JP2004256857A - Copper fine particles and manufacturing method therefor - Google Patents

Copper fine particles and manufacturing method therefor Download PDF

Info

Publication number
JP2004256857A
JP2004256857A JP2003047382A JP2003047382A JP2004256857A JP 2004256857 A JP2004256857 A JP 2004256857A JP 2003047382 A JP2003047382 A JP 2003047382A JP 2003047382 A JP2003047382 A JP 2003047382A JP 2004256857 A JP2004256857 A JP 2004256857A
Authority
JP
Japan
Prior art keywords
fine particles
copper fine
copper
range
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003047382A
Other languages
Japanese (ja)
Other versions
JP4242176B2 (en
Inventor
Masanori Tomonari
雅則 友成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2003047382A priority Critical patent/JP4242176B2/en
Publication of JP2004256857A publication Critical patent/JP2004256857A/en
Application granted granted Critical
Publication of JP4242176B2 publication Critical patent/JP4242176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide copper fine particles containing few agglomerated particles, which specifically have an average primary particle diameter (D) measured with an electron microscope in the range of 0.05 to 1.0 μm, an average secondary particle diameter (d) measured with a laser diffraction type particle size distribution measurement instrument in the range of 0.1 to 2.0 μm, and d/D in a range of 1 to 3. <P>SOLUTION: This method for manufacturing the copper fine particles comprises reacting copper oxide with a reducing agent such as hydrazine, in a medium which contains a sulfur compound such as mercaptopropionic acid, mercaptoacetic acid, mercaptoethanol and cysteine, and a protective colloid such as gelatin, gum arabic, polyvinyl alcohol, polyvinylpyrrolidone, and polyethylene glycol. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、銅微粒子及びその製造方法に関し、特に積層セラミックスコンデンサーの内部電極用に好適な銅微粒子及びその製造方法に関する。
【0002】
【従来の技術】
銅微粒子は良好な電気伝導性を有する廉価な材料であり、プリント配線板の回路形成部材、各種電気的接点部材、コンデンサー等の外部電極部材などの電気的導通を確保するための材料として幅広く用いられている。また、近年、積層セラミックスコンデンサーの内部電極にも用いられ始めている。積層セラミックスコンデンサーは、電解コンデンサー、フィルムコンデンサー等他の形式のコンデンサーと比較して、大容量が得られ易く、実装性に優れ、安全性・安定性が高いので、急速に普及している。最近の電子機器の小型化に伴い、積層セラミックスコンデンサーも小型化する方向にあるが、大容量を維持するには、セラミックスシートの積層数を減らさずに小型化する必要があり、強度等の点でシートの薄層化には限界があるため、パラジウム、ニッケルや銅などの微細な金属粒子を用い内部電極を薄層化することで、積層セラミックスコンデンサーの小型化を実現している。
【0003】
このような銅微粒子の製造方法としては、アラビアゴム等の保護コロイドを含む水性媒液中で、ヒドラジン系還元剤により酸化銅を還元する方法(例えば特許文献1参照)や、pHが12以上で還元糖により水酸化銅を還元し亜酸化銅を生成させた後、50℃以上の温度下でヒドラジン系還元剤により亜酸化銅を還元する方法(例えば特許文献2参照)が知られている。
【0004】
【特許文献1】
特公昭61−55562号公報
【特許文献2】
特許第2638271号公報
【0005】
【発明が解決しようとする課題】
前記の方法などで得られた銅微粒子は、エポキシ樹脂などのバインダーと混合してペースト化あるいは塗料化し、この銅ペースト・塗料を、例えば、プリント配線板であれば、基板にスクリーン印刷した後、積層セラミックスコンデンサーであれば、薄層のセラミックスシート上に塗布し、シートを積層した後、それぞれ加熱焼成して電気回路、電極等を形成している。電気的導通を確保するには、得られた電気回路、電極が欠陥の少ない、高密度なものである必要がある。このため、ペースト、塗料への充填性が良い銅微粒子を用いることが好ましく、真球に近い整った粒子形状を有し、凝集粒子をほとんど含まないものであれば、嵩密度が小さく、分散性が良いので、ペースト、塗料への充填性が良くなり、積層セラミックスコンデンサーの内部電極のように薄層化しても高い導電性が得られる。しかし、前記の従来技術の方法では微細な一次粒子は得られるものの、粒子が著しく凝集した状態で生成し、しかも二次粒子の形状が粒塊状であるため、充填性、分散性が不十分になり、内部電極用などとしては、十分な特性が得られ難かった。そこで、本発明は、以上に述べた従来技術の問題点を克服し、凝集粒子がほとんど無く分散性に優れ、粒子形状の整った銅微粒子及びその製造方法を提供するものである。
【0006】
【課題を解決するための手段】
本発明者は、これらの問題点を解決すべく鋭意研究を重ねた結果、酸化銅と還元剤とを反応させて銅微粒子を生成させる方法において、保護コロイドと硫黄化合物を存在させ、還元剤との反応を行うことにより、微細で、しかも分散性に優れ凝集粒子をほとんど含まず、ほぼ真球の整った形状を有する銅微粒子が得られることを見出し、本発明を完成した。
【0007】
即ち、本発明は、硫黄化合物及び保護コロイドの存在下で銅酸化物と還元剤とを反応させることを特徴とする銅微粒子の製造方法である。また、この方法により得られた、電子顕微鏡で測定した平均一次粒子径(D)が0.05〜1.0μmの範囲にあり、レーザー回折式粒度分布測定装置で測定した平均二次粒子径(d)が0.1〜2.0μmの範囲にあり、且つ、d/Dが1〜3の範囲であることを特徴とする銅微粒子である。
【0008】
【発明の実施の形態】
本発明は、硫黄化合物及び保護コロイドの存在下で、銅酸化物と還元剤とを反応させ、銅微粒子を生成させるものである。本発明により、凝集粒子をほとんど含まず分散性に優れ、粒子形状の整った銅微粒子が得られるのは、硫黄化合物が銅酸化物と還元剤との反応速度を抑制し、徐々に銅微粒子が生成するからであると推測される。従って、硫黄化合物を用いない場合、瞬時に反応が終結し、銅の凝集粒子が生成してしまう。
【0009】
反応は媒液中、例えば水系またはアルコール等の有機溶媒系媒液中で、好ましくは水系媒液中で行う。銅酸化物と還元剤との反応時に、硫黄化合物及び保護コロイドが存在していれば、それぞれの原材料の添加順序には制限は無く、例えば、硫黄化合物及び保護コロイドを含む媒液に、銅酸化物と還元剤とを同時に添加しても良いが、硫黄化合物、保護コロイド、銅酸化物を含む媒液に、還元剤を添加すると、反応を制御し易いので好ましい。反応温度は10℃〜用いた媒液の沸点の範囲であれば反応が進み易いので好ましく、40〜95℃の範囲であれば更に好ましい。反応液のpHを酸またはアルカリで3〜12の範囲に予め調整すると、銅酸化物の沈降を防ぎ、均一に反応させることができるので好ましい。
【0010】
本発明の「銅酸化物」は、通常の銅の酸化物の他に、銅の含水酸化物、銅の水酸化物を包含する意味で用いており、銅の酸化物としては亜酸化銅(または酸化第一銅)、酸化銅(または酸化第二銅)等を用いることができる。酸化物の製造方法には特に制限はなく、例えば、電解法、化成法、加熱酸化法、熱分解法、間接湿式法等で工業的に製造されたものを用いることができ、銅酸化物の粒子径が、生成する銅微粒子の粒子径に関与することが考えられるため、銅酸化物の粒子径を適宜設定して、目標とする粒子径を有する銅微粒子が得られるようにすることもできる。
【0011】
本発明の「硫黄化合物」は、メルカプト基−SHを持つ有機化合物RSH(Rはアルキル基などの炭化水素基)であるチオール化合物及びその誘導体の他に、チオン類、チオ炭酸類、チオ尿素類、硫化水素等の硫黄化合物及びそれらの誘導体等を包含する意味で用いており、例えば、メルカプトプロピオン酸、メルカプト酢酸、チオジプロピオン酸、メルカプトコハク酸、チオ酢酸等の酸チオール類、メチルメルカプタン、エチルメルカプタン、プロピルメルカプタン、イソプロピルメルカプタン、n−ブチルメルカプタン、アリルメルカプタン、ジメチルメルカプタン、メルカプトエタノール、アミノエチルメルカプタン、チオジエチルアミン、システイン等の脂肪族チオール類、シクロヘキシルチオール等の脂環式チオール類、チオフェノール等の芳香族チオール類等のチオール類、チオジエチレングリコール、チオジグリコール酸、エチレンチオグリコール等のチオグリコール類、チオホルムアミド等のチオアミド類、ジチオール類、チオン類、ポリチオール類、チオ炭酸類、チオ尿素類、硫化水素等の硫黄化合物及びそれらの誘導体等が挙げられ、これらを1種または2種以上を用いても良い。中でもメルカプトプロピオン酸、メルカプト酢酸、メルカプトエタノール、システインが効果が高く好ましい。硫黄化合物の使用量は適宜設定することができ、少なくとも、銅酸化物1000重量部に対し0.5〜50重量部の範囲に設定すると、本発明の効果が得られ易いので好ましく、1〜20重量部の範囲が更に好ましい。
【0012】
保護コロイドは、生成した銅微粒子の分散安定化剤として作用するものであり、その使用量を銅酸化物100重量部に対し1〜100重量部の範囲にすると、生成した銅微粒子が分散安定化し易いので好ましく、2〜50重量部の範囲が更に好ましい。本発明では保護コロイドとして公知のものを用いることができ、例えば、ゼラチン、アラビアゴム、カゼイン、カゼイン酸ソーダ、カゼイン酸アンモニウム等のタンパク質系、デンプン、デキストリン、寒天、アルギン酸ソーダ等の天然高分子や、ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、エチルセルロース等のセルロース系、ポリビニルアルコール、ポリビニルピロリドン等のビニル系、ポリアクリル酸ソーダ、ポリアクリル酸アンモニウム等のアクリル酸系、ステアリン酸等の高級脂肪酸、ポリエチレングリコール等の合成高分子、クエン酸等の多価カルボン酸、アニリンまたはそれらの誘導体等が挙げられ、これらを1種または2種以上を用いても良い。高分子の保護コロイドは分散安定化の効果が高いので、これを用いるのが好ましく、水系媒液中で反応させる場合、水溶性のものを用いるのが好ましく、特にゼラチン、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレングリコールが好ましい。
【0013】
還元剤の使用量は、銅酸化物から銅微粒子を生成できる量であれば適宜設定することができ、銅酸化物中に含まれる銅1モルに対し0.2〜5モルの範囲にあるのが好ましい。還元剤が前記範囲より少ないと反応が進み難く、銅微粒子が十分に生成せず、前記範囲より多いと反応が進みすぎ、所望の銅微粒子が得られ難いため好ましくない。更に好ましい還元剤の使用量は、0.3〜2モルの範囲である。還元剤は公知のものを用いることができ、例えば、ヒドラジンや、塩酸ヒドラジン、硫酸ヒドラジン、抱水ヒドラジン等のヒドラジン化合物等のヒドラジン系還元剤、水素化ホウ素ナトリウム、亜硫酸ナトリウム、亜硫酸水素ナトリウム、チオ硫酸ナトリウム、亜硝酸ナトリウム、次亜硝酸ナトリウム、亜リン酸及び亜リン酸ナトリウム等のその金属塩、次亜リン酸及び次亜リン酸ナトリウム等のその金属塩、アルデヒド類、アルコール類、アミン類、糖類等が挙げられ、これらを1種または2種以上を用いても良い。特に、ヒドラジン系還元剤は還元力が強く好ましい。
【0014】
本発明では、用いる酸化銅の粒子径、還元速度、還元温度などを制御することにより、一次粒子径をコントロールすることができ、例えば、一次粒子の平均粒子径が0.05〜1.0μmの範囲の微細なものとすることができる。また、硫黄化合物、保護コロイドの種類や添加量を適宜設定することにより、二次粒子径をコントロールすることができ、二次粒子の平均粒子径が0.1〜2.0μmの範囲に、好ましくは0.1〜1.0μmの範囲にできる。
【0015】
銅微粒子が生成した後、通常の方法により、濾過、洗浄、乾燥を行う。乾燥は銅微粒子が酸化しないように、窒素、アルゴン等の不活性ガスの雰囲気下で行うのが好ましい。乾燥後は、必要に応じて粉砕を行っても良い。
【0016】
本発明で得られる銅微粒子は、凝集粒子をほとんど含まず、ほぼ真球の整った微細な形状を有する。凝集粒子とは、銅微粒子の一次粒子が凝集して集合した二次粒子のことである。この銅微粒子は、平均一次粒子径(D)が0.05〜1.0μmの範囲にあり、平均二次粒子径(d)が0.1〜2.0μmの範囲、好ましくは0.1〜1.0μmの範囲にある。一次粒子の平均粒子径(D)は、電子顕微鏡法により測定した累積50%径で表され、二次粒子の平均粒子径(d)は、レーザー散乱法により測定した累積50%径で表される。一次粒子の平均粒子径(D)に対する二次粒子の平均粒子径(d)の比が小さいほど、凝集粒子が少ないことを表し、d/Dが1〜3の範囲が好ましく、1〜2の範囲がより好ましく、1〜1.5の範囲が更に好ましい。また、本発明の好ましい銅微粒子は、真球状に近似した整った粒子形状を有しており、そのような粒子形状は電子顕微鏡により観察することができる。
【0017】
本発明の銅微粒子は、従来の種々の用途に用いることができ、特に、前記銅微粒子は電子機器の電極材料として有用であり、この銅微粒子をエポキシ樹脂などの樹脂と混合して銅ペーストあるいは銅塗料にして、例えば、積層セラミックスコンデンサーの内部電極、プリント配線基板の回路、その他の電極等に用いると、薄膜で高密度の電極等が得られる。
【0018】
【実施例】
以下に実施例を挙げて、本発明を更に詳細に説明するが、本発明はこれらの実施例により制限されるものではない。
【0019】
実施例1
工業用亜酸化銅(NC−102:エヌシーテック社製)30g、硫黄化合物として3−メルカプトプロピオン酸0.085g、保護コロイドとしてゼラチン5gを400ミリリットルの純水に添加、混合し、10%の硫酸を用いて混合液のpHを7に調整した後、20分かけて室温から90℃まで昇温した。昇温後、撹拌しながら80%ヒドラジン一水和物を添加し、2時間かけて亜酸化銅と反応させ、銅微粒子を生成させた。その後、濾液比抵抗が100μS/cm以下になるまで濾過洗浄し、窒素ガスの雰囲気下で60℃の温度で10時間かけて乾燥し、本発明の銅微粒子(試料A)を得た。
【0020】
実施例2
3−メルカプトプロピオン酸の使用量を0.065g、ゼラチンの使用量を1.5gとし、15%のアンモニア水を用いて混合液のpHを10.5に調整した以外は、実施例1と同様にして本発明の銅微粒子(試料B)を得た。
【0021】
実施例3
3−メルカプトプロピオン酸の使用量を0.085g、ゼラチンの使用量を3gとし、15%のアンモニア水を用いて混合液のpHを11.8に調整した以外は、実施例1と同様にして本発明の銅微粒子(試料C)を得た。
【0022】
実施例4
工業用酸化銅(N−120:エヌシーテック社製)24g、硫黄化合物として3−メルカプトプロピオン酸0.065g、保護コロイドとしてゼラチン3.8gを400ミリリットルの純水に添加、混合し、10%の硫酸を用いて混合液のpHを4に調整した後、20分かけて室温から90℃まで昇温した。昇温後、撹拌しながら80%ヒドラジン一水和物を添加し、2時間かけて酸化銅と反応させ、銅微粒子を生成させた。その後、濾液比抵抗が100μS/cm以下になるまで濾過洗浄し、窒素ガスの雰囲気下で60℃の温度で10時間かけて乾燥し、本発明の銅微粒子(試料D)を得た。
【0023】
比較例1
3−メルカプトプロピオン酸を用いなかったこと以外は、実施例2と同様にして銅微粒子(試料E)を得た。
【0024】
比較例2
3−メルカプトプロピオン酸を用いなかったこと以外は、実施例4と同様にして銅微粒子(試料F)を得た。
【0025】
評価1:一次粒子及び二次粒子の平均粒子径、タップ密度の測定
実施例1〜4、比較例1、2で得られた試料A〜Fの一次粒子の平均粒子径を、電子顕微鏡法により測定し、二次粒子の平均粒子径を、レーザー回折式粒度分布測定装置(マイクロトラックUPA型:日機装社製)を用いて測定した。二次粒子の測定には、試料を超音波分散機を用いて水中に十分に分散させ、レーザーの信号強度が0.6〜0.8になるように濃度調整した水系スラリーを用いた。
また、試料50gを100ミリリットルのメスシリンダーに採取し、100回タッピングしてタップ密度を測定した。タップ密度が大きい程、充填性が優れている。結果を表1に示す。本発明より得られた銅微粒子は、一次粒子及び二次粒子がいずれも微細であり、充填性が優れていることが判る。
【0026】
【表1】

Figure 2004256857
【0027】
評価2:粒子形状の確認
実施例1〜4、比較例1、2で得られた試料A〜Fを18000倍で電子顕微鏡写真を撮影した。その結果を図1〜6に示す。本発明により得られた銅微粒子は、真球にほぼ近似した整った粒子形状を有することが判る。
【0028】
【発明の効果】
本発明により、分散性に優れ凝集粒子をほとんど含まず、真球状に近似した整った粒子形状の銅微粒子が得られる。このものは、電子機器の電極材料等として有用であり、この銅微粒子を銅ペーストにして、例えば、積層セラミックスコンデンサーの内部電極、プリント配線基板の回路、その他の電極等に用いると、薄膜で高密度の電極等が得られる。
【図面の簡単な説明】
【図1】図1は実施例1で得られた銅微粒子(試料A)の電子顕微鏡写真(倍率18000倍)である。
【図2】図2は実施例2で得られた銅微粒子(試料B)の電子顕微鏡写真(倍率18000倍)である。
【図3】図3は実施例3で得られた銅微粒子(試料C)の電子顕微鏡写真(倍率18000倍)である。
【図4】図4は実施例4で得られた銅微粒子(試料D)の電子顕微鏡写真(倍率18000倍)である。
【図5】図5は比較例1で得られた銅微粒子(試料E)の電子顕微鏡写真(倍率18000倍)である。
【図6】図6は比較例2で得られた銅微粒子(試料F)の電子顕微鏡写真(倍率18000倍)である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to copper fine particles and a method for producing the same, and more particularly to copper fine particles suitable for an internal electrode of a multilayer ceramic capacitor and a method for producing the same.
[0002]
[Prior art]
Copper fine particles are inexpensive materials with good electrical conductivity, and are widely used as materials to ensure electrical continuity of printed circuit board circuit forming members, various electrical contact members, external electrode members such as capacitors, etc. It has been. In recent years, it has begun to be used for internal electrodes of multilayer ceramic capacitors. Multilayer ceramic capacitors are rapidly spreading because they are easy to obtain a large capacity compared to other types of capacitors such as electrolytic capacitors and film capacitors, are excellent in mountability, and have high safety and stability. With the recent miniaturization of electronic equipment, multilayer ceramic capacitors are also in the direction of miniaturization, but in order to maintain a large capacity, it is necessary to miniaturize without reducing the number of laminated ceramic sheets. However, since there is a limit to thinning the sheet, the miniaturization of the multilayer ceramic capacitor is realized by thinning the internal electrode using fine metal particles such as palladium, nickel and copper.
[0003]
As a method for producing such copper fine particles, a method of reducing copper oxide with a hydrazine-based reducing agent in an aqueous medium containing a protective colloid such as gum arabic (see, for example, Patent Document 1), or a pH of 12 or more. There is known a method of reducing cuprous oxide with a hydrazine reducing agent at a temperature of 50 ° C. or higher after reducing copper hydroxide with reducing sugar to produce cuprous oxide (see, for example, Patent Document 2).
[0004]
[Patent Document 1]
Japanese Patent Publication No. 61-55562 [Patent Document 2]
Japanese Patent No. 2638271
[Problems to be solved by the invention]
The copper fine particles obtained by the above method are mixed with a binder such as an epoxy resin to form a paste or paint, and this copper paste / paint is, for example, a printed wiring board, after screen printing on a substrate, In the case of a multilayer ceramic capacitor, it is applied onto a thin ceramic sheet, the sheets are laminated, and then heated and fired to form an electric circuit, an electrode, and the like. In order to ensure electrical continuity, it is necessary that the obtained electric circuit and electrode have a high density with few defects. For this reason, it is preferable to use copper fine particles that have good filling properties in pastes and paints. If the particles have an ordered particle shape close to a true sphere and contain almost no aggregated particles, the bulk density is small and the dispersibility is low. Therefore, the filling property to paste and paint is improved, and high conductivity can be obtained even if the layer is made thin like the internal electrode of the multilayer ceramic capacitor. However, although the above-mentioned prior art method can obtain fine primary particles, the particles are generated in a significantly aggregated state, and the shape of the secondary particles is agglomerated, so that the filling property and dispersibility are insufficient. Therefore, it is difficult to obtain sufficient characteristics for internal electrodes. Therefore, the present invention overcomes the above-mentioned problems of the prior art, and provides copper fine particles having almost no aggregated particles, excellent dispersibility, and a well-shaped particle shape, and a method for producing the same.
[0006]
[Means for Solving the Problems]
As a result of earnest research to solve these problems, the present inventor made a protective colloid and a sulfur compound exist in a method of producing copper fine particles by reacting copper oxide and a reducing agent, By carrying out the above reaction, it was found that fine copper particles having excellent dispersibility and almost no aggregated particles and having a substantially spherical shape were obtained, and the present invention was completed.
[0007]
That is, the present invention is a method for producing copper fine particles characterized by reacting a copper oxide and a reducing agent in the presence of a sulfur compound and a protective colloid. Moreover, the average primary particle diameter (D) measured with the electron microscope obtained by this method is in the range of 0.05 to 1.0 μm, and the average secondary particle diameter (measured with a laser diffraction particle size distribution analyzer) ( d) is in the range of 0.1 to 2.0 μm, and d / D is in the range of 1 to 3.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, copper oxide and a reducing agent are reacted in the presence of a sulfur compound and a protective colloid to produce copper fine particles. According to the present invention, copper particles having almost no agglomerated particles and excellent dispersibility and a uniform particle shape can be obtained because the sulfur compound suppresses the reaction rate between the copper oxide and the reducing agent, and the copper particles gradually It is presumed that it is generated. Therefore, when a sulfur compound is not used, the reaction ends instantaneously and copper agglomerated particles are generated.
[0009]
The reaction is carried out in a medium, for example, in an aqueous medium or an organic solvent medium such as alcohol, preferably in an aqueous medium. If a sulfur compound and a protective colloid are present during the reaction between the copper oxide and the reducing agent, the order of addition of the respective raw materials is not limited. For example, copper oxide is added to the liquid medium containing the sulfur compound and the protective colloid. However, it is preferable to add a reducing agent to a liquid medium containing a sulfur compound, a protective colloid, and a copper oxide because the reaction can be easily controlled. The reaction temperature is preferably in the range of 10 ° C. to the boiling point of the liquid medium used, since the reaction is easy to proceed, and more preferably in the range of 40 to 95 ° C. It is preferable to adjust the pH of the reaction solution in the range of 3 to 12 in advance with an acid or an alkali, since the precipitation of copper oxide can be prevented and the reaction can be performed uniformly.
[0010]
The “copper oxide” of the present invention is used in the sense of including a copper hydrated oxide and a copper hydroxide in addition to a normal copper oxide. As the copper oxide, cuprous oxide ( Alternatively, cuprous oxide), copper oxide (or cupric oxide), or the like can be used. There is no particular limitation on the method for producing the oxide, and for example, an electrolytically produced method, a chemical conversion method, a heat oxidation method, a thermal decomposition method, an indirect wet method, or the like can be used. Since it is considered that the particle diameter is related to the particle diameter of the copper fine particles to be generated, the copper oxide particle diameter can be appropriately set to obtain copper fine particles having a target particle diameter. .
[0011]
The “sulfur compound” of the present invention includes thiones, thiocarbonates, thioureas, in addition to thiol compounds and derivatives thereof, which are organic compounds RSH (R is a hydrocarbon group such as an alkyl group) having a mercapto group —SH. And sulfur compounds such as hydrogen sulfide and derivatives thereof, such as mercaptopropionic acid, mercaptoacetic acid, thiodipropionic acid, mercaptosuccinic acid, thioacetic acid thiols, methyl mercaptan, Aliphatic thiols such as ethyl mercaptan, propyl mercaptan, isopropyl mercaptan, n-butyl mercaptan, allyl mercaptan, dimethyl mercaptan, mercaptoethanol, aminoethyl mercaptan, thiodiethylamine, cysteine, alicyclic thiols such as cyclohexylthiol, thiophene Thiols such as aromatic thiols such as thiols, thioglycols such as thiodiethylene glycol, thiodiglycolic acid, ethylenethioglycol, thioamides such as thioformamide, dithiols, thiones, polythiols, thiocarbonates, Examples thereof include sulfur compounds such as thioureas and hydrogen sulfide, and derivatives thereof, and one or more of these may be used. Among them, mercaptopropionic acid, mercaptoacetic acid, mercaptoethanol, and cysteine are preferable because of their high effects. The amount of the sulfur compound used can be appropriately set. At least, it is preferably set in the range of 0.5 to 50 parts by weight with respect to 1000 parts by weight of the copper oxide because the effects of the present invention can be easily obtained. A range of parts by weight is more preferred.
[0012]
The protective colloid acts as a dispersion stabilizer for the produced copper fine particles. When the amount used is in the range of 1 to 100 parts by weight with respect to 100 parts by weight of the copper oxide, the produced copper fine particles are dispersed and stabilized. Since it is easy, it is preferable, and the range of 2-50 weight part is further more preferable. In the present invention, known colloids can be used, such as gelatin, gum arabic, casein, sodium caseinate, ammonium caseinate, and other natural polymers such as starch, dextrin, agar, sodium alginate, and the like. , Celluloses such as hydroxyethylcellulose, carboxymethylcellulose, methylcellulose, ethylcellulose, vinyls such as polyvinyl alcohol and polyvinylpyrrolidone, acrylic acids such as sodium polyacrylate and ammonium polyacrylate, higher fatty acids such as stearic acid, polyethylene glycol, etc. Synthetic polymers, polyvalent carboxylic acids such as citric acid, aniline or derivatives thereof, and the like may be used alone or in combination. Since the protective colloid of a polymer has a high effect of dispersion stabilization, it is preferable to use this, and when reacting in an aqueous medium, it is preferable to use a water-soluble one, particularly gelatin, polyvinyl alcohol, polyvinyl pyrrolidone, Polyethylene glycol is preferred.
[0013]
The amount of the reducing agent used can be appropriately set as long as it is an amount capable of producing copper fine particles from the copper oxide, and is in the range of 0.2 to 5 mol with respect to 1 mol of copper contained in the copper oxide. Is preferred. If the reducing agent is less than the above range, the reaction is difficult to proceed, and copper fine particles are not sufficiently formed. If the amount is more than the above range, the reaction proceeds excessively and it is difficult to obtain desired copper fine particles, which is not preferable. Furthermore, the usage-amount of a preferable reducing agent is the range of 0.3-2 mol. As the reducing agent, known ones can be used. For example, hydrazine reducing agents such as hydrazine, hydrazine hydrochloride, hydrazine sulfate, hydrazine hydrate and the like, sodium borohydride, sodium sulfite, sodium bisulfite, thiol Sodium sulfate, sodium nitrite, sodium hyponitrite, phosphorous acid and metal salts thereof such as sodium phosphite, metal salts such as hypophosphorous acid and sodium hypophosphite, aldehydes, alcohols, amines , Saccharides and the like, and one or more of these may be used. In particular, hydrazine-based reducing agents are preferred because of their strong reducing power.
[0014]
In the present invention, the primary particle diameter can be controlled by controlling the particle diameter, reduction rate, reduction temperature, and the like of the copper oxide used. For example, the average particle diameter of the primary particles is 0.05 to 1.0 μm. The range can be fine. Moreover, the secondary particle diameter can be controlled by appropriately setting the type and amount of the sulfur compound and protective colloid, and the average particle diameter of the secondary particles is preferably in the range of 0.1 to 2.0 μm. Can be in the range of 0.1 to 1.0 μm.
[0015]
After the copper fine particles are formed, they are filtered, washed and dried by ordinary methods. Drying is preferably performed in an atmosphere of an inert gas such as nitrogen or argon so that the copper fine particles are not oxidized. After drying, you may grind | pulverize as needed.
[0016]
The copper fine particles obtained by the present invention contain almost no agglomerated particles and have a fine shape with almost perfect spheres. Aggregated particles are secondary particles in which primary particles of copper fine particles are aggregated and aggregated. The copper fine particles have an average primary particle diameter (D) in the range of 0.05 to 1.0 μm and an average secondary particle diameter (d) in the range of 0.1 to 2.0 μm, preferably 0.1 to 0.1 μm. It is in the range of 1.0 μm. The average particle diameter (D) of the primary particles is expressed as a cumulative 50% diameter measured by electron microscopy, and the average particle diameter (d) of the secondary particles is expressed as a cumulative 50% diameter measured by the laser scattering method. The The smaller the ratio of the average particle diameter (d) of the secondary particles to the average particle diameter (D) of the primary particles, the smaller the aggregated particles, and the d / D is preferably in the range of 1 to 3, The range is more preferable, and the range of 1 to 1.5 is more preferable. Moreover, the preferable copper fine particle of this invention has the regular particle shape approximated in the perfect spherical shape, and such a particle shape can be observed with an electron microscope.
[0017]
The copper fine particles of the present invention can be used for various conventional applications. In particular, the copper fine particles are useful as an electrode material for electronic equipment, and the copper fine particles are mixed with a resin such as an epoxy resin to obtain a copper paste or When a copper paint is used, for example, for an internal electrode of a multilayer ceramic capacitor, a circuit of a printed wiring board, other electrodes, etc., a thin film and a high density electrode can be obtained.
[0018]
【Example】
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
[0019]
Example 1
30 g of industrial cuprous oxide (NC-102: manufactured by NC Tech), 0.085 g of 3-mercaptopropionic acid as a sulfur compound and 5 g of gelatin as a protective colloid are added to 400 ml of pure water, mixed, and 10% sulfuric acid Was used to adjust the pH of the mixture to 7, and the temperature was raised from room temperature to 90 ° C. over 20 minutes. After the temperature rise, 80% hydrazine monohydrate was added with stirring and reacted with cuprous oxide over 2 hours to produce copper fine particles. Thereafter, the filtrate was washed by filtration until the filtrate specific resistance reached 100 μS / cm or less, and dried for 10 hours at a temperature of 60 ° C. in an atmosphere of nitrogen gas to obtain the copper fine particles (sample A) of the present invention.
[0020]
Example 2
Example 1 except that the amount of 3-mercaptopropionic acid used was 0.065 g, the amount of gelatin used was 1.5 g, and the pH of the mixed solution was adjusted to 10.5 using 15% aqueous ammonia. Thus, copper fine particles (sample B) of the present invention were obtained.
[0021]
Example 3
The same procedure as in Example 1 was conducted except that the amount of 3-mercaptopropionic acid used was 0.085 g, the amount of gelatin used was 3 g, and the pH of the mixed solution was adjusted to 11.8 using 15% aqueous ammonia. Copper fine particles (sample C) of the present invention were obtained.
[0022]
Example 4
24 g of industrial copper oxide (N-120: manufactured by NC Tech), 0.065 g of 3-mercaptopropionic acid as a sulfur compound, and 3.8 g of gelatin as a protective colloid are added to 400 ml of pure water, mixed, and 10% After adjusting the pH of the mixed solution to 4 using sulfuric acid, the temperature was raised from room temperature to 90 ° C. over 20 minutes. After the temperature rise, 80% hydrazine monohydrate was added with stirring and reacted with copper oxide over 2 hours to produce copper fine particles. Thereafter, the filtrate was washed by filtration until the filtrate specific resistance was 100 μS / cm or less, and dried for 10 hours at a temperature of 60 ° C. in an atmosphere of nitrogen gas to obtain the copper fine particles (sample D) of the present invention.
[0023]
Comparative Example 1
Copper fine particles (sample E) were obtained in the same manner as in Example 2 except that 3-mercaptopropionic acid was not used.
[0024]
Comparative Example 2
Copper fine particles (sample F) were obtained in the same manner as in Example 4 except that 3-mercaptopropionic acid was not used.
[0025]
Evaluation 1: Measurement of average particle diameter and tap density of primary particles and secondary particles The average particle diameter of primary particles of Samples A to F obtained in Examples 1 to 4 and Comparative Examples 1 and 2 was measured by electron microscopy. The average particle size of the secondary particles was measured using a laser diffraction particle size distribution analyzer (Microtrac UPA type: manufactured by Nikkiso Co., Ltd.). For the measurement of secondary particles, an aqueous slurry was used in which the sample was sufficiently dispersed in water using an ultrasonic disperser and the concentration was adjusted so that the laser signal intensity was 0.6 to 0.8.
Further, 50 g of a sample was taken into a 100 ml measuring cylinder and tapped 100 times to measure the tap density. The greater the tap density, the better the fillability. The results are shown in Table 1. It can be seen that the copper fine particles obtained from the present invention are fine in primary particles and secondary particles, and have excellent filling properties.
[0026]
[Table 1]
Figure 2004256857
[0027]
Evaluation 2: Confirmation of particle shape Electron micrographs were taken at 18000 times the samples A to F obtained in Examples 1 to 4 and Comparative Examples 1 and 2. The results are shown in FIGS. It can be seen that the copper fine particles obtained by the present invention have a well-defined particle shape that is approximately approximate to a true sphere.
[0028]
【The invention's effect】
According to the present invention, it is possible to obtain copper fine particles having excellent dispersibility and containing almost no agglomerated particles and having a well-shaped particle shape close to a true sphere. This is useful as an electrode material for electronic equipment, etc. The copper fine particles are made into a copper paste, and are used in, for example, an internal electrode of a multilayer ceramic capacitor, a circuit of a printed wiring board, and other electrodes. Density electrodes and the like are obtained.
[Brief description of the drawings]
1 is an electron micrograph (magnification: 18000 times) of the copper fine particles (sample A) obtained in Example 1. FIG.
FIG. 2 is an electron micrograph (magnification: 18000 times) of the copper fine particles (sample B) obtained in Example 2.
FIG. 3 is an electron micrograph (magnification: 18000 times) of the copper fine particles (sample C) obtained in Example 3.
FIG. 4 is an electron micrograph (magnification: 18000 times) of the copper fine particles (sample D) obtained in Example 4.
FIG. 5 is an electron micrograph (magnification: 18000 times) of the copper fine particles (sample E) obtained in Comparative Example 1.
6 is an electron micrograph (magnification: 18000 times) of the copper fine particles (sample F) obtained in Comparative Example 2. FIG.

Claims (5)

硫黄化合物及び保護コロイドの存在下で銅酸化物と還元剤とを反応させることを特徴とする銅微粒子の製造方法。A method for producing copper fine particles, comprising reacting a copper oxide and a reducing agent in the presence of a sulfur compound and a protective colloid. 硫黄化合物がメルカプトプロピオン酸、メルカプト酢酸、メルカプトエタノール、システインから選ばれる少なくとも1種であることを特徴とする請求項1記載の銅微粒子の製造方法。The method for producing copper fine particles according to claim 1, wherein the sulfur compound is at least one selected from mercaptopropionic acid, mercaptoacetic acid, mercaptoethanol, and cysteine. 銅酸化物1000重量部に対し0.5〜50重量部の範囲の硫黄化合物を用いることを特徴とする請求項1記載の銅微粒子の製造方法。2. The method for producing copper fine particles according to claim 1, wherein a sulfur compound in a range of 0.5 to 50 parts by weight is used with respect to 1000 parts by weight of the copper oxide. 還元剤がヒドラジン系還元剤であることを特徴とする請求項1記載の銅微粒子の製造方法。The method for producing copper fine particles according to claim 1, wherein the reducing agent is a hydrazine-based reducing agent. 請求項1〜4のいずれか一項に記載の製造方法で得られた銅微粒子であって、電子顕微鏡で測定した平均一次粒子径(D)が0.05〜1.0μmの範囲にあり、レーザー回折式粒度分布測定装置で測定した平均二次粒子径(d)が0.1〜2.0μmの範囲にあり、且つ、d/Dが1〜3の範囲であることを特徴とする銅微粒子。Copper fine particles obtained by the production method according to any one of claims 1 to 4, wherein the average primary particle diameter (D) measured with an electron microscope is in the range of 0.05 to 1.0 µm, Copper having an average secondary particle diameter (d) measured by a laser diffraction particle size distribution measuring device in the range of 0.1 to 2.0 μm and d / D in the range of 1 to 3 Fine particles.
JP2003047382A 2003-02-25 2003-02-25 Copper fine particles and method for producing the same Expired - Fee Related JP4242176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003047382A JP4242176B2 (en) 2003-02-25 2003-02-25 Copper fine particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003047382A JP4242176B2 (en) 2003-02-25 2003-02-25 Copper fine particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004256857A true JP2004256857A (en) 2004-09-16
JP4242176B2 JP4242176B2 (en) 2009-03-18

Family

ID=33113654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003047382A Expired - Fee Related JP4242176B2 (en) 2003-02-25 2003-02-25 Copper fine particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP4242176B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006019144A1 (en) * 2004-08-20 2006-02-23 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same
WO2006068061A1 (en) * 2004-12-22 2006-06-29 Mitsui Mining & Smelting Co., Ltd. Superfine copper powder slurry and process for producing the same
CN100402203C (en) * 2006-04-30 2008-07-16 扬州大学 Method for preparing high purified copper powder in submicro
WO2009001710A1 (en) * 2007-06-28 2008-12-31 Nippon Mining & Metals Co., Ltd. Spherical copper fine powder and process for production of the same
JP2009079269A (en) * 2007-09-26 2009-04-16 Dowa Electronics Materials Co Ltd Copper powder for electroconductive paste, production method therefor and electroconductive paste
US7651782B2 (en) 2006-07-11 2010-01-26 Fujifilm Corporation Method for producing metallic nanoparticles, metallic nanoparticles, and dispersion of the same
US8083972B2 (en) 2005-07-25 2011-12-27 Sumitomo Metal Mining Co., Ltd. Copper particulate dispersions and method for producing the same
WO2012043267A1 (en) 2010-09-30 2012-04-05 Dowaエレクトロニクス株式会社 Copper powder for conductive paste and method for manufacturing same
CN102811830A (en) * 2010-03-31 2012-12-05 Jx日矿日石金属株式会社 Fine silver-plated copper powder and method for producing same
JP2014005491A (en) * 2012-06-22 2014-01-16 Murata Mfg Co Ltd Method for producing metal powder, metal powder, conductive paste and laminated ceramic electronic component
WO2014080662A1 (en) * 2012-11-26 2014-05-30 三井金属鉱業株式会社 Copper powder and method for producing same
JP2014129609A (en) * 2014-03-07 2014-07-10 Hokkaido Univ Method for producing copper fine particle
JP2015164131A (en) * 2009-09-30 2015-09-10 大日本印刷株式会社 Metal fine particle dispersion, method of producing conductive substrate and conductive substrate
JPWO2016031860A1 (en) * 2014-08-28 2017-06-15 石原産業株式会社 Metallic copper particles and method for producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103028739B (en) * 2013-01-05 2015-07-22 河北工业大学 Preparation method of long-range ordered, layered and self-assembled nano-structure superlattice copper

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052240A (en) * 2004-08-20 2012-03-15 Ishihara Sangyo Kaisha Ltd Copper microparticle and process for producing the same
JPWO2006019144A1 (en) * 2004-08-20 2008-05-08 石原産業株式会社 Copper fine particles and method for producing the same
JP5164379B2 (en) * 2004-08-20 2013-03-21 石原産業株式会社 Copper fine particles and method for producing the same
JP2012162807A (en) * 2004-08-20 2012-08-30 Ishihara Sangyo Kaisha Ltd Copper microparticle and method for producing the same
WO2006019144A1 (en) * 2004-08-20 2006-02-23 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same
US7828872B2 (en) 2004-08-20 2010-11-09 Ishihara Sangyo Kaisha, Ltd. Copper microparticle and process for producing the same
JP2012052241A (en) * 2004-08-20 2012-03-15 Ishihara Sangyo Kaisha Ltd Copper microparticle and process for producing the same
WO2006068061A1 (en) * 2004-12-22 2006-06-29 Mitsui Mining & Smelting Co., Ltd. Superfine copper powder slurry and process for producing the same
US8083972B2 (en) 2005-07-25 2011-12-27 Sumitomo Metal Mining Co., Ltd. Copper particulate dispersions and method for producing the same
CN100402203C (en) * 2006-04-30 2008-07-16 扬州大学 Method for preparing high purified copper powder in submicro
US7651782B2 (en) 2006-07-11 2010-01-26 Fujifilm Corporation Method for producing metallic nanoparticles, metallic nanoparticles, and dispersion of the same
WO2009001710A1 (en) * 2007-06-28 2008-12-31 Nippon Mining & Metals Co., Ltd. Spherical copper fine powder and process for production of the same
JP2013057128A (en) * 2007-06-28 2013-03-28 Jx Nippon Mining & Metals Corp Spherical copper fine powder and process for production of the same
JP5235193B2 (en) * 2007-06-28 2013-07-10 Jx日鉱日石金属株式会社 Spherical copper fine powder and method for producing the same
JP2009079269A (en) * 2007-09-26 2009-04-16 Dowa Electronics Materials Co Ltd Copper powder for electroconductive paste, production method therefor and electroconductive paste
JP2015164131A (en) * 2009-09-30 2015-09-10 大日本印刷株式会社 Metal fine particle dispersion, method of producing conductive substrate and conductive substrate
CN102811830A (en) * 2010-03-31 2012-12-05 Jx日矿日石金属株式会社 Fine silver-plated copper powder and method for producing same
WO2012043267A1 (en) 2010-09-30 2012-04-05 Dowaエレクトロニクス株式会社 Copper powder for conductive paste and method for manufacturing same
US9248504B2 (en) 2010-09-30 2016-02-02 Dowa Electronics Materials Co., Ltd. Copper powder for conductive paste and method for producing same
JP2014005491A (en) * 2012-06-22 2014-01-16 Murata Mfg Co Ltd Method for producing metal powder, metal powder, conductive paste and laminated ceramic electronic component
JP5872063B2 (en) * 2012-11-26 2016-03-01 三井金属鉱業株式会社 Copper powder
CN104684666A (en) * 2012-11-26 2015-06-03 三井金属矿业株式会社 Copper powder and method for producing same
WO2014080662A1 (en) * 2012-11-26 2014-05-30 三井金属鉱業株式会社 Copper powder and method for producing same
JPWO2014080662A1 (en) * 2012-11-26 2017-01-05 三井金属鉱業株式会社 Copper powder
US10518323B2 (en) 2012-11-26 2019-12-31 Mitsui Mining & Smelting Co., Ltd. Copper power and method for producing same
JP2014129609A (en) * 2014-03-07 2014-07-10 Hokkaido Univ Method for producing copper fine particle
JPWO2016031860A1 (en) * 2014-08-28 2017-06-15 石原産業株式会社 Metallic copper particles and method for producing the same

Also Published As

Publication number Publication date
JP4242176B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP4242176B2 (en) Copper fine particles and method for producing the same
KR101242966B1 (en) Copper microparticle and process for producing the same
JP5294851B2 (en) Method for producing nickel fine particles
JP5239191B2 (en) Silver fine particles and method for producing the same
WO2014104032A1 (en) Method for producing copper powder, copper powder, and copper paste
JP6130209B2 (en) Conductive film
WO2006068061A1 (en) Superfine copper powder slurry and process for producing the same
JP4252349B2 (en) Copper powder, method for producing the same, copper paste using the copper powder, copper paint, electrode
WO2018123809A1 (en) Copper powder and method for manufacturing same
TWI825594B (en) copper powder
JP4947509B2 (en) Nickel slurry, method for producing the same, and nickel paste or nickel ink using the nickel slurry
JP4756652B2 (en) Drop-shaped copper powder, method for producing drop-shaped copper powder and conductive paste
JP5985216B2 (en) Silver powder
JP4208704B2 (en) Copper powder, method for producing the same, fluid composition containing the same, and electrode using the same
JP4164008B2 (en) Copper powder, method for producing the same, copper paste / paint using the same, and electrode
WO2017179524A1 (en) Silver-coated copper powder and method for producing same
Drzic et al. Sacrificial ligand route to hybrid polythiophene–silver nanoparticles for sinter-free conductive inks
JP2006073436A (en) Fluid composition and electrode as well as wiring pattern formed using it
JP2018123384A (en) Silver powder containing phosphorus, and conductive paste containing the silver powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4242176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees