JP2004259524A - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP2004259524A
JP2004259524A JP2003047385A JP2003047385A JP2004259524A JP 2004259524 A JP2004259524 A JP 2004259524A JP 2003047385 A JP2003047385 A JP 2003047385A JP 2003047385 A JP2003047385 A JP 2003047385A JP 2004259524 A JP2004259524 A JP 2004259524A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
lithium secondary
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003047385A
Other languages
Japanese (ja)
Other versions
JP4233349B2 (en
Inventor
Masanobu Takeuchi
正信 竹内
Keiji Saisho
圭司 最相
Naoki Imachi
直希 井町
Seiji Yoshimura
精司 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003047385A priority Critical patent/JP4233349B2/en
Publication of JP2004259524A publication Critical patent/JP2004259524A/en
Application granted granted Critical
Publication of JP4233349B2 publication Critical patent/JP4233349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery having superior thermal stability under a charging condition and superior battery characteristics after reflowing at high temperatures of 260-270°C, in the lithium secondary battery which is equipped with a positive electrode 2 which includes a positive electrode material, a negative electrode 1 including a negative electrode material, and nonaqueous electrolyte containing a solute and a solvent. <P>SOLUTION: In the lithium secondary battery, a lithium-containing phosphoric acid copper compound is used as a positive electrode material, and preferably, alloy of lithium and aluminum is used as a negative material. A part of PO<SB>4</SB>in the lithium-containing phosphoric acid copper compound may be substituted with SO<SB>4</SB>. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鉛フリーリフローなどにおいて要求される高い耐熱性を有するリチウム二次電池に関するものである。
【0002】
【従来の技術】
半導体プロセスの進歩に伴い、半導体の駆動電圧は低下傾向にある。それに伴って、電子機器のバックアップ電源に要求される電圧も低下傾向にある。また、環境面から半田の鉛フリー化が進んでいるが、鉛フリー半田は融点が高く、電子部品に高い耐熱性が要求される。
【0003】
現在、2V近傍の電圧帯域において充放電可能な電池の1つとして、正極材料にチタン酸リチウムを用い、負極材料にリチウム−アルミニウム合金を用いたリチウム二次電池が提案されている(例えば、特許文献1)。
【0004】
【特許文献1】
特開2002−100354号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記のリチウム二次電池は充電状態における熱安定性が悪く、260℃程度の高い耐熱性が要求される鉛フリーリフローには、充電状態において対応することができないという問題があった。
【0006】
本発明の目的は、充電状態における熱安定性に優れ、260〜270℃の高温でのリフロー後の電池特性に優れたリチウム二次電池を提供することにある。
【0007】
【課題を解決するための手段】
本発明のリチウム二次電池は、正極材料を含む正極と、負極材料を含む負極と、溶質及び溶媒を含む非水電解質とを備え、正極材料として、リチウム含有リン酸銅化合物を用いたことを特徴としている。
【0008】
本発明に従い、正極材料としてリチウム含有リン酸銅化合物を用いることにより、充電状態における優れた熱安定性を得ることができる。このため、260〜270℃の高温でのリフロー後において、電池特性に優れたリチウム二次電池とすることができる。
【0009】
本発明のリチウム含有リン酸銅化合物は、充電状態において、LiCuPOで表すことができ、放電状態においては、LiCuPOで表すことができる。
また、本発明のリチウム含有リン酸銅化合物は、POの一部がSOによって置換されていてもよい。POの一部をSOによって置換することにより、平坦電位を高めることができる。すなわち、リチウム含有リン酸銅化合物はリチウム基準において2.0V程度の平坦電位を有しているが、POの一部をSOによって置換することにより、平坦電位を2.4V程度まで高めることができる。従って、SOの置換割合を調整することにより、放電電圧を調整することができる。
【0010】
SOによる置換割合(SO/(PO+SO))は、モル比で0.9以下であることが好ましく、さらに好ましくは0.5以下である。
POの一部がSOで置換されたリチウム含有リン酸銅化合物は、例えば、充電状態において、LiCu(PO1−X(SO(式中、0<X≦0.9)で表すことができ、放電状態においては、LiCu(PO1−X(SO(式中、0<X≦0.9)で表すことができる。
【0011】
本発明において用いるリチウム含有リン酸銅化合物の製造方法は特に限定されるものではないが、例えば、炭酸リチウムなどのリチウム含有化合物と、酸化銅などの銅含有化合物と、リン酸ニ水素アンモニウムなどのリン酸塩化合物とを所定の割合で混合し、この混合物を焼成することにより製造することができる。
【0012】
POの一部をSOで置換した化合物の場合には、さらに硫酸銅などの硫酸塩化合物を所定の割合となるように混合し、この混合物を焼成することにより製造することができる。
【0013】
本発明における負極材料は、リチウムを吸蔵・放出し得る負極材料であれば特に限定されるものではなく、アルミニウム、錫、シリコン等とリチウムとの合金や、黒鉛等の炭素材料など、リチウム二次電池の負極材料として一般的に用いられているものを広く用いることができる。これらの中でも、リチウムとアルミニウムの合金が充電状態における熱安定性に優れているため、特に好ましく用いられる。
【0014】
リチウム−アルミニウム合金としては、電池組み立ての際の組成において、リチウムの含有割合が10〜55原子%のものが好ましく用いられる。
本発明のリチウム二次電池においては、一般に正極と負極の間にセパレーターが設けられる。このセパレーターの材料としては、ポリフェニレンスルフィド不織布、ガラス繊維不織布、アルミナ繊維不織布、及びセラミックス繊維不織布などが用いられる。これらは単独で用いてもよいし、2種以上組み合わせて用いてもよい。これらの不織布は、熱安定性に優れているため、高温でのリフロー用のリチウム二次電池に用いるのに適している。
【0015】
本発明において用いる非水電解質は、一般にリチウム二次電池において用いる溶質及び溶媒を含むものであれば、特に限定されることなく用いることができる。
【0016】
溶質としては、ヘキサフルオロリン酸リチウム、テトラフルオロホウ酸リチウム、トリフルオロメタンスルホン酸リチウム、リチウムトリフルオロメタンスルホン酸イミド、リチウムペンタフルオロエタンスルホン酸イミド、及びリチウムトリフルオロメタンスルホン酸メチドからなる群から選ばれる1種または2種以上を組み合わせて用いることができる。
【0017】
溶媒としては、低沸点溶媒及び高沸点溶媒を用いることができ、好ましくは、低沸点溶媒と高沸点溶媒とを組み合わせて用いる。混合割合としては、低沸点溶媒:高沸点溶媒の体積比率で、8:2〜5:5の範囲が特に好ましい。
【0018】
低沸点溶媒としては、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−エトキシメトキシエタン、テトラヒドロフラン、1,3−ジオキソラン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどが挙げられる。高沸点溶媒としては、エチレンカーボネート、プロピレンカーボネート、1,2−ブチレンカーボネート、ビニレンカーボネート、スルホランなどが挙げられる。また、γ−ブチロラクトンを単独もしくは高沸点溶媒と組み合わせて用いてもよい。高沸点溶媒と組み合わせて用いる場合、体積比(γ−ブチロラクトン:高沸点溶媒)で10:0〜5:5の割合で混合して用いることが好ましい。
【0019】
【発明の実施の形態】
以下、本発明を実施例に基づいて説明するが、本発明は以下の実施例に限定されるものではなく、その要旨を変更しない範囲において、適宜変更して実施することが可能なものである。
【0020】
(実施例1)
〔正極の作製〕
炭酸リチウムと、酸化銅(II)と、リン酸ニ水素アンモニウムとを、Li:Cu:POのモル比で1:1:1になるように混合し、この混合物を750℃で焼成して、正極活物質としてのリチウム含有リン酸銅化合物を得た。得られたリチウム含有リン酸銅化合物と、導電剤としてのカーボンブラック(粉末)と、結着剤としてのフッ素樹脂(粉末)とを、重量比で84:15:1の割合となるように混合し、正極合剤を得た。この正極合剤を円盤状に圧縮成形し、正極とした。
【0021】
〔負極の作製〕
リチウムとアルミニウムを主成分とするシート状の合金(リチウム含有量30原子%)を円形に打ち抜き、負極とした。
【0022】
〔非水電解液の作製〕
プロピレンカーボネート(PC)とジエチレングリコールジメチルエーテル(DDE)とを体積比10:90で混合した溶媒に、溶質としてのリチウムトリフルオロメタンスルホン酸イミド(LiN(CFSO)を1モル/リットルとなるように溶解して、非水電解液を調製した。
【0023】
〔電池の組み立て〕
上記の正極、負極及び非水電解液を用いて、扁平形のリチウム二次電池(電池寸法:外径4mm、厚さ1.4mm)を不活性雰囲気下で組み立てた。なお、セパレーター材料としては、ポリフェニレンスルフィド(PPS)不織布を用いた。
【0024】
図1は、組み立てたリチウム二次電池を示す模式的断面図である。図1に示すように、リチウム二次電池は、負極1、正極2、セパレーター3、負極缶4、正極缶5、負極集電体6、正極集電体7、及び絶縁パッキング8などから構成されている。負極集電体6は、ステンレス鋼板(SUS304)から形成されており、正極集電体7は、ステンレス鋼板(SUS316)から形成されている。
【0025】
負極1及び正極2は、非水電解液を含浸したセパレーター3を介して対向するように設けられており、負極缶4及び正極缶5から形成される電池ケース内に収納されている。正極2は正極集電体7を介して正極缶5に、負極1は負極集電体6を介して負極缶4に接続され、電池内部に生じた化学エネルギーを正極缶5及び負極缶4の両端子から電気エネルギーとして外部へ取り出し得るようになっている。
【0026】
(実施例2)
黒鉛粉末と、結着剤としてのフッ素樹脂(粉末)とを、重量比で95:5となるように混合して負極合剤を得た。この負極合剤を円盤状に圧縮成形し、負極を作製した。この負極を用いる以外は、実施例1と同様にしてリチウム二次電池を作製した。
【0027】
(比較例1)
チタン酸リチウムと、導電剤としてのカーボンブラック(粉末)と、結着剤としてのフッ素樹脂(粉末)とを、重量比で84:15:1となるように混合して、正極合剤を得た。この正極合剤を円盤状に圧縮成形し、正極を作製した。この正極を用いる以外は、実施例1と同様にしてリチウム二次電池を作製した。
【0028】
(実施例3a)
炭酸リチウムと、酸化銅と、リン酸ニ水素アンモニウムと、硫酸銅とを、Li:Cu:PO:SOのモル比で1:1:0.9:0.1となるように混合し、この混合物を750℃で焼成することにより正極活物質を作製した。この正極活物質を用いる以外は、実施例1と同様にしてリチウム二次電池を作製した。
【0029】
(実施例3b)
炭酸リチウムと、酸化銅と、リン酸ニ水素アンモニウムと、硫酸銅とを、Li:Cu:PO:SOのモル比で1:1:0.5:0.5となるように混合し、この混合物を750℃で焼成することにより正極活物質を作製した。この正極活物質を用いる以外は、実施例1と同様にしてリチウム二次電池を作製した。
【0030】
(実施例3c)
炭酸リチウムと、酸化銅と、リン酸ニ水素アンモニウムと、硫酸銅とを、Li:Cu:PO:SOのモル比で1:1:0.1:0.9となるように混合し、この混合物を750℃で焼成することにより正極活物質を作製した。この正極活物質を用いる以外は、実施例1と同様にしてリチウム二次電池を作製した。
【0031】
〔充放電サイクル試験〕
上記実施例及び比較例の各電池について、充放電サイクル試験を行った。各電池を充電電流20μA及び充電終止電圧2.5Vの条件で充電した後、放電電流20μA及び放電終止電圧1.0Vの条件で放電した。このときの平均放電作動電圧を測定した。また、充電後の開回路電圧を測定し、リフロー前電圧とした。
測定結果を表1に示す。
【0032】
〔リフロー試験〕
上記実施例及び比較例の各電池について、リフロー試験を行った。充電終止電圧2.5Vで充電した各電池を、200℃で10分間保持した後、260℃まで加熱して10秒間保持し、その後25℃まで冷却した。冷却後の電池の開回路電圧を測定し、リフロー後電圧とした。また、交流4端子法(1kHz)で内部抵抗を測定し、リフロー後内部抵抗とした。測定結果を表1に示す。
【0033】
【表1】

Figure 2004259524
【0034】
表1に示すように、本発明に従う実施例の各電池は、リフロー後においても高い放電電圧を示している。また、負極材料としてリチウム−アルミニウム合金を用いた実施例1及び3a〜3cにおいては、リフロー後において内部抵抗が増加しておらず、高温のリフロー後においても優れた電池特性を示している。このことから、負極材料としてリチウム−アルミニウム合金が好ましいことがわかる。
【0035】
また、実施例3a〜3cの比較から明らかなように、リチウム含有リン酸銅化合物中のPOの一部をSOに置換することにより、放電電圧が高くなっていることがわかる。従って、SOの置換量を調整することにより、放電電圧を調整できることがわかる。
【0036】
【発明の効果】
本発明に従えば、充電状態における熱安定性に優れ、260〜270℃の高温でのリフロー後の電池特性に優れたリチウム二次電池とすることができる。従って、本発明のリチウム二次電池は、充電状態において、鉛フリーリフローにより半田付けすることができるリチウム二次電池として適している。
【図面の簡単な説明】
【図1】本発明に従う実施例において作製したリチウム二次電池を示す模式的断面図。
【符号の説明】
1…負極
2…正極
3…セパレーター
4…負極缶
5…正極缶
6…負極集電体
7…正極集電体
8…絶縁パッキング[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium secondary battery having high heat resistance required for lead-free reflow and the like.
[0002]
[Prior art]
With the progress of semiconductor processes, the driving voltage of semiconductors is decreasing. Along with this, the voltage required for the backup power source of electronic devices is also decreasing. Moreover, lead-free solder is being promoted from the environmental point of view, but lead-free solder has a high melting point and high heat resistance is required for electronic components.
[0003]
Currently, lithium secondary batteries using lithium titanate as the positive electrode material and lithium-aluminum alloy as the negative electrode material have been proposed as one of the batteries that can be charged and discharged in a voltage band near 2 V (for example, patents). Reference 1).
[0004]
[Patent Document 1]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2002-1003004
[Problems to be solved by the invention]
However, the above lithium secondary battery has poor thermal stability in a charged state, and there is a problem that lead-free reflow requiring high heat resistance of about 260 ° C. cannot be handled in the charged state.
[0006]
An object of the present invention is to provide a lithium secondary battery that is excellent in thermal stability in a charged state and excellent in battery characteristics after reflow at a high temperature of 260 to 270 ° C.
[0007]
[Means for Solving the Problems]
The lithium secondary battery of the present invention includes a positive electrode including a positive electrode material, a negative electrode including a negative electrode material, and a nonaqueous electrolyte including a solute and a solvent, and uses a lithium-containing copper phosphate compound as a positive electrode material. It is a feature.
[0008]
According to the present invention, by using a lithium-containing copper phosphate compound as a positive electrode material, excellent thermal stability in a charged state can be obtained. For this reason, it can be set as the lithium secondary battery excellent in the battery characteristic after reflow at the high temperature of 260-270 degreeC.
[0009]
Lithium-containing copper phosphate compounds of the present invention, in the charged state, can be represented by LiCuPO 4, in the discharged state can be represented by Li 2 CuPO 4.
In the lithium-containing copper phosphate compound of the present invention, a part of PO 4 may be substituted with SO 4 . By replacing a part of PO 4 with SO 4 , the flat potential can be increased. That is, the lithium-containing copper phosphate compound has a flat potential of about 2.0 V on the basis of lithium, but the flat potential is increased to about 2.4 V by replacing a part of PO 4 with SO 4 . Can do. Therefore, the discharge voltage can be adjusted by adjusting the replacement ratio of SO 4 .
[0010]
Substitution ratio by SO 4 (SO 4 / (PO 4 + SO 4)) is preferably 0.9 or less in molar ratio, more preferably 0.5 or less.
The lithium-containing copper phosphate compound in which a part of PO 4 is substituted with SO 4 is, for example, LiCu (PO 4 ) 1-X (SO 4 ) X (where 0 <X ≦ 0.9 in the charged state). In the discharge state, Li 2 Cu (PO 4 ) 1-X (SO 4 ) X (where 0 <X ≦ 0.9).
[0011]
Although the manufacturing method of the lithium containing copper phosphate compound used in this invention is not specifically limited, For example, lithium containing compounds, such as lithium carbonate, copper containing compounds, such as copper oxide, and ammonium dihydrogen phosphate etc. It can manufacture by mixing a phosphate compound with a predetermined ratio and baking this mixture.
[0012]
In the case of a compound in which a part of PO 4 is substituted with SO 4 , it can be produced by further mixing a sulfate compound such as copper sulfate at a predetermined ratio and firing this mixture.
[0013]
The negative electrode material in the present invention is not particularly limited as long as it is a negative electrode material capable of occluding and releasing lithium, and lithium secondary materials such as aluminum, tin, silicon and lithium alloys, carbon materials such as graphite, etc. What is generally used as a negative electrode material of a battery can be widely used. Among these, an alloy of lithium and aluminum is particularly preferably used because it is excellent in thermal stability in a charged state.
[0014]
As the lithium-aluminum alloy, those having a lithium content of 10 to 55 atomic% in the composition during battery assembly are preferably used.
In the lithium secondary battery of the present invention, a separator is generally provided between the positive electrode and the negative electrode. As a material for the separator, polyphenylene sulfide nonwoven fabric, glass fiber nonwoven fabric, alumina fiber nonwoven fabric, ceramic fiber nonwoven fabric, and the like are used. These may be used alone or in combination of two or more. Since these nonwoven fabrics are excellent in thermal stability, they are suitable for use in lithium secondary batteries for reflow at high temperatures.
[0015]
The nonaqueous electrolyte used in the present invention can be used without particular limitation as long as it contains a solute and a solvent that are generally used in a lithium secondary battery.
[0016]
The solute is selected from the group consisting of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium trifluoromethanesulfonate, lithium trifluoromethanesulfonate imide, lithium pentafluoroethanesulfonate imide, and lithium trifluoromethanesulfonate methide. One kind or a combination of two or more kinds can be used.
[0017]
As the solvent, a low boiling point solvent and a high boiling point solvent can be used. Preferably, a low boiling point solvent and a high boiling point solvent are used in combination. The mixing ratio is particularly preferably in the range of 8: 2 to 5: 5 with a volume ratio of low boiling point solvent: high boiling point solvent.
[0018]
Low boiling solvents include diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-ethoxymethoxyethane, tetrahydrofuran, 1,3-dioxolane, dimethyl carbonate, diethyl carbonate And ethyl methyl carbonate. Examples of the high boiling point solvent include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, vinylene carbonate, sulfolane and the like. Further, γ-butyrolactone may be used alone or in combination with a high boiling point solvent. When used in combination with a high-boiling solvent, it is preferably mixed and used in a volume ratio (γ-butyrolactone: high-boiling solvent) at a ratio of 10: 0 to 5: 5.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on examples. However, the present invention is not limited to the following examples, and can be appropriately modified and implemented without departing from the scope of the present invention. .
[0020]
(Example 1)
[Production of positive electrode]
Lithium carbonate, copper (II) oxide, and ammonium dihydrogen phosphate were mixed so that the molar ratio of Li: Cu: PO 4 was 1: 1: 1, and this mixture was calcined at 750 ° C. Then, a lithium-containing copper phosphate compound as a positive electrode active material was obtained. The obtained lithium-containing copper phosphate compound, carbon black (powder) as a conductive agent, and fluororesin (powder) as a binder are mixed at a weight ratio of 84: 15: 1. Thus, a positive electrode mixture was obtained. This positive electrode mixture was compression-molded into a disk shape to obtain a positive electrode.
[0021]
(Production of negative electrode)
A sheet-like alloy mainly composed of lithium and aluminum (lithium content: 30 atomic%) was punched into a circular shape to obtain a negative electrode.
[0022]
[Preparation of non-aqueous electrolyte]
In a solvent in which propylene carbonate (PC) and diethylene glycol dimethyl ether (DDE) are mixed at a volume ratio of 10:90, lithium trifluoromethanesulfonate imide (LiN (CF 3 SO 2 ) 2 ) as a solute is 1 mol / liter. Thus, a non-aqueous electrolyte was prepared.
[0023]
[Assembling the battery]
A flat lithium secondary battery (battery dimensions: outer diameter 4 mm, thickness 1.4 mm) was assembled in an inert atmosphere using the positive electrode, the negative electrode, and the non-aqueous electrolyte. As the separator material, a polyphenylene sulfide (PPS) nonwoven fabric was used.
[0024]
FIG. 1 is a schematic cross-sectional view showing an assembled lithium secondary battery. As shown in FIG. 1, the lithium secondary battery includes a negative electrode 1, a positive electrode 2, a separator 3, a negative electrode can 4, a positive electrode can 5, a negative electrode current collector 6, a positive electrode current collector 7, an insulating packing 8, and the like. ing. The negative electrode current collector 6 is formed from a stainless steel plate (SUS304), and the positive electrode current collector 7 is formed from a stainless steel plate (SUS316).
[0025]
The negative electrode 1 and the positive electrode 2 are provided so as to face each other with a separator 3 impregnated with a nonaqueous electrolytic solution, and are accommodated in a battery case formed of the negative electrode can 4 and the positive electrode can 5. The positive electrode 2 is connected to the positive electrode can 5 via the positive electrode current collector 7, and the negative electrode 1 is connected to the negative electrode can 4 via the negative electrode current collector 6, and chemical energy generated inside the battery is transferred to the positive electrode can 5 and the negative electrode can 4. It can be taken out from both terminals as electrical energy.
[0026]
(Example 2)
Graphite powder and a fluororesin (powder) as a binder were mixed at a weight ratio of 95: 5 to obtain a negative electrode mixture. This negative electrode mixture was compression-molded into a disk shape to produce a negative electrode. A lithium secondary battery was produced in the same manner as in Example 1 except that this negative electrode was used.
[0027]
(Comparative Example 1)
Lithium titanate, carbon black (powder) as a conductive agent, and fluororesin (powder) as a binder are mixed at a weight ratio of 84: 15: 1 to obtain a positive electrode mixture. It was. This positive electrode mixture was compression-molded into a disk shape to produce a positive electrode. A lithium secondary battery was produced in the same manner as in Example 1 except that this positive electrode was used.
[0028]
(Example 3a)
Lithium carbonate, copper oxide, ammonium dihydrogen phosphate, and copper sulfate were mixed at a molar ratio of Li: Cu: PO 4 : SO 4 of 1: 1: 0.9: 0.1. The positive electrode active material was produced by firing this mixture at 750 ° C. A lithium secondary battery was produced in the same manner as in Example 1 except that this positive electrode active material was used.
[0029]
(Example 3b)
Lithium carbonate, copper oxide, ammonium dihydrogen phosphate, and copper sulfate are mixed so that the molar ratio of Li: Cu: PO 4 : SO 4 is 1: 1: 0.5: 0.5. The positive electrode active material was produced by firing this mixture at 750 ° C. A lithium secondary battery was produced in the same manner as in Example 1 except that this positive electrode active material was used.
[0030]
(Example 3c)
Lithium carbonate, copper oxide, ammonium dihydrogen phosphate, and copper sulfate were mixed so that the molar ratio of Li: Cu: PO 4 : SO 4 was 1: 1: 0.1: 0.9. The positive electrode active material was produced by firing this mixture at 750 ° C. A lithium secondary battery was produced in the same manner as in Example 1 except that this positive electrode active material was used.
[0031]
[Charge / discharge cycle test]
A charge / discharge cycle test was conducted for each of the batteries of the above Examples and Comparative Examples. Each battery was charged under the conditions of a charging current of 20 μA and a charge end voltage of 2.5 V, and then discharged under the conditions of a discharge current of 20 μA and a discharge end voltage of 1.0 V. The average discharge operating voltage at this time was measured. Moreover, the open circuit voltage after charge was measured, and it was set as the voltage before reflow.
The measurement results are shown in Table 1.
[0032]
[Reflow test]
A reflow test was performed on each of the batteries of the above Examples and Comparative Examples. Each battery charged at an end-of-charge voltage of 2.5 V was held at 200 ° C. for 10 minutes, then heated to 260 ° C. and held for 10 seconds, and then cooled to 25 ° C. The open circuit voltage of the battery after cooling was measured and used as the voltage after reflow. Moreover, internal resistance was measured by the alternating current 4 terminal method (1 kHz), and it was set as internal resistance after reflow. The measurement results are shown in Table 1.
[0033]
[Table 1]
Figure 2004259524
[0034]
As shown in Table 1, each battery of the example according to the present invention shows a high discharge voltage even after reflow. In Examples 1 and 3a to 3c using a lithium-aluminum alloy as the negative electrode material, the internal resistance did not increase after reflow, and excellent battery characteristics were exhibited even after high temperature reflow. This shows that a lithium-aluminum alloy is preferable as the negative electrode material.
[0035]
Further, as is clear from the comparison of Examples 3a to 3c, it can be seen that the discharge voltage is increased by substituting part of PO 4 in the lithium-containing copper phosphate compound with SO 4 . Therefore, it can be seen that the discharge voltage can be adjusted by adjusting the substitution amount of SO 4 .
[0036]
【The invention's effect】
According to the present invention, a lithium secondary battery having excellent thermal stability in a charged state and excellent battery characteristics after reflow at a high temperature of 260 to 270 ° C. can be obtained. Therefore, the lithium secondary battery of the present invention is suitable as a lithium secondary battery that can be soldered by lead-free reflow in a charged state.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a lithium secondary battery manufactured in an example according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Negative electrode 2 ... Positive electrode 3 ... Separator 4 ... Negative electrode can 5 ... Positive electrode can 6 ... Negative electrode collector 7 ... Positive electrode collector 8 ... Insulation packing

Claims (5)

正極材料を含む正極と、負極材料を含む負極と、溶質及び溶媒を含む非水電解質とを備えるリチウム二次電池において、
前記正極材料として、リチウム含有リン酸銅化合物を用いたことを特徴とするリチウム二次電池。
In a lithium secondary battery comprising a positive electrode including a positive electrode material, a negative electrode including a negative electrode material, and a nonaqueous electrolyte including a solute and a solvent,
A lithium secondary battery using a lithium-containing copper phosphate compound as the positive electrode material.
リチウム含有リン酸銅化合物中のPOの一部がSOによって置換されていることを特徴とする請求項1に記載のリチウム二次電池。2. The lithium secondary battery according to claim 1, wherein a part of PO 4 in the lithium-containing copper phosphate compound is substituted with SO 4 . SOによる置換割合(SO/(PO+SO))がモル比で0.9以下であることを特徴とする請求項2に記載のリチウム二次電池。The lithium secondary battery according to claim 2, wherein a substitution ratio by SO 4 (SO 4 / (PO 4 + SO 4 )) is 0.9 or less in terms of molar ratio. 前記負極材料が、リチウムとアルミニウムの合金であることを特徴とする請求項1〜3のいずれか1項に記載のリチウム二次電池。The lithium secondary battery according to claim 1, wherein the negative electrode material is an alloy of lithium and aluminum. 前記正極と前記負極の間にセパレーターが設けられており、該セパレーターとして、ポリフェニレンスルフィド不織布、ガラス繊維不織布、アルミナ繊維不織布、及びセラミックス繊維不織布からなる群より選択される少なくとも1種が用いられていることを特徴とする請求項1〜4のいずれか1項に記載のリチウム二次電池。A separator is provided between the positive electrode and the negative electrode, and at least one selected from the group consisting of a polyphenylene sulfide nonwoven fabric, a glass fiber nonwoven fabric, an alumina fiber nonwoven fabric, and a ceramic fiber nonwoven fabric is used as the separator. The lithium secondary battery according to claim 1, wherein the lithium secondary battery is a lithium secondary battery.
JP2003047385A 2003-02-25 2003-02-25 Lithium secondary battery Expired - Fee Related JP4233349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003047385A JP4233349B2 (en) 2003-02-25 2003-02-25 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003047385A JP4233349B2 (en) 2003-02-25 2003-02-25 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2004259524A true JP2004259524A (en) 2004-09-16
JP4233349B2 JP4233349B2 (en) 2009-03-04

Family

ID=33113655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003047385A Expired - Fee Related JP4233349B2 (en) 2003-02-25 2003-02-25 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4233349B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009104794A (en) * 2007-10-19 2009-05-14 Toyota Central R&D Labs Inc Active material for lithium secondary battery, its manufacturing method, and lithium secondary battery
JP2011108532A (en) * 2009-11-18 2011-06-02 Sony Corp Solid electrolyte cell, and positive electrode active material
WO2023095889A1 (en) * 2021-11-26 2023-06-01 公立大学法人大阪 Oxide-based positive electrode active material and use of same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009104794A (en) * 2007-10-19 2009-05-14 Toyota Central R&D Labs Inc Active material for lithium secondary battery, its manufacturing method, and lithium secondary battery
JP2011108532A (en) * 2009-11-18 2011-06-02 Sony Corp Solid electrolyte cell, and positive electrode active material
WO2023095889A1 (en) * 2021-11-26 2023-06-01 公立大学法人大阪 Oxide-based positive electrode active material and use of same

Also Published As

Publication number Publication date
JP4233349B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
JP4022889B2 (en) Electrolyte and battery
JP4608735B2 (en) Non-aqueous electrolyte secondary battery charging method
JP5022035B2 (en) Secondary battery with surface mount terminals
JP2008218385A (en) Electrode, method for manufacturing the electrode, and battery
JP4167012B2 (en) Nonaqueous electrolyte secondary battery
JP4867161B2 (en) Nonaqueous electrolyte secondary battery
JP4233349B2 (en) Lithium secondary battery
JP2011134547A (en) Lithium ion secondary battery
JP4315769B2 (en) Lithium secondary battery
JP4245285B2 (en) Lithium secondary battery
WO2022203072A1 (en) Nonaqueous electrolyte solution and nonaqueous secondary battery
JP2008077915A (en) Lithium secondary battery corresponding to reflow
JP2008016316A (en) Nonaqueous electrolyte secondary battery
JP4194332B2 (en) Lithium battery
JP3438364B2 (en) Non-aqueous electrolyte
JP4100861B2 (en) Lithium battery
JP5447176B2 (en) Nonaqueous electrolyte secondary battery charging method and manufacturing method
JP4938923B2 (en) Secondary battery
JP2004127547A (en) Heat-resistant lithium battery
JP4505897B2 (en) Non-aqueous electrolyte secondary battery
JP2006216450A (en) Battery
JP2003077478A (en) Lithium ion secondary battery
JP5043290B2 (en) Cathode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery using the same
JP2007305495A (en) Manufacturing method of battery, and manufacturing method of electrode
JP2013080664A (en) Power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4233349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees