according to claim 1 of the present invention is an electroluminescent lamp in which a light emitting layer and a reflective insulating layer are formed between a transparent electrode and a back electrode, wherein the light emitting layer and the An upper electrode is formed in a lattice shape, a mesh shape, or a stripe shape between the reflective insulating layers, and is driven by applying an AC voltage to the back surface electrode and the upper electrode. With this configuration, one reflective insulating layer having capacitance and two light emitting layers having capacitance are connected in series between the back electrode and the upper electrode via the transparent electrode. As a result, the capacitance component of one reflective insulating layer is reduced, the voltage applied to the light emitting layer is increased, the electric field strength is increased, and the luminance can be improved. Further, since the voltage applied to the upper electrode has the same polarity, the width and interval of the upper electrode can be reduced, and characters and graphics can be uniformly emitted over the entire surface.
[0012]
The electroluminescent lamp according to claim 2 is an electroluminescent lamp in which a light emitting layer and a reflective insulating layer are formed between a transparent electrode and a back electrode, wherein an upper electrode is provided between the light emitting layer and the reflective insulating layer. And the back electrode and the upper electrode are formed in a stripe shape, and the stripes are arranged so as not to overlap when viewed from the light emitting surface, and are driven by applying an AC voltage to the back electrode and the upper electrode. It is characterized by the following. With this configuration, one reflective insulating layer having capacitance and two light emitting layers having capacitance are connected in series between the back electrode and the upper electrode via the transparent electrode. As a result, the capacitance component of one reflective insulating layer is reduced, the voltage applied to the light emitting layer is increased, the electric field strength is increased, and the luminance can be improved. Further, since the voltage applied to the upper electrode has the same polarity, the width and interval of the upper electrode can be reduced, and characters and graphics can be uniformly emitted over the entire surface. In addition, since no back electrode is formed below the upper electrode, no reactive current flows through the reflective insulating layer below the upper electrode, and the luminous efficiency and dielectric strength are greatly improved.
[0013]
The electroluminescent lamp according to claim 3 is an electroluminescent lamp in which a light emitting layer and a reflective insulating layer are formed between a transparent electrode and a back electrode, and an upper electrode is provided between the light emitting layer and the reflective insulating layer. The intermediate insulating layer is formed in a lattice shape, a mesh shape, or a stripe shape, and is driven by applying an AC voltage to the back electrode and the upper electrode. With this configuration, one reflective insulating layer having capacitance and two light emitting layers having capacitance are connected in series between the back electrode and the upper electrode via the transparent electrode. As a result, the capacitance component of one reflective insulating layer is reduced, the voltage applied to the light emitting layer is increased, the electric field strength is increased, and the luminance can be improved. Further, since the voltage applied to the upper electrode has the same polarity, the width and interval of the upper electrode can be reduced, and characters and graphics can be uniformly emitted over the entire surface. Further, since an intermediate insulating layer having a low dielectric constant is formed below the upper electrode, no reactive current flows through the intermediate insulating layer and the reflective insulating layer below the upper electrode, and the luminous efficiency and the withstand voltage are greatly improved. .
[0014]
The electroluminescent lamp according to claim 4 is the electroluminescent lamp according to claims 1 to 3, wherein the upper electrode includes one or more of carbon, silver, copper, nickel, and aluminum. Is formed by screen printing. According to this configuration, each layer including the upper electrode can be formed by the same screen printing apparatus, so that the manufacturing cost can be reduced.
[0015]
The electroluminescent lamp according to claim 5 is the electroluminescent lamp according to claims 1 to 3, wherein the upper electrode is formed by etching a thin film of a conductive material containing at least one of copper and aluminum. It is characterized by being formed by. With this configuration, the upper electrode having a lower resistance value can be formed into a high-definition pattern by etching using a photoresist as a mask, so that a high-definition light-emitting display is possible and also suitable for increasing the size of an electroluminescent lamp. I do.
[0016]
An electroluminescent lamp according to a sixth aspect is the electroluminescent lamp according to the first to third aspects, wherein the upper electrode is formed by polishing a part of a covered copper wire. With this configuration, the upper electrode having a lower resistance value can be easily formed by a method such as pasting, so that steps such as printing and drying are not required, thereby reducing the manufacturing cost and also suitable for increasing the size of the electroluminescent lamp. I do.
[0017]
An electroluminescent lamp according to claim 7 is the electroluminescent lamp according to claim 3, wherein the intermediate insulating layer is formed of a polyester resin, an acrylic resin, a urethane resin, a phenol resin, a melamine resin, It is characterized by being formed by screen-printing an insulating paste containing at least one of epoxy resins. With this configuration, an intermediate insulating layer with a low dielectric constant is formed below the upper electrode, so that no reactive current flows through the intermediate insulating layer and the reflective insulating layer below the upper electrode, and luminous efficiency and dielectric strength are greatly improved. I do.
[0018]
An electroluminescent lamp according to an eighth aspect is the electroluminescent lamp according to the third aspect, wherein the intermediate insulating layer is formed by exposing and developing a positive photoresist. With this configuration, the intermediate insulating layer having a low dielectric constant can be formed with higher definition than screen printing, so that a higher definition light emitting display can be performed.
[0019]
An electroluminescent lamp according to a ninth aspect is the electroluminescent lamp according to the third aspect, wherein the intermediate insulating layer is formed of polyester fibers and polyester fibers applied thereto. With this configuration, the intermediate insulating layer having a low dielectric constant can be formed with higher definition than screen printing, so that a higher definition light emitting display can be performed.
[0020]
An electroluminescent lamp according to a tenth aspect is the electroluminescent lamp according to the first to ninth aspects, wherein a protective layer is formed between the transparent electrode and the light emitting layer. With this configuration, the protective layer prevents the transparent electrode from seeping into the light-emitting layer, so that high-quality display can be performed, and the transparent electrode can be wiped, thereby improving erasability.
[0021]
The electroluminescent lamp according to claim 11 is the electroluminescent lamp according to claim 10, wherein the protective layer is any one of PVDF (polyvinylidene fluoride), PVDC (polyvinylidene chloride), and PET (polyethylene terephthalate). It is characterized by being made of such a transparent film. According to this configuration, since a transparent film having a high relative dielectric constant and a small thickness is used, a sufficient electric field intensity is applied to the light emitting layer, and a decrease in luminance is suppressed. In addition, since it has good adhesiveness to the resin material used for the light emitting layer, it does not peel off during use and does not turn off.
[0022]
An electroluminescent lamp according to claim 12 is the electroluminescent lamp according to claim 11, wherein the protective layer has a thickness of 2 μm to 17 μm of PVDF (polyvinylidene fluoride) and a thickness of 2 μm to 13 μm of PVDC (polychlorinated chloride). (Vinylidene) and a transparent film of any of PET (polyethylene terephthalate) having a thickness of 2 μm to 9 μm. With this configuration, required luminance can be obtained without lowering the film strength.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view and a plan view of a main part showing a configuration of an electroluminescent lamp 1 according to a first embodiment of the present invention. This embodiment is characterized in that an upper electrode is provided between the light-emitting layer and the reflective insulating layer, and the upper electrode is formed by screen printing a metal paste containing at least one of carbon, silver, copper, nickel, and aluminum. In the form of a lattice.
[0024]
As shown in FIGS. 1A and 1B, an electroluminescent lamp 1 of the present invention has a back electrode 3 formed on an insulating base film 2 and a reflection formed so as to cover the entire back electrode 3. An insulating layer 4; an upper electrode 5 formed in a grid on the reflective insulating layer 4; a light emitting layer 6 formed on the upper electrode 5; and a transparent film 7 formed on the light emitting layer 6 as a protective layer. And a transparent electrode 8 made of an arbitrary character, for example, "N", formed on the transparent film 7 according to the user's preference. Then, electrode terminals 3a, 5a are connected to the back surface electrode 3 and the upper electrode 5, respectively.
[0025]
Next, a method for manufacturing the electroluminescent lamp 1 of the present invention will be described with reference to the cross-sectional views of the main parts in FIGS. First, as shown in FIG. 2A, a back electrode 3 made of a conductive paste containing silver or carbon is formed by screen printing on an insulating base film 2 made of polyethylene, polyester, polyethylene terephthalate, polyimide or the like. Next, as shown in FIG. 2B, on the back electrode 3, a reflective insulating layer ink obtained by dispersing a white high dielectric powder made of barium titanate and a fluororubber in an organic solvent was used. The reflection insulating layer 4 is formed by screen printing. Next, as shown in FIG. 2C, an upper electrode 5 made of a metal paste containing at least one of carbon, silver, nickel and aluminum is formed on the reflective insulating layer 4 by screen printing. In plan view, as shown in FIG. 1B, a grid-like upper electrode 5 is formed. Next, as shown in FIG. 2D, on the upper electrode 5, a phosphor made of copper activated with zinc sulfide and a binder for a light emitting layer in which a binder made of fluororubber or the like is dispersed in an organic solvent is used. The light emitting layer 6 is formed by screen printing.
[0026]
Next, as shown in FIG. 3 (e), a thin transparent film serving as a protective layer for the light emitting layer 6 is formed on a thick base film (for example, a PET (polyethylene terephthalate) film having a thickness of 50 μm) 9 provided with a slightly adhesive layer. A separate composite film 10 to which a film (for example, a PVDF (polyvinylidene fluoride) film having a thickness of 10 μm) 7 is attached is prepared, and the transparent film 7 (protective layer) side of the composite film 10 is aligned with the light emitting layer 6. The resin component in the light emitting layer 6 is melted by disposing and thermocompression bonding, and the light emitting layer 6 and the transparent film 7 (protective layer) are bonded. Thereafter, as shown in FIG. 3F, only the base film 9 is peeled off. At this time, since the base film 9 is only slightly adhered to the transparent film 7 (protective layer), it can be easily removed. Next, as shown in FIG. 3 (g), a pen containing a conductive ink (for example, a transparent electrode material such as indium oxide dispersed in water) on a transparent film 7 (protective layer) is used. The electroluminescent lamp 1 is obtained by forming the transparent electrode 8 by drawing arbitrary characters and figures.
[0027]
Next, the light emission principle of the electroluminescent lamp 1 of this embodiment will be described with reference to FIG. As shown in FIG. 4A, electrode terminals 3a and 5a are connected to the back electrode 3 and the upper electrode 5, respectively. When a predetermined AC voltage is applied between the electrode terminals 3a and 5a, the back electrode 3 The lines of electric force 11 are formed between the 3-transparent electrode 8 and the upper electrode 5, and a high electric field is applied to the light emitting layer 6 a located above and around the upper electrode 5, and light emission 6 b is obtained through the transparent electrode 8. At this time, as shown in the equivalent circuit diagram of FIG. 4B, between the back surface electrode 3 and the upper electrode 5, one reflective insulating layer 4 having capacitance and two light emitting layers 6 are provided. Since the state is connected in series via the transparent electrode 8, the capacitance component of one layer of the reflective insulating layer 4 is reduced as compared with the related art. As a result, the voltage applied to the light emitting layer 6 increases, the electric field intensity increases, and the luminance can be improved.
[0028]
In the electroluminescent lamp 1 of this embodiment, since the voltage applied to the upper electrode 5 has the same polarity, the width and the interval of the upper electrode 5 can be reduced. For this reason, the non-light-emitting portion is eliminated, and the entire surface of the character or figure can be uniformly emitted.
[0029]
In this embodiment, since the transparent film 7 made of a PVDF film is provided as a protective layer on the light emitting layer 6, the transparent electrode 8 (conductive ink) can be prevented from seeping into the light emitting layer 6, and the transparent electrode 8 can be transparent. The electrode 8 (conductive ink) can be easily erased any number of times, and characters and figures can be rewritten. Furthermore, since the relative dielectric constant of the PVDF film is as high as 10 to 12 and the thickness is as thin as 10 μm, the electric field intensity applied to the light emitting layer 6 increases, and the luminance of the electroluminescent lamp 1 further improves.
[0030]
As the transparent film 7 (protective layer), in addition to the PVDF film (polyvinylidene fluoride, relative dielectric constant of 10 to 12), it has high transparency, good wettability of the transparent electrode 8, easy thinning, and prevention. From the viewpoint of excellent soiling, a PVDC film (polyvinylidene chloride, relative permittivity 6 to 7) or a PET film (polyethylene terephthalate, relative permittivity 2 to 3) can be used.
[0031]
FIG. 5 is a diagram showing the relationship between the type, thickness, and luminance of the transparent film 7 (protective layer). The horizontal axis represents the thickness of the transparent film 7 (protective layer), and the vertical axis represents the luminance of the electroluminescent lamp 1. As shown in FIG. 5, as the relative permittivity of the transparent film 7 (protective layer) is higher and the thickness thereof is thinner, the electric field intensity applied to the light emitting layer 6 is increased, so that the brightness of the electroluminescent lamp 1 is improved. However, when the thickness is 2 μm or less, the film strength is reduced, and cracks occur when the film is attached to the light emitting layer 6 by thermocompression bonding. As a result, the transparent electrode 8 penetrates into the light emitting layer 6 through the crack and reaches the back electrode 3 and the upper electrode 5 to cause a short circuit. Even if it does not reach the back electrode 3 and the upper electrode 5, it goes around the back side of the transparent film 7 (protective layer), so that the transparent electrode 8 cannot be completely wiped off, and the erasability of characters and figures is impaired. Therefore, the penetration of the transparent electrode 8 is eliminated and the practical luminance is 40 cd / cm. 2 In order to ensure a proper thickness, a thickness of about 2 μm to 17 μm for a PDF film, about 2 μm to 13 μm for a PVDC film, and about 2 μm to 9 μm for a PET film is appropriate.
[0032]
In addition, a conductive ink (a transparent electrode material such as indium oxide dispersed in water) is used as the transparent electrode 8. However, when a temporarily drawn character or figure is illuminated, a highly conductive water is used. And hydrophilic solvents, ionic surfactants and the like are inexpensive and thus effective. They can be easily removed by using a dryer or the like after use, or wiped off with a rag, and can be turned off. To make letters and figures glow for a long time after drying the ink, besides indium oxide, a transparent conductive metal powder such as tin oxide, antimony, zinc oxide or the like is dispersed in a solvent or polyaniline or polyethylene diene. A transparent conductive polymer such as oxythiophene, or a mixed system of the above-mentioned metal powder and transparent conductive polymer is effective.
[0033]
Next, another embodiment of the present invention will be described with reference to the drawings. FIG. 6 is a sectional view showing a main part of a method for manufacturing the electroluminescent lamp 21 according to the second embodiment of the present invention. The feature of this embodiment is that an upper electrode is provided between the light emitting layer and the reflective insulating layer, and the upper electrode is formed in a lattice shape by a method such as etching a thin film of a conductive material containing at least one of copper and aluminum. It was formed in.
[0034]
First, as shown in FIG. 6A, an electroluminescent lamp 21 according to the present invention comprises a back surface made of a conductive paste containing silver or carbon on an insulating base film 22 made of polyethylene, polyester, polyethylene terephthalate, polyimide or the like. The electrodes 23 are formed by screen printing. Next, as shown in FIG. 6B, on the back surface electrode 23, using a reflective insulating layer ink in which a white high dielectric powder made of barium titanate and fluororubber are dispersed in an organic solvent, The reflection insulating layer 24 is formed by screen printing. Next, as shown in FIG. 6C, a conductive material containing at least one of copper, aluminum, and the like is adhered on the reflective insulating layer 24 with an adhesive or the like, and etched using a photoresist as a mask. By the means described above, the upper electrode 25 is formed in a lattice shape. Next, as shown in FIG. 6 (d), using a luminescent layer ink in which a binder made of a fluorophore or the like and a phosphor obtained by activating zinc sulfide with copper on the upper electrode 25 is dispersed in an organic solvent. The light emitting layer 26 is formed by screen printing. Next, as shown in FIG. 6E, a transparent film 27 (protective layer) made of a PVDF film having a thickness of 10 μm and a conductive ink are formed on the light emitting layer 26 in the same manner as in the first embodiment described above. The transparent electrode 28 is formed by drawing an arbitrary character or figure with a pen containing (for example, a transparent electrode material such as indium oxide dispersed in water), thereby obtaining the electroluminescent lamp 21.
[0035]
According to the present embodiment, since the upper electrode 25 is formed by etching a thin film of a conductive material containing at least one of copper, aluminum, and the like using a photoresist as a mask, it is possible to form the upper electrode 25 more than when screen printing a metal paste. In addition, the upper electrode 25 having a lower resistance value can be formed in a high-definition pattern. Accordingly, high-definition light-emitting display can be performed, and the method is suitable for increasing the size of an electroluminescent lamp.
[0036]
Next, another embodiment of the present invention will be described with reference to the drawings. FIG. 7 is a sectional view showing a main part of a method for manufacturing an electroluminescent lamp 31 according to a third embodiment of the present invention. A feature of this embodiment is that an upper electrode is provided between the light emitting layer and the reflective insulating layer, and the upper electrode is formed in a lattice shape by a means such as polishing a part of the coated copper wire.
[0037]
First, as shown in FIG. 7A, the electroluminescent lamp 31 of this embodiment is formed of a conductive paste containing silver or carbon on an insulating base film 32 made of polyethylene, polyester, polyethylene terephthalate, polyimide or the like. After the back electrode 33 is formed by screen printing, a reflection insulating layer is formed on the back electrode 33 using a reflective insulating layer ink in which a white high dielectric powder of barium titanate and fluororubber are dispersed in an organic solvent. The layer 34 is formed by screen printing. Next, as shown in FIG. 7B, a coated copper wire 35 is stuck on the reflective insulating layer 34 in a grid pattern at regular intervals with an adhesive or the like. Next, as shown in FIG. 7C, about 程度 to 1 / of the upper part of the covered copper wire 35 is removed by polishing to form an upper electrode 36 exposing the inner copper wire. Next, as shown in FIG. 7 (d), on the upper electrode 36, using a luminescent layer ink in which a binder composed of a phosphor obtained by activating zinc sulfide with copper and a fluororubber is dispersed in an organic solvent. The light emitting layer 37 is formed by screen printing. Next, as shown in FIG. 7E, a transparent film 38 (protective layer) made of a PVDF film having a thickness of 10 μm and a conductive ink are formed on the light emitting layer 37 in the same manner as in the first embodiment. The transparent electrode 39 is formed by drawing an arbitrary character or figure with a pen containing (for example, a transparent electrode material such as indium oxide dispersed in water), thereby obtaining the electroluminescent lamp 31.
[0038]
According to this embodiment, since the upper electrode 36 is formed by polishing and attaching a part of the covered copper wire 35, the upper electrode 36 having a lower resistance value can be easily formed as compared with the case where the metal paste is screen-printed. Can be formed. In addition, since steps such as printing and drying are not required, the throughput is improved, the manufacturing cost is reduced, and the method is suitable for increasing the size of the electroluminescent lamp.
[0039]
Next, another embodiment of the present invention will be described with reference to the drawings. FIG. 8 is a sectional view and a plan view of a main part showing a configuration of an electroluminescent lamp 41 according to a fourth embodiment of the present invention. The feature of this embodiment is that the upper electrode is provided between the light emitting layer and the reflective insulating layer, and the back electrode and the upper electrode are screen printed with a metal paste containing at least one of carbon, silver, copper, nickel, and aluminum. And the like, each of which is formed in a stripe shape and arranged so that the stripes do not overlap when viewed from the light emitting surface.
[0040]
As shown in FIGS. 8A and 8B, an electroluminescent lamp 41 of the present invention is formed so as to cover a back electrode 43 formed in a stripe shape on an insulating base film 42, and to cover the entire surface of the back electrode 43. A reflective insulating layer 44, an upper electrode 45 formed in a stripe pattern on the reflective insulating layer 44 so as to alternate with the back electrode 43, a light emitting layer 46 formed on the upper electrode 45, and a light emitting layer 46 formed on the upper electrode 45. And a transparent electrode 48 made of an arbitrary character such as "N" formed on the transparent film 47 according to the user's preference. The electrode terminals 43a and 45a are connected to the back electrode 43 and the upper electrode 45, respectively.
[0041]
Next, a method for manufacturing the electroluminescent lamp 41 according to the present invention will be described with reference to a cross-sectional view of a main part in FIG. First, as shown in FIG. 9A, a back electrode 43 made of a conductive paste containing silver or carbon is formed into a stripe shape by screen printing on an insulating base film 42 made of polyethylene, polyester, polyethylene terephthalate, polyimide or the like. Form. Next, as shown in FIG. 9B, on the back electrode 43, using a reflective insulating layer ink in which a white high dielectric powder made of barium titanate and fluororubber are dispersed in an organic solvent, The reflection insulating layer 44 is formed by screen printing. Next, as shown in FIG. 9C, an upper electrode 45 made of a metal paste containing at least one of carbon, silver, copper, nickel, and aluminum is formed on the reflective insulating layer 44 by screen printing. It is formed in a stripe shape alternately arranged with the electrodes 43. Specifically, as shown in FIG. 8B, the back electrode 43 and the upper electrode 45 are formed in a stripe shape so as not to overlap each other. Next, as shown in FIG. 9D, a light emitting layer ink in which a binder made of a fluorophore or the like and a phosphor obtained by activating zinc sulfide with copper and dispersed in an organic solvent is used on the upper electrode 45. The light emitting layer 46 is formed by screen printing. Next, as shown in FIG. 9E, a transparent film 47 (protective layer) made of a PVDF film having a thickness of 10 μm and a conductive ink are formed on the light emitting layer 46 in the same manner as in the first embodiment described above. The transparent electrode 48 is formed by drawing an arbitrary character or figure with a pen containing (for example, a transparent electrode material such as indium oxide dispersed in water), thereby obtaining the electroluminescent lamp 41.
[0042]
Next, the principle of light emission of the electroluminescent lamp 41 of this embodiment will be described with reference to FIG. As shown in FIG. 10 (a), electrode terminals 43a, 45a are connected to the back electrode 43 and the upper electrode 45, respectively. When a predetermined AC voltage is applied between these electrode terminals 43a, 45a, the back electrode 43 Lines of electric force 49 are formed between 43-the transparent electrode 48-the upper electrode 45, and a high electric field is applied to the light emitting layer 46 a located above and around the upper electrode 45, and light emission 46 b is obtained through the transparent electrode 48. At this time, as shown in the equivalent circuit diagram of FIG. 10B, between the back surface electrode 43 and the upper electrode 45, one reflective insulating layer 44 having capacitance and two light emitting layers 46 are provided. Since it is connected in series via the transparent electrode 48, the capacitance component of one layer of the reflective insulating layer 44 is reduced as compared with the related art. As a result, the voltage applied to the light emitting layer 46 increases, the electric field intensity increases, and the luminance can be improved.
[0043]
Further, since the back electrode 43 is not formed below the upper electrode 45, no voltage is applied to the reflective insulating layer 44 below the upper electrode 4. As a result, the reactive current does not flow and the power loss is eliminated, so that the luminous efficiency and the withstand voltage are greatly improved. In addition, since the voltage applied to the upper electrode 56 has the same polarity, the width and interval of the upper electrode 56 can be reduced, and characters and graphics can be uniformly emitted over the entire surface. Further, when the back electrode 43 and the upper electrode 45 are formed by a method such as etching of a thin film of a conductive material containing at least one of copper, aluminum, and the like, a higher-definition electrode pattern can be formed. .
[0044]
Next, another embodiment of the present invention will be described with reference to the drawings. FIG. 11 is a sectional view showing a main part of a method for manufacturing an electroluminescent lamp 51 according to a fifth embodiment of the present invention. This embodiment is characterized in that an upper electrode and an intermediate insulating layer are formed between the light emitting layer and the reflective insulating layer, and the intermediate insulating layer is formed of a polyester resin, an acrylic resin, a urethane resin, a phenol resin, a melamine resin. An insulating paste containing at least one of epoxy resins is formed in a grid by means of screen printing or the like, and the upper electrode is a metal paste containing at least one of carbon, silver, copper, nickel, and aluminum. Are formed in a lattice by means such as screen printing.
[0045]
First, as shown in FIG. 11A, the electroluminescent lamp 51 of this embodiment is formed of a conductive paste containing silver or carbon on an insulating base film 52 made of polyethylene, polyester, polyethylene terephthalate, polyimide, or the like. The back electrode 53 is formed by screen printing. Next, as shown in FIG. 11B, on the back electrode 53, using a reflective insulating layer ink in which a white high dielectric powder made of barium titanate and fluororubber were dispersed in an organic solvent, The reflection insulating layer 54 is formed by screen printing. Next, as shown in FIG. 11C, on the reflective insulating layer 54, at least one of polyester-based resin, acrylic-based resin, urethane-based resin, phenol-based resin, melamine-based resin, and epoxy-based resin is provided. After forming an intermediate insulating layer 55 made of an insulating paste containing the metal paste in a grid pattern by screen printing, an upper electrode made of a metal paste containing one or more of carbon, silver, nickel, and aluminum at the same position as the intermediate insulating layer 55 56 are formed in a grid by screen printing. Next, as shown in FIG. 11D, a light emitting layer ink obtained by dispersing a binder made of a fluorophore or the like and a phosphor obtained by activating zinc sulfide with copper so as to fill the upper electrode 56 is used. Then, the light emitting layer 57 is formed by screen printing. Next, as shown in FIG. 11E, a transparent film 58 (protective layer) made of a PVDF film having a thickness of 10 μm and a conductive ink are formed on the light emitting layer 57 in the same manner as in the first embodiment described above. An electroluminescent lamp 51 is obtained by forming a transparent electrode 59 by drawing arbitrary characters or figures with a pen containing (for example, a transparent electrode material such as indium oxide dispersed in water).
[0046]
Next, the light emission principle of the electroluminescent lamp 51 of this embodiment will be described with reference to FIG. As shown in FIG. 12A, electrode terminals 53a, 56a are connected to the back electrode 53 and the upper electrode 56, respectively. When a predetermined AC voltage is applied between the electrode terminals 53a, 56a, the back electrode 53 The lines of electric force 60 are formed between the 53-the transparent electrode 59-the upper electrode 56, and a high electric field is applied to the light emitting layer 57 a located above and around the upper electrode 56, and the light emission 57 b is obtained through the transparent electrode 59. At this time, as shown in the equivalent circuit diagram of FIG. 12B, between the back electrode 53 and the upper electrode 56, one reflective insulating layer 54 having capacitance and two light emitting layers 57 are provided. Since the state is connected in series via the transparent electrode 59, the capacitance component of one layer of the reflective insulating layer 54 is reduced as compared with the related art. As a result, the voltage applied to the light emitting layer 57 increases, the electric field intensity increases, and the luminance can be improved.
[0047]
Although a voltage is also applied between the upper electrode 56 and the lower back electrode 53, no reactive current flows since the low dielectric constant intermediate insulating layer 55 is formed below the upper electrode 56. This eliminates power loss, so that luminous efficiency and dielectric strength are greatly improved. In addition, since the voltage applied to the upper electrode 56 has the same polarity, the width and interval of the upper electrode 56 can be reduced, and characters and graphics can be uniformly emitted over the entire surface.
[0048]
Next, another embodiment of the present invention will be described with reference to the drawings. 13 and 14 are cross-sectional views of a main part showing a method for manufacturing an electroluminescent lamp 61 according to a sixth embodiment of the present invention. The feature of this embodiment is that an upper electrode and an intermediate insulating layer are provided between the light emitting layer and the reflective insulating layer, and the upper electrode is formed in a lattice shape by means of etching or the like of a thin film of a conductive material such as copper or aluminum. And that the intermediate insulating layer is formed in a lattice shape by means of exposure and development of a positive type photoresist.
[0049]
First, as shown in FIG. 13A, a thin film of a conductive material such as copper or aluminum is adhered on an insulating base film 62 made of polyethylene, polyester, polyethylene terephthalate, polyimide or the like with an adhesive or the like. The upper electrode 63 is formed in a lattice shape by means of etching or the like using the resist as a mask. Next, as shown in FIG. 13B, a DFR (dry film resist) 64 made of a positive type photoresist is stuck on the upper electrode 63 by a thermocompression bonding method. Next, as shown in FIG. 13C, after the insulating base film 62 is peeled off from the upper electrode 63, the DFR 64 is exposed by irradiating ultraviolet rays from the upper electrode 63 side. Next, as shown in FIG. 13D, the exposed portion of the DFR 64 is removed by development to form an intermediate insulating layer 65.
[0050]
Next, as shown in FIG. 13E, one or more of carbon, silver, nickel, and aluminum are included on an insulating base film 66 made of separate polyethylene, polyester, polyethylene terephthalate, polyimide, or the like. A back electrode 67 made of a metal paste is formed by screen printing. Next, as shown in FIG. 13 (f), on the back electrode 67, using a reflective insulating layer ink in which a white high dielectric powder made of barium titanate and fluororubber are dispersed in an organic solvent, The reflection insulating layer 68 is formed by screen printing.
[0051]
Next, as shown in FIG. 14G, before the reflective insulating layer 68 is dried, the reflective insulating layer 68 and the intermediate insulating layer 65 are arranged in close contact, and then dried and bonded. Next, as shown in FIG. 14 (h), on the upper electrode 63, using a luminescent layer ink obtained by dispersing a binder composed of a phosphor obtained by activating zinc sulfide with copper and a fluororubber in an organic solvent. The light emitting layer 69 is formed by screen printing. Next, as shown in FIG. 14 (i), a transparent film 70 (protective layer) made of a PVDF film having a thickness of 10 μm and a conductive ink are formed on the light emitting layer 69 in the same manner as in the first embodiment described above. The transparent electrode 71 is formed by drawing an arbitrary character or figure with a pen containing (for example, a transparent electrode material such as indium oxide dispersed in water) to obtain the electroluminescent lamp 61.
[0052]
According to this embodiment, the upper electrode 63 is formed by etching the conductive material, and the upper electrode 63 is used as a mask to form the intermediate insulating layer 65 by exposing and developing the DFR 64. A pattern can be easily formed, and higher-definition light-emitting display can be performed.
[0053]
Next, another embodiment of the present invention will be described with reference to the drawings. FIGS. 15 and 16 are a plan view and a sectional view showing a main part of a method for manufacturing an electroluminescent lamp 81 according to a seventh embodiment of the present invention. The feature of this embodiment is that an upper electrode and an intermediate insulating layer are provided between the light emitting layer and the reflective insulating layer, and a polyester mesh is used as the intermediate insulating layer, and the upper electrode is further formed of carbon, silver, copper, nickel, That is, a metal paste containing at least one of aluminum is formed in a lattice shape by means such as screen printing.
[0054]
First, by using a polyester mesh 82 which is a polyester fiber as shown in the plan view of FIG. 15A, a polyester resin 83 is pre-applied on the polyester mesh 82 as shown in FIG. An intermediate insulating layer 84 is formed. FIG. 15B is a cross-sectional view taken along line XX of FIG. Next, as shown in FIG. 15C, a metal paste containing at least one of carbon, silver, nickel, and aluminum is applied on the intermediate insulating layer 84 to form the upper electrode 85. At this time, since the polyester resin 83 has previously filled the overlapping portion of the polyester mesh 82, the upper electrode 85 does not go around the back surface of the screen mesh 82.
[0055]
Next, as shown in FIG. 15D, a thin film of a conductive material such as copper, aluminum or the like is formed on an insulating base film 86 made of polyethylene, polyester, polyethylene terephthalate, polyimide or the like by using an adhesive or the like. The back electrode 87 is formed by bonding. Next, as shown in FIG. 15E, a reflective insulating layer ink in which a white high dielectric powder made of barium titanate and fluororubber are dispersed in an organic solvent is used on the back electrode 87. The reflection insulating layer 88 is formed by screen printing.
[0056]
Next, as shown in FIG. 16F, before the reflective insulating layer 88 is dried, the reflective insulating layer 88 and the intermediate insulating layer 84 are disposed in close contact, and then dried and bonded. Next, as shown in FIG. 16 (g), on the upper electrode 85, using a luminescent layer ink obtained by dispersing a binder composed of a fluorophore or the like and a phosphor obtained by activating zinc sulfide with copper, in an organic solvent. The light emitting layer 89 is formed by screen printing. Next, as shown in FIG. 16H, a transparent film 90 (protective layer) made of a PVDF film having a thickness of 10 μm and a conductive ink are formed on the light emitting layer 89 in the same manner as in the case of the first embodiment described above. The transparent electrode 91 is formed by drawing arbitrary characters or figures with a pen containing (for example, a transparent electrode material such as indium oxide dispersed in water), thereby obtaining the electroluminescent lamp 81.
[0057]
According to the present embodiment, since the intermediate insulating layer 84 is formed using the polyester mesh 82 made of polyester fiber and the upper electrode 85 is formed thereon, an electrode pattern finer than screen printing can be easily formed. Thus, a higher definition light-emitting display can be achieved.
[0058]
In each of the above-described embodiments, the transparent film (protective layer) was formed by attaching the PVDF film to the light emitting layer. You may. At this time, the PVDF ink may be printed after the back electrode / ~ / light-emitting layer is formed on the insulating base film, or the PVDF ink may be printed on the insulating base film on which the release material is formed. A layer /-/ back electrode / back insulating layer may be formed, and the insulating layer base film may be peeled off from the PVDF film.
[0059]
Further, the case where the upper electrode and the intermediate insulating layer are formed in a lattice shape between the light emitting layer and the reflective insulating layer has been described, but the shape is not limited to this, and for example, the upper electrode and the intermediate insulating layer are formed in a mesh shape or a stripe shape. You may do so.
[0060]
Further, as the resin material of the light emitting layer and the reflective insulating layer, a cyanoethyl-based resin such as cyanoethyl pullulan and cyanoethylcellulose can be used in addition to a fluorocarbon resin such as fluororubber.
[0061]
【The invention's effect】
According to the electroluminescent lamp of the present invention, light can be emitted at the moment when an arbitrary character or figure is drawn, and only the drawn portion emits light, so that a pattern such as wiring is unnecessary.
[0062]
In addition, the upper electrode is formed in a lattice shape, a mesh shape, or a stripe shape between the protective layer and the light emitting layer, and is driven by applying an AC voltage to the rear electrode and the upper electrode. The capacitance component between the electrode and the upper electrode can be reduced, the voltage applied to the light emitting layer increases, the electric field intensity increases, and the luminance can be improved.
[0063]
Also, an upper electrode is provided between the light emitting layer and the reflective insulating layer, the back electrode and the upper electrode are formed in stripes, and the stripes are arranged so as not to overlap when viewed from the light emitting surface. Since the electrode is driven by applying an AC voltage, the capacitance component between the back electrode, the transparent electrode, and the upper electrode can be reduced, the voltage applied to the light emitting layer increases, the electric field intensity increases, and the luminance decreases. Can be improved. Further, since no voltage is applied to the reflective insulating layer below the upper electrode, and no reactive current flows through the reflective insulating layer, the luminous efficiency and the dielectric strength are greatly improved.
[0064]
In addition, the upper electrode and the intermediate insulating layer are formed in a lattice, mesh, or stripe shape between the light emitting layer and the reflective insulating layer, and are driven by applying an AC voltage to the back electrode and the upper electrode. In addition, the capacitance component between the back electrode, the transparent electrode, and the upper electrode can be reduced, the voltage applied to the light emitting layer increases, the electric field intensity increases, and the luminance can be improved. Further, since no reactive current flows through the intermediate insulating layer and the reflective insulating layer below the upper electrode, the luminous efficiency and the withstand voltage are greatly improved.
[0065]
Further, since the voltage applied to the upper electrode is of the same polarity, the width and interval of the upper electrode can be reduced, and the entire light emitting layer below the transparent electrode can be uniformly illuminated.
[0066]
In addition, since the upper electrode is formed by etching a thin film of a conductive material such as copper or aluminum or by polishing a part of a coated copper wire, the resistance is not increased even with a fine wire, and the electroluminescent lamp is easily formed. Can be enlarged.
[0067]
In addition, since a transparent film made of a PVDF film is provided as a protective layer on the light emitting layer, the transparent electrode can be prevented from seeping into the light emitting layer, and the transparent electrode can be easily erased many times with water or a detergent. Characters and figures can be rewritten. Furthermore, since the relative dielectric constant of the PVDF film is as high as 10 to 12 and the thickness is as thin as 10 μm, the electric field intensity applied to the light emitting layer is increased, and the luminance of the electroluminescent lamp is further improved.
[Brief description of the drawings]
FIG. 1 is a sectional view and a plan view of a main part of an electroluminescent lamp according to a first embodiment of the present invention.
FIG. 2 is a sectional view of a main part showing a method for manufacturing the electroluminescent lamp according to the first embodiment of the present invention.
FIG. 3 is a sectional view of a main part showing a method for manufacturing the electroluminescent lamp according to the first embodiment of the present invention.
FIG. 4 is a sectional view of a main part and an equivalent circuit diagram for explaining the light emitting principle of the electroluminescent lamp according to the first embodiment of the present invention.
FIG. 5 is a diagram showing the relationship between the type, thickness, and luminance of a transparent film in the electroluminescent lamp according to the first embodiment of the present invention.
FIG. 6 is a sectional view of a main part showing a method for manufacturing an electroluminescent lamp according to a second embodiment of the present invention.
FIG. 7 is a sectional view of a main part showing a method for manufacturing an electroluminescent lamp according to a third embodiment of the present invention.
FIG. 8 is a sectional view and a plan view of a main part of an electroluminescent lamp according to a fourth embodiment of the present invention.
FIG. 9 is a sectional view of a main part showing a method for manufacturing an electroluminescent lamp according to a fourth embodiment of the present invention.
FIG. 10 is a sectional view of an essential part and an equivalent circuit diagram for explaining a light emitting principle of an electroluminescent lamp according to a fourth embodiment of the present invention.
FIG. 11 is a sectional view of a main part showing a method for manufacturing an electroluminescent lamp according to a fifth embodiment of the present invention.
FIG. 12 is a cross-sectional view of a main part and an equivalent circuit diagram illustrating a light emitting principle of an electroluminescent lamp according to a fifth embodiment of the present invention.
FIG. 13 is a sectional view of a main part showing a method for manufacturing an electroluminescent lamp according to a sixth embodiment of the present invention.
FIG. 14 is a sectional view of a main part showing a method for manufacturing an electroluminescent lamp according to a sixth embodiment of the present invention.
FIGS. 15A and 15B are a plan view and a sectional view showing a main part of a method for manufacturing an electroluminescent lamp according to a seventh embodiment of the invention.
FIG. 16 is a sectional view of a principal part showing a method for manufacturing an electroluminescent lamp according to a seventh embodiment of the present invention.
FIG. 17 is a sectional view of a main part of a conventional electroluminescent lamp.
FIG. 18 is an equivalent circuit diagram of a conventional electroluminescent lamp.
FIG. 19 is a sectional view of a main part for explaining the light emission principle of a conventional electroluminescent lamp.
FIG. 20 is a plan view of a conventional electroluminescent lamp and a state diagram when characters are emitted.
[Explanation of symbols]
1. An electroluminescent lamp according to a first embodiment of the present invention
2 Insulating base film
3 Back electrode
3a Electrode terminal
4 Reflective insulating layer
5 Upper electrode
5a electrode terminal
6 Light-emitting layer
6a Light Emitting Layer Located on Upper Electrode and Peripheral Part
6b Light emission
7 Transparent film
8 Transparent electrode
9 Base film
10 Composite film
11 lines of electric force
21 Electroluminescent Lamp of Second Embodiment of the Present Invention
22 Insulating base film
23 Back electrode
24 Reflective insulating layer
25 Upper electrode
26 Emitting layer
27 Transparent film
28 transparent electrode
31 Electroluminescent Lamp of Third Embodiment of the Present Invention
32 Insulating base film
33 Back electrode
34 Reflective insulating layer
35 coated copper wire
36 Upper electrode
37 Light-emitting layer
38 Transparent film
39 Transparent electrode
41 Electroluminescent Lamp of Fourth Embodiment of the Present Invention
42 Insulating base film
43 Back electrode
43a electrode terminal
44 Reflective insulating layer
45 Upper electrode
45a electrode terminal
46 light emitting layer
46a Light Emitting Layer Located on and around Upper Electrode
46b light emission
47 Transparent film
48 transparent electrode
51 Electroluminescent Lamp of Fifth Embodiment of the Present Invention
52 Insulating base film
53 Back electrode
53a electrode terminal
54 Reflective insulating layer
55 Intermediate insulating layer
56 Upper electrode
56a electrode terminal
57 Light-emitting layer
57a Light Emitting Layer Located on Upper Electrode and Peripheral Part
57b light emission
58 Transparent film
59 Transparent electrode
60 lines of electric force
61 Electroluminescent Lamp of Sixth Embodiment of the Present Invention
62 Insulating base film
63 Upper electrode
64 DFR (Dry Film Resist)
65 Intermediate insulation layer
66 Insulating base film
67 Back electrode
68 Reflective insulating layer
69 Light-emitting layer
70 Transparent film
71 Transparent electrode
81 Electroluminescent Lamp of Seventh Embodiment of the Present Invention
82 polyester mesh
83 polyester resin
84 Intermediate insulating layer
85 Upper electrode
86 Insulating base film
87 Back electrode
88 Reflective insulation
89 Emitting layer
90 Transparent film
91 Transparent electrode
101 Conventional electroluminescent lamp
102 Insulating base film
103a, 103b Back electrode
104 reflective insulation layer
105 light emitting layer
105a Light emitting layer on back electrode
105b Light emitting layer between back electrodes
106 transparent electrode
107a, 107b electrode terminals
108, 109 sealing film
110 lines of electric force
111 Striped light emission
112 Striped letter "N"

Claims (12)

透明電極と裏面電極の間に発光層と反射絶縁層を形成した電界発光灯において、前記発光層と前記反射絶縁層の間に上部電極を格子状、網目状、あるいはストライプ状に形成するとともに、前記裏面電極と前記上部電極に交流電圧を印加して駆動することを特徴とする電界発光灯。In an electroluminescent lamp in which a light-emitting layer and a reflective insulating layer are formed between a transparent electrode and a back electrode, an upper electrode is formed in a lattice shape, a mesh shape, or a stripe shape between the light-emitting layer and the reflective insulating layer, An electroluminescent lamp characterized in that an AC voltage is applied to the back electrode and the upper electrode to drive them. 透明電極と裏面電極の間に発光層と反射絶縁層を形成した電界発光灯において、前記発光層と前記反射絶縁層の間に上部電極を設け、前記裏面電極と前記上部電極をそれぞれストライプ状に形成し、それらのストライプが発光面から見て重ならないよう配置されるとともに、前記裏面電極と前記上部電極に交流電圧を印加して駆動することを特徴とする電界発光灯。In an electroluminescent lamp in which a light emitting layer and a reflective insulating layer are formed between a transparent electrode and a back electrode, an upper electrode is provided between the light emitting layer and the reflective insulating layer, and the back electrode and the upper electrode are each formed in a stripe shape. An electroluminescent lamp formed and arranged so that the stripes do not overlap when viewed from the light emitting surface, and driven by applying an AC voltage to the back electrode and the upper electrode. 透明電極と裏面電極の間に発光層と反射絶縁層を形成した電界発光灯において、前記発光層と前記反射絶縁層の間に上部電極と中間絶縁層を格子状、網目状、あるいはストライプ状に形成するとともに、前記裏面電極と前記上部電極に交流電圧を印加して駆動することを特徴とする電界発光灯。In an electroluminescent lamp in which a light emitting layer and a reflective insulating layer are formed between a transparent electrode and a back electrode, an upper electrode and an intermediate insulating layer are formed in a grid, mesh, or stripe between the light emitting layer and the reflective insulating layer. An electroluminescent lamp formed and driven by applying an AC voltage to the back electrode and the upper electrode. 前記上部電極が、カーボン、銀、銅、ニッケル、アルミニウムのうちの一種類以上を含む金属ペーストをスクリーン印刷して形成されたことを特徴とする請求項1〜3記載の電界発光灯。The electroluminescent lamp according to claim 1, wherein the upper electrode is formed by screen printing a metal paste containing at least one of carbon, silver, copper, nickel, and aluminum. 前記上部電極が、銅、アルミニウムのうちの一種類以上を含む導電性材料の薄膜をエッチングして形成されたことを特徴とする請求項1〜3記載の電界発光灯。The electroluminescent lamp according to claim 1, wherein the upper electrode is formed by etching a thin film of a conductive material containing at least one of copper and aluminum. 前記上部電極が、被覆銅線の一部を研磨して形成されたことを特徴とする請求項1〜3記載の電界発光灯。The electroluminescent lamp according to claim 1, wherein the upper electrode is formed by polishing a part of a covered copper wire. 前記中間絶縁層が、ポリエステル系樹脂、アクリル系樹脂、ウレタン系樹脂、フェノール系樹脂、メラミン系樹脂、エポキシ系樹脂のうちの一種類以上を含む絶縁性ペーストをスクリーン印刷して形成されたことを特徴とする請求項3記載の電界発光灯。The intermediate insulating layer is formed by screen-printing an insulating paste containing at least one of a polyester resin, an acrylic resin, a urethane resin, a phenol resin, a melamine resin, and an epoxy resin. An electroluminescent lamp according to claim 3, characterized in that: 前記中間絶縁層が、ポジ型フォトレジストを露光、現像して形成されたことを特徴とする請求項3記載の電界発光灯。The electroluminescent lamp according to claim 3, wherein the intermediate insulating layer is formed by exposing and developing a positive photoresist. 前記中間絶縁層が、ポリエステル繊維とそれに塗布されたポリエステル樹脂から形成されたことを特徴とする請求項3記載の電界発光灯。The electroluminescent lamp according to claim 3, wherein the intermediate insulating layer is formed of polyester fiber and polyester resin applied thereto. 前記透明電極と前記発光層の間に保護層を形成したことを特徴とする請求項1〜9記載の電界発光灯。The electroluminescent lamp according to claim 1, wherein a protective layer is formed between the transparent electrode and the light emitting layer. 前記保護層が、PVDF(ポリフッ化ビニリデン)、PVDC(ポリ塩化ビニリデン)、PET(ポリエチレンテレフタレート)のいずれかの透明フィルムからなることを特徴とする請求項10記載の電界発光灯。The electroluminescent lamp according to claim 10, wherein the protective layer is made of a transparent film of one of PVDF (polyvinylidene fluoride), PVDC (polyvinylidene chloride), and PET (polyethylene terephthalate). 前記保護層が、厚み2μm〜17μmのPVDF(ポリフッ化ビニリデン)、厚み2μm〜13μmのPVDC(ポリ塩化ビニリデン)、厚み2μm〜9μmのPET(ポリエチレンテレフタレート)のいずれかの透明フィルムからなることを特徴とする請求項11記載の電界発光灯。The protective layer is made of a transparent film of any of PVDF (polyvinylidene fluoride) having a thickness of 2 μm to 17 μm, PVDC (polyvinylidene chloride) having a thickness of 2 μm to 13 μm, and PET (polyethylene terephthalate) having a thickness of 2 μm to 9 μm. The electroluminescent lamp according to claim 11, wherein
JP2003049270A 2003-02-26 2003-02-26 Electroluminescent light Pending JP2004259602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049270A JP2004259602A (en) 2003-02-26 2003-02-26 Electroluminescent light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049270A JP2004259602A (en) 2003-02-26 2003-02-26 Electroluminescent light

Publications (1)

Publication Number Publication Date
JP2004259602A true JP2004259602A (en) 2004-09-16

Family

ID=33115028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049270A Pending JP2004259602A (en) 2003-02-26 2003-02-26 Electroluminescent light

Country Status (1)

Country Link
JP (1) JP2004259602A (en)

Similar Documents

Publication Publication Date Title
CN101080759A (en) Transparent display board
JP2000133452A (en) Distributed multicolor luminescent el lamp and el lamp unit the same
JP2010016008A (en) Electronic device and electronic apparatus
JP3452380B2 (en) Organic EL display device and manufacturing method thereof
JP2000512801A (en) Electroluminescent device and method of manufacturing the same
CN109920827A (en) Array substrate and preparation method thereof, display panel, display device and control method
JP2001345184A (en) Electroluminescence element and display device
JP2009164129A (en) Light-emitting device and display device using the same as light source
JP2000512800A (en) Multifunctional printed circuit board with optoelectronic active elements
JP2799964B2 (en) Double-sided EL display
JPH11224782A (en) Electroluminescence
JP2004259601A (en) Electroluminescent light
JP2004259602A (en) Electroluminescent light
JPH10189250A (en) Electro-luminescence and manufacture thereof
JP2001015268A (en) Organic electroluminescence element and its manufacture
JP2004063079A (en) El element
JP2004207014A (en) Electroluminescent lamp
JP2005032624A (en) Electroluminescent lamp and manufacturing method therefor
JPH04367892A (en) El display element
JP2005116320A (en) Flexible el display device
JP2004227971A (en) Electroluninescent lamp and its manufacturing method
JP4185605B2 (en) EL display device and EL display device manufacturing method
JP2004356043A (en) El element
JP2566221Y2 (en) EL device
JP2000133463A (en) Distributed el lamp