JP3997928B2 - Method for manufacturing optical element block - Google Patents

Method for manufacturing optical element block Download PDF

Info

Publication number
JP3997928B2
JP3997928B2 JP2003048250A JP2003048250A JP3997928B2 JP 3997928 B2 JP3997928 B2 JP 3997928B2 JP 2003048250 A JP2003048250 A JP 2003048250A JP 2003048250 A JP2003048250 A JP 2003048250A JP 3997928 B2 JP3997928 B2 JP 3997928B2
Authority
JP
Japan
Prior art keywords
optical element
optical
lens
resin
element mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003048250A
Other languages
Japanese (ja)
Other versions
JP2004258263A (en
Inventor
勉 下村
賢一 島谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003048250A priority Critical patent/JP3997928B2/en
Publication of JP2004258263A publication Critical patent/JP2004258263A/en
Application granted granted Critical
Publication of JP3997928B2 publication Critical patent/JP3997928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバのような光伝送媒体を備えた光プラグと、この光プラグに接続される光レセプタクルとで構成される光コネクタの光レセプタクルに用いられ、光プラグの備える光伝送媒体を介して伝送される光信号と電気信号との光電変換を行う光素子ブロックの製造方法に関するものである。
【0002】
【従来の技術】
近年、電子機器の間で高速のデータ通信を可能にするために光通信が導入されており、電子機器と外部との間の光配線を行うために、光ファイバのような光伝送媒体を備えた光プラグと、この光プラグに接続される光レセプタクルとで構成される光コネクタが用いられている。
【0003】
光レセプタクルAは、図7〜図10に示すようにハウジング1と、ハウジング1の内部に収納される送信用及び受信用の光素子ブロック10a,10bとを備える(例えば特許文献1参照)。
【0004】
ハウジング1は後面及び下面の後側が開口した略箱状であって、金属部品、導電性樹脂の成型品、又は鍍金された合成樹脂成型品からなり、シールド効果を有している。ハウジング1の内部は隔壁3によって左右2つの収納室4a,4bに分離され、一方の収納室4aが送信用の光素子ブロック10aの収納スペース、他方の収納室4bが受信用の光素子ブロック10bの収納スペースとなっている。そして、ハウジング1の前面には各収納室4a,4bに連通する円筒状のスリーブ2a,2bが幅方向に並べて突設され、それぞれのスリーブ2a,2bに光プラグに保持された2本の光ファイバーのフェルールが挿入されるようになっている。
【0005】
光素子ブロック10a,10bは略同じ構造を有しており、外観形状が直方体状の立体回路成型部品(MID:Molded Interconncted Device)11a,11bを基体として用い、立体回路成型部品11a,11bの前面にはそれぞれ前方に突出してスリーブ2a,2b内に挿入される円柱状の光素子実装台12a,12bを一体に突設してある。
【0006】
光素子実装台12a,12bの先端面には、図9及び図10に示すように先端方向に広がるように開口した凹平面13a,13bが形成され、送信側の光素子ブロック10aの光素子実装台12aには凹平面13aの底に発光ダイオードLDが実装され、受信側の光素子ブロック10bの光素子実装台12bには凹平面13bの底に受光ダイオードPDが実装されている。また各光素子実装台12a,12bの凹平面13a,13bには透光性を有する合成樹脂が充実されて、発光ダイオードLD及び受光ダイオードPDを封止しており、この封止樹脂により発光ダイオードLDの発光面又は受光ダイオードPDの受光面に対向するレンズ14,14が形成されている。
【0007】
而して、光素子実装台12a,12bをスリーブ2a,2b内にそれぞれ挿入するようにして光素子ブロック10a,10bをハウジング1内に収納した光レセプタクルAに光プラグを接続すると、光プラグに保持された2本の光ファイバーがそれぞれスリーブ2a,2b内に挿入されて、発光ダイオードLD又は受光ダイオードPDとレンズ結合方式にて光結合されるのである。尚、レンズ14,14は球面レンズでも非球面レンズでも良く、光素子(発光ダイオードLD又は受光ダイオードPD)の種類に応じて適宜設定すれば良い。
【0008】
また、立体回路成型部品11a,11bの後面には回路部品を実装するための凹部15a,15bがそれぞれ形成されている。送信側の光素子ブロック10aでは凹部15aの底に発光ダイオードLDへの駆動信号を信号処理する回路を集積化した集積回路素子IC1やノイズカット用のチップコンデンサ19などの回路部品が実装され、受信側の光素子ブロック10bでは凹部15bの底に受光ダイオードPDからの入力信号を信号処理する回路(例えば増幅回路など)を集積化した集積回路素子IC2やノイズカット用のチップコンデンサ19などの回路部品が実装されている。
【0009】
各立体回路成型部品11a,11bの表面には、発光ダイオードLDと集積回路素子IC1との間、受光ダイオードPDと集積回路素子IC2との間をそれぞれ電気的に接続する金属めっき膜からなる回路パターン(図示せず)が形成されており、各集積回路素子IC1,IC2の電極はアルミニウムなどの金属細線からなるボンディングワイヤ36を介して凹部15a,15bの底面に延設された回路パターンに電気的に接続されている。また、立体回路成型部品11a,11bには各4本のL字形の端子ピン16が同時成形により一体に設けられており、各集積回路素子IC1,IC2と端子ピン16との間は立体回路成型部品11a,11bの表面に形成された回路パターンを介して電気的に接続されている。なお、凹部15a,15bには封止樹脂17が充実され、ボンディングワイヤ36と集積回路素子IC1,IC2の電極又は回路パターンとの接続部や回路部品を保護している。また、ハウジング1に光素子ブロック10a,10bを納めた状態で、ハウジング1内に封止樹脂18を充実して封止することにより、光素子ブロック10a,10bがハウジング1の内部に固定されている。
【0010】
ところで、立体回路成型部品11a,11bの光素子実装台12a,12bの先端面にレンズ14,14を形成する際にはキャスティングと呼ばれる工法でレンズ14を形成していた。
【0011】
以下に図11(a)〜(c)を参照して立体回路成型部品11aの光素子実装台12aの先端面にレンズ14を形成する工程を説明する。尚、図11(a)〜(c)では図示を簡単にするため立体回路成型部品11aの形状を簡略化して図示してある。
【0012】
図中の30はレンズ14の成形に用いる金型であり、この金型30は、内径が光素子実装台12aよりも若干大径の有底円筒状の型枠部31を有し、この型枠部31の底面にはレンズ14の表面形状と略同じ表面形状に形成された凹部31aが形成されている。
【0013】
そして、レンズ14を形成する際には、先ず金型30を型枠部31の開口が上向きになるように配置して、型枠部31の底にエポキシ樹脂などの透光性及び熱硬化性を有する液状のレンズ樹脂14aを注入した後(図11(a)参照)、型枠部31内に立体回路成型部品11aの光素子実装台12aを挿入する。その後、立体回路成型部品11aを下向きに押圧して加圧しながらレンズ樹脂14aの樹脂硬化温度まで加熱し、レンズ樹脂14aを硬化させた後(図11(b)参照)、金型30から離型させると、光素子実装台12aの先端面にレンズ14が形成される(図11(c)参照)。
【0014】
【特許文献1】
特開2002−164638号公報(第5頁−第6頁、及び、第20図)
【0015】
【発明が解決しようとする課題】
ところで、上述の光素子ブロック10a,10bでは立体回路成型部品11a,11bを基体として用いており、立体回路成型部品11a,11bを製造するに当たっては、複数個の立体回路成型部品11a,11bについて素子(発光ダイオードLD、受光ダイオードPD、集積回路素子IC1,IC2及びコンデンサ19)の実装やレンズ14の成形を一度に行えるよう、図12に示すように複数個の立体回路成型部品11a,11bが連結部21,22を介してフレーム20に連結された状態に樹脂成型し、素子の実装やレンズ14の成形を済ませた後に、連結部21,22を切断して、個々の立体回路成型部品11a,11bに分断していた。なおフレーム20は並行配置される一対の側片20a,20aと、側片20a,20aの両端間をそれぞれ連結する連結片20b,20bとで横長の四角枠状に形成され、枠内が縦横の桟20cで格子状に仕切られている。そして、桟20cで仕切られた空間内に一対の立体回路成型部品11a,11bがフレーム20の長手方向に沿って並行に配置されており、ペアとなる立体回路成型部品11a,11bの間は連結部21を介して互いに連結され、一方の立体回路成型部品11aと連結片20b又は桟20cとの間、他方の立体回路成型部品11bと連結片20b又は桟20cとの間はそれぞれ連結部22を介して互いに連結されている。而して、樹脂成型時には、複数個の立体回路成型部品11a,11bは、ペアとなる立体回路成型部品11a,11bが近接する形で、ペア単位で一定の間隔をおいて2列に形成されている。
【0016】
このように複数個の立体回路成型部品11a,11bが連結されている状態で、複数個の立体回路成型部品11a,11bに一度にレンズを形成するためには、図13に示すように、矩形板状の平板部33を有し、フレーム20に一体に連結された複数の立体回路成型部品11a,11bの光素子実装台12a,12bに対応する平板部33の位置に、光素子実装台12a,12bをそれぞれ挿入する有底円筒状の複数の型枠部34が一体に形成されたトランスファー金型32が用いられる。尚、レンズ形成用の型枠部34の底面にはレンズ14の表面形状と略同じ形状の凹部が形成されている。
【0017】
ここで、このトランスファー金型32を用いてレンズ14を形成する際には、先ず型枠部34の底に透光性及び熱硬化性を有するレンズ樹脂を注入した後に、型枠部34内に光素子実装台12a,12bが挿入されるようにしてトランスファー金型32をフレーム20に被せ、トランスファー金型32をフレーム20側に押圧して加圧しながらレンズ樹脂の樹脂硬化温度まで加熱して、レンズ樹脂を硬化させ、各光素子実装台12a,12bの先端面にレンズ14をそれぞれ形成しているのであるが、複数の立体回路成型部品11a,11bが一体的に連結された成型品の加工精度が良くないと、トランスファー成形時にトランスファー金型32の型枠部34で光素子実装台12a,12bの先端面を確実に押さえることができず、レンズ樹脂が型枠部34から漏れだしトランスファー金型32の表面に付着して残る虞があり、トランスファー金型32に付着したレンズ樹脂を取り除くメンテナンス作業が必要になって成型効率が上がらず、コストアップを招くという問題があった。
【0018】
本発明は上記問題点に鑑みて為されたものであり、その目的とするところは、複数個の光素子ブロックに対してレンズを安価に成形することができる光素子ブロックの製造方法を提供することにある。
【0019】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明では、光ファイバのような光伝送媒体を備えた光プラグが接続される光レセプタクルに用いられ、光伝送媒体を介して伝送される光信号と電気信号との間の光電変換を行う光素子と、該光素子が先端面に実装される柱状の光素子実装台が一体に設けられた立体回路成型部品と、光素子と光伝送媒体との間に位置するようにして光素子実装台の先端面に形成された透光性を有する樹脂製のレンズとを備える光素子ブロックの製造方法であって、複数個の光素子ブロックの立体回路成型部品が可撓性を有する連結片を介して連結された状態で樹脂成形するとともに、各々の光素子ブロックの光素子実装台に対応する位置に対応する光素子実装台がそれぞれ挿入される複数のレンズ形成用の型枠部が設けられたキャスティングケースの上記各型枠部内にレンズ樹脂を充填した後、キャスティングケースの各型枠部内に光素子実装台をそれぞれ挿入し、レンズ樹脂を硬化させて、光素子実装台の先端面にレンズを形成した後、各型枠部から光素子実装台を離型し、連結片を切断して個々の光素子ブロックに分離することを特徴とする。
【0021】
請求項の発明では、光ファイバのような光伝送媒体を備えた光プラグが接続される光レセプタクルに用いられ、光伝送媒体を介して伝送される光信号と電気信号との間の光電変換を行う光素子と、該光素子が先端面に実装される柱状の光素子実装台が一体に設けられた立体回路成型部品と、光素子と光伝送媒体との間に位置するようにして光素子実装台の先端面に形成された透光性を有する樹脂製のレンズとを備える光素子ブロックの製造方法であって、複数個の光素子ブロックの立体回路成型部品が連結部を介して連結された状態で樹脂成形するとともに、樹脂成型品からなり各々の光素子ブロックの光素子実装台がそれぞれ挿入される複数のレンズ形成用の型枠部が可撓性を有する撓み片を介して一体に連結されたキャスティングケースの上記各型枠部内にレンズ樹脂を充填した後、キャスティングケースの各型枠部内にそれぞれ光素子実装台を挿入し、レンズ樹脂を硬化させて、光素子実装台の先端面にレンズを形成した後、各型枠部から光素子実装台を離型し、連結部を切断して個々の光素子ブロックに分離することを特徴とする。
【0022】
【発明の実施の形態】
(実施形態1)
本発明に係る光素子ブロックの製造方法を図1及び図2に基づいて説明する。尚、本製造方法は従来技術で説明した光素子ブロック10a,10bを製造する方法であり、光素子ブロック10a,10bの構造については図示及び説明を省略する。
【0023】
本実施形態においても従来技術で説明した立体回路成型部品11a,11bと同様に複数個の立体回路成型部品11a,11bがフレーム20に連結された状態に樹脂成型し、素子の実装やレンズ14の成形を一度に済ませた後に、連結部を切断して、個々の立体回路成型部品11a,11bに分離している。
【0024】
ここで、フレーム20は、一定の間隔を開けて並行配置される3本の側片20aと、3本の側片20aの両端間をそれぞれ連結する連結片20b,20bとで横長の日の字形に形成されている。隣接する2本の側片20aと両側の連結片20b,20bとで囲まれる空間内には、ペアとなる立体回路成型部品11a,11bが近接した形で各4組の立体回路成型部品11a,11bがフレーム20の長手方向に沿って並列に配置されており、ペアとなる立体回路成型部品11a,11bは、対向面の上下の端部間が可撓性を有するコ字形の連結片23を介して連結されるとともに、対向面と反対側の面の上下の端部が可撓性を有するL字形の連結片24を介してフレーム20に連結されている。
【0025】
そして、複数の立体回路成型部品11a,11bがフレーム20に連結されている状態で、立体回路成型部品11a,11bの表面に回路パターンを形成して、素子(光素子や光素子の信号処理回路を集積化した集積回路素子など)を実装した後に、光素子の前面にレンズ14を形成する際には、従来技術で説明したトランスファー金型32が使用される。
【0026】
トランスファー金型32を用いてフレーム20に一体に連結された複数個の立体回路成型部品11a,11bにレンズ14を一度に形成する際には、先ずトランスファー金型32の型枠部34の底に例えばエポキシ樹脂のような透光性及び熱硬化性を有する液状のレンズ樹脂14aを注入した後に、各々の型枠部34内に光素子実装台12a,12bがそれぞれ挿入されるようにしてトランスファー金型32をフレーム20に被せ、トランスファー金型32をフレーム20側に押圧して加圧しながらレンズ樹脂14aの樹脂硬化温度まで加熱して、レンズ樹脂14aを硬化させ、各光素子実装台12a,12bの先端面にレンズ14をそれぞれ形成する。そして、レンズ14の形成後にトランスファー金型32をフレーム20から離して、光素子実装台12a,12bを型枠部34から離型し、連結片23,24を切断して個々の立体回路成型部品11a,11bに分離する。
【0027】
ここで、複数の立体回路成型部品11a,11bは、ペアとなる立体回路成型部品11a,11bの間が可撓性を有する連結片23を介して互いに連結されると共に、可撓性を有する連結片24を介してフレーム20に連結されているので、立体回路成型部品11a,11bの光素子実装台12a,12bをトランスファー金型32の型枠部34内に挿入した際に、連結片23,24が撓むことによって型枠部34と立体回路成型部品11a,11bの光素子実装台12a,12bとの位置を合わせて型枠部34で光素子実装台12a,12bの先端面を確実に押さえることができ、型枠部34からレンズ樹脂が漏れだして、トランスファー金型32の表面にレンズ樹脂が付着して残ることがなく、付着したレンズ樹脂を除去するメンテナンス作業を行わなくても良いので、成型効率が向上して、レンズ14の製造コストを低減できる。また、連結片23,24が撓むことによって型枠部34と立体回路成型部品11a,11bの光素子実装台12a,12bとの位置を合わせて型枠部34で光素子実装台12a,12bの先端面を確実に押さえることができるから、光素子実装台12a,12bの先端面にレンズ14を精度良く形成することができ、レンズ14の成型精度を高めることができる。
【0028】
(参考例)
光素子ブロックの製造方法の参考例を図3及び図4に基づいて説明する。尚、本製造方法は従来技術で説明した光素子ブロック10a,10bを製造する方法であり、光素子ブロック10a,10bの構造については図示及び説明を省略する。
【0029】
本製造方法においても図3及び図4に示すように複数個の立体回路成型部品11a,11bが連結部21,22を介してフレーム20に連結された状態に樹脂成型し、素子の実装やレンズ14の成形を済ませた後に、連結部21,22を切断して、個々の立体回路成型部品11a,11bに分離している。
【0030】
ここで、フレーム20は、並行配置される一対の側片20a,20aと、側片20a,20aの両端間をそれぞれ連結する連結片20b,20bとで横長の四角枠状に形成され、枠内が縦横の桟20cで格子状に仕切られている。そして、桟20cで仕切られた空間内に一対の立体回路成型部品11a,11bがフレーム20の長手方向に沿って並行に配置されており、ペアとなる立体回路成型部品11a,11bは、対向面に設けた連結部(図示せず)を介して互いに連結されると共に、対向面と反対側の面に設けた連結部(図示せず)を介して連結片20b又は桟20cに連結されている。而して、樹脂成型時には、複数個の立体回路成型部品11a,11bは、ペアとなる立体回路成型部品11a,11bが近接する形で、ペア単位で一定の間隔をおいて2列に形成されている。
【0031】
そして、複数の立体回路成型部品11a,11bがフレーム20に連結されている状態で、立体回路成型部品11a,11bの表面に回路パターンを形成して、素子(光素子や光素子の信号処理回路を集積化した集積回路素子など)を実装した後に、光素子の前面にレンズ14を形成する際には、図3及び図4に示すようなキャスティングケース35を使用する。
【0032】
このキャスティングケース35は、例えばレンズ樹脂(例えばエポキシ樹脂などの透光性樹脂)の樹脂硬化温度よりも溶融温度が高い合成樹脂(ポリプロピレンやポリオレフィンなど)の樹脂成型品からなり、矩形板状の平板部36を有し、フレーム20に一体に連結された複数の立体回路成型部品11a,11bの光素子実装台12a,12bに対応する平板部36の位置に、光素子実装台12a,12bがそれぞれ挿入される有底円筒状の複数の型枠部37が一体に形成されている。尚、レンズ形成用の型枠部37の底面にはレンズ14の表面形状と略同じ形状の凹部が形成されている。
【0033】
そして、このキャスティングケース35を用いて、フレーム20に一体に連結された複数の立体回路成型部品11a,11bにレンズ14を一度に形成する際には、先ずキャスティングケース35の型枠部37の底に透光性及び熱硬化性を有する液状のレンズ樹脂14aを注入した後に、各々の型枠部37内に光素子実装台12a,12bがそれぞれ挿入されるようにしてキャスティングケース35をフレーム20に被せ、キャスティングケース35をフレーム20側に押圧して加圧しながらレンズ樹脂14aの樹脂硬化温度まで加熱して、レンズ樹脂を硬化させ、各光素子実装台12a,12bの先端面にレンズ14をそれぞれ形成する。そして、レンズ14の形成後にキャスティングケース35をフレーム20から離して、光素子実装台12a,12bを型枠部37から離型し、連結部を切断して個々の立体回路成型部品11a,11bに分離する。
【0034】
ここで、複数の立体回路成型部品11a,11bが一体的に連結された成型品の加工精度が良くないために、レンズ成形時にキャスティングケース35の型枠部37で立体回路成型部品11a,11bの光素子実装台12a,12bを確実に押さえることができず、レンズ樹脂が型枠部37から漏れだして、キャスティングケース35の表面に付着して残る虞があるが、キャスティングケース35は樹脂成型品であって、金型に比べて製造コストが遙かに安いので、レンズ樹脂が付着した場合にはキャスティングケース35を廃却して新しいキャスティングケース35を用いれば良く、金型に付着したレンズ樹脂を取り除くメンテナンス作業が不要なので、成型効率が向上し、コストダウンを図ることができる。
【0035】
(実施形態
本発明に係る光素子ブロックの製造方法を図5及び図6に基づいて説明する。尚、本製造方法は従来技術で説明した光素子ブロック10a,10bを製造する方法であり、光素子ブロック10a,10bの構造については図示及び説明を省略する。
【0036】
本実施形態においても図5及び図6に示すように複数個の立体回路成型部品11a,11bが連結部21,22を介してフレーム20に連結された状態に樹脂成型し、素子の実装やレンズ14の成形を済ませた後に、連結部21,22を切断して、個々の立体回路成型部品11a,11bに分離している。
【0037】
ここで、フレーム20は並行配置される一対の側片20a,20aと、側片20a,20aの両端間をそれぞれ連結する連結片20b,20bとで横長の四角枠状に形成され、枠内が縦横の桟20cで格子状に仕切られている。そして、桟20cで仕切られた空間内には一対の立体回路成型部品11a,11bがフレーム20の長手方向に沿って並行に配置されており、ペアとなる立体回路成型部品11a,11bは、対向面に設けた連結部21を介して互いに連結されると共に、対向面と反対側の面に設けた連結部22を介して連結片20b又は桟20cに連結されている。而して、樹脂成型時には、複数個の立体回路成型部品11a,11bは、ペアとなる立体回路成型部品11a,11bが近接する形で、ペア単位で一定の間隔をおいて2列に形成されている。
【0038】
そして、複数の立体回路成型部品11a,11bがフレーム20に連結されている状態で、立体回路成型部品11a,11bの表面に回路パターンを形成して、素子(光素子や光素子の信号処理回路を集積化した集積回路素子など)を実装した後に、光素子の前面にレンズ14を形成する際には、図5及び図6に示すようなキャスティングケース35を使用する。
【0039】
このキャスティングケース35は、例えばレンズ樹脂(例えばエポキシ樹脂などの透光性樹脂)の樹脂硬化温度よりも溶融温度が高い合成樹脂(ポリプロピレンやポリオレフィンなど)の樹脂成型品からなり、有底円筒状であって軸方向中間部の周面に平面視が矩形状の鍔部38が一体に突設されたレンズ成形用の複数の型枠部37を有し、並行配置される一対の側片35a,35bの間に複数の型枠部37を2列に配置し、側片35a側の列の型枠部37の鍔部38を幅狭の撓み片39を介して側片35aに連結するとともに、側片35b側の列の型枠部37の鍔部38を幅狭の撓み片39を介して側片35bに連結し、さらに各々の列の両端に位置する型枠部37の鍔部38同士を幅狭の撓み片39を介して連結することによって一体に形成してある。尚、複数の型枠部37の底面にはレンズ14の表面形状と略同じ形状の凹部が形成されており、各型枠部37はフレーム20に一体に連結された複数の立体回路成型部品11a,11bの光素子実装台12a,12bに対応する位置に設けられている。
【0040】
そして、このキャスティングケース35を用いて、フレーム20に一体に連結された複数の立体回路成型部品11a,11bにレンズ14を一度に形成する際には、先ずキャスティングケース35の型枠部37の底に液状のレンズ樹脂14aを注入した後に、各々の型枠部37内に光素子実装台12a,12bがそれぞれ挿入されるようにしてキャスティングケース35をフレーム20に被せ、キャスティングケース35をフレーム20側に押圧して加圧しながらレンズ樹脂14aの樹脂硬化温度まで加熱して、レンズ樹脂を硬化させ、各光素子実装台12a,12bの先端面にレンズ14をそれぞれ形成する。そして、レンズ14の形成後にキャスティングケース35をフレーム20から離して、光素子実装台12a,12bを型枠部37から離型し、連結部21,22を切断して個々の立体回路成型部品11a,11bに分離する。
【0041】
ここで、2列に配列された型枠部37は、各列の型枠部37の鍔部38が可撓性を有する撓み片39を介して側片35a又は35bに連結されるとともに、各々の列の両端に位置する型枠部37の鍔部38が可撓性を有する撓み片39を介して互いに連結されているので、立体回路成型部品11a,11bの光素子実装台12a,12bをキャスティングケース35の型枠部37内に挿入した際に、撓み片39が撓むことによって型枠部37と対応する光素子実装台12a,12bとの位置を合わせて、型枠部37で光素子実装台12a,12bの先端面を確実に押さえることができ、レンズ樹脂が型枠部37から漏れだして、キャスティングケース35の表面に付着して残ることがなく、付着したレンズ樹脂を取り除くメンテナンス作業を行わなくても済むので、成形効率が向上し、レンズ14の製造コストを低減できるという効果がある。また、撓み片39が撓むことによって型枠部37と対応する光素子実装台12a,12bとの位置を合わせて型枠部37で光素子実装台12a,12bの先端面を確実に押さえることができるから、光素子実装台12a,12bの先端面にレンズ14を精度良く形成することができ、レンズ14の成型精度を高めることができる。
【0042】
【発明の効果】
上述のように、請求項1の発明は、光ファイバのような光伝送媒体を備えた光プラグが接続される光レセプタクルに用いられ、光伝送媒体を介して伝送される光信号と電気信号との間の光電変換を行う光素子と、該光素子が先端面に実装される柱状の光素子実装台が一体に設けられた立体回路成型部品と、光素子と光伝送媒体との間に位置するようにして光素子実装台の先端面に形成された透光性を有する樹脂製のレンズとを備える光素子ブロックの製造方法であって、複数個の光素子ブロックの立体回路成型部品が可撓性を有する連結片を介して連結された状態で樹脂成形するとともに、各々の光素子ブロックの光素子実装台に対応する位置に対応する光素子実装台がそれぞれ挿入される複数のレンズ形成用の型枠部が設けられたキャスティングケースの上記各型枠部内にレンズ樹脂を充填した後、キャスティングケースの各型枠部内に光素子実装台をそれぞれ挿入し、レンズ樹脂を硬化させて、光素子実装台の先端面にレンズを形成した後、各型枠部から光素子実装台を離型し、連結片を切断して個々の光素子ブロックに分離することを特徴とし、複数個の光素子ブロックの立体回路成型部品が可撓性を有する連結片を介して連結された状態で樹脂成形されているので、レンズ形成時に立体回路成型部品の光素子実装台をキャスティングケースの型枠部内にそれぞれ挿入すると、連結片が撓むことによって型枠部と光素子実装台との位置を合わせて、型枠部で立体回路成型部品の光素子実装台の先端面を確実に押さえることができ、レンズ樹脂が型枠部から漏れだして、キャスティングケースの表面に付着して残ることがなく、キャスティングケースに付着したレンズ樹脂を取り除くメンテナンス作業を行わなくて済むから、成形効率を高めて、レンズの製造コストを下げることができるという効果がある。また、連結片が撓むことによって型枠部と光素子実装台との位置を合わせて、型枠部で立体回路成型部品の光素子実装台の先端面を確実に押さえることができるから、レンズの成形精度が向上するという効果もある。
【0044】
請求項の発明は、光ファイバのような光伝送媒体を備えた光プラグが接続される光レセプタクルに用いられ、光伝送媒体を介して伝送される光信号と電気信号との間の光電変換を行う光素子と、該光素子が先端面に実装される柱状の光素子実装台が一体に設けられた立体回路成型部品と、光素子と光伝送媒体との間に位置するようにして光素子実装台の先端面に形成された透光性を有する樹脂製のレンズとを備える光素子ブロックの製造方法であって、複数個の光素子ブロックの立体回路成型部品が連結部を介して連結された状態で樹脂成形するとともに、樹脂成型品からなり各々の光素子ブロックの光素子実装台がそれぞれ挿入される複数のレンズ形成用の型枠部が可撓性を有する撓み片を介して一体に連結されたキャスティングケースの上記各型枠部内にレンズ樹脂を充填した後、キャスティングケースの各型枠部内にそれぞれ光素子実装台を挿入し、レンズ樹脂を硬化させて、光素子実装台の先端面にレンズを形成した後、各型枠部から光素子実装台を離型し、連結部を切断して個々の光素子ブロックに分離することを特徴とし、複数の型枠部は可撓性を有する撓み片を介して互いに連結されているので、各々の立体回路成型部品の光素子実装台をキャスティングケースの型枠部内に挿入した際に、撓み片が撓むことによって型枠部と対応する光素子実装台との位置を合わせて、型枠部で光素子実装台の先端面を確実に押さえることができ、レンズ樹脂が型枠部から漏れだして、キャスティングケースの表面に付着して残ることがなく、キャスティングケースに付着したレンズ樹脂を取り除くメンテナンス作業を行わなくて済むから、成形効率が向上し、レンズの製造コストを下げることができるという効果がある。また、撓み片が撓むことによって型枠部と光素子実装台との位置を合わせて、型枠部で立体回路成型部品の光素子実装台の先端面を確実に押さえることができるから、レンズの成形精度が向上するという効果もある。
【図面の簡単な説明】
【図1】実施形態1を示し、複数個の立体回路成型部品が連結片を介してフレームに連結されるようにして樹脂成形した状態の正面図である。
【図2】同上の側面図である。
【図3】参考例の製造方法を示し、フレームに連結部を介して連結された複数個の立体回路成型部品にキャスティングケースを嵌合させる前の状態を示す外観斜視図である。
【図4】同上を示し、フレームに連結部を介して連結された複数個の立体回路成型部品にキャスティングケースを嵌合させた状態の外観斜視図である。
【図5】実施形態を示し、フレームに連結部を介して連結された複数個の立体回路成型部品にキャスティングケースを嵌合させる前の状態を示す外観斜視図である。
【図6】同上を示し、フレームに連結部を介して連結された複数個の立体回路成型部品にキャスティングケースを嵌合させた状態の外観斜視図である。
【図7】従来の光レセプタクルを前方から見た分解斜視図である。
【図8】同上の後方から見た分解斜視図である。
【図9】同上の側断面図である。
【図10】同上の要部断面図である。
【図11】(a)〜(c)は同上のレンズ形成工程の説明図である。
【図12】同上を示し、複数個の立体回路成型部品が連結片を介してフレームに連結されるようにして樹脂成形した状態の正面図である。
【図13】従来のキャスティングケースの外観斜視図である。
【符号の説明】
11a,11b 立体回路成型部品
12a,12b 光素子実装台
23,24 連結片
[0001]
BACKGROUND OF THE INVENTION
The present invention is used in an optical receptacle of an optical connector composed of an optical plug provided with an optical transmission medium such as an optical fiber and an optical receptacle connected to the optical plug. The present invention relates to a method for manufacturing an optical element block that performs photoelectric conversion between an optical signal transmitted through a wire and an electrical signal.
[0002]
[Prior art]
In recent years, optical communication has been introduced to enable high-speed data communication between electronic devices, and an optical transmission medium such as an optical fiber is provided to perform optical wiring between the electronic device and the outside. An optical connector comprising an optical plug and an optical receptacle connected to the optical plug is used.
[0003]
As shown in FIGS. 7 to 10, the optical receptacle A includes a housing 1 and transmitting and receiving optical element blocks 10 a and 10 b housed in the housing 1 (see, for example, Patent Document 1).
[0004]
The housing 1 has a substantially box shape with openings on the rear side and the rear side of the lower surface, and is made of a metal part, a molded product of conductive resin, or a plated synthetic resin molded product, and has a shielding effect. The inside of the housing 1 is divided into two storage chambers 4a and 4b by a partition wall 3. One storage chamber 4a is a storage space for a transmission optical element block 10a, and the other storage chamber 4b is a reception optical element block 10b. Storage space. Cylindrical sleeves 2a and 2b communicating with the storage chambers 4a and 4b are projected in parallel in the width direction on the front surface of the housing 1, and two optical fibers held by optical sleeves in the respective sleeves 2a and 2b. The ferrule is inserted.
[0005]
The optical element blocks 10a and 10b have substantially the same structure, and solid circuit molded parts (MID: Molded Interconnected Device) 11a and 11b having a rectangular parallelepiped shape are used as a base, and the front surfaces of the molded circuit molded parts 11a and 11b. Are respectively provided with cylindrical optical element mounting bases 12a and 12b that protrude forward and are inserted into the sleeves 2a and 2b.
[0006]
On the front end surfaces of the optical element mounting bases 12a and 12b, concave planes 13a and 13b opened so as to spread in the front end direction as shown in FIGS. 9 and 10 are formed, and the optical element mounting of the optical element block 10a on the transmission side is formed. A light emitting diode LD is mounted on the bottom of the concave plane 13a on the base 12a, and a light receiving diode PD is mounted on the bottom of the concave plane 13b on the optical element mounting base 12b of the optical element block 10b on the receiving side. The concave planes 13a and 13b of the optical element mounting bases 12a and 12b are filled with light-transmitting synthetic resin, and the light emitting diode LD and the light receiving diode PD are sealed. The light emitting diode is sealed by the sealing resin. Lenses 14 and 14 facing the light emitting surface of the LD or the light receiving surface of the light receiving diode PD are formed.
[0007]
Thus, when the optical plug is connected to the optical receptacle A in which the optical element blocks 10a and 10b are housed in the housing 1 so that the optical element mounting bases 12a and 12b are inserted into the sleeves 2a and 2b, respectively, The two held optical fibers are inserted into the sleeves 2a and 2b, respectively, and optically coupled to the light emitting diode LD or the light receiving diode PD by a lens coupling method. The lenses 14 and 14 may be spherical lenses or aspherical lenses, and may be appropriately set according to the type of optical element (light emitting diode LD or light receiving diode PD).
[0008]
Further, recesses 15a and 15b for mounting circuit components are formed on the rear surfaces of the molded circuit molded components 11a and 11b, respectively. In the optical element block 10a on the transmission side, circuit components such as an integrated circuit element IC1 in which a circuit for processing a drive signal to the light emitting diode LD is integrated and a chip capacitor 19 for noise cut are mounted on the bottom of the recess 15a. In the optical element block 10b on the side, circuit components such as an integrated circuit element IC2 in which a circuit (for example, an amplifier circuit) for processing an input signal from the light receiving diode PD is integrated at the bottom of the recess 15b, and a noise-cutting chip capacitor 19 Has been implemented.
[0009]
On the surface of each three-dimensional circuit molded component 11a, 11b, a circuit pattern made of a metal plating film that electrically connects between the light emitting diode LD and the integrated circuit element IC1 and between the light receiving diode PD and the integrated circuit element IC2. (Not shown) are formed, and the electrodes of the integrated circuit elements IC1 and IC2 are electrically connected to a circuit pattern extending on the bottom surfaces of the recesses 15a and 15b through bonding wires 36 made of a thin metal wire such as aluminum. It is connected to the. The three-dimensional circuit molded parts 11a and 11b are each integrally provided with four L-shaped terminal pins 16 by simultaneous molding, and the three-dimensional circuit molding between the integrated circuit elements IC1 and IC2 and the terminal pin 16 is provided. They are electrically connected through circuit patterns formed on the surfaces of the components 11a and 11b. The recesses 15a and 15b are filled with a sealing resin 17 to protect the connection portions and circuit components between the bonding wires 36 and the electrodes or circuit patterns of the integrated circuit elements IC1 and IC2. In addition, the optical element blocks 10a and 10b are fixed inside the housing 1 by sealing the sealing resin 18 in the housing 1 in a state where the optical element blocks 10a and 10b are housed in the housing 1. Yes.
[0010]
By the way, when forming the lenses 14 and 14 on the front end surfaces of the optical element mounting bases 12a and 12b of the molded circuit molded parts 11a and 11b, the lens 14 is formed by a method called casting.
[0011]
The process of forming the lens 14 on the front end surface of the optical element mounting base 12a of the three-dimensional circuit molded component 11a will be described below with reference to FIGS. In FIGS. 11A to 11C, the shape of the three-dimensional circuit molded component 11a is simplified for easy illustration.
[0012]
In the figure, reference numeral 30 denotes a mold used for molding the lens 14, and this mold 30 has a bottomed cylindrical mold part 31 having an inner diameter slightly larger than that of the optical element mounting base 12a. A concave portion 31 a is formed on the bottom surface of the frame portion 31 and has a surface shape substantially the same as the surface shape of the lens 14.
[0013]
When forming the lens 14, first, the mold 30 is arranged so that the opening of the mold part 31 faces upward, and the bottom of the mold part 31 is translucent and thermosetting such as epoxy resin. After injecting the liquid lens resin 14 a having the structure (see FIG. 11A), the optical element mounting base 12 a of the three-dimensional circuit molded component 11 a is inserted into the mold part 31. Thereafter, the molded circuit component 11a is pressed downward and heated to the resin curing temperature of the lens resin 14a to cure the lens resin 14a (see FIG. 11B), and then released from the mold 30. As a result, the lens 14 is formed on the front end surface of the optical element mounting base 12a (see FIG. 11C).
[0014]
[Patent Document 1]
JP 2002-164638 A (pages 5 to 6 and FIG. 20)
[0015]
[Problems to be solved by the invention]
By the way, in the above-described optical element blocks 10a and 10b, the three-dimensional circuit molded parts 11a and 11b are used as a base, and in manufacturing the three-dimensional circuit molded parts 11a and 11b, the elements of the plurality of three-dimensional circuit molded parts 11a and 11b are used. As shown in FIG. 12, a plurality of three-dimensional circuit molded parts 11a and 11b are connected so that mounting of (light emitting diode LD, light receiving diode PD, integrated circuit elements IC1 and IC2, and capacitor 19) and molding of lens 14 can be performed at once. After resin molding in a state of being connected to the frame 20 via the parts 21 and 22, after mounting of the elements and molding of the lens 14, the connection parts 21 and 22 are cut to obtain individual three-dimensional circuit molded parts 11 a, 11 a, It was divided into 11b. The frame 20 is formed in a horizontally long rectangular frame shape with a pair of side pieces 20a, 20a arranged in parallel and connecting pieces 20b, 20b connecting both ends of the side pieces 20a, 20a, respectively. It is partitioned in a lattice shape by a crosspiece 20c. A pair of molded circuit molded parts 11a and 11b are arranged in parallel along the longitudinal direction of the frame 20 in the space partitioned by the crosspiece 20c, and the paired molded circuit molded parts 11a and 11b are connected to each other. The connecting portions 22 are connected to each other via the portion 21, and between the one three-dimensional circuit molded component 11a and the connecting piece 20b or the crosspiece 20c, and between the other three-dimensional circuit molded component 11b and the connecting piece 20b or the crosspiece 20c, respectively. Are connected to each other. Thus, at the time of resin molding, the plurality of molded circuit molded parts 11a and 11b are formed in two rows with a certain interval in pairs, with the molded circuit molded parts 11a and 11b forming pairs. ing.
[0016]
In order to form lenses on the plurality of three-dimensional circuit molded parts 11a and 11b at a time in a state where the plurality of three-dimensional circuit molded parts 11a and 11b are connected in this way, as shown in FIG. The optical element mounting base 12a is provided at the position of the flat part 33 corresponding to the optical element mounting bases 12a and 12b of the plurality of three-dimensional circuit molded parts 11a and 11b which have a plate-like flat part 33 and are integrally connected to the frame 20. , 12b are used, and a transfer mold 32 is used in which a plurality of bottomed cylindrical mold sections 34 are integrally formed. In addition, a concave portion having substantially the same shape as the surface shape of the lens 14 is formed on the bottom surface of the lens forming mold portion 34.
[0017]
Here, when forming the lens 14 using the transfer mold 32, first, a lens resin having translucency and thermosetting property is injected into the bottom of the mold part 34, and then the mold part 34 is filled with the lens resin. The transfer mold 32 is placed on the frame 20 so that the optical element mounting bases 12a and 12b are inserted, and the transfer mold 32 is heated to the resin curing temperature of the lens resin while pressing and pressing the transfer mold 32 toward the frame 20, The lens resin is cured, and the lens 14 is formed on the tip surface of each of the optical element mounting bases 12a and 12b. However, the molded product in which a plurality of three-dimensional circuit molded parts 11a and 11b are integrally connected is processed. If the accuracy is not good, it is impossible to reliably hold the tip surfaces of the optical element mounting bases 12a and 12b by the mold part 34 of the transfer mold 32 during the transfer molding. May leak from the mold part 34 and remain attached to the surface of the transfer mold 32, and a maintenance work for removing the lens resin adhering to the transfer mold 32 is required, so that the molding efficiency is not increased and the cost is increased. There was a problem of inviting.
[0018]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method of manufacturing an optical element block capable of forming a lens at a low cost for a plurality of optical element blocks. There is.
[0019]
[Means for Solving the Problems]
To achieve the above object, according to the first aspect of the present invention, an optical signal used for an optical receptacle to which an optical plug having an optical transmission medium such as an optical fiber is connected and transmitted through the optical transmission medium is provided. An optical element that performs photoelectric conversion between an electrical signal, a three-dimensional circuit molded component that is integrally provided with a columnar optical element mounting base on which the optical element is mounted on a tip surface, and an optical element and an optical transmission medium. A method of manufacturing an optical element block comprising a resin lens having translucency formed on a front end surface of an optical element mounting base so as to be positioned between the three-dimensional circuit molding of a plurality of optical element blocks Resin molding is performed in a state where the parts are connected via flexible connecting pieces, and a plurality of optical element mounting bases corresponding to positions corresponding to the optical element mounting bases of the respective optical element blocks are respectively inserted. Forming part for lens formation After filling each mold part of the cast case with the lens resin, the optical element mounting base is inserted into each mold part of the casting case, and the lens resin is cured, and is applied to the front end surface of the optical element mounting base. After the lens is formed, the optical element mounting base is released from each mold part, and the connecting piece is cut and separated into individual optical element blocks.
[0021]
  Claim2In this invention, light used for an optical receptacle to which an optical plug having an optical transmission medium such as an optical fiber is connected, and performs photoelectric conversion between an optical signal transmitted through the optical transmission medium and an electric signal. The optical element mounting base is positioned between the optical element and the optical transmission medium, and the three-dimensional circuit molded component integrally provided with the element and the columnar optical element mounting base on which the optical element is mounted on the front end surface. And a resin lens having translucency formed on the front end surface of the optical element block, wherein three-dimensional circuit molded parts of the plurality of optical element blocks are connected via a connecting portion In addition to resin molding, a plurality of lens forming mold parts, each of which is made of a resin molded product and into which an optical element mounting base of each optical element block is inserted, are integrally connected via flexible bending pieces. Casting case above After filling the mold resin with the lens resin, insert the optical element mounting base into each mold part of the casting case, cure the lens resin, and form the lens on the tip surface of the optical element mounting base. The optical element mounting base is released from the mold part, and the connecting part is cut and separated into individual optical element blocks.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
A method for manufacturing an optical element block according to the present invention will be described with reference to FIGS. This manufacturing method is a method for manufacturing the optical element blocks 10a and 10b described in the prior art, and illustration and description of the structure of the optical element blocks 10a and 10b are omitted.
[0023]
Also in this embodiment, a plurality of three-dimensional circuit molded parts 11a and 11b are resin-molded in a state where they are connected to the frame 20 in the same manner as the three-dimensional circuit molded parts 11a and 11b described in the prior art, and the mounting of elements and the lens 14 are performed. After the molding is completed at once, the connecting portion is cut and separated into individual three-dimensional circuit molded parts 11a and 11b.
[0024]
Here, the frame 20 is formed in a horizontally long sun-shaped shape with three side pieces 20a arranged in parallel at regular intervals and connecting pieces 20b and 20b that connect both ends of the three side pieces 20a. Is formed. In the space surrounded by the two adjacent side pieces 20a and the connecting pieces 20b, 20b on both sides, four sets of the three-dimensional circuit molded parts 11a, 11 b are arranged in parallel along the longitudinal direction of the frame 20, and the three-dimensional circuit molded parts 11 a and 11 b forming a pair include a U-shaped connecting piece 23 having flexibility between the upper and lower ends of the opposing surfaces. The upper and lower ends of the surface opposite to the opposing surface are connected to the frame 20 via a flexible L-shaped connecting piece 24.
[0025]
Then, in a state where the plurality of three-dimensional circuit molded parts 11a and 11b are connected to the frame 20, a circuit pattern is formed on the surface of the three-dimensional circuit molded parts 11a and 11b, and an element (an optical element or a signal processing circuit of the optical element). When the lens 14 is formed on the front surface of the optical element after mounting the integrated circuit element or the like integrated with the transfer die 32, the transfer mold 32 described in the prior art is used.
[0026]
When the lens 14 is formed at a time on the plurality of three-dimensional circuit molded parts 11 a and 11 b integrally connected to the frame 20 using the transfer mold 32, first, the lens 14 is first formed on the bottom of the mold part 34 of the transfer mold 32. For example, after injecting a liquid lens resin 14a having translucency and thermosetting properties such as an epoxy resin, the optical element mounting bases 12a and 12b are inserted into the respective mold sections 34, respectively. The mold 32 is put on the frame 20, and the transfer mold 32 is heated to the resin curing temperature of the lens resin 14a while being pressed against the frame 20 to cure the lens resin 14a, and the optical element mounting bases 12a and 12b. A lens 14 is formed on each of the front end surfaces. Then, after forming the lens 14, the transfer mold 32 is separated from the frame 20, the optical element mounting bases 12a, 12b are separated from the mold part 34, and the connecting pieces 23, 24 are cut to form individual three-dimensional circuit molded parts. Separated into 11a and 11b.
[0027]
Here, the plurality of three-dimensional circuit molded components 11a and 11b are connected to each other through the connecting piece 23 having flexibility between the paired three-dimensional circuit molded components 11a and 11b, and have flexible connection. Since the optical element mounting bases 12a, 12b of the three-dimensional circuit molded parts 11a, 11b are inserted into the mold part 34 of the transfer mold 32, the connecting pieces 23, 24 is bent so that the positions of the mold part 34 and the optical element mounting bases 12a, 12b of the molded circuit molded parts 11a, 11b are aligned, and the front end surfaces of the optical element mounting bases 12a, 12b are surely secured by the mold part 34. The lens resin leaks out from the mold part 34 and does not remain attached to the surface of the transfer mold 32, and the maintenance is performed to remove the adhered lens resin. Since it is not necessary to perform the work, molding efficiency is improved, thereby reducing the manufacturing cost of the lens 14. In addition, when the connecting pieces 23 and 24 are bent, the positions of the mold part 34 and the optical element mounting bases 12a and 12b of the three-dimensional circuit molded parts 11a and 11b are adjusted to match the positions of the optical element mounting bases 12a and 12b. Therefore, the lens 14 can be accurately formed on the tip surfaces of the optical element mounting bases 12a and 12b, and the molding accuracy of the lens 14 can be increased.
[0028]
  (Reference example)
  Reference example of optical element block manufacturing methodWill be described with reference to FIGS. This manufacturing method is a method for manufacturing the optical element blocks 10a and 10b described in the prior art, and illustration and description of the structure of the optical element blocks 10a and 10b are omitted.
[0029]
  This manufacturing method3 and 4, a plurality of three-dimensional circuit molded parts 11a and 11b are resin-molded in a state where they are connected to the frame 20 via the connecting portions 21 and 22, and the elements are mounted and the lens 14 is molded. After finishing, the connecting parts 21 and 22 are cut and separated into individual three-dimensional circuit molded parts 11a and 11b.
[0030]
Here, the frame 20 is formed in a horizontally long rectangular frame shape with a pair of side pieces 20a and 20a arranged in parallel and connecting pieces 20b and 20b connecting the both ends of the side pieces 20a and 20a, respectively. Are partitioned in a grid by vertical and horizontal bars 20c. A pair of molded circuit molded components 11a and 11b are arranged in parallel along the longitudinal direction of the frame 20 in the space partitioned by the crosspieces 20c, and the paired molded circuit molded components 11a and 11b Are connected to each other via a connecting portion (not shown) provided on the opposite side, and are connected to a connecting piece 20b or a crosspiece 20c via a connecting portion (not shown) provided on a surface opposite to the facing surface. . Thus, at the time of resin molding, the plurality of molded circuit molded parts 11a and 11b are formed in two rows with a certain interval in pairs, with the molded circuit molded parts 11a and 11b forming pairs. ing.
[0031]
Then, in a state where the plurality of three-dimensional circuit molded parts 11a and 11b are connected to the frame 20, a circuit pattern is formed on the surface of the three-dimensional circuit molded parts 11a and 11b, and an element (an optical element or a signal processing circuit of the optical element). When the lens 14 is formed on the front surface of the optical element after mounting an integrated circuit element or the like integrated with a casting case 35, a casting case 35 as shown in FIGS. 3 and 4 is used.
[0032]
The casting case 35 is made of a resin molded product of a synthetic resin (polypropylene, polyolefin, etc.) having a melting temperature higher than the resin curing temperature of, for example, a lens resin (for example, a translucent resin such as an epoxy resin). The optical element mounting bases 12a and 12b are respectively located at the positions of the flat plate portions 36 corresponding to the optical element mounting bases 12a and 12b of the plurality of molded circuit molded parts 11a and 11b integrally connected to the frame 20. A plurality of bottomed cylindrical mold portions 37 to be inserted are integrally formed. In addition, a concave portion having substantially the same shape as the surface shape of the lens 14 is formed on the bottom surface of the lens forming mold portion 37.
[0033]
When the lens 14 is formed on the plurality of three-dimensional circuit molded parts 11a and 11b integrally connected to the frame 20 using the casting case 35 at a time, first, the bottom of the mold part 37 of the casting case 35 is used. After injecting a liquid lens resin 14 a having translucency and thermosetting properties into the frame 20, the casting case 35 is attached to the frame 20 so that the optical element mounting bases 12 a and 12 b are respectively inserted into the mold portions 37. Cover the casting case 35 to the frame 20 side and pressurize it to heat it to the resin curing temperature of the lens resin 14a, cure the lens resin, and place the lens 14 on the tip surface of each optical element mounting base 12a, 12b. Form. Then, after the lens 14 is formed, the casting case 35 is separated from the frame 20, the optical element mounting bases 12a and 12b are released from the mold part 37, and the connecting parts are cut to form individual three-dimensional circuit molded parts 11a and 11b. To separate.
[0034]
Here, since the processing accuracy of the molded product in which a plurality of molded circuit molded parts 11a and 11b are integrally connected is not good, the molded circuit part 37 of the casting case 35 is used to form the molded circuit molded parts 11a and 11b at the time of lens molding. The optical element mounting bases 12a and 12b cannot be securely pressed, and there is a possibility that the lens resin leaks out from the mold part 37 and adheres to the surface of the casting case 35. However, the casting case 35 is a resin molded product. Since the manufacturing cost is much lower than that of the mold, when the lens resin adheres, the casting case 35 may be discarded and a new casting case 35 may be used, and the lens resin adhered to the mold. Since no maintenance work is required to remove, molding efficiency is improved and costs can be reduced.
[0035]
  (Embodiment2)
  A method for manufacturing an optical element block according to the present invention will be described with reference to FIGS. This manufacturing method is a method for manufacturing the optical element blocks 10a and 10b described in the prior art, and illustration and description of the structure of the optical element blocks 10a and 10b are omitted.
[0036]
Also in the present embodiment, as shown in FIGS. 5 and 6, a plurality of three-dimensional circuit molded parts 11a and 11b are resin-molded in a state where they are connected to the frame 20 via the connecting portions 21 and 22 to mount elements and lenses. After the molding of 14, the connecting portions 21 and 22 are cut and separated into individual three-dimensional circuit molded parts 11a and 11b.
[0037]
Here, the frame 20 is formed in a horizontally long rectangular frame shape with a pair of side pieces 20a, 20a arranged in parallel and connecting pieces 20b, 20b connecting the both ends of the side pieces 20a, 20a, respectively. It is partitioned in a grid pattern by vertical and horizontal bars 20c. In the space partitioned by the crosspiece 20c, a pair of molded circuit molded parts 11a and 11b are arranged in parallel along the longitudinal direction of the frame 20, and the paired molded circuit molded parts 11a and 11b are opposed to each other. They are connected to each other via a connecting portion 21 provided on the surface, and are connected to a connecting piece 20b or a crosspiece 20c via a connecting portion 22 provided on the surface opposite to the opposing surface. Thus, at the time of resin molding, the plurality of molded circuit molded parts 11a and 11b are formed in two rows with a certain interval in pairs, with the molded circuit molded parts 11a and 11b forming pairs. ing.
[0038]
Then, in a state where the plurality of three-dimensional circuit molded parts 11a and 11b are connected to the frame 20, a circuit pattern is formed on the surface of the three-dimensional circuit molded parts 11a and 11b, and an element (an optical element or a signal processing circuit of the optical element). When the lens 14 is formed on the front surface of the optical element after mounting the integrated circuit element or the like integrated with a casting case 35, a casting case 35 as shown in FIGS. 5 and 6 is used.
[0039]
The casting case 35 is made of a resin molded product of a synthetic resin (polypropylene, polyolefin, etc.) having a melting temperature higher than the resin curing temperature of, for example, a lens resin (for example, a translucent resin such as an epoxy resin), and has a bottomed cylindrical shape. A pair of side pieces 35a, which have a plurality of mold frame portions 37 for lens molding in which a flange portion 38 having a rectangular shape in plan view is integrally provided on the circumferential surface of the intermediate portion in the axial direction, A plurality of mold frame portions 37 are arranged in two rows between 35b, and the flange portion 38 of the mold frame portion 37 in the row on the side piece 35a side is connected to the side piece 35a via a narrow bending piece 39, and The flange portions 38 of the mold frame portions 37 in the row on the side piece 35b side are connected to the side pieces 35b via the narrow bending pieces 39, and the flange portions 38 of the mold frame portions 37 located at both ends of each row are connected to each other. By connecting them through a narrow flexure 39 It is form. In addition, concave portions having substantially the same shape as the surface shape of the lens 14 are formed on the bottom surfaces of the plurality of mold parts 37, and each mold part 37 is a plurality of three-dimensional circuit molded components 11 a integrally connected to the frame 20. , 11b are provided at positions corresponding to the optical element mounting bases 12a, 12b.
[0040]
When the lens 14 is formed on the plurality of three-dimensional circuit molded parts 11a and 11b integrally connected to the frame 20 using the casting case 35 at a time, first, the bottom of the mold part 37 of the casting case 35 is used. After injecting the liquid lens resin 14a, the casting case 35 is covered with the frame 20 so that the optical element mounting bases 12a and 12b are inserted into the respective mold portions 37, and the casting case 35 is placed on the frame 20 side. While being pressed and pressurized, the lens resin 14a is heated to the resin curing temperature to cure the lens resin, and the lens 14 is formed on the tip surface of each of the optical element mounting bases 12a and 12b. Then, after forming the lens 14, the casting case 35 is separated from the frame 20, the optical element mounting bases 12a and 12b are separated from the mold part 37, the connecting parts 21 and 22 are cut, and the individual three-dimensional circuit molded parts 11a are separated. , 11b.
[0041]
Here, the mold portions 37 arranged in two rows are connected to the side pieces 35a or 35b through the flexible piece 39 of the flange portion 38 of the mold portion 37 of each row, respectively. Since the flange portions 38 of the mold portions 37 located at both ends of the row of the two are connected to each other via a flexible bending piece 39, the optical element mounting bases 12a and 12b of the three-dimensional circuit molded parts 11a and 11b are connected to each other. When inserted into the mold part 37 of the casting case 35, the bending piece 39 bends so that the positions of the mold part 37 and the corresponding optical element mounting bases 12a and 12b are adjusted. Maintenance that removes the attached lens resin without causing the lens resin to leak out of the mold part 37 and remain attached to the surface of the casting case 35, since the tip surfaces of the element mounting bases 12a and 12b can be securely pressed. Work Since dispensable I, molding efficiency improves, there is an effect of reducing the manufacturing cost of the lens 14. Further, by bending the bending piece 39, the positions of the optical element mounting bases 12 a and 12 b corresponding to the mold part 37 are aligned, and the front end surfaces of the optical element mounting bases 12 a and 12 b are surely pressed by the mold part 37. Therefore, the lens 14 can be accurately formed on the tip surfaces of the optical element mounting bases 12a and 12b, and the molding accuracy of the lens 14 can be increased.
[0042]
【The invention's effect】
As described above, the invention of claim 1 is used for an optical receptacle to which an optical plug having an optical transmission medium such as an optical fiber is connected, and transmits an optical signal and an electrical signal transmitted through the optical transmission medium. Between the optical element and the optical transmission medium, and an optical element that performs photoelectric conversion between the optical element and a three-dimensional circuit molded component integrally provided with a columnar optical element mounting base on which the optical element is mounted on the tip surface Thus, a method of manufacturing an optical element block including a resin lens having translucency formed on the front end surface of the optical element mounting table, and a three-dimensional circuit molded component of a plurality of optical element blocks is possible. For forming a plurality of lenses, in which resin molding is performed in a state of being connected via flexible connecting pieces, and optical element mounting bases corresponding to positions corresponding to the optical element mounting bases of the respective optical element blocks are respectively inserted. Casters with a formwork section After filling the mold resin in each mold part of the casting case, the optical element mounting base is inserted into each mold part of the casting case, the lens resin is cured, and the lens is attached to the front end surface of the optical element mounting base. After forming, the optical element mounting base is released from each mold part, the connecting piece is cut and separated into individual optical element blocks, and a three-dimensional circuit molding part of a plurality of optical element blocks is possible. Since it is resin-molded in a state of being connected via a flexible connecting piece, the connecting piece bends when the optical element mounting base of the three-dimensional circuit molded part is inserted into the casting case mold part at the time of lens formation. By aligning the position of the mold part and the optical element mounting base, it is possible to securely hold the tip surface of the optical element mounting base of the molded circuit molded component with the mold part, and the lens resin leaks from the mold part. Cass Since it does not remain attached to the surface of the casting case and does not require maintenance work to remove the lens resin adhering to the casting case, it is possible to increase the molding efficiency and reduce the manufacturing cost of the lens. . In addition, the position of the mold part and the optical element mounting base can be adjusted by bending the connecting piece, and the front end surface of the optical element mounting base of the three-dimensional circuit molded component can be securely held by the mold part. There is also an effect that the molding accuracy of the is improved.
[0044]
  Claim2The present invention is used in an optical receptacle to which an optical plug having an optical transmission medium such as an optical fiber is connected, and performs photoelectric conversion between an optical signal transmitted through the optical transmission medium and an electric signal. The optical element mounting base is positioned between the optical element and the optical transmission medium, and the three-dimensional circuit molded component integrally provided with the element and the columnar optical element mounting base on which the optical element is mounted on the front end surface. And a resin lens having translucency formed on the front end surface of the optical element block, wherein three-dimensional circuit molded parts of the plurality of optical element blocks are connected via a connecting portion In addition to resin molding, a plurality of lens forming mold parts, each of which is made of a resin molded product and into which an optical element mounting base of each optical element block is inserted, are integrally connected via flexible bending pieces. Each of the above casting cases After filling the lens resin in the frame, insert the optical element mounting base in each mold frame part of the casting case, cure the lens resin, and form the lens on the tip surface of the optical element mounting base, then each mold The optical element mounting base is released from the frame part, the connecting part is cut and separated into individual optical element blocks, and the plurality of mold parts are connected to each other via flexible bending pieces. Therefore, when the optical element mounting base of each three-dimensional circuit molded part is inserted into the casting case mold part, the bending piece is bent to align the mold part with the corresponding optical element mounting base. Thus, the tip of the optical device mounting base can be securely held by the mold part, and the lens resin does not leak out from the mold part and adhere to the surface of the casting case, and adheres to the casting case. Lens resin Since it is not necessary to perform the maintenance work of removing, improved molding efficiency, there is an effect that it is possible to reduce the manufacturing cost of the lens. In addition, the position of the mold part and the optical element mounting base can be adjusted by bending the flexure piece, and the front end surface of the optical element mounting base of the molded circuit molded component can be securely held by the mold part. This also has the effect of improving the molding accuracy of the.
[Brief description of the drawings]
FIG. 1 is a front view showing a state in which a plurality of three-dimensional circuit molded components are resin-molded so as to be connected to a frame via connecting pieces, showing Embodiment 1. FIG.
FIG. 2 is a side view of the above.
[Fig. 3]Manufacturing method of reference exampleFIG. 6 is an external perspective view showing a state before a casting case is fitted to a plurality of molded circuit molded parts connected to a frame via a connecting portion.
FIG. 4 is an external perspective view showing the above-described state in which a casting case is fitted to a plurality of molded circuit molded parts connected to a frame via connecting parts.
FIG. 5 is an embodiment.2FIG. 6 is an external perspective view showing a state before a casting case is fitted to a plurality of molded circuit molded parts connected to a frame via a connecting portion.
FIG. 6 is an external perspective view showing a state in which a casting case is fitted to a plurality of three-dimensional circuit molded parts connected to a frame via a connecting portion.
FIG. 7 is an exploded perspective view of a conventional optical receptacle as viewed from the front.
FIG. 8 is an exploded perspective view of the same as seen from the rear.
FIG. 9 is a side sectional view of the above.
FIG. 10 is a cross-sectional view of the relevant part.
FIGS. 11A to 11C are explanatory views of the lens forming process of the same. FIG.
FIG. 12 is a front view showing a state in which a plurality of three-dimensional circuit molded components are resin-molded so as to be connected to the frame via connecting pieces.
FIG. 13 is an external perspective view of a conventional casting case.
[Explanation of symbols]
11a, 11b 3D circuit molded parts
12a, 12b Optical element mounting base
23, 24 connecting piece

Claims (2)

光ファイバのような光伝送媒体を備えた光プラグが接続される光レセプタクルに用いられ、光伝送媒体を介して伝送される光信号と電気信号との間の光電変換を行う光素子と、該光素子が先端面に実装される柱状の光素子実装台が一体に設けられた立体回路成型部品と、光素子と光伝送媒体との間に位置するようにして光素子実装台の先端面に形成された透光性を有する樹脂製のレンズとを備える光素子ブロックの製造方法であって、
複数個の光素子ブロックの立体回路成型部品が可撓性を有する連結片を介して連結された状態で樹脂成形するとともに、各々の光素子ブロックの光素子実装台に対応する位置に対応する光素子実装台がそれぞれ挿入される複数のレンズ形成用の型枠部が設けられたキャスティングケースの上記各型枠部内にレンズ樹脂を充填した後、キャスティングケースの各型枠部内に光素子実装台をそれぞれ挿入し、レンズ樹脂を硬化させて、光素子実装台の先端面にレンズを形成した後、各型枠部から光素子実装台を離型し、連結片を切断して個々の光素子ブロックに分離することを特徴とする光素子ブロックの製造方法。
An optical element that is used in an optical receptacle to which an optical plug including an optical transmission medium such as an optical fiber is connected, and that performs photoelectric conversion between an optical signal transmitted through the optical transmission medium and an electric signal; A three-dimensional circuit molded component integrally provided with a columnar optical element mounting base on which the optical element is mounted on the front end surface and the front end surface of the optical element mounting base so as to be positioned between the optical element and the optical transmission medium A method of manufacturing an optical element block including a formed resin lens having translucency,
The resin molding is performed in a state where the three-dimensional circuit molded parts of the plurality of optical element blocks are connected via the flexible connecting pieces, and the light corresponding to the position corresponding to the optical element mounting base of each optical element block After the lens resin is filled into each mold part of the casting case provided with a plurality of lens forming mold parts into which the element mounts are respectively inserted, the optical element mounting table is placed in each mold part of the casting case. After each is inserted and the lens resin is cured to form a lens on the tip surface of the optical element mounting table, the optical element mounting table is released from each mold part, and the connecting piece is cut to separate each optical element block A method for producing an optical element block, characterized in that the optical element block is separated.
光ファイバのような光伝送媒体を備えた光プラグが接続される光レセプタクルに用いられ、光伝送媒体を介して伝送される光信号と電気信号との間の光電変換を行う光素子と、該光素子が先端面に実装される柱状の光素子実装台が一体に設けられた立体回路成型部品と、光素子と光伝送媒体との間に位置するようにして光素子実装台の先端面に形成された透光性を有する樹脂製のレンズとを備える光素子ブロックの製造方法であって、
複数個の光素子ブロックの立体回路成型部品が連結部を介して連結された状態で樹脂成形するとともに、樹脂成型品からなり各々の光素子ブロックの光素子実装台がそれぞれ挿入される複数のレンズ形成用の型枠部が可撓性を有する撓み片を介して一体に連結されたキャスティングケースの上記各型枠部内にレンズ樹脂を充填した後、キャスティングケースの各型枠部内にそれぞれ光素子実装台を挿入し、レンズ樹脂を硬化させて、光素子実装台の先端面にレンズを形成した後、各型枠部から光素子実装台を離型し、連結部を切断して個々の光素子ブロックに分離することを特徴とする光素子ブロックの製造方法
An optical element that is used in an optical receptacle to which an optical plug including an optical transmission medium such as an optical fiber is connected, and that performs photoelectric conversion between an optical signal transmitted through the optical transmission medium and an electric signal; A three-dimensional circuit molded component integrally provided with a columnar optical element mounting base on which the optical element is mounted on the front end surface and the front end surface of the optical element mounting base so as to be positioned between the optical element and the optical transmission medium A method of manufacturing an optical element block including a formed resin lens having translucency,
A plurality of lenses in which a three-dimensional circuit molding component of a plurality of optical element blocks is resin-molded in a state of being connected via a connecting portion, and the optical element mounting base of each optical element block is made of a resin molded product After filling the lens resin into each mold part of the casting case in which the forming mold part is integrally connected through flexible flexible pieces, the optical element is mounted in each mold part of the casting case. After the base is inserted, the lens resin is cured, and the lens is formed on the tip surface of the optical element mounting base, the optical element mounting base is released from each mold part, and the connecting portion is cut to separate each optical element. A method of manufacturing an optical element block, wherein the optical element block is separated into blocks .
JP2003048250A 2003-02-25 2003-02-25 Method for manufacturing optical element block Expired - Fee Related JP3997928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003048250A JP3997928B2 (en) 2003-02-25 2003-02-25 Method for manufacturing optical element block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003048250A JP3997928B2 (en) 2003-02-25 2003-02-25 Method for manufacturing optical element block

Publications (2)

Publication Number Publication Date
JP2004258263A JP2004258263A (en) 2004-09-16
JP3997928B2 true JP3997928B2 (en) 2007-10-24

Family

ID=33114244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003048250A Expired - Fee Related JP3997928B2 (en) 2003-02-25 2003-02-25 Method for manufacturing optical element block

Country Status (1)

Country Link
JP (1) JP3997928B2 (en)

Also Published As

Publication number Publication date
JP2004258263A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
EP0446410B1 (en) Optical module and process of producing the same
US5590232A (en) Optical package and method of making
US5047835A (en) Lightwave packaging for pairs of optical devices
TWI521250B (en) Electrical-to-optical and optical-to-electrical converter plug
JP4957503B2 (en) Optical module and optical module manufacturing method
US5985185A (en) Optocomponent capsule having an optical interface
US8616787B2 (en) Optical connector and manufacturing method thereof
KR101289972B1 (en) Photoelectric coupling assembly and method of manufacture thereof
EP3647846B1 (en) Optoelectronic device with a support member
KR101096863B1 (en) Method for manufacturing optical coupling part and optical coupling part
CN103959121B (en) Photoelectric distribution module
KR100975023B1 (en) Lead frame, optical coupling part using lead frame, and manufacturing method of optical coupling part
JP3997928B2 (en) Method for manufacturing optical element block
EP2190643A1 (en) Housing-integrated optical semiconductor component and manufacturing method thereof
CN214278493U (en) Optical module
JP3922202B2 (en) Optical receptacle
JP3838206B2 (en) Manufacturing method of optical element block
JP4175288B2 (en) Manufacturing method of optical connector
JP2864460B2 (en) Multi-core optical module and manufacturing method thereof
JP3838207B2 (en) Optical element block of optical receptacle
CA2026252C (en) Optical module and process of producing the same
JP2011090148A (en) Photoelectric conversion component and method of manufacturing the same
KR20020021143A (en) Optomodule
JP2012208146A (en) Method of manufacturing optical module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees