JP2004258261A - Method for manufacturing optical element block - Google Patents

Method for manufacturing optical element block Download PDF

Info

Publication number
JP2004258261A
JP2004258261A JP2003048248A JP2003048248A JP2004258261A JP 2004258261 A JP2004258261 A JP 2004258261A JP 2003048248 A JP2003048248 A JP 2003048248A JP 2003048248 A JP2003048248 A JP 2003048248A JP 2004258261 A JP2004258261 A JP 2004258261A
Authority
JP
Japan
Prior art keywords
optical element
element mounting
optical
lens
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003048248A
Other languages
Japanese (ja)
Other versions
JP3838206B2 (en
Inventor
Kenichi Shimatani
賢一 島谷
Tsutomu Shimomura
勉 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003048248A priority Critical patent/JP3838206B2/en
Publication of JP2004258261A publication Critical patent/JP2004258261A/en
Application granted granted Critical
Publication of JP3838206B2 publication Critical patent/JP3838206B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an optical element block by which high positioning accuracy for the formation of a lens is obtained and a uniform protective film can be formed. <P>SOLUTION: When a lens is formed by using a casting case 30, first a lens resin having light transmitting property such as an epoxy resin is injected into a circular hole 31, and a cylindrical optical element mount having an optical element mounted on its top face is inserted into the hole 31. While a protrusion 35 formed on the inner surface of the hole 31 is made in contact with the side circumference face of the optical element mount for positioning the optical element implementation table and the casting case 30, the lens resin is heated to the curing temperature of the resin to be cured. Then by releasing the optical element implementation table from the casting case 30, a lens is formed on the top end face of the optical element mount as well as a protective film comprising the lens resin is formed on the top end face and the side circumference face of the optical element implementation table to protect a circuit pattern formed on the top end face and on the side circumference face. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバのような光伝送媒体を備えた光プラグと、この光プラグに接続される光レセプタクルとで構成される光コネクタの光レセプタクルに用いられ、光プラグの備える光伝送媒体を介して伝送される光信号と電気信号との光電変換を行う光素子ブロックの製造方法に関するものである。
【0002】
【従来の技術】
近年、電子機器の間で高速のデータ通信を可能にするために光通信が導入されており、電子機器と外部との間の光配線を行うために、光ファイバのような光伝送媒体を備えた光プラグと、この光プラグに接続される光レセプタクルとで構成される光コネクタが用いられている。
【0003】
光レセプタクルAは、図4〜図7に示すようにハウジング1と、ハウジング1の内部に収納される送信用及び受信用の光素子ブロック10a,10bとを備える(例えば特許文献1参照)。
【0004】
ハウジング1は後面及び下面の後側が開口した略箱状であって、金属部品、導電性樹脂の成型品、又は鍍金された合成樹脂成型品からなり、シールド効果を有している。ハウジング1の内部は隔壁3によって左右2つの収納室4a,4bに分離され、一方の収納室4aが送信用の光素子ブロック10aの収納スペース、他方の収納室4bが受信用の光素子ブロック10bの収納スペースとなっている。そして、ハウジング1の前面には各収納室4a,4bに連通する円筒状のスリーブ2a,2bが幅方向に並べて突設され、それぞれのスリーブ2a,2bに光プラグに保持された2本の光ファイバーのフェルールが挿入されるようになっている。
【0005】
光素子ブロック10a,10bは略同じ構造を有しており、外観形状が直方体状の立体回路成型部品(MID:Molded Interconncted Device)11a,11bを基体として用い、立体回路成型部品11a,11bの前面にはそれぞれ前方に突出してスリーブ2a,2b内に挿入される円柱状の光素子実装台12a,12bを一体に突設してある。
【0006】
光素子実装台12a,12bの先端面には、図6及び図7に示すように先端方向に広がるように開口した凹平面13a,13bが形成され、送信側の光素子ブロック10aの光素子実装台12aには凹平面13aの底に発光ダイオードLDが実装され、受信側の光素子ブロック10bの光素子実装台12bには凹平面13bの底に受光ダイオードPDが実装されている。また各光素子実装台12a,12bの凹平面13a,13bには透光性を有する合成樹脂が充実されて、発光ダイオードLD及び受光ダイオードPDを封止しており、この封止樹脂により発光ダイオードLDの発光面又は受光ダイオードPDの受光面に対向するレンズ14,14が形成されている。
【0007】
而して、光素子実装台12a,12bをスリーブ2a,2b内にそれぞれ挿入するようにして光素子ブロック10a,10bをハウジング1内に収納した光レセプタクルAに光プラグを接続すると、光プラグに保持された2本の光ファイバーがそれぞれスリーブ2a,2b内に挿入されて、発光ダイオードLD又は受光ダイオードPDとレンズ結合方式にて光結合されるのである。尚、レンズ14,14は球面レンズでも非球面レンズでも良く、光素子(発光ダイオードLD又は受光ダイオードPD)の種類に応じて適宜設定すれば良い。
【0008】
また、立体回路成型部品11a,11bの後面には回路部品を実装するための凹部15a,15bがそれぞれ形成されている。送信側の光素子ブロック10aでは凹部15aの底に発光ダイオードLDへの駆動信号を信号処理する回路を集積化した集積回路素子IC1やノイズカット用のチップコンデンサ19などの回路部品が実装され、受信側の光素子ブロック10bでは凹部15bの底に受光ダイオードPDからの入力信号を信号処理する回路(例えば増幅回路など)を集積化した集積回路素子IC2やノイズカット用のチップコンデンサ19などの回路部品が実装されている。
【0009】
各立体回路成型部品11a,11bの表面には、発光ダイオードLDと集積回路素子IC1との間、受光ダイオードPDと集積回路素子IC2との間をそれぞれ電気的に接続する金属めっき膜からなる回路パターン(図示せず)が形成されており、各集積回路素子IC1,IC2の電極はアルミニウムなどの金属細線からなるボンディングワイヤ36を介して凹部15a,15bの底面に延設された回路パターンに電気的に接続されている。また、立体回路成型部品11a,11bには各4本のL字形の端子ピン16が同時成形により一体に設けられており、各集積回路素子IC1,IC2と端子ピン16との間は立体回路成型部品11a,11bの表面に形成された回路パターンを介して電気的に接続されている。なお、凹部15a,15bには封止樹脂17が充実され、ボンディングワイヤ36と集積回路素子IC1,IC2の電極又は回路パターンとの接続部や回路部品を保護している。また、ハウジング1に光素子ブロック10a,10bを納めた状態で、ハウジング1内に封止樹脂18を充実して封止することにより、光素子ブロック10a,10bがハウジング1の内部に固定されている。
【0010】
ところで、立体回路成型部品11a,11bの光素子実装台12a,12bの先端面にレンズ14,14を形成する際には、キャスティングと呼ばれる工法でレンズ14を形成していた。
【0011】
以下に図8(a)〜(d)を参照して立体回路成型部品11aの光素子実装台12aの先端面にレンズ14を形成する工程を説明する。図中の30は樹脂成型品のキャスティングケース(鋳型)であり、キャスティングケース30の上面にはは光素子実装台12aよりも若干径の大きい丸穴31が開口し、丸穴31の底面にはレンズ14の表面形状と略同じ形状の凹部31aが形成されている。
【0012】
そして、レンズ14を形成する際には、先ずキャスティングケース30の丸穴31内にエポキシ樹脂などの透光性及び熱硬化性を有するレンズ樹脂14aを注入して(図8(b)参照)、キャスティングケース30の丸穴31内に立体回路成型部品11aの光素子実装台12aを挿入した後、立体回路成型部品11aの上部を治具37で押圧して加圧しながらレンズ樹脂14aの樹脂硬化温度まで加熱し、レンズ樹脂14aを硬化させた後(図8(c)参照)、キャスティングケース30から離型させると(図8(d)参照)、光素子実装台12aの先端面にレンズ14が形成される。また、この時同時に光素子実装台12aの先端面と周面とにレンズ樹脂14aからなる保護膜20が形成され、光素子実装台12の先端面及び周面に形成された回路パターンを保護している。
【0013】
【特許文献1】
特開2002−164604号公報(第3頁−第4頁、及び、第1図、第7図)
【0014】
【発明が解決しようとする課題】
ところで、光素子実装台12a,12bの先端面に形成されるレンズ14,14の形成位置によって、発光ダイオードLDの発光特性や受光ダイオードPDの受光特性が大きく左右されるため、レンズ14の形成位置を高精度に位置決めすることが要求される。また、レンズ14の形成時にレンズ樹脂14aからなる保護膜20を光素子実装台12a,12bの側面に形成して、光素子実装台12a,12bの側面に形成された回路パターンを保護しているのであるが、回路パターンを確実に保護するためには均一な保護膜20を形成する必要があり、光素子実装台12a,12bとキャスティングケース30との位置合わせを正確に行う必要があった。
【0015】
しかしながら、従来は光素子実装台12a,12bとキャスティングケース30との位置合わせが正確ではなかったため、光素子実装台12a,12bがキャスティングケース30の丸穴31内に偏芯した状態で挿入される場合があり、光素子とレンズ14の光軸がずれて発光特性や受光特性が悪化したり、均一な保護膜20が形成されないために回路パターンの保護が不十分になるという問題があった。
【0016】
本発明は上記問題点に鑑みて為されたものであり、その目的とするところは、レンズの形成位置の位置決め精度が高く、均一な保護膜を形成することができる光素子ブロックの製造方法を提供するにある。
【0017】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明では、光ファイバのような光伝送媒体を備えた光プラグが接続される光レセプタクルに用いられ、光伝送媒体を介して伝送される光信号と電気信号との間の光電変換を行う光素子と、該光素子が先端面に実装される柱状の光素子実装台を有し、光素子実装台の先端面及び周面を少なくとも含む表面に金属めっき膜からなる回路パターンが形成された立体回路成型部品と、光素子と光伝送媒体との間に位置するようにして光素子実装台の先端面に形成された透光性を有する樹脂製のレンズと、回路パターンを覆うようにして光素子実装台の先端面及び周面に形成された保護膜とを備える光素子ブロックの製造方法であって、立体回路成型部品の光素子実装台が挿入される穴の底面にレンズ形状が形成されたキャスティングケースの上記穴内に透光性を有するレンズ樹脂を注入した後、キャスティングケースの穴内に光素子実装台を挿入し、穴の内側面に突設された位置決め突起を光素子実装台の周面と当接させて、光素子実装台とキャスティングケースとを位置決めし、その後レンズ樹脂を硬化させて、光素子実装台の先端面にレンズを形成するとともに、光素子実装台の周面にレンズ樹脂からなる保護膜を形成することを特徴とする。
【0018】
請求項2の発明では、光ファイバのような光伝送媒体を備えた光プラグが接続される光レセプタクルに用いられ、光伝送媒体を介して伝送される光信号と電気信号との間の光電変換を行う光素子と、該光素子が先端面に実装される柱状の光素子実装台を有し、光素子実装台の先端面及び周面を少なくとも含む表面に金属めっき膜からなる回路パターンが形成された立体回路成型部品と、光素子と光伝送媒体との間に位置するようにして光素子実装台の先端面に形成された透光性を有する樹脂製のレンズと、回路パターンを覆うようにして光素子実装台の先端面及び周面に形成された保護膜とを備える光素子ブロックの製造方法であって、立体回路成型部品の光素子実装台が挿入される穴の底面にレンズ形状が形成されたキャスティングケースの上記穴内に透光性を有するレンズ樹脂を注入した後、キャスティングケースの穴内に光素子実装台を挿入し、光素子実装台の周面に突設された位置決め突起を穴の内側面と当接させて、光素子実装台とキャスティングケースとを位置決めし、その後レンズ樹脂を硬化させて、光素子実装台の先端面にレンズを形成するとともに、光素子実装台の周面にレンズ樹脂からなる保護膜を形成することを特徴とする。
【0019】
【発明の実施の形態】
(実施形態1)
本発明に係る光素子ブロックの製造方法を適用したキャスティングケースを図1(a)〜(d)に基づいて説明する。このキャスティングケース30は、従来技術で説明した光素子ブロック10a,10bにレンズ14を形成する際に用いられるものであって、円柱状の光素子実装台12a,12bよりも若干大径の丸穴31が一面に開口する有底円筒状の型枠部32と、型枠部32の周面から外側に向かって突出する鍔部33とを有し、型枠部32の底面にはレンズ14の表面形状と同じ形状の凹部34が形成されている。また丸穴31の内周面には丸穴31の中心方向に向かって突出する3本の突条35が一定の角度毎(本実施形態では例えば120度毎)に一体に設けられている。各突条35は内周面と底面との角部から軸方向の中間部まで設けられており、これらの突条35はレンズ形成時に光素子実装台12a又は12bの側周面と当接して光素子実装台12a又は12bを位置決めする機能を有している。
【0020】
次にこのキャスティングケース30を用いて光素子ブロック10a,10bにレンズ14及び保護膜20を形成する工程について説明する。
【0021】
先ずキャスティングケース30の丸穴31内に透光性及び熱硬化性を有する液状のレンズ樹脂14a(例えばエポキシ樹脂など)を注入して、キャスティングケース30の丸穴31内に立体回路成型部品11a(11b)の光素子実装台12a(12b)を挿入した後、立体回路成型部品11a(11b)の上部を押圧して丸穴31の内側面に形成された突条35を光素子実装台12bの側周面に当接させて、光素子実装台12a(12b)とキャスティングケース30との位置合わせを行った状態で、レンズ樹脂14aの樹脂硬化温度まで加熱して、レンズ樹脂14aを硬化させた後、キャスティングケース30から離型させると、光素子実装台12a(12b)の先端面にレンズ14が形成されるとともに、光素子実装台12a(12b)の先端面及び側周面にレンズ樹脂14aからなる保護膜20が形成され、光素子実装台12a(12b)の先端面及び側周面に形成された回路パターンが保護される。
【0022】
このように本実施形態ではキャスティングケース30の丸穴31の内周面に突設した突条35を光素子実装台12bの側周面に当接させて、光素子実装台12とキャスティングケース30との位置合わせを行った状態でレンズ14及び保護膜20を形成しており、3本の突条35は丸穴31の内周面に一定の角度毎(120度毎)に設けられているので、丸穴31の中心に対して光素子実装台12a(12b)の中心軸が偏芯するのを防止でき、レンズ14の形成位置の位置精度を高めて、レンズ14の位置ずれによる光素子の特性の悪化を防止できる。さらに3本の突条35は、丸穴31の内周面と底面との角部から軸方向の中間部にかけて設けられているので、3本の突条35が光素子実装台12a(12b)の内周面と線接触することによって、丸穴31(円筒状の型枠部32)の中心軸に対して光素子実装台12a(12b)の中心軸が傾くのを防止して、光素子実装台12a(12b)の側周面と丸穴31の内側面との間に均一な隙間を形成することができ、光素子実装台12a(12b)の側周面に均一な膜厚の保護膜20を形成して、側周面に形成した回路パターンを確実に保護できる。
【0023】
尚、本実施形態ではキャスティングケース30の丸穴31の内周面に位置決め突起としての突条35を120度毎に3本形成しているが、位置決め突起の数を3つに限定する趣旨のものではなく、光素子実装台12a又は12bの中心軸とキャスティングケース30の丸穴31の中心軸とが略一致した状態で位置決めできるよう、適宜の場所に必要な数だけ位置決め突起を形成すれば良い。
【0024】
(実施形態2)
本発明に係る光素子ブロックの製造方法を図2及び図3に基づいて説明する。本実施形態では光素子として受光ダイオードPDを実装した受信側の光素子ブロック10bを例に製造方法を説明するが、光素子として受光ダイオードPDの代わりに発光ダイオードLDを用いる点以外は送信側の光素子ブロック10aと同様であるので、送信側の光素子ブロック10aの製造方法については説明を省略する。また、本実施形態は従来技術で説明した光レセプタクルAに用いられるものであり、基本的な構成は上述の光素子ブロック10a,10bと同様であるので、共通する構成要素には同一の符号を付して、その説明は省略する。
【0025】
光素子ブロック10bは外観形状が直方体状の立体回路成型部品11bを基体として用い、立体回路成型部品11bの前面には前方に突出してスリーブ2b内に挿入される円柱状の光素子実装台12bを一体に突設してあり、光素子実装台12bの側周面には外周方向に突出する3本の突条21が一定の角度毎(本実施形態では例えば120度毎)に一体に形成されている。各突条21は、光素子実装台12bと基体との連結部位から前後方向の中間部まで設けられており、これらの突条21はレンズ形成時にキャスティングケース30の内周面と当接してキャスティングケース30を位置決めする機能を有している。
【0026】
また光素子実装台12bの先端面には、図1(a)及び図2(b)に示すように先端方向に広がるように開口した凹平面13bが形成され、凹平面13bの底に受光ダイオードPDが実装される。尚、送信側の光素子ブロック10aでは凹平面13aの底に発光ダイオードLDが実装される。
【0027】
光素子実装台12bの凹平面13bには、受光ダイオードPDの実装後に透光性を有する合成樹脂が充実されて、受光ダイオードPDを封止しており、この封止樹脂により受光ダイオードPDの受光面に対向するレンズ14が形成される。而して、送信側及び受信側の光素子ブロック10a,10bをハウジング1内に収納した光レセプタクルAに光プラグを接続すると、光プラグに保持された2本の光ファイバーが、受光ダイオードPD又は発光ダイオードLDとレンズ結合方式にて光結合されるのである。尚、レンズ14は球面レンズでも非球面レンズでも良く、光素子(受光ダイオードPD又は発光ダイオード)の種類に応じて適宜設定すれば良い。
【0028】
また、立体回路成型部品11bの後面には回路部品を実装するための凹部15bが形成されており、凹部15bの底に光素子(受光ダイオードPD)の信号処理回路(増幅回路など)を集積化した集積回路素子やノイズカット用のコンデンサが実装される。尚、図2(b)では回路部品を省略して図示してある。
【0029】
また図1(a)に示すように、立体回路成型部品11bの前面上部には、立体回路成型部品11bを前後に貫通するスルーホール23a,23bが左右両側に形成されており、各スルーホール23a,23bの周縁部から光素子実装台12bの側周面を介して光素子実装台12bの先端面に延びる金属めっき膜からなる回路パターン22a,22bが形成されている。各回路パターン22a,22bはスルーホール23a,23bを介して凹部15bの底に形成された回路パターン(図示せず)と電気的に接続されており、光素子実装台12bの先端面に実装された光素子(受光ダイオードPD)と凹部15bの底に実装された集積回路素子との間が回路パターンを介して電気的に接続されるのである。
【0030】
ここで、本実施形態の光素子ブロック10bにレンズ14及び保護膜20を形成する工程について以下に説明する。レンズ14は従来技術で説明した樹脂成型品のキャスティングケース30を用い、キャスティングと呼ばれる方法で製造される。
【0031】
図8に示すようにキャスティングケース30の上面には光素子実装台12bよりも若干径の大きい丸穴31が開口しており、丸穴31の底にはレンズ14の表面形状が形成されている。
【0032】
そしてレンズ14を形成する際には、先ずキャスティングケース30の丸穴31内にエポキシ樹脂などの透光性及び熱硬化性を有するレンズ樹脂14aを注入して、キャスティングケース30の丸穴31内に立体回路成型部品11bの光素子実装台12bを挿入した後、立体回路成型部品11bを光素子実装台12b側に押圧して光素子実装台12bの側周面に形成された突条21を丸穴31の内周面に当接させて、光素子実装台12bとキャスティングケース30との位置合わせを行った状態で、レンズ樹脂14aの樹脂硬化温度まで加熱して、レンズ樹脂14aを硬化させた後、キャスティングケース30から離型させると、光素子実装台12bの先端面にレンズ14が形成されるとともに、光素子実装台12bの先端面及び側周面にレンズ樹脂14aからなる保護膜20が形成され、先端面及び側周面に形成された回路パターン22a,22bが保護される。
【0033】
このように本実施形態では光素子実装台12bの側周面に突設した突条21をキャスティングケース30の丸穴31の内周面に当接させて、光素子実装台12とキャスティングケース30との位置合わせを行った状態でレンズ14及び保護膜20を形成しており、3本の突条21は光素子実装台12bの側周面に一定の角度毎(120度毎)に設けられているので、光素子実装台12bの中心軸がキャスティングケース30の丸穴31の中心に対して偏芯するのを防止でき、レンズ14の形成位置の位置精度を高めて、レンズ14の位置ずれによる光素子の特性の悪化を防止できる。さらに3本の突条21は光素子実装台12bと基体との連結部位から光素子実装台12bの前後方向の中間部まで延接されているので、3本の突条21がキャスティングケース30の丸穴31の内側面と線接触することによって、光素子実装台12bの中心軸が丸穴31の中心軸に対して傾くのを防止して、光素子実装台12bの側周面と丸穴31の内側面との間に均一な隙間を形成することができ、光素子実装台12bの側周面に均一な膜厚の保護膜20を形成して、側周面に形成した回路パターン23a,23bを確実に保護できる。
【0034】
尚、本実施形態では光素子実装台12bの側周面に位置決め突起としての突条21を120度毎に3本形成しているが、位置決め突起の数を3つに限定する趣旨のものではなく、光素子実装台12bの中心軸とキャスティングケース30の丸穴31の中心軸とが略一致した状態で位置決めすることができるよう、適宜の場所に必要な数だけ位置決め突起を形成すれば良い。
【0035】
【発明の効果】
上述のように、請求項1の発明は、光ファイバのような光伝送媒体を備えた光プラグが接続される光レセプタクルに用いられ、光伝送媒体を介して伝送される光信号と電気信号との間の光電変換を行う光素子と、該光素子が先端面に実装される柱状の光素子実装台を有し、光素子実装台の先端面及び周面を少なくとも含む表面に金属めっき膜からなる回路パターンが形成された立体回路成型部品と、光素子と光伝送媒体との間に位置するようにして光素子実装台の先端面に形成された透光性を有する樹脂製のレンズと、回路パターンを覆うようにして光素子実装台の先端面及び周面に形成された保護膜とを備える光素子ブロックの製造方法であって、立体回路成型部品の光素子実装台が挿入される穴の底面にレンズ形状が形成されたキャスティングケースの上記穴内に透光性を有するレンズ樹脂を注入した後、キャスティングケースの穴内に光素子実装台を挿入し、穴の内側面に突設された位置決め突起を光素子実装台の周面と当接させて、光素子実装台とキャスティングケースとを位置決めし、その後レンズ樹脂を硬化させて、光素子実装台の先端面にレンズを形成するとともに、光素子実装台の周面にレンズ樹脂からなる保護膜を形成することを特徴とし、キャスティングケースの穴の内側面に突設した位置決め突起を光素子実装台の周面に当接させて、光素子実装台とキャスティングケースとの位置合わせを行った状態でレンズ及び保護膜を形成しているので、レンズの形成位置の位置精度が向上し、レンズの位置ずれによって生じる光素子の特性の悪化を防止できるという効果があり、そのうえ光素子実装台の周面に均一な膜厚の保護膜を形成できるから、光素子実装台の周面に形成された回路パターンを確実に保護できるという効果もある。
【0036】
請求項2の発明では、光ファイバのような光伝送媒体を備えた光プラグが接続される光レセプタクルに用いられ、光伝送媒体を介して伝送される光信号と電気信号との間の光電変換を行う光素子と、該光素子が先端面に実装される柱状の光素子実装台を有し、光素子実装台の先端面及び周面を少なくとも含む表面に金属めっき膜からなる回路パターンが形成された立体回路成型部品と、光素子と光伝送媒体との間に位置するようにして光素子実装台の先端面に形成された透光性を有する樹脂製のレンズと、回路パターンを覆うようにして光素子実装台の先端面及び周面に形成された保護膜とを備える光素子ブロックの製造方法であって、立体回路成型部品の光素子実装台が挿入される穴の底面にレンズ形状が形成されたキャスティングケースの上記穴内に透光性を有するレンズ樹脂を注入した後、キャスティングケースの穴内に光素子実装台を挿入し、光素子実装台の周面に突設された位置決め突起を穴の内側面と当接させて、光素子実装台とキャスティングケースとを位置決めし、その後レンズ樹脂を硬化させて、光素子実装台の先端面にレンズを形成するとともに、光素子実装台の周面にレンズ樹脂からなる保護膜を形成することを特徴とし、光素子実装台の周面に突設された位置決め突起をキャスティングケースの穴の内側面に当接させて、光素子実装台とキャスティングケースとの位置合わせを行った状態でレンズ及び保護膜を形成しているので、レンズの形成位置の位置精度が向上し、レンズの位置ずれによって生じる光素子の特性の悪化を防止できるという効果があり、そのうえ光素子実装台の周面に均一な膜厚の保護膜を形成できるから、光素子実装台の周面に形成された回路パターンを確実に保護できるという効果もある。
【図面の簡単な説明】
【図1】実施形態1のキャスティングケースを示し、(a)は正面図、(b)は右側から見た断面図、(c)は左側から見た側面図、(c)は下側から見た断面図である。
【図2】実施形態2の光素子ブロックの立体回路成型部品に光素子を実装する前の状態を示し、(a)は正面図、(b)は側面図である。
【図3】同上の立体回路成型部品にレンズを形成した状態を示し、(a)は正面図、(b)は側断面図である。
【図4】従来の光レセプタクルを前方から見た分解斜視図である。
【図5】同上の後方から見た分解斜視図である。
【図6】同上の側断面図である。
【図7】同上の要部断面図である。
【図8】(a)〜(d)は従来のレンズ形成工程の説明図である。
【符号の説明】
30 キャスティングケース
31 丸穴
35 突条
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is used for an optical receptacle of an optical connector including an optical plug including an optical transmission medium such as an optical fiber and an optical receptacle connected to the optical plug, and includes an optical transmission medium included in the optical plug. The present invention relates to a method for manufacturing an optical element block for performing photoelectric conversion between an optical signal and an electric signal transmitted through the optical element block.
[0002]
[Prior art]
In recent years, optical communication has been introduced to enable high-speed data communication between electronic devices, and an optical transmission medium such as an optical fiber has been provided for performing optical wiring between the electronic device and the outside. An optical connector composed of an optical plug and an optical receptacle connected to the optical plug is used.
[0003]
The optical receptacle A includes a housing 1 and optical element blocks 10a and 10b for transmission and reception housed inside the housing 1 as shown in FIGS. 4 to 7 (for example, see Patent Document 1).
[0004]
The housing 1 has a substantially box shape with an opening on the rear surface and the rear surface on the lower surface, and is made of a metal component, a molded product of a conductive resin, or a plated synthetic resin product, and has a shielding effect. The inside of the housing 1 is separated into two storage chambers 4a, 4b on the left and right by a partition wall 3, one storage chamber 4a is a storage space for an optical element block 10a for transmission, and the other storage chamber 4b is an optical element block 10b for reception. Storage space. On the front surface of the housing 1, cylindrical sleeves 2a and 2b communicating with the storage chambers 4a and 4b are arranged and protruded in the width direction, and two optical fibers held by optical plugs in the respective sleeves 2a and 2b. The ferrule is inserted.
[0005]
The optical element blocks 10a and 10b have substantially the same structure, and use three-dimensional circuit molded parts (MID: Molded Interconnected Devices) 11a and 11b having a rectangular parallelepiped appearance as a base, and front surfaces of the three-dimensional circuit molded parts 11a and 11b. Are provided with columnar optical element mounting tables 12a and 12b, which protrude forward and are inserted into the sleeves 2a and 2b, respectively.
[0006]
As shown in FIGS. 6 and 7, concave end faces 13a and 13b are formed on the tip end surfaces of the optical element mounting bases 12a and 12b so as to widen in the tip direction, and the optical element mounting of the optical element block 10a on the transmission side is performed. The light emitting diode LD is mounted on the bottom of the concave plane 13a on the base 12a, and the light receiving diode PD is mounted on the bottom of the concave plane 13b on the optical element mounting table 12b of the optical element block 10b on the receiving side. The concave planes 13a and 13b of the optical element mounting tables 12a and 12b are enriched with a synthetic resin having a light-transmitting property to seal the light emitting diode LD and the light receiving diode PD. Lenses 14, 14 facing the light emitting surface of the LD or the light receiving surface of the light receiving diode PD are formed.
[0007]
When the optical plug is connected to the optical receptacle A in which the optical element blocks 10a and 10b are stored in the housing 1 by inserting the optical element mounting tables 12a and 12b into the sleeves 2a and 2b, respectively, The two held optical fibers are inserted into the sleeves 2a and 2b, respectively, and optically coupled to the light emitting diode LD or the light receiving diode PD by a lens coupling method. Note that the lenses 14 and 14 may be spherical or aspherical lenses, and may be appropriately set according to the type of optical element (light emitting diode LD or light receiving diode PD).
[0008]
In addition, concave portions 15a and 15b for mounting circuit components are formed on the rear surfaces of the three-dimensional circuit molded components 11a and 11b, respectively. In the optical element block 10a on the transmission side, circuit components such as an integrated circuit element IC1 in which a circuit for processing a drive signal to the light emitting diode LD is integrated and a chip capacitor 19 for noise cut are mounted on the bottom of the concave portion 15a. In the optical element block 10b on the side, circuit components such as an integrated circuit element IC2 in which a circuit (for example, an amplifier circuit) for processing an input signal from the light receiving diode PD is integrated at the bottom of the concave portion 15b, and a chip capacitor 19 for noise reduction. Has been implemented.
[0009]
On the surface of each of the three-dimensional circuit molded parts 11a and 11b, a circuit pattern formed of a metal plating film for electrically connecting between the light emitting diode LD and the integrated circuit element IC1, and between the light receiving diode PD and the integrated circuit element IC2, respectively. (Not shown) are formed, and the electrodes of the integrated circuit elements IC1 and IC2 are electrically connected to a circuit pattern extending on the bottom surfaces of the recesses 15a and 15b via bonding wires 36 made of a thin metal wire such as aluminum. It is connected to the. Also, each of the three-dimensional circuit molded parts 11a and 11b is integrally provided with four L-shaped terminal pins 16 by simultaneous molding, and the three-dimensional circuit molded parts are provided between the integrated circuit elements IC1 and IC2 and the terminal pins 16. They are electrically connected via circuit patterns formed on the surfaces of the components 11a and 11b. Note that the sealing resin 17 is enriched in the recesses 15a and 15b to protect the connection portions and circuit components between the bonding wires 36 and the electrodes or circuit patterns of the integrated circuit elements IC1 and IC2. The optical element blocks 10a and 10b are fixed in the housing 1 by enriching and sealing the sealing resin 18 in the housing 1 with the optical element blocks 10a and 10b housed in the housing 1. I have.
[0010]
By the way, when the lenses 14, 14 are formed on the tip surfaces of the optical element mounting tables 12a, 12b of the three-dimensional circuit molded parts 11a, 11b, the lenses 14 are formed by a method called casting.
[0011]
Hereinafter, a process of forming the lens 14 on the distal end surface of the optical element mounting table 12a of the three-dimensional circuit molded component 11a will be described with reference to FIGS. Reference numeral 30 in the figure denotes a casting case (mold) made of a resin molded product. A round hole 31 having a diameter slightly larger than that of the optical element mounting table 12 a is opened on the upper surface of the casting case 30. A concave portion 31a having substantially the same shape as the surface shape of the lens 14 is formed.
[0012]
When the lens 14 is formed, first, a transparent and thermosetting lens resin 14a such as an epoxy resin is injected into the round hole 31 of the casting case 30 (see FIG. 8B). After the optical element mounting base 12a of the three-dimensional circuit molded component 11a is inserted into the round hole 31 of the casting case 30, the upper part of the three-dimensional circuit molded component 11a is pressed with a jig 37 and pressurized while the resin curing temperature of the lens resin 14a is increased. After heating to cure the lens resin 14a (see FIG. 8 (c)) and releasing the casting from the casting case 30 (see FIG. 8 (d)), the lens 14 is placed on the tip surface of the optical element mounting table 12a. It is formed. At the same time, a protective film 20 made of a lens resin 14a is formed on the distal end surface and the peripheral surface of the optical element mounting table 12a to protect the circuit pattern formed on the distal end surface and the peripheral surface of the optical element mounting table 12. ing.
[0013]
[Patent Document 1]
JP-A-2002-164604 (pages 3 to 4, and FIGS. 1 and 7)
[0014]
[Problems to be solved by the invention]
Incidentally, the light emitting characteristics of the light emitting diode LD and the light receiving characteristics of the light receiving diode PD largely depend on the formation positions of the lenses 14 formed on the tip surfaces of the optical element mounting tables 12a and 12b. Is required to be positioned with high accuracy. Further, when the lens 14 is formed, a protective film 20 made of the lens resin 14a is formed on the side surfaces of the optical element mounting tables 12a and 12b to protect the circuit patterns formed on the side surfaces of the optical element mounting tables 12a and 12b. However, in order to reliably protect the circuit pattern, it is necessary to form a uniform protective film 20, and it is necessary to accurately position the optical element mounting tables 12a and 12b and the casting case 30.
[0015]
However, conventionally, since the positioning between the optical element mounting tables 12a and 12b and the casting case 30 was not accurate, the optical element mounting tables 12a and 12b are inserted in an eccentric state into the round holes 31 of the casting case 30. In some cases, the optical axis of the optical element is shifted from the optical axis of the lens 14 to deteriorate the light emission characteristics and light reception characteristics, and the protection of the circuit pattern becomes insufficient because the uniform protective film 20 is not formed.
[0016]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing an optical element block which has a high positioning accuracy of a lens forming position and can form a uniform protective film. To offer.
[0017]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, an optical plug having an optical transmission medium such as an optical fiber is used for an optical receptacle to be connected, and an optical signal transmitted through the optical transmission medium is used as an optical plug. An optical element that performs photoelectric conversion between an electric signal and a columnar optical element mounting base on which the optical element is mounted on a front end surface, and a metal surface is formed on at least a surface including the front end surface and the peripheral surface of the optical element mounting base. A three-dimensional circuit molded part on which a circuit pattern made of a plating film is formed, and a light-transmitting resin-made resin formed on the tip end surface of the optical element mounting table so as to be located between the optical element and the optical transmission medium. A method for manufacturing an optical element block including a lens and a protective film formed on a front end surface and a peripheral surface of an optical element mounting table so as to cover a circuit pattern, wherein an optical element mounting table of a three-dimensional circuit molded component is inserted. Lens shape on the bottom of the hole After injecting a translucent lens resin into the hole of the casting case, the optical element mounting base is inserted into the hole of the casting case, and the positioning protrusion protruding from the inner surface of the hole is inserted into the optical element mounting base. The optical element mounting base and the casting case are positioned in contact with the peripheral surface, and then the lens resin is cured to form a lens on the distal end surface of the optical element mounting base, and the peripheral surface of the optical element mounting base is It is characterized in that a protective film made of a lens resin is formed.
[0018]
According to the second aspect of the present invention, an optical plug having an optical transmission medium such as an optical fiber is used in an optical receptacle to be connected, and photoelectric conversion between an optical signal and an electric signal transmitted through the optical transmission medium is performed. And a column-shaped optical element mounting base on which the optical element is mounted on the front end surface, and a circuit pattern made of a metal plating film is formed on a surface including at least the front end surface and the peripheral surface of the optical element mounting base. The three-dimensional circuit molded part, a resin lens having a light-transmitting property formed on the distal end surface of the optical element mounting table so as to be located between the optical element and the optical transmission medium, and a circuit pattern. A method of manufacturing an optical element block comprising: a protective film formed on a front end surface and a peripheral surface of an optical element mounting table, wherein a lens shape is formed on a bottom surface of a hole into which the optical element mounting table of a three-dimensional circuit molded component is inserted. Casting case with formed After injecting a translucent lens resin into the hole, insert the optical element mounting base into the hole of the casting case, and abut the positioning projections provided on the peripheral surface of the optical element mounting base with the inner surface of the hole. Then, the optical element mounting base and the casting case are positioned, and then the lens resin is cured to form a lens on the tip surface of the optical element mounting base and the lens resin is protected on the peripheral surface of the optical element mounting base. The method is characterized in that a film is formed.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
(Embodiment 1)
A casting case to which the method for manufacturing an optical element block according to the present invention is applied will be described with reference to FIGS. The casting case 30 is used when forming the lens 14 on the optical element blocks 10a and 10b described in the related art, and has a round hole slightly larger in diameter than the cylindrical optical element mounting tables 12a and 12b. 31 has a bottomed cylindrical form part 32 that is open on one side, and a flange part 33 that protrudes outward from the peripheral surface of the form part 32. A concave portion 34 having the same shape as the surface shape is formed. Further, on the inner peripheral surface of the round hole 31, three protruding ridges 35 protruding toward the center of the round hole 31 are provided integrally at a predetermined angle (in this embodiment, for example, every 120 degrees). Each ridge 35 is provided from a corner between the inner peripheral surface and the bottom surface to an intermediate portion in the axial direction, and these ridges 35 come into contact with the side peripheral surface of the optical element mounting table 12a or 12b during lens formation. It has a function of positioning the optical element mounting table 12a or 12b.
[0020]
Next, a process of forming the lens 14 and the protective film 20 on the optical element blocks 10a and 10b using the casting case 30 will be described.
[0021]
First, a liquid lens resin 14a (for example, epoxy resin) having translucency and thermosetting properties is injected into the round hole 31 of the casting case 30, and the three-dimensional circuit molded component 11a ( 11b), after inserting the optical element mounting base 12a (12b), the upper part of the three-dimensional circuit molded component 11a (11b) is pressed to project the ridge 35 formed on the inner side surface of the round hole 31 of the optical element mounting base 12b. The lens resin 14a was cured by heating to the resin curing temperature of the lens resin 14a in a state where the optical element mounting table 12a (12b) and the casting case 30 were aligned by being brought into contact with the side peripheral surface. Thereafter, when the mold is released from the casting case 30, the lens 14 is formed on the distal end surface of the optical element mounting table 12a (12b), and the optical element mounting table 12a (12b) is formed. Is a protective film 20 made of the end surface and the side peripheral surface of the lens resin 14a is formed, the distal end surface and a circuit pattern formed on the side peripheral surface of the optical element mounting board 12a (12b) is protected.
[0022]
As described above, in the present embodiment, the ridge 35 projecting from the inner peripheral surface of the round hole 31 of the casting case 30 is brought into contact with the side peripheral surface of the optical element mounting table 12b, and the optical element mounting table 12 and the casting case 30 are formed. The lens 14 and the protective film 20 are formed in a state where the alignment is performed, and the three ridges 35 are provided on the inner peripheral surface of the round hole 31 at a constant angle (every 120 degrees). Therefore, it is possible to prevent the center axis of the optical element mounting table 12a (12b) from being decentered with respect to the center of the round hole 31, to improve the positional accuracy of the formation position of the lens 14, and to improve the optical element due to the displacement of the lens 14. Can be prevented from deteriorating. Further, since the three ridges 35 are provided from the corner between the inner peripheral surface and the bottom surface of the round hole 31 and the intermediate portion in the axial direction, the three ridges 35 are provided on the optical element mounting table 12a (12b). Line contact with the inner peripheral surface of the optical element mounting base 12a to prevent the central axis of the optical element mounting table 12a (12b) from inclining with respect to the central axis of the round hole 31 (cylindrical form part 32). A uniform gap can be formed between the side peripheral surface of the mounting table 12a (12b) and the inner side surface of the round hole 31, and protection of a uniform film thickness on the side peripheral surface of the optical element mounting table 12a (12b). By forming the film 20, the circuit pattern formed on the side peripheral surface can be reliably protected.
[0023]
In the present embodiment, three ridges 35 as positioning projections are formed on the inner peripheral surface of the round hole 31 of the casting case 30 every 120 degrees, but the number of positioning projections is limited to three. It is not necessary to form the necessary number of positioning protrusions at appropriate places so that positioning can be performed in a state where the center axis of the optical element mounting table 12a or 12b and the center axis of the round hole 31 of the casting case 30 are substantially aligned. good.
[0024]
(Embodiment 2)
A method for manufacturing an optical element block according to the present invention will be described with reference to FIGS. In the present embodiment, the manufacturing method will be described by taking as an example the optical element block 10b on the receiving side on which the light receiving diode PD is mounted as an optical element, but the light emitting diode LD is used instead of the light receiving diode PD as the optical element. Since it is the same as the optical element block 10a, the description of the method of manufacturing the optical element block 10a on the transmission side is omitted. In addition, the present embodiment is used for the optical receptacle A described in the related art, and the basic configuration is the same as the above-described optical element blocks 10a and 10b. The description is omitted.
[0025]
The optical element block 10b uses a three-dimensional circuit molded component 11b having a rectangular parallelepiped shape as a base, and a front surface of the three-dimensional circuit molded component 11b includes a columnar optical element mounting base 12b that projects forward and is inserted into the sleeve 2b. Three protruding ridges 21 projecting in the outer peripheral direction are formed integrally on the side peripheral surface of the optical element mounting table 12b at a fixed angle (for example, every 120 degrees in the present embodiment). ing. Each of the ridges 21 is provided from a connection portion between the optical element mounting table 12b and the base to an intermediate portion in the front-rear direction, and these ridges 21 come into contact with the inner peripheral surface of the casting case 30 at the time of forming the lens to perform casting. It has a function of positioning the case 30.
[0026]
As shown in FIGS. 1 (a) and 2 (b), a concave flat surface 13b is formed on the distal end surface of the optical element mounting base 12b so as to expand in the distal direction, and a light receiving diode is formed at the bottom of the concave flat surface 13b. A PD is implemented. In the optical element block 10a on the transmitting side, a light emitting diode LD is mounted on the bottom of the concave plane 13a.
[0027]
The concave surface 13b of the optical element mounting base 12b is filled with a synthetic resin having a light transmitting property after the light receiving diode PD is mounted, and seals the light receiving diode PD. A lens 14 facing the surface is formed. When the optical plug is connected to the optical receptacle A in which the optical element blocks 10a and 10b on the transmitting side and the receiving side are housed in the housing 1, the two optical fibers held by the optical plug are connected to the light receiving diode PD or the light emitting diode. The light is optically coupled to the diode LD by a lens coupling method. The lens 14 may be a spherical lens or an aspherical lens, and may be appropriately set according to the type of the optical element (the light receiving diode PD or the light emitting diode).
[0028]
A concave portion 15b for mounting a circuit component is formed on the rear surface of the three-dimensional circuit molded component 11b, and a signal processing circuit (amplifying circuit, etc.) of an optical element (light receiving diode PD) is integrated at the bottom of the concave portion 15b. Integrated circuit elements and noise-cut capacitors are mounted. In FIG. 2B, circuit components are omitted.
[0029]
As shown in FIG. 1A, through holes 23a, 23b penetrating the three-dimensional circuit molded component 11b back and forth are formed on the right and left sides of the front surface of the three-dimensional circuit molded component 11b. , 23b are formed with circuit patterns 22a, 22b made of a metal plating film extending from the periphery of the optical element mounting table 12b to the tip end surface of the optical element mounting table 12b via the side peripheral surface of the optical element mounting table 12b. Each of the circuit patterns 22a and 22b is electrically connected to a circuit pattern (not shown) formed at the bottom of the concave portion 15b through the through holes 23a and 23b, and is mounted on the tip end surface of the optical element mounting base 12b. The optical element (light receiving diode PD) and the integrated circuit element mounted on the bottom of the recess 15b are electrically connected via a circuit pattern.
[0030]
Here, a process of forming the lens 14 and the protective film 20 on the optical element block 10b of the present embodiment will be described below. The lens 14 is manufactured by a method called casting, using the casting case 30 of a resin molded product described in the related art.
[0031]
As shown in FIG. 8, a round hole 31 slightly larger in diameter than the optical element mounting table 12b is opened on the upper surface of the casting case 30, and the surface shape of the lens 14 is formed at the bottom of the round hole 31. .
[0032]
When the lens 14 is formed, first, a translucent and thermosetting lens resin 14 a such as an epoxy resin is injected into the round hole 31 of the casting case 30 and the round hole 31 of the casting case 30 is injected into the round hole 31 of the casting case 30. After inserting the optical element mounting base 12b of the three-dimensional circuit molded part 11b, the three-dimensional circuit molded part 11b is pressed toward the optical element mounting base 12b, and the ridge 21 formed on the side peripheral surface of the optical element mounting base 12b is rounded. The lens resin 14a was cured by heating to the resin curing temperature of the lens resin 14a in a state where the optical element mounting table 12b and the casting case 30 were aligned by being brought into contact with the inner peripheral surface of the hole 31. Thereafter, when the mold is released from the casting case 30, the lens 14 is formed on the distal end surface of the optical element mounting table 12b, and the lens 14 is formed on the distal end surface and the side peripheral surface of the optical element mounting table 12b. Protective film 20 made's resin 14a is formed, the distal end surface and the circuit formed on the side peripheral surface patterns 22a, 22b are protected.
[0033]
As described above, in the present embodiment, the projecting ridge 21 protruding from the side peripheral surface of the optical element mounting table 12b is brought into contact with the inner peripheral surface of the round hole 31 of the casting case 30, and the optical element mounting table 12 and the casting case 30 are formed. The lens 14 and the protective film 20 are formed in a state where the alignment is performed, and the three ridges 21 are provided on the side peripheral surface of the optical element mounting table 12b at a constant angle (every 120 degrees). Therefore, the center axis of the optical element mounting table 12b can be prevented from being eccentric with respect to the center of the round hole 31 of the casting case 30, and the positional accuracy of the formation position of the lens 14 can be increased, and the lens 14 can be displaced. This can prevent the deterioration of the characteristics of the optical element. Further, since the three ridges 21 extend from the connection portion between the optical element mounting table 12b and the base to the middle part in the front-rear direction of the optical element mounting table 12b, the three ridges 21 The line contact with the inner side surface of the round hole 31 prevents the center axis of the optical element mounting base 12b from being inclined with respect to the center axis of the round hole 31 and the side peripheral surface of the optical element mounting base 12b and the round hole. A uniform gap can be formed with the inner side surface of the optical element 31. The protective film 20 having a uniform thickness is formed on the side peripheral surface of the optical element mounting table 12b, and the circuit pattern 23a formed on the side peripheral surface is formed. , 23b can be reliably protected.
[0034]
In the present embodiment, three ridges 21 as positioning protrusions are formed on the side peripheral surface of the optical element mounting table 12b every 120 degrees. However, the number of positioning protrusions is not limited to three. Instead, the necessary number of positioning projections may be formed at appropriate locations so that positioning can be performed with the center axis of the optical element mounting table 12b and the center axis of the round hole 31 of the casting case 30 substantially aligned. .
[0035]
【The invention's effect】
As described above, the invention of claim 1 is used in an optical receptacle to which an optical plug having an optical transmission medium such as an optical fiber is connected, and an optical signal and an electric signal transmitted through the optical transmission medium are used. An optical element that performs photoelectric conversion between the optical element and the optical element has a columnar optical element mounting base mounted on the front end surface, from the metal plating film on the surface including at least the front end surface and the peripheral surface of the optical element mounting base A three-dimensional circuit molded part on which a circuit pattern is formed, and a light-transmitting resin lens formed on the distal end surface of the optical element mounting table so as to be located between the optical element and the optical transmission medium, What is claimed is: 1. A method for manufacturing an optical element block comprising: a protection film formed on a front end surface and a peripheral surface of an optical element mounting table so as to cover a circuit pattern, wherein a hole for inserting an optical element mounting table of a three-dimensional circuit molded component is provided. Caster with lens shape on the bottom of After injecting a translucent lens resin into the hole of the casting case, the optical element mounting base is inserted into the hole of the casting case, and the positioning protrusion protruding from the inner surface of the hole is inserted into the peripheral surface of the optical element mounting base. To position the optical element mounting table and the casting case, and then cure the lens resin to form a lens on the tip surface of the optical element mounting table and the lens resin on the peripheral surface of the optical element mounting table. It is characterized by forming a protective film consisting of: a positioning projection protruding from the inner surface of the hole of the casting case is brought into contact with the peripheral surface of the optical element mounting table, and the alignment between the optical element mounting table and the casting case is performed. Since the lens and the protective film are formed in the state in which the optical element is formed, the positional accuracy of the lens formation position is improved, and the deterioration of the characteristics of the optical element caused by the displacement of the lens can be prevented. There are fruit, moreover because it forms a protective film of uniform thickness on the optical element mounting board of the peripheral surface, there is also an effect that the circuit pattern formed on the peripheral surface of the optical element mounting board can be reliably protected.
[0036]
According to the second aspect of the present invention, an optical plug having an optical transmission medium such as an optical fiber is used in an optical receptacle to be connected, and photoelectric conversion between an optical signal and an electric signal transmitted through the optical transmission medium is performed. And a column-shaped optical element mounting base on which the optical element is mounted on the front end surface, and a circuit pattern made of a metal plating film is formed on a surface including at least the front end surface and the peripheral surface of the optical element mounting base. The three-dimensional circuit molded part, a resin lens having a light-transmitting property formed on the distal end surface of the optical element mounting table so as to be located between the optical element and the optical transmission medium, and a circuit pattern. A method of manufacturing an optical element block comprising: a protective film formed on a front end surface and a peripheral surface of an optical element mounting table, wherein a lens shape is formed on a bottom surface of a hole into which the optical element mounting table of a three-dimensional circuit molded component is inserted. Casting case with formed After injecting a translucent lens resin into the hole, insert the optical element mounting base into the hole of the casting case, and abut the positioning protrusion protruding from the peripheral surface of the optical element mounting base against the inner surface of the hole. Then, the optical element mounting base and the casting case are positioned, and then the lens resin is cured to form a lens on the tip surface of the optical element mounting base and the lens resin is protected on the peripheral surface of the optical element mounting base. It is characterized by forming a film, and the positioning projection projected from the peripheral surface of the optical element mounting table is brought into contact with the inner surface of the hole of the casting case to perform alignment between the optical element mounting table and the casting case. Since the lens and the protective film are formed in a state in which the lens is formed, the positional accuracy of the lens forming position is improved, and there is an effect that deterioration of the characteristics of the optical element caused by displacement of the lens can be prevented. Furthermore because it forms a protective film of uniform thickness on the optical element mounting board of the peripheral surface, there is also an effect that the circuit pattern formed on the peripheral surface of the optical element mounting board can be reliably protected.
[Brief description of the drawings]
1A and 1B show a casting case according to a first embodiment, in which FIG. 1A is a front view, FIG. 1B is a cross-sectional view seen from the right side, FIG. 1C is a side view seen from the left side, and FIG. FIG.
FIGS. 2A and 2B show a state before an optical element is mounted on a three-dimensional circuit molded component of the optical element block of Embodiment 2, wherein FIG. 2A is a front view and FIG. 2B is a side view.
FIGS. 3A and 3B show a state in which a lens is formed on the three-dimensional circuit molded component, in which FIG. 3A is a front view and FIG. 3B is a side sectional view.
FIG. 4 is an exploded perspective view of a conventional optical receptacle viewed from the front.
FIG. 5 is an exploded perspective view of the same as viewed from the rear.
FIG. 6 is a side sectional view of the same.
FIG. 7 is a sectional view of a main part of the above.
FIGS. 8A to 8D are explanatory views of a conventional lens forming process.
[Explanation of symbols]
30 Casting case
31 round hole
35 Ridge

Claims (2)

光ファイバのような光伝送媒体を備えた光プラグが接続される光レセプタクルに用いられ、光伝送媒体を介して伝送される光信号と電気信号との間の光電変換を行う光素子と、該光素子が先端面に実装される柱状の光素子実装台を有し、光素子実装台の先端面及び周面を少なくとも含む表面に金属めっき膜からなる回路パターンが形成された立体回路成型部品と、光素子と光伝送媒体との間に位置するようにして光素子実装台の先端面に形成された透光性を有する樹脂製のレンズと、回路パターンを覆うようにして光素子実装台の先端面及び周面に形成された保護膜とを備える光素子ブロックの製造方法であって、立体回路成型部品の光素子実装台が挿入される穴の底面にレンズ形状が形成されたキャスティングケースの上記穴内に透光性を有するレンズ樹脂を注入した後、キャスティングケースの穴内に光素子実装台を挿入し、穴の内側面に突設された位置決め突起を光素子実装台の周面と当接させて、光素子実装台とキャスティングケースとを位置決めし、その後レンズ樹脂を硬化させて、光素子実装台の先端面にレンズを形成するとともに、光素子実装台の周面にレンズ樹脂からなる保護膜を形成することを特徴とする光素子ブロックの製造方法。An optical element that is used in an optical receptacle to which an optical plug having an optical transmission medium such as an optical fiber is connected, and that performs photoelectric conversion between an optical signal transmitted through the optical transmission medium and an electric signal; A three-dimensional circuit molded component having a columnar optical element mounting base on which the optical element is mounted on the front end surface, and a circuit pattern formed of a metal plating film formed on a surface including at least the front end surface and the peripheral surface of the optical element mounting base; A light-transmitting resin lens formed on the tip end surface of the optical element mounting table so as to be located between the optical element and the optical transmission medium, and an optical element mounting table covering the circuit pattern. What is claimed is: 1. A method for manufacturing an optical element block comprising: a protective film formed on a front end surface and a peripheral surface; Translucency in the above hole After the lens resin is injected, the optical element mounting base is inserted into the hole of the casting case, and the positioning projections protruding from the inner surface of the hole are brought into contact with the peripheral surface of the optical element mounting base. And the casting case are positioned, and then the lens resin is cured to form a lens on the tip surface of the optical element mounting table and a protective film made of lens resin on the peripheral surface of the optical element mounting table. A method for manufacturing an optical element block. 光ファイバのような光伝送媒体を備えた光プラグが接続される光レセプタクルに用いられ、光伝送媒体を介して伝送される光信号と電気信号との間の光電変換を行う光素子と、該光素子が先端面に実装される柱状の光素子実装台を有し、光素子実装台の先端面及び周面を少なくとも含む表面に金属めっき膜からなる回路パターンが形成された立体回路成型部品と、光素子と光伝送媒体との間に位置するようにして光素子実装台の先端面に形成された透光性を有する樹脂製のレンズと、回路パターンを覆うようにして光素子実装台の先端面及び周面に形成された保護膜とを備える光素子ブロックの製造方法であって、立体回路成型部品の光素子実装台が挿入される穴の底面にレンズ形状が形成されたキャスティングケースの上記穴内に透光性を有するレンズ樹脂を注入した後、キャスティングケースの穴内に光素子実装台を挿入し、光素子実装台の周面に突設された位置決め突起を穴の内側面と当接させて、光素子実装台とキャスティングケースとを位置決めし、その後レンズ樹脂を硬化させて、光素子実装台の先端面にレンズを形成するとともに、光素子実装台の周面にレンズ樹脂からなる保護膜を形成することを特徴とする光素子ブロックの製造方法。An optical element that is used in an optical receptacle to which an optical plug having an optical transmission medium such as an optical fiber is connected, and that performs photoelectric conversion between an optical signal transmitted through the optical transmission medium and an electric signal; A three-dimensional circuit molded component having a columnar optical element mounting base on which the optical element is mounted on the front end surface, and a circuit pattern formed of a metal plating film formed on a surface including at least the front end surface and the peripheral surface of the optical element mounting base; A light-transmitting resin lens formed on the tip end surface of the optical element mounting table so as to be located between the optical element and the optical transmission medium, and an optical element mounting table covering the circuit pattern. What is claimed is: 1. A method for manufacturing an optical element block comprising: a protective film formed on a front end surface and a peripheral surface; Translucency in the above hole After the lens resin is injected, the optical element mounting base is inserted into the hole of the casting case, and the positioning protrusions protruding from the peripheral surface of the optical element mounting base are brought into contact with the inner side surfaces of the hole. And the casting case are positioned, and then the lens resin is cured to form a lens on the tip surface of the optical element mounting table and a protective film made of lens resin on the peripheral surface of the optical element mounting table. A method for manufacturing an optical element block.
JP2003048248A 2003-02-25 2003-02-25 Manufacturing method of optical element block Expired - Fee Related JP3838206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003048248A JP3838206B2 (en) 2003-02-25 2003-02-25 Manufacturing method of optical element block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003048248A JP3838206B2 (en) 2003-02-25 2003-02-25 Manufacturing method of optical element block

Publications (2)

Publication Number Publication Date
JP2004258261A true JP2004258261A (en) 2004-09-16
JP3838206B2 JP3838206B2 (en) 2006-10-25

Family

ID=33114242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003048248A Expired - Fee Related JP3838206B2 (en) 2003-02-25 2003-02-25 Manufacturing method of optical element block

Country Status (1)

Country Link
JP (1) JP3838206B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100397131C (en) * 2005-05-31 2008-06-25 富士能株式会社 Lens holder, lens-centering device and method of centering lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100397131C (en) * 2005-05-31 2008-06-25 富士能株式会社 Lens holder, lens-centering device and method of centering lens

Also Published As

Publication number Publication date
JP3838206B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
US5337396A (en) Conductive plastic optical-electronic interface module
US6502998B2 (en) Optoelectronic transceiver module
US6341899B1 (en) Hybrid connector
US20080260334A1 (en) Plug-socket connector apparatus for optical fiber termination
JP5748111B2 (en) Coaxial connector device
US20020167605A1 (en) Photographing apparatus
US9103999B2 (en) Optical data communication module having EMI cage
JPH03116107A (en) Optical communicating device
CN107329215A (en) Optical module and its assemble method
JP2009253166A (en) Optical communication module
US6869232B2 (en) Receiving and coupling part for opto-electronic transmission and/or reception element
US9705237B2 (en) Electrical connector with excellent waterproof function
JP2004258261A (en) Method for manufacturing optical element block
JP2973542B2 (en) Optical module, its manufacturing apparatus and its manufacturing method
JP3922202B2 (en) Optical receptacle
JP2002328274A (en) Optical module and manufacturing method of the same
JP3838207B2 (en) Optical element block of optical receptacle
JP4175288B2 (en) Manufacturing method of optical connector
JP3950583B2 (en) Optical transmission module
JP3997928B2 (en) Method for manufacturing optical element block
JPS59181650A (en) Printed circuit board sealed with circuit element
JP2004333535A (en) Optical element module and receptacle which incorporates the module
JP2007199369A (en) Optical connector
JP2007199387A (en) Optical connector
JP2003209312A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040805

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20060214

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060711

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060724

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20090811

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100811

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110811

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20130811

LAPS Cancellation because of no payment of annual fees