JP2004256741A - Phenolic resin molding material and vibration damping material - Google Patents

Phenolic resin molding material and vibration damping material Download PDF

Info

Publication number
JP2004256741A
JP2004256741A JP2003050937A JP2003050937A JP2004256741A JP 2004256741 A JP2004256741 A JP 2004256741A JP 2003050937 A JP2003050937 A JP 2003050937A JP 2003050937 A JP2003050937 A JP 2003050937A JP 2004256741 A JP2004256741 A JP 2004256741A
Authority
JP
Japan
Prior art keywords
vibration damping
phenolic resin
molding material
resin molding
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003050937A
Other languages
Japanese (ja)
Inventor
Hidemi Tanizawa
秀実 谷澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003050937A priority Critical patent/JP2004256741A/en
Publication of JP2004256741A publication Critical patent/JP2004256741A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phenolic resin molding material for a vibration damping material that is excellent in vibration damping properties while maintaining dimensional accuracy and dimensional stability possessed by the conventional phenolic resin molding material blended with an inorganic base material, and to provide the vibration damping material produced by using the phenolic resin molding material. <P>SOLUTION: The phenolic resin molding material for the vibration damping material comprise 30-50 wt% phenolic resin, 30-60 wt% inorganic filler and 5-20 wt% acrylonitrile/butadiene rubber, based on the total of the molding material. The content of the acrylonitrile/butadiene rubber is preferably 10-20 wt% based on the total of the molding material. The vibration damping material is produced by using the phenolic resin molding material. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、制振材用フェノール樹脂成形材料、およびこれを用いてなる制振材に関する。
【0002】
【従来の技術】
従来、自動車や産業機械或いは家電製品などに使用されるモーター部品や、それらの周辺部品において振動や騒音を低減或いは防止するために、制振性や防音性を付与する方法として制振鋼板を用いたり、或いはゴムやエラストマーを貼り付けたり、金属部品を樹脂部品に置き換えたりする方法が主であった。制振鋼板を用いる場合、それ自身コストが高く、また加工性の面からも微細な部分への適用などは難しく、適用できる範囲が限定されてしまうという欠点があった。また、ゴムやエラストマーを貼り付ける方法では、加工工数や部品点数が増えるためやはりコスト増加の要因となる。樹脂部品に置き換える場合は、金属に比べ大幅に制振効果が増す。実際にフェノール樹脂製或いはPPSなどの熱可塑エンプラ製のギヤケースやブラシホルダー、エンドブラケットがある。しかしながら現状では、こうした樹脂製部品でもより一層の制振性或いは防音性を付与するためには、樹脂製部品に更にゴムやエラストマーを貼り付けた設計をせざるを得ないのが実状である。
【0003】
樹脂成形材料自身の制振性に関しては、弾性率の低い材料ほど制振効果がある。このため、有機基材を配合した成形材料は優れた制振効果を有するが、耐熱性や寸法安定性、寸法制度の面で無機基材を配合した成形材料に比べ大幅に劣ることから実際にはモーター部品やその周辺部品への適用は難しい。現状では、このような樹脂製の部品には耐熱性、寸法精度、寸法安定性に優れる無機基材配合の成形材料が使用されている。このような材料を低弾性率化させるには、エラストマーやゴムを配合させることにより弾性率を下げることができる(例えば、特許文献1参照)。このような材料でもまだ十分な制振効果が得られず成形物にエラストマーを貼り付けている。
【0004】
【特許文献1】
特許第3034886号公報
【0005】
【発明が解決しようとする課題】
本発明者は、上記の点について鋭意検討を行った結果、制振性、防音性に優れたフェノール樹脂成形材料を見出した。
即ち、本発明は、基材として無機充填材を配合したフェノール樹脂成形材料において、アクリロニトリルブタジエンゴムを高配合することで耐熱性、寸法精度及び寸法安定性が良好であり、且つ制振性、防音性に優れたフェノール樹脂成形材料を提供するものである。
【0006】
【課題を解決するための手段】
上記目的は、下記(1)〜(3)に記載の本発明により達成される。
(1) 成形材料全体に対して、フェノール樹脂30〜50重量%、無機充填材30〜60重量%及びアクリロニトリルブタジエンゴム5〜20重量%を含有することを特徴とする制振材用フェノール樹脂成形材料。
(2) 成形材料全体に対して、アクリロニトリルブタジエンゴムの含有量が10〜20重量%である前記(1)に記載のフェノール樹脂成形材料。
(3) 前記(1)または(2)に記載のフェノール樹脂成形材料を用いてなる制振材。
【0007】
本発明の制振材用フェノール樹脂成形材料は、成形材料全体に対して、フェノール樹脂30〜50重量%、無機充填材30〜60重量%及びアクリロニトリルブタジエンゴム(以下、NBRという)5〜20重量%を含有することを特徴とする。また、本発明の制振材は、フェノール樹脂成形材料を用いてなるものである。
まず、本発明の制振材用フェノール樹脂成形材料について説明する。
【0008】
本発明で用いるフェノール樹脂は、ノボラック型フェノール樹脂、レゾール型フェノール樹脂などがあるが、特に限定されるものではなく、単独或いは併用して用いることができる。ノボラック型フェノール樹脂の場合、通常硬化剤としてヘキサメチレンテトラミンを使用する。ヘキサメチレンテトラミンの配合量は、ノボラック型フェノール樹脂100重量部に対し、10〜20重量部が好ましい。一方、レゾール型フェノール樹脂は、自硬化性の樹脂であるため、ノボラック樹脂と異なりヘキサメチレンテトラミンを用いることなく硬化させることができる。
【0009】
フェノール樹脂(ヘキサメチレンテトラミンを用いる場合、これを含む)は、成形材料全体に対して、通常30〜50重量%である。好ましくは、30〜40重量%である。フェノール樹脂が上記下限値未満であると、成形材料の生産が困難となる、材料の流動性が低下するため成形が困難になるといった問題が生じることがある。上記上限値を越えると成形収縮や後収縮による寸法変化が大きくなるため所定の成形品寸法を維持することが難しい場合がある。
【0010】
本発明には基材として無機充填材を用いる。無機充填材としては、炭酸カルシウム、クレー、タルク、マイカ、水酸化マグネシウム、水酸化アルミニウム、ウォラストナイト、シリカ、ガラス繊維、ガラスビーズ、ガラス粉末等の無機粉末、或いはガラス繊維等の無機繊維を単独、或いは2種類以上配合して用いる。
【0011】
本発明においては、無機充填材を、成形材料全体に対して、通常30〜60重量%配合する。好ましくは、40〜60重量%である。前記下限値を下回ると、成形収縮率が大きくなり成形時の寸法精度が低くなるとともに、後収縮も大きくなることから寸法安定性にも乏しく寸法要求の厳しい部品への適用が困難となることがある。また、樹脂量が多くなるため成形時、ヒケやボイドなど成形品中に欠陥を生じやすくなるため好ましくない。また、前記上限値を上回ると、成形材料の流動性が低下することから成形品の充填不良を生じやすくなるといった問題がある。
【0012】
また本発明においては、制振性を付与するためにNBRを用いる。制振効果を得るためには、NBRと樹脂が海島構造をとることが望ましい。振動の減衰(振動エネルギーの減少)は、成形品の弾性率に依存する。即ち弾性率の低い成形品ほど振動減衰が早いため、エラストマーやNBRが架橋骨格中に反応して取り込まれた構造であったり、IPNのような分子レベルでの絡みつき構造をとる場合、海島構造に比べ、成形品の弾性率が高く伝播してきた振動は減衰し難く、制振効果が小さい。海島構造では、樹脂とNBRの界面剥離も発生することから振動の伝播が抑えられ十分な制振効果を得ることができる。
【0013】
使用されるNBRは成形材料全体に対し5〜20重量%である。好ましくは、10〜20重量%である。前記下限値を下回ると十分な制振効果が得られないことがある。また前記上限値を超えた場合、硬化性が著しく低下することから成形サイクルが長くなったり、成形品の剛性が十分でなく変形を生じることがある。また、NBRがフェノール樹脂中に分散された場合、それ自身のもつ弾性回復により成形品としての収縮を抑える効果が作用し、寸法精度、寸法安定性の面でも優れた特性を有するが、前記上限値を超えるとNBR自身の持つ収縮の影響から寸法精度、寸法変化が低下するようになる。
【0014】
本発明のフェノール樹脂成形材料を製造する方法は、通常の方法が採用される。例えば、上記配合物を所定の配合割合で混合し、更に着色剤、硬化触媒等を加え加熱ロールにより混練し、シート状にしたものを顆粒状に粉砕して得られる。
【0015】
本発明の制振材は、これまで説明したフェノール樹脂成形材料を、圧縮成形、トランスファ成形、射出成形などの通常の成形方法により成形して得られ、優れた制振性、防音性を有していることから、自動車用、汎用機械用、家庭電化製品用及びその周辺機器用等の部品として好適である。
【0016】
【実施例】
以下、実施例により本発明を説明する。
表1に各実施例及び比較例の成形材料組成について示す。また、表2に各実施例及び比較例で得られた成形材料の特性評価結果を示す。
【0017】
実施例及び比較例に用いた各配合物は以下の通りである。
フェノール樹脂:ノボラック型フェノール樹脂、住友ベークライト(株)製PR−50716
NBR:JSR(株)製PNC−38
ガラス繊維:日本板硝子(株)製チョップドストランドRES(繊維長1〜4mm、繊維径10〜13μm)
無機粉末:水澤化学(株)製インシュライト(珪酸アルミニウム)
着色剤:カーボンブラック
硬化触媒:酸化マグネシウム
離型剤:ステアリン酸
【0018】
これらを表1に示す割合で配合し、加熱ロール間で混練し、次いで、シート状にし冷却したものを粉砕して顆粒状の成形材料とした。
【表1】

Figure 2004256741
【0019】
表2の特性を測定するための試験片は、得られた成形材料を用いてトランスファー成形により作製した。成形条件は、金型温度175℃、硬化時間3分とした。 表2における各成形材料の特性は、機械的強度として引張り強さ及び常温時及び熱時(120℃中)の曲げ強さをJIS K 6911「熱硬化性プラスチック一般試験方法」により測定した。振動減衰特性は、成形した成形体(10×125×1mm)に、重さ0.45gの鉄球を高さ65mmから落下させこの時の振幅の半減値(ms)を測定した。
【0020】
【表2】
Figure 2004256741
【0021】
実施例1および実施例2は、比較例2あるいは比較例3に比べ、振動減衰特性、機械的強度、寸法安定性がバランスして良好な成形材料であった。実施例2は、他のエラストマーであるポリビニルブチラールを配合して得られた比較例1の成形材料に比べ、振動減衰特性に優れた成形材料であった。実施例3は、無機粉末を多く配合し且つNBRも多く配合した場合であるが、振動減衰特性に優れ寸法安定性も良好な材料であった。
【0022】
【発明の効果】
以上の実施例及び比較例により得られた結果から明らかなように、本発明の制振材用フェノール樹脂成形材料は、従来の無機基材配合フェノール樹脂成形材料に比べ寸法精度、寸法安定性が同等で、制振性、防音性に優れた効果を発揮する。このため、この制振材用フェノール樹脂成形材料を用いて得られた制振材は、自動車用部品、汎用機械用部品、家庭電化製品用部品等のモーター周辺部分へ好適に適用されるものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a phenolic resin molding material for a vibration damping material and a vibration damping material using the same.
[0002]
[Prior art]
Conventionally, in order to reduce or prevent vibration and noise in motor parts used in automobiles, industrial machines, home appliances, and the like, and peripheral parts thereof, damping steel sheets are used as a method of imparting vibration damping properties and soundproofing. Or a method of attaching rubber or an elastomer or replacing a metal part with a resin part. When a damping steel plate is used, the cost is high in itself, and it is difficult to apply it to a fine portion from the viewpoint of workability, and there is a disadvantage that the applicable range is limited. In addition, the method of attaching rubber or elastomer increases the number of processing steps and the number of parts, which also causes an increase in cost. When replacing with resin parts, the damping effect is greatly increased compared to metal. Actually, there are a gear case, a brush holder, and an end bracket made of a phenol resin or a thermoplastic engineering plastic such as PPS. However, under the present circumstances, in order to provide even more vibration-damping or sound-proofing properties even with such a resin component, it is inevitable that a design in which rubber or an elastomer is further attached to the resin component has to be applied.
[0003]
Regarding the vibration damping property of the resin molding material itself, a material having a lower elastic modulus has a vibration damping effect. For this reason, molding materials containing an organic base material have an excellent vibration damping effect, but are actually inferior to molding materials containing an inorganic base material in terms of heat resistance, dimensional stability, and dimensional accuracy. Is difficult to apply to motor parts and their peripheral parts. At present, a molding material containing an inorganic base material having excellent heat resistance, dimensional accuracy, and dimensional stability is used for such resin parts. To lower the elastic modulus of such a material, the elastic modulus can be reduced by blending an elastomer or rubber (for example, see Patent Document 1). Even with such a material, a sufficient vibration damping effect has not yet been obtained, and the elastomer is stuck to the molded product.
[0004]
[Patent Document 1]
Japanese Patent No. 3034886 [0005]
[Problems to be solved by the invention]
As a result of intensive studies on the above points, the present inventors have found a phenolic resin molding material having excellent vibration damping properties and soundproofing properties.
In other words, the present invention provides a phenolic resin molding material containing an inorganic filler as a base material, which is excellent in heat resistance, dimensional accuracy and dimensional stability by adding acrylonitrile butadiene rubber at a high level, and has good vibration damping properties and soundproofing. The present invention provides a phenolic resin molding material having excellent properties.
[0006]
[Means for Solving the Problems]
The above object is achieved by the present invention described in the following (1) to (3).
(1) A phenolic resin molding for a vibration damping material, comprising 30 to 50% by weight of a phenolic resin, 30 to 60% by weight of an inorganic filler and 5 to 20% by weight of an acrylonitrile butadiene rubber, based on the whole molding material. material.
(2) The phenolic resin molding material according to (1), wherein the content of the acrylonitrile butadiene rubber is 10 to 20% by weight based on the whole molding material.
(3) A vibration damping material using the phenolic resin molding material according to (1) or (2).
[0007]
The phenolic resin molding material for a vibration damping material of the present invention comprises 30 to 50% by weight of a phenolic resin, 30 to 60% by weight of an inorganic filler, and 5 to 20% by weight of acrylonitrile butadiene rubber (hereinafter referred to as NBR) based on the whole molding material. %. Further, the vibration damping material of the present invention uses a phenol resin molding material.
First, the phenol resin molding material for a vibration damping material of the present invention will be described.
[0008]
The phenolic resin used in the present invention includes a novolak-type phenolic resin and a resol-type phenolic resin, but is not particularly limited, and can be used alone or in combination. In the case of a novolak type phenol resin, hexamethylenetetramine is usually used as a curing agent. The blending amount of hexamethylenetetramine is preferably 10 to 20 parts by weight based on 100 parts by weight of the novolak type phenol resin. On the other hand, since the resol type phenol resin is a self-curing resin, unlike the novolak resin, it can be cured without using hexamethylenetetramine.
[0009]
The amount of the phenol resin (including hexamethylenetetramine when it is used) is usually 30 to 50% by weight based on the whole molding material. Preferably, it is 30 to 40% by weight. When the amount of the phenolic resin is less than the above lower limit, problems such as difficulty in producing a molding material and difficulty in molding due to a decrease in fluidity of the material may occur. If the upper limit is exceeded, the dimensional change due to molding shrinkage and post-shrinkage becomes large, so that it may be difficult to maintain a predetermined molded product size.
[0010]
In the present invention, an inorganic filler is used as a base material. As the inorganic filler, inorganic powders such as calcium carbonate, clay, talc, mica, magnesium hydroxide, aluminum hydroxide, wollastonite, silica, glass fiber, glass beads, glass powder, or inorganic fibers such as glass fiber may be used. Used alone or in combination of two or more.
[0011]
In the present invention, the inorganic filler is usually blended in an amount of 30 to 60% by weight based on the whole molding material. Preferably, it is 40 to 60% by weight. Below the lower limit, the molding shrinkage is increased, the dimensional accuracy during molding is reduced, and the post-shrinkage is also increased, resulting in poor dimensional stability, making it difficult to apply to parts with strict dimensional requirements. is there. In addition, a large amount of resin is not preferable because defects such as sink marks and voids are likely to occur in a molded product during molding. In addition, when the value exceeds the upper limit, there is a problem that the fluidity of the molding material is reduced, so that defective filling of the molded product is likely to occur.
[0012]
Further, in the present invention, NBR is used to provide vibration damping. In order to obtain a vibration damping effect, it is desirable that the NBR and the resin have a sea-island structure. Damping of vibration (reduction of vibration energy) depends on the elastic modulus of the molded article. That is, since a molded product having a lower elastic modulus has a faster vibration damping, a structure in which an elastomer or NBR is incorporated by reacting in a crosslinked skeleton or a entangled structure at a molecular level such as IPN is used for a sea-island structure. In comparison, the vibration propagated with a high elastic modulus of the molded product is hardly attenuated, and the vibration damping effect is small. In the sea-island structure, the interface separation between the resin and the NBR also occurs, so that the propagation of vibration is suppressed and a sufficient vibration damping effect can be obtained.
[0013]
The NBR used is from 5 to 20% by weight, based on the total molding composition. Preferably, it is 10 to 20% by weight. If the value is below the lower limit, a sufficient vibration damping effect may not be obtained. If the upper limit is exceeded, the curability is remarkably reduced, so that the molding cycle may be prolonged, or the rigidity of the molded product may not be sufficient and deformation may occur. Further, when NBR is dispersed in a phenol resin, the elastic recovery of the NBR itself has an effect of suppressing shrinkage as a molded product, and has excellent characteristics in terms of dimensional accuracy and dimensional stability. Exceeding the value causes a decrease in dimensional accuracy and dimensional change due to the influence of shrinkage of the NBR itself.
[0014]
As a method for producing the phenolic resin molding material of the present invention, an ordinary method is employed. For example, it is obtained by mixing the above-mentioned components at a predetermined mixing ratio, further adding a colorant, a curing catalyst, etc., kneading them with a heating roll, and pulverizing the sheet into granules.
[0015]
The vibration damping material of the present invention is obtained by molding the phenolic resin molding material described above by a normal molding method such as compression molding, transfer molding, or injection molding, and has excellent vibration damping properties and soundproofing properties. Therefore, it is suitable as parts for automobiles, general-purpose machines, home appliances, and peripheral devices.
[0016]
【Example】
Hereinafter, the present invention will be described with reference to examples.
Table 1 shows the composition of the molding materials of the respective examples and comparative examples. Table 2 shows the results of evaluating the characteristics of the molding materials obtained in the examples and comparative examples.
[0017]
The formulations used in the examples and comparative examples are as follows.
Phenol resin: Novolak type phenol resin, PR-50716 manufactured by Sumitomo Bakelite Co., Ltd.
NBR: PNC-38 manufactured by JSR Corporation
Glass fiber: Chopped strand RES (fiber length 1-4 mm, fiber diameter 10-13 μm) manufactured by Nippon Sheet Glass Co., Ltd.
Inorganic powder: Insulite (aluminum silicate) manufactured by Mizusawa Chemical Co., Ltd.
Coloring agent: Carbon black Curing catalyst: Magnesium oxide Release agent: Stearic acid
These were blended in the ratios shown in Table 1, kneaded between heating rolls, then formed into a sheet and cooled to obtain a granular molding material.
[Table 1]
Figure 2004256741
[0019]
Test pieces for measuring the characteristics in Table 2 were produced by transfer molding using the obtained molding materials. The molding conditions were a mold temperature of 175 ° C. and a curing time of 3 minutes. The characteristics of each molding material in Table 2 were measured as mechanical strength such as tensile strength and flexural strength at normal temperature and when heated (at 120 ° C.) according to JIS K 6911 “General thermosetting plastic test method”. The vibration damping characteristics were obtained by dropping an iron ball having a weight of 0.45 g from a height of 65 mm on a molded article (10 × 125 × 1 mm) and measuring a half value (ms) of the amplitude at this time.
[0020]
[Table 2]
Figure 2004256741
[0021]
Example 1 and Example 2 were excellent molding materials in comparison with Comparative Example 2 or Comparative Example 3, in which vibration damping characteristics, mechanical strength, and dimensional stability were balanced. Example 2 was a molding material excellent in vibration damping characteristics as compared with the molding material of Comparative Example 1 obtained by blending another elastomer, polyvinyl butyral. Example 3 was a case in which a large amount of inorganic powder and a large amount of NBR were also blended, but was a material having excellent vibration damping characteristics and good dimensional stability.
[0022]
【The invention's effect】
As is clear from the results obtained by the above Examples and Comparative Examples, the phenolic resin molding material for a vibration damping material of the present invention has higher dimensional accuracy and dimensional stability than the conventional inorganic substrate-containing phenolic resin molding material. Equivalent, with excellent vibration damping and soundproofing effects. For this reason, the vibration damping material obtained by using the phenolic resin molding material for vibration damping material is suitably applied to motor peripheral parts such as automobile parts, general-purpose machine parts, and home electric appliance parts. is there.

Claims (3)

成形材料全体に対して、フェノール樹脂30〜50重量%、無機充填材30〜60重量%及びアクリロニトリルブタジエンゴム5〜20重量%を含有することを特徴とする制振材用フェノール樹脂成形材料。A phenolic resin molding material for a vibration damper, comprising 30 to 50% by weight of a phenolic resin, 30 to 60% by weight of an inorganic filler, and 5 to 20% by weight of an acrylonitrile butadiene rubber based on the whole molding material. 成形材料全体に対して、アクリロニトリルブタジエンゴムの含有量が10〜20重量%である請求項1に記載のフェノール樹脂成形材料。The phenolic resin molding material according to claim 1, wherein the content of the acrylonitrile-butadiene rubber is 10 to 20% by weight based on the whole molding material. 請求項1または2に記載のフェノール樹脂成形材料を用いてなる制振材。A vibration damping material comprising the phenolic resin molding material according to claim 1.
JP2003050937A 2003-02-27 2003-02-27 Phenolic resin molding material and vibration damping material Pending JP2004256741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003050937A JP2004256741A (en) 2003-02-27 2003-02-27 Phenolic resin molding material and vibration damping material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003050937A JP2004256741A (en) 2003-02-27 2003-02-27 Phenolic resin molding material and vibration damping material

Publications (1)

Publication Number Publication Date
JP2004256741A true JP2004256741A (en) 2004-09-16

Family

ID=33116213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003050937A Pending JP2004256741A (en) 2003-02-27 2003-02-27 Phenolic resin molding material and vibration damping material

Country Status (1)

Country Link
JP (1) JP2004256741A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257265A (en) * 2005-03-17 2006-09-28 Sumitomo Bakelite Co Ltd Phenol resin molding material and damping material by molding the same
JP2007126584A (en) * 2005-11-07 2007-05-24 Sumitomo Bakelite Co Ltd Phenolic resin molding material for vibration damper and vibration damper obtained by molding the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257265A (en) * 2005-03-17 2006-09-28 Sumitomo Bakelite Co Ltd Phenol resin molding material and damping material by molding the same
JP2007126584A (en) * 2005-11-07 2007-05-24 Sumitomo Bakelite Co Ltd Phenolic resin molding material for vibration damper and vibration damper obtained by molding the same

Similar Documents

Publication Publication Date Title
JP4569469B2 (en) Phenol resin molding material for pulley, resin pulley, and method of using resin molding material
JP5098155B2 (en) Phenolic resin molding material for damping material and damping material formed by molding the same
JP2012197376A (en) Phenol resin molding material
JP5598502B2 (en) Damping material formed by molding phenolic resin molding material for damping material
JP2004256741A (en) Phenolic resin molding material and vibration damping material
JP2011068705A (en) Phenolic resin molding material
JP4952192B2 (en) Thermosetting resin molding material
JP2005281365A (en) Phenolic resin molding material for vibration-damping material and vibration-damping material prepared by molding the same
JP2005048009A (en) Phenolic resin molding compound
JP2006257114A (en) Phenolic resin molding material for commutator
JP2002220507A (en) Phenol resin molding material
JP5540542B2 (en) Phenolic resin molding material and resin pulley
JP2653574B2 (en) Phenolic resin composition with excellent impact strength
JP2006265424A (en) Phenol resin molding material for vibration damper and vibration damper obtained by molding the same
JP2002212388A (en) Phenolic resin molding material
JP3580527B2 (en) Phenolic resin molding material
JP2006257265A (en) Phenol resin molding material and damping material by molding the same
JP2008184490A (en) Phenolic resin molding material and molded article
JP2004282923A (en) Phenolic resin molding compound for commutator
JP2003184998A (en) Phenolic resin pulley
JP3568818B2 (en) Phenolic resin molding material
JP3851048B2 (en) Phenolic resin molding material
JP3824398B2 (en) Phenolic resin molding material
JP3555836B2 (en) Phenolic resin molding material
JP2006096778A (en) Phenolic resin molding material