JP2004256653A - Organic/inorganic composite particle, method for producing the same, expandable organic/inorganic composite particle, organic/inorganic composite pre-expanded particle, and organic/inorganic composite expansion molded article - Google Patents

Organic/inorganic composite particle, method for producing the same, expandable organic/inorganic composite particle, organic/inorganic composite pre-expanded particle, and organic/inorganic composite expansion molded article Download PDF

Info

Publication number
JP2004256653A
JP2004256653A JP2003048427A JP2003048427A JP2004256653A JP 2004256653 A JP2004256653 A JP 2004256653A JP 2003048427 A JP2003048427 A JP 2003048427A JP 2003048427 A JP2003048427 A JP 2003048427A JP 2004256653 A JP2004256653 A JP 2004256653A
Authority
JP
Japan
Prior art keywords
organic
inorganic composite
weight
styrene
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003048427A
Other languages
Japanese (ja)
Inventor
Yukio Aramomi
幸雄 新籾
Yoshiyuki Kuwagaki
善行 桑垣
Yoshiki Nakajo
善樹 中條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2003048427A priority Critical patent/JP2004256653A/en
Publication of JP2004256653A publication Critical patent/JP2004256653A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide organic/inorganic composite particles capable of obtaining a highly heat-resistant expansion molded article while maintaining the high expansion moldability inherent in styrene-based resin. <P>SOLUTION: The organic/inorganic composite particles are produced by the following process: A polycondensation mixture is obtained by polycondensation, in the presence of an acid catalyst, of only an organosilicon compound in a monomer mixture of 50-99.5 wt.% of a styrene-based monomer and 0.5-50 wt.% of the organosilicon compound having a hydrolyzable organic group and an aromatic group, and then dispersed in an aqueous suspension containing a polymerization initiator for the styrene-based monomer followed by polymerizing the styrene-based monomer. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、 機無機複合粒子、発泡性有機無機複合粒子、有機無機複合予備発泡粒子、有機無機複合発泡成形体並びに有機無機複合粒子の製造方法に関する。
【0002】
【従来の技術】
従来からスチレン系樹脂を原料とした発泡成形体が汎用されている。この理由としては、スチレン系樹脂を用いると、高発泡倍率の発泡成形体を比較的容易に得ることができると共にスチレン系樹脂予備発泡粒子を経由して所望の形状を有する発泡成形体を得ることができるからである。
【0003】
更に、上記スチレン系樹脂からなる発泡成形体は、高発泡倍率であるにもかかわらず比較的強靭であり、しかも、独立気泡を有していることから断熱性にも優れ、冷凍倉庫の床、天井、壁材或いは梱包材や保冷容器等に汎用されている。
【0004】
しかしながら、上記スチレン系樹脂からなる発泡成形体は耐熱性に乏しく、スチレン系樹脂からなる発泡成形体を70℃以上の雰囲気下にて使用すると、発泡成形体が大きく変形するといった問題点があった。
【0005】
そこで、特許文献1には、スチレン系樹脂にポリフェニレンエーテルを混合してなる耐熱性発泡性樹脂粒子が提案されているものの、この耐熱性発泡性樹脂粒子は、発泡に際して発泡助剤を添加する必要があり、このように発泡助剤を添加すると、発泡性は向上するものの発泡成形体の耐熱性が低下してしまうといった問題点があった。
【0006】
【特許文献1】
特公平2−49333号公報
【0007】
【発明が解決しようとする課題】
本発明は、スチレン系樹脂が有する優れた発泡成形性を維持しつつ、優れた耐熱性を有する発泡成形体を得ることができる有機無機複合粒子及びその製造方法、並びに、有機無機複合粒子を用いた発泡性有機無機複合粒子、有機無機複合予備発泡粒子及び有機無機複合発泡成形体を提供する。
【0008】
【課題を解決する手段】
本発明の有 無機複合粒子は、スチレン系単量体50〜99.5重量%と、加水分解性有機基及び芳香族基を有する有機ケイ素化合物0.5〜50重量%とを混合してなる単量体混合物中の有機ケイ素化合物のみを酸触媒の存在下にて重縮合させて得られる重縮合混合物を、スチレン系単量体の重合開始剤を含む水系懸濁液中に分散させて上記スチレン系単量体を重合させてなることを特徴とする。
【0009】
上記単量体混合物を構成するスチレン系単量体としては、スチレンを主成分としておれば、スチレンの他に、スチレンと共重合可能な単量体が混合していてもよく、このような単量体としては、例えば、α−メチルスチレン、アクリロニトリル、メチルメタクリレート、ジビニルベンゼン等が挙げられる。
【0010】
又、上記単量体混合物を構成する、加水分解性有機基及び芳香族基を有する有機ケイ素化合物としては、特に限定されないが、下記式1に示した有機ケイ素化合物が好ましい。
(R (R Si(OR ・・・式1
なお、式1中、R 、R は芳香族基を表し、R は低級アルキル基を表す。k、m、nは、k+m+n=4及び1≦(k+m)≦2の条件を満たす0又は自然数である。
【0011】
そして、式1で表した有機ケイ素化合物中のR 、R としては、フェニル基、ナフチル基が好ましく、更に、R 、R は置換基を有していてもよく、この置換基としては、重水素原子、メチル基、エチル基が好ましい。なお、R 、R は同一の置換基であっても互いに異なった置換基であってもよい。又、式1で表した有機ケイ素化合物中のR としては、メチル基、エチル基、プロピル基、ブチル基が好ましい。
【0012】
ここで、式1で示した有機ケイ素化合物を具体的に説明する。先ず、二官能型の有機ケイ素化合物としては下記式2で表される化合物が挙げられる。
Si(OR ・・・式2
【0013】
このような二官能型の有機ケイ素化合物としては、例えば、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジプロポキシシラン、ジナフチルジメトキシシラン、ジナフチルジエトキシシラン、ジナフチルジプロポキシシラン、ナフチルフェニルジエトキシシラン等が挙げられる。
【0014】
そして、三官能型の有機ケイ素化合物としては下記式3で表される化合物が挙げられる。
Si(OR ・・・式3
【0015】
このような三官能型の有機ケイ素化合物としては、例えば、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリプロポキシシラン、ナフチルトリメトキシシラン、ナフチルトリエトキシシラン等が挙げられる。
【0016】
そして、上記式1で表される有機ケイ素化合物は、二官能型の有機ケイ素化合物と三官能型の有機ケイ素化合物を一種或いは二種用いるのが好ましく、二官能型の有機ケイ素化合物と三官能型の有機ケイ素化合物を一種或いは二種用いたものに後述する四官能型の有機ケイ素化合物を併用したものがより好ましい。このように複数種類の有機ケイ素化合物を併用することによってポリシロキサン化合物の分子構造を最適な構造に制御し、有機無機複合粒子から所望の耐熱性を有する有機無機複合発泡成形体を得ることができ、更に、四官能型の有機ケイ素化合物を併用することによって、スチレン系樹脂中において、ポリシロキサン化合物が直鎖状の分子構造をとり、その結果、得られる有機無機複合発泡成形体の加熱寸法変化率を低減させることができる。又、上記有機ケイ素化合物には、この有機ケイ素化合物を重合度が1000以下に部分的に重縮合させたものを混合させてもよい。
【0017】
なお、四官能型の有機ケイ素化合物としては式4で示される化合物が挙げられる。
Si(OR ・・・式4
【0018】
式4で表した有機ケイ素化合物中のR としては、メチル基、エチル基、プロピル基、ブチル基が好ましく、このような有機ケイ素化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン等が挙げられる。
【0019】
二官能型の有機ケイ素化合物と三官能型の有機ケイ素化合物とを併用する場合には、有機ケイ素化合物中における二官能型の有機ケイ素化合物の含有量は、少ないと、有機無機複合粒子を用いた有機無機複合予備発泡粒子の発泡成形性が低下することがあり、又、多いと、有機無機複合発泡成形体の耐熱性が低下することがあるので、0.1〜20重量%が好ましく、0.5〜10重量%がより好ましい。
【0020】
更に、二官能型の有機ケイ素化合物と三官能型の有機ケイ素化合物を一種或いは二種用いたものに四官能型の有機ケイ素化合物を併用する場合には、有機ケイ素化合物中における四官能型の有機ケイ素化合物の含有量は、少ないと、有機無機複合発泡成形体の耐熱性が低下することがあり、又、多いと、スチレン系単量体を重合させて得られるスチレン系樹脂と有機ケイ素化合物を重縮合させて得られるポリシロキサン化合物とが相分離することがあるので、二官能型の有機ケイ素化合物及び/又は三官能型の有機ケイ素化合物の総量100重量部に対して0.1〜10重量部が好ましく、0.5〜5重量部がより好ましい。
【0021】
そして、単量体混合物中におけるスチレン系単量体の含有量は、少ないと、有機無機複合粒子の発泡成形性が低下して所望の有機無機複合発泡成形体を得ることができなくなり、又、多いと、有機無機複合粒子から得られる有機無機複合発泡成形体の耐熱性が低下するので、50〜99.5重量%に限定され、60〜99.5重量%が好ましい。同様の理由で、単量体混合物中における有機ケイ素化合物の含有量は、0.5〜50重量%に限定され、0.5〜40重量%が好ましい。
【0022】
このようにして構成される単量体混合物中の有機ケイ素化合物のみを酸触媒の存在下にて重縮合させて重縮合混合物を得る。このような酸触媒としては、スチレン系単量体を重合させることなく有機ケイ素化合物のみを重縮合させることができれば、特に限定されず、例えば、塩酸、硫酸、硝酸、リン酸等の無機酸、蟻酸、酢酸、トリクロロ酸、トリフルオロ酢酸、プロピオン酸等のカルボン酸、メタンスルフォン酸、エタンスルフォン酸、p−トルエンスルフォン酸等のスルフォン酸等が挙げられる。
【0023】
上記酸触媒の添加量としては、少ないと、有機ケイ素化合物を充分に重縮合させることができないことがあり、又、多いと、スチレン系単量体を重合させる際にスチレン系単量体の分散状態が不安定となることがあるので、単量体混合物100重量部に対して0.001〜0.2重量部が好ましい。
【0024】
そして、上記単量体混合物中の有機ケイ素化合物のみを酸触媒の存在下にて重縮合させる要領としては、従来から公知の方法を用いることができ、例えば、単量体混合物中に酸触媒を添加した上で攪拌下、室温〜60℃程度まで加熱して1〜100時間程度、反応させることにより、有機ケイ素化合物のみを重縮合する方法が挙げられる。なお、単量体混合物中の有機ケイ素化合物の重縮合は、窒素等のような不活性ガスの存在下で行ってもよい。
【0025】
次に、上記のようにして得られた重縮合混合物をスチレン系単量体の重合開始剤を含む水系懸濁液中に分散させ、重合開始剤の分解温度以上に加熱してスチレン系単量体を重合させることにより有機無機複合粒子を得ることができる。
【0026】
上記スチレン系単量体の重合開始剤としては、従来からスチレン系単量体の重合に用いられているものであれば、特に限定されず、例えば、ベンゾイルパーオキサイド、t−ブチルパーオキシベンゾエート、ラウリルパーオキサイド、t−ブチルパーオキサイド、t−ブチルパーオキシピバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、2,2−t−ブチルパーオキシブタン、t−ブチルパーオキシ−3、3、5トリメチルヘキサノエート、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート等の有機過酸化物、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ化合物が挙げられる。
【0027】
なお、上記重合開始剤は単独で或いは二種以上を併用することができるが、分子量を調整して残存スチレン系単量体を減少させるために、10時間の半減期を得るための分解温度が70〜120℃である重合開始剤を複数種類、併用することが望ましい。
【0028】
更に、重縮合混合物を水系懸濁液中に分散させてスチレン系単量体を重合させる際に用いられる懸濁安定剤として、第三リン酸カルシウム、ピロリン酸マグネシウムなどの難溶性無機化合物等が挙げられる。
【0029】
そして、懸濁安定剤として難溶性無機化合物を用いる場合にはアニオン界面活性剤を併用することが好ましく、このようなアニオン界面活性剤としては、例えば、脂肪酸石鹸;N−アシルアミノ酸又はその塩;アルキルエーテルカルボン酸塩等のカルボン酸塩;アルキルベンゼンスルフォン酸塩、アルキルナフタレンスルフォン酸塩、アルキルスルホ酢酸塩、ジアルキルスルホコハク酸エステル塩、α−オレフィンスルフォン酸塩等のスルフォン酸塩;高級アルコール硫酸エステル塩、第二級高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩等の硫酸エステル塩;アルキルエーテルリン酸エステル塩、アルキルリン酸エステル塩等のリン酸エステル塩等が挙げられる。
【0030】
スチレン系単量体の重合を水系懸濁液中にて行うにあたっては、重合温度を適宜調整したり或いは重合開始剤の配分を調整することによって、スチレン系単量体を重合させて得られるスチレン系樹脂の重量平均分子量や重合度を調整することが好ましい。
【0031】
GPC法によるスチレン系樹脂のスチレン換算重量平均分子量Mwは、小さいと、有機無機複合粒子から得られる有機無機複合発泡成形体の機械的強度が低下することがあり、又、大きいと、有機無機複合粒子の発泡性が低下することがあるので、15万〜60万が好ましい。なお、GPC法によるスチレン系樹脂のスチレン換算重量平均分子量Mwは、GPC法によって測定されたものをいう。
【0032】
一方、重縮合混合物を分散させる水系懸濁液中にスチレン系樹脂粒子を含有させ、このスチレン系樹脂粒子を種粒子としてスチレン系単量体を重合させる、所謂、シード重合によりスチレン系単量体を重合させてもよい。
【0033】
上記種粒子となるスチレン系樹脂粒子を構成するスチレン系樹脂としては、ポリスチレン、スチレンとこれと共重合可能な単量体との共重合体等が挙げられ、スチレンと共重合可能な単量体としては、α−メチルスチレン、アクリロニトリル、メチルメタクリレート、ジビニルベンゼン等が挙げられる。更に、上記種粒子として、本発明の有機無機複合粒子を用いてもよい。
【0034】
そして、上記スチレン系樹脂粒子の粒径は、小さいと、重縮合混合物を全て吸収できなくなることがあり、又、大きいと、得られる有機無機複合粒子の粒径が大きくなり、有機無機複合粒子から得られる有機無機複合予備発泡粒子を成形金型のキャビティ内に充填する際の充填性が低下することがあるので、0.3〜1.5mmが好ましく、0.3〜1.0mmがより好ましい。
【0035】
そして、水系懸濁液中におけるスチレン系樹脂粒子の含有量は、少ないと、重縮合混合物を全て吸収できなくなって重合粉末が多量に発生することがあり、又、多いと、スチレン系樹脂粒子の表面のみに重縮合混合物が吸収されることとなって、得られる有機無機複合発泡成形体の耐熱性が不均一となることがあるので、単量体混合物100重量部に対して10〜900重量部が好ましく、15〜700重量部がより好ましく、15〜500重量部が特に好ましい。
【0036】
重縮合混合物中のスチレン系単量体をシード重合によって重合する場合には、種粒子が分散した状態の水系懸濁液中に重縮合混合物を連続的に或いは断続的に供給し、重縮合混合物を種粒子に含浸、膨潤させ、種粒子中にて重縮合混合物のスチレン系単量体を重合させる。なお、水系懸濁液中に重縮合混合物を供給するにあたり、水系懸濁液中に重縮合混合物を一度に多量に供給するとスチレン系樹脂粒子同士が結合してしまうことがあるので、重縮合混合物を水系懸濁液中に一定量でもって継続的に供給するのが好ましい。
【0037】
そして、水系懸濁液中に重縮合混合物を供給するにあたり、重縮合混合物を水系懸濁液中に供給している間は、成長中の粒子中にスチレン系単量体が50重量%以下となるように水系懸濁液中に重縮合混合物を添加するように調整するのが好ましい。これは、成長途上の粒子中におけるスチレン系単量体の含有量が50重量%を超えると、有機無機複合粒子以外のスチレン系樹脂粒子が増加するためである。
【0038】
このようにして得られた有機無機複合粒子は、スチレン系単量体を重合させて得られたスチレン系樹脂中に、有機ケイ素化合物を重縮合させて得られたポリシロキサン化合物がナノメートル単位で分散した複合構造をとっている。
【0039】
この複合構造は、1H−NMR、13C−NMR、UV、FT−IR等の測定機器を用いて確認することができ、具体的には、スチレン系樹脂とポリシロキサン化合物とが互いの芳香族基間のπ−π電子相互作用によって結合しており、このπ−π電子相互作用によって、有機無機複合粒子中において、スチレン系樹脂とポリシロキサン化合物とが不測に相分離するといったことはない。
【0040】
しかも、有機無機複合粒子は、ポリシロキサン化合物がスチレン系樹脂中にナノメートル単位で分散していることから透明性に優れており、具体的には、有機無機複合粒子の透明性の指標となる白度が60未満となっている。なお、有機無機複合粒子の白度は、JIS K7105に準拠して測定されたものをいう。
【0041】
更に、上記有機無機複合粒子は、その製造にあたって、水系懸濁液中にて製造されるものであって有機溶媒を用いないことから、従来のように有機溶媒の回収を行う必要はなく環境衛生にも優れている。
【0042】
又、上記有機無機複合粒子の形状は、略球状の他に、円柱状、紡錘状の何れであってもよいが、有機無機複合粒子から製造された後述する有機無機複合予備発泡粒子の発泡成形時、有機無機複合予備発泡粒子同士の熱融着を均一に且つ確実に行うことができて、優れた機械的強度を有し且つ均一な品質を有する有機無機複合発泡成形体が得られることから略球状であるのが好ましい。
【0043】
次に、上記有機無機複合粒子から発泡性有機無機複合粒子を製造する要領について説明する。発泡性有機無機複合粒子は、有機無機複合粒子に揮発性発泡剤を含有させることによって製造することができる。
【0044】
有機無機複合粒子に揮発性発泡剤を含有させる方法としては、従来から汎用の方法を用いることができ、例えば、水系懸濁液中に揮発性発泡剤を圧入することによって成長途上の有機無機複合粒子中に揮発性発泡剤を含浸させる方法、得られた有機無機複合粒子に揮発性発泡剤を含浸させる方法等が挙げられる。
【0045】
上記揮発性発泡剤としては、従来から汎用されているものであれば、特に限定されず、例えば、プロパン、ブタン、ペンタン、ヘプタン等の鎖状脂肪族炭化水素、ジクロロモノフルオロエタン(HCFC−141b)、1−クロロ−1、1−ジフルオロエタン(HCFC−142b)、クロロテトラフルオロエタン(HCFC−124)、1、1,1,2−テトラフルオロエタン(HFC−134a)、ジフルオロエタン(HFC−152a)等のフロン系発泡剤、二酸化炭素や窒素等の無機発泡剤等が挙げられ、鎖状脂肪族炭化水素が好ましく、ブタン、イソブタン、ペンタンがより好ましい。なお、揮発性発泡剤は、単独で用いられても併用されてもよい。
【0046】
有機無機複合粒子中に含有させる揮発性発泡剤の量は、少ないと、得られる有機無機複合発泡成形体の発泡倍率が低くなったり、或いは、得られる有機無機複合発泡成形体を製造する際における二次発泡力が低下して有機無機複合発泡成形体の外観が低下することがあり、又、多いと、有機無機複合発泡成形体が収縮したり、或いは、有機無機複合予備発泡粒子中の発泡剤量の調整や成形サイクルが長くなって生産性が低下することがあるので、2.0〜9.0重量%が好ましく、3.0〜7.0重量%がより好ましい。
【0047】
又、発泡性有機無機複合粒子には気泡調整剤が含有されていてもよい。この気泡調整剤としては、従来から汎用されているものであれば、特に限定されず、例えば、ステアリン酸亜鉛、エチレンビスステアリン酸アマイド等のステアリン酸塩、トリグリセリンヒドロキシステアリン酸エステル等のトリグリセリン脂肪酸エステル等が挙げられる。なお、発泡性有機無機複合粒子中における気泡調整剤の含有量は、0.01〜0.8重量%が好ましい。
【0048】
その他に、発泡性有機無機複合粒子には、その物性を損なわない範囲内において、帯電防止剤、発泡セル造核剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤等を適宜含有させてもよい。
【0049】
続いて、上記発泡性有機無機複合粒子を発泡させて有機無機複合発泡成形体を製造する要領について説明する。先ず、上記発泡性有機無機複合粒子を汎用の予備発泡機を用いて予備発泡させて有機無機複合予備発泡粒子を得る。
【0050】
上記有機無機複合予備発泡粒子の嵩密度は、小さいと、有機無機複合発泡成形品が収縮する等して有機無機複合発泡成形品の機械的強度が低下することがあり、又、大きいと、有機無機複合予備発泡粒子を発泡させて得られる有機無機複合発泡成形体の軽量性が低下することがあるので、0.01〜0.5g/cm が好ましく、0.014〜0.2g/cm がより好ましい。なお、有機無機複合予備発泡粒子の嵩密度は、JIS K6911:1995年「熱硬化性プラスチック一般試験方法」に記載の方法で測定したものをいう。
【0051】
そして、有機無機複合予備発泡粒子を常圧にて所定期間だけ熟成して有機無機複合予備発泡粒子中の揮発性発泡剤の含有量の調整を行う。有機無機複合予備発泡粒子の熟成温度は、低いと、有機無機複合予備発泡粒子の熟成期間が長くなることがあり、又、高いと、有機無機複合予備発泡粒子中の揮発性発泡剤の含有量が少なくなって有機無機複合予備発泡粒子の成形性が低下することがあるので、15〜60℃が好ましく、20〜40℃がより好ましい。
【0052】
しかる後、上記有機無機複合予備発泡粒子を成形金型の所望形状をしたキャビティ内に充填して水蒸気等で加熱し、有機無機複合予備発泡粒子を発泡させて有機無機複合予備発泡粒子同士を熱融着一体化させ、所望形状を有する有機無機複合発泡成形体を得ることができる。
【0053】
又、上記有機無機複合粒子中のポリシロキサン化合物は、スチレン系樹脂分子に対して可塑化効果を発現することから、有機無機複合粒子から製造された有機無機複合予備発泡粒子は発泡成形性に優れている。
【0054】
そして、上述のように、有機無機複合予備発泡粒子は発泡成形性に優れていることから、この有機無機複合予備発泡粒子を用いた発泡成形体の製造時に、従来のように発泡助剤を用いる必要はなく、発泡助剤の添加に起因した発泡成形体の耐熱性の低下は発生せず、よって、上記有機無機複合粒子を用いて得られた有機無機複合発泡成形体は優れた耐熱性を有する。
【0055】
【実施例】
(実施例1)
スチレン2000重量部及びフェニルトリメトキシシラン200重量部からなる単量体混合物を攪拌機付き重合容器に供給して攪拌しつつ、酸触媒として0.1Nの塩酸3重量部を上記攪拌機付き重合容器に加えて30℃で24時間攪拌してフェニルトリメトキシシランを重縮合させて重縮合混合物を得た。
【0056】
次に、水2000重量部、懸濁安定剤としてピロリン酸マグネシウム100重量部及び界面活性剤としてドデシルベンゼンスルフォン酸ナトリウム2.0重量部を重合容器内の重縮合混合物中に供給し、攪拌しながらベンゾイルパーオキサイド(10時間の半減期を得るための分解温度:73.6℃)7.6重量部及びt−ブチルパーオキシベンゾエート(10時間の半減期を得るための分解温度:105℃)1.3重量部を添加して、重合容器内の水系懸濁液を90℃に加熱して6時間保持し、水系懸濁液中にてスチレンを重合させた。
【0057】
更に、重合容器内の水系懸濁液の温度が125℃となるように加熱して2時間保持してスチレンの重合を行った後、冷却、脱水乾燥して有機無機複合粒子を得た。この有機無機複合粒子の白度は40.5であった。そして、重合粉末の発生も非常に少ないものであった。
【0058】
次に、水2000重量部、有機無機複合粒子1800重量部、ピロリン酸マグネシウム6.0重量部及びドデシルベンゼンスルフォン酸ナトリウム0.4重量部を別の攪拌機付き重合容器内に供給して攪拌しつつ、液温が90℃となるように加熱、保持した。
【0059】
しかる後、重合容器内にブタン162重量部を圧入して6時間保持して有機無機複合粒子にブタンを含浸させた後、液温を30℃以下となるまで冷却して発泡性有機無機複合粒子を得た。なお、発泡性有機無機複合粒子中におけるブタン量は、6.5重量%であった。
【0060】
得られた発泡性有機無機複合粒子を乾燥させた上で、この発泡性有機無機複合粒子の表面に帯電防止剤としてポリエチレングリコールを塗布すると共に、発泡性有機無機複合粒子の表面に、予備発泡時の結合防止剤としてステアリン脂亜鉛及びトリグリセリンヒドロキシステアリン酸エステルを発泡性有機無機複合粒子に対して各0.05重量%塗布し、発泡性有機無機複合粒子を13℃の恒温室内にて5日間放置して熟成させた。
【0061】
次に、上記発泡性有機無機複合粒子を予備発泡機を用いて嵩密度0.033g/cm に予備発泡させて有機無機複合予備発泡粒子とした後、この有機無機複合予備発泡粒子を20℃で24時間熟成した。
【0062】
しかる後、有機無機複合予備発泡粒子を成形金型のキャビティ内に充填して、水蒸気によって有機無機複合予備発泡粒子を加熱して発泡させ、有機無機複合予備発泡粒子同士を熱融着一体化させて、縦400mm×横300mm×高さ30mmの直方体形状の有機無機複合発泡成形体を得た。
【0063】
このようにして得られた有機無機複合発泡成形体を50℃の乾燥室で6時間養成した上で、有機無機複合発泡成形体の密度を測定したところ、0.033g/cm であった。
【0064】
(実施例2)
フェニルトリメトキシシランを200重量部の代わりに20重量部とした以外は実施例1と同様にして有機無機複合発泡成形体を得た。なお、有機無機複合粒子の白度は39.3であると共に、発泡性有機無機複合粒子中におけるブタン量は、6.3重量%であった。
【0065】
(実施例3)
フェニルトリメトキシシランを200重量部の代わりに1000重量部とした以外は実施例1と同様にして有機無機複合発泡成形体を得た。なお、有機無機複合粒子の白度は53.5であると共に、発泡性有機無機複合粒子中におけるブタン量は、6.1重量%であった。
【0066】
(実施例4)
有機ケイ素化合物として、フェニルトリメトキシシラン200重量部及びテトラエトキシシラン10重量部を用いたこと以外は実施例1と同様にして有機無機複合発泡成形体を得た。なお、有機無機複合粒子の白度は43.2であると共に、発泡性有機無機複合粒子中におけるブタン量は、6.7重量%であった。
【0067】
(比較例1)
フェニルトリメトキシシランを添加しなかったこと以外は実施例1と同様にして発泡成形体を得た。なお、ポリスチレン粒子の白度は40.5であると共に、発泡性ポリスチレン粒子中におけるブタン量は、6.5重量%であった。
【0068】
(比較例2)
フェニルトリメトキシシラン200重量部の代わりにテトラエトキシシラン200重量部を用いたこと以外は実施例1と同様にして有機無機複合発泡成形体を製造しようとしたが、発泡性有機無機複合粒子の発泡性が低くて有機無機複合発泡成形体を得ることはできなかった。なお、有機無機複合粒子中のポリスチレンとポリシロキサン化合物とは相分離しており、有機無機複合粒子の白度は73.5であった。又、発泡性有機無機複合粒子中におけるブタン量は、6.4重量%であった。
【0069】
(比較例3)
フェニルトリメトキシシランの重縮合をスチレン中で行わず、フェニルトリメトキシシランのみを水系懸濁液中で重縮合させてポリフェニルトリメトキシシランを得た。
【0070】
そして、上記ポリフェニルトリメトキシシラン200重量部を水系懸濁液から取り出し、この取り出したポリフェニルトリメトキシシラン200重量部をスチレン2000重量部が分散した水系懸濁液中に添加してスチレンの重合を行って有機無機複合粒子を得た。得られた有機無機複合粒子中のポリスチレンとポリシロキサン化合物とは相分離しており、有機無機複合粒子の白度は71.6であった。
【0071】
次に、上記有機無機複合粒子から実施例1と同様の要領で有機無機複合発泡成形体を成形しようとしたが、有機無機複合粒子の発泡成形性が低くて良好な有機無機複合発泡成形体を得ることはできなかった。
【0072】
(実施例5)
スチレン1500重量部及びフェニルトリメトキシシラン200重量部を攪拌機付き重合容器内に供給して攪拌しつつ、酸触媒として0.1Nの塩酸3重量部を重合容器内に供給して30℃で24時間攪拌してフェニルトリメトキシシランの重縮合を行って重縮合混合物を得た。この重縮合混合物を攪拌しつつ、重縮合混合物中にベンゾイルパーオキサイド(10時間の半減期を得るための分解温度:73.6℃)7.6重量部及びt−ブチルパーオキシベンゾエート(10時間の半減期を得るための分解温度:105℃)1.3重量部を添加した。
【0073】
一方、別の攪拌機付き重合容器内に、種粒子として粒径0.45〜0.71mmのポリスチレン粒子500重量部、水2000重量部、懸濁安定剤としてピロリン酸マグネシウム100重量部及び界面活性剤としてドデシルベンゼンスルフォン酸ナトリウム2.0重量部を供給して水系懸濁液とし、この水系懸濁液を90℃に昇温、保持して重合温度とした。
【0074】
次に、上記水系懸濁液を攪拌しながら、この水系懸濁液中に重縮合混合物を3時間かけて反応容器内に均一速度で継続的に供給し、重縮合混合物を種粒子に吸収させながらスチレンの重合を行った。
【0075】
なお、重縮合混合物を水系懸濁液中に供給し始めてから供給し終わるまでの間、20分間隔で成長途上の有機無機複合粒子を採取し、有機無機複合粒子中のスチレンの含有量を測定したところ、有機無機複合粒子中におけるスチレン含有量は、40重量%以下であった。
【0076】
そして、重縮合混合物の水系懸濁液中への供給が完了後、水系懸濁液を90℃で2時間放置し、しかる後、水系懸濁液を125℃に昇温してから2時間放置した上で、水系懸濁液を冷却して有機無機複合粒子を得た。なお、この有機無機複合粒子の白度は37.5であった。又、重合粉末の発生も非常に少ないものであった。
【0077】
次に、水2000重量部、有機無機複合粒子1800重量部、ピロリン酸マグネシウム6.0重量部及びドデシルベンゼンスルフォン酸ナトリウム0.4重量部を別の攪拌機付き重合容器内に供給して攪拌しつつ、液温が90℃となるように加熱、保持した。
【0078】
しかる後、重合容器内にブタン162重量部を圧入して6時間保持して有機無機複合粒子にブタンを含浸させた後、液温を30℃以下となるまで冷却して発泡性有機無機複合粒子を得た。なお、発泡性有機無機複合粒子中におけるブタン量は、6.6重量%であった。
【0079】
得られた発泡性有機無機複合粒子を乾燥させた上で、この発泡性有機無機複合粒子の表面に帯電防止剤としてポリエチレングリコールを塗布すると共に、発泡性有機無機複合粒子の表面に、予備発泡時の結合防止剤としてステアリン脂亜鉛及びトリグリセリンヒドロキシステアリン酸エステルを発泡性有機無機複合粒子に対して各0.05重量%塗布し、発泡性有機無機複合粒子を13℃の恒温室内にて5日間放置して熟成させた。
【0080】
次に、上記発泡性有機無機複合粒子を予備発泡機を用いて嵩密度0.033g/cm に予備発泡させて有機無機複合予備発泡粒子とした後、この有機無機複合予備発泡粒子を20℃で24時間熟成した。
【0081】
しかる後、有機無機複合予備発泡粒子を成形金型のキャビティ内に充填して、水蒸気によって有機無機複合予備発泡粒子を加熱して発泡させ、有機無機複合予備発泡粒子同士を熱融着一体化させて、縦400mm×横300mm×高さ30mmの直方体形状の有機無機複合発泡成形体を得た。
【0082】
このようにして得られた有機無機複合発泡成形体を50℃の乾燥室で6時間養成した上で、有機無機複合発泡成形体の密度を測定したところ、0.033g/cm であった。
【0083】
(実施例6)
フェニルトリメトキシシランを200重量部の代わりに20重量部とした以外は実施例5と同様にして有機無機複合発泡成形体を得た。なお、有機無機複合粒子の白度は36.8であると共に、発泡性有機無機複合粒子中におけるブタン量は、6.5重量%であった。
【0084】
(実施例7)
フェニルトリメトキシシランを200重量部の代わりに1000重量部とした以外は実施例5と同様にして有機無機複合発泡成形体を得た。なお、有機無機複合粒子の白度は36.8であると共に、発泡性有機無機複合粒子中におけるブタン量は、6.5重量%であった。
【0085】
(比較例4)
フェニルトリメトキシシランを添加しなかったこと以外は実施例5と同様にして発泡成形体を得た。なお、ポリスチレン粒子の白度は39.0であると共に、発泡性ポリスチレン粒子中におけるブタン量は、6.4重量%であった。
【0086】
(比較例5)
フェニルトリメトキシシラン200重量部の代わりにテトラエトキシシラン200重量部を用いたこと以外は実施例5と同様にして有機無機複合発泡成形体を得た。なお、有機無機複合粒子の白度は56.8であったが、有機無機複合粒子中にはポリシロキサン化合物を多く含む微粉末が多量に発生していた。又、発泡性有機無機複合粒子中におけるブタン量は、6.4重量%であった。
【0087】
上記の如くして得られた有機無機複合粒子を構成するポリスチレンにおけるGPC法によるスチレン換算重量平均分子量Mw、有機無機複合粒子の白度、有機無機複合発泡成形体の加熱寸法変化率及び熱融着率を下記に示した方法で測定し、その結果を表1に示した。
【0088】
(重量平均分子量Mw)
有機無機複合粒子30gをクロロホルム10ミリリットル中に溶解させたものを0.45μmのクロマトディスクで濾過する。この濾過された有機無機複合粒子が溶解されたクロロホルムをガスクロマトグラフ(Waters社製 商品名「HPLC(Detector484、Pump510)」)を用いて測定した。なお、測定条件は下記条件とする。
【0089】

Figure 2004256653
【0090】
(白度)
有機無機複合粒子の白度をJIS K7105に準拠して測定する。具体的には、石英製の試料容器(φ30mm×13mm、試料面積:φ30mm)に有機無機複合粒子を充填し、積分球方式色差計(日本電色工業社製 商品名「ND−1001 DP」)を用いて、標準板の三刺激値をY=82.6、X=81.2、Z=92.5として反射法にて有機無機複合粒子の白度を測定する。
【0091】
(加熱寸法変化率)
有機無機複合発泡成形体の加熱寸法変化率をJIS K6767に準拠して測定する。具体的には、有機無機複合発泡成形体から縦150mm×横150mm×高さ30mmの直方体形状の試験片を切り出す。
【0092】
上記試験片の上面に、縦方向に50mm間隔で3本の適当な長さの直線を記す。そして、各直線の長さを測定し、その平均値を算出して加熱前寸法とする。しかる後、上記試験片を90℃に保持した乾燥機内に水平状態で載置して22時間放置した後、温度23℃及び相対湿度50%に保持された空間内に1時間放置する。そして、上記試験片の上面に記した3本の直線の夫々の長さを測定して、それらの平均値を算出して加熱後寸法とし、下記式によって加熱寸法変化率を算出する。
(加熱寸法変化率)=100×(加熱後寸法−加熱前寸法)/加熱前寸法
【0093】
(熱融着率)
有機無機複合発泡成形体から、縦400mm×横300mm×厚さ30mmの平板状の試験片を切り出し、この試験片の上面における対向する長縁辺の中央部間を結ぶ直線に沿ってカッターナイフで深さ約3mmの切込みを入れた。
【0094】
そして、上記切込みに沿って試験片を二分割して、その試験片の破断面に露出した発泡粒子について、発泡粒子内で破断している粒子数aと、発泡粒子間の界面で破断している粒子数bとを目視観察し、下記式にて熱融着率を算出した。
熱融着率(%)=100×粒子数a/(粒子数a+粒子数b)
【0095】
【表1】
Figure 2004256653
【0096】
【発明の効果】
本発明の有機無機複合粒子は、スチレン系単量体と有機ケイ素化合物とを所定割合で混合してなる単量体混合物中の有機ケイ素化合物のみをスチレン系単量体中にて重縮合させた後に水系懸濁液中にてスチレン系単量体を重合させてなるものであることから、有機ケイ素化合物を重縮合して得られるポリシロキサン化合物が、スチレン系単量体を重合させて得られるスチレン系樹脂中にナノメートル単位で微分散した複合構造を有しており優れた耐熱性を有する。
【0097】
しかも、有機無機複合粒子を構成するスチレン系樹脂とポリシロキサン化合物とは、互いの芳香族基間におけるπ−π電子相互作用によって結合しており、スチレン系樹脂とポリシロキサン化合物とが不測に分離するということはなく、有機無機複合粒子は安定的に優れた耐熱性を保持する。
【0098】
更に、有機無機複合粒子を構成するポリシロキサン化合物は、上述のように、スチレン系樹脂中にナノメートル単位で微分散していることから透明性に優れており、この有機無機複合粒子を用いて得られた有機無機複合発泡成形体は優れた透明性を有し外観性にも優れている。
【0099】
又、有機無機複合粒子において、ポリシロキサン化合物は、スチレン系樹脂に対して可塑化効果を発現することから、有機無機複合粒子に揮発性発泡剤を含浸、予備発泡させて得られた有機無機複合予備発泡粒子は充分な発泡性を有しており、従来のように耐熱性の低下を招く発泡助剤を添加する必要がない。よって、有機無機複合予備発泡粒子を発泡させて得られる有機無機複合発泡成形体は、優れた耐熱性を有すると共に外観性にも優れている。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to organic-inorganic composite particles, expandable organic-inorganic composite particles, organic-inorganic composite pre-expanded particles, organic-inorganic composite expanded molded articles, and a method for producing organic-inorganic composite particles.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a foam molded article made of a styrene resin has been widely used. The reason for this is that when a styrene resin is used, a foam molded article having a high expansion ratio can be obtained relatively easily and a foam molded article having a desired shape is obtained via the styrene resin pre-expanded particles. Because it can be.
[0003]
Furthermore, the foamed molded article made of the styrene-based resin is relatively tough in spite of having a high expansion ratio, and also has excellent heat insulating properties due to having closed cells, and has a floor of a freezing warehouse, It is widely used for ceilings, wall materials, packing materials, cool containers, and the like.
[0004]
However, the foamed molded article made of the styrene-based resin has poor heat resistance, and there is a problem that when the foamed molded article made of the styrene-based resin is used in an atmosphere of 70 ° C. or more, the foamed molded article is greatly deformed. .
[0005]
Accordingly, Patent Document 1 proposes heat-resistant foamable resin particles obtained by mixing polyphenylene ether with a styrene-based resin. However, these heat-resistant foamable resin particles require the addition of a foaming aid during foaming. When the foaming aid is added as described above, there is a problem that the foaming property is improved but the heat resistance of the foamed molded article is reduced.
[0006]
[Patent Document 1]
Japanese Patent Publication No. 2-49333
[0007]
[Problems to be solved by the invention]
The present invention uses an organic-inorganic composite particle capable of obtaining a foam molded article having excellent heat resistance while maintaining the excellent foam moldability of a styrene-based resin, a method for producing the same, and an organic-inorganic composite particle. Provided are an expandable organic-inorganic composite particle, an organic-inorganic composite pre-expanded particle, and an organic-inorganic composite expanded molded article.
[0008]
[Means to solve the problem]
The inorganic-inorganic composite particles of the present invention are obtained by mixing 50 to 99.5% by weight of a styrene monomer and 0.5 to 50% by weight of an organosilicon compound having a hydrolyzable organic group and an aromatic group. The polycondensation mixture obtained by polycondensing only the organosilicon compound in the monomer mixture in the presence of an acid catalyst is dispersed in an aqueous suspension containing a polymerization initiator of a styrene monomer, and It is characterized by being obtained by polymerizing a styrene monomer.
[0009]
As the styrene monomer constituting the monomer mixture, if styrene is the main component, a monomer copolymerizable with styrene may be mixed in addition to styrene. Examples of the monomer include α-methylstyrene, acrylonitrile, methyl methacrylate, divinylbenzene and the like.
[0010]
The organosilicon compound having a hydrolyzable organic group and an aromatic group constituting the monomer mixture is not particularly limited, but an organosilicon compound represented by the following formula 1 is preferable.
(R 1 ) k (R 2 ) m Si (OR 3 ) n ... Equation 1
In addition, in Formula 1, R 1 , R 2 Represents an aromatic group; 3 Represents a lower alkyl group. k, m, and n are 0 or a natural number that satisfies the conditions of k + m + n = 4 and 1 ≦ (k + m) ≦ 2.
[0011]
And R in the organosilicon compound represented by the formula 1 1 , R 2 Are preferably a phenyl group and a naphthyl group. 1 , R 2 May have a substituent, and the substituent is preferably a deuterium atom, a methyl group, or an ethyl group. Note that R 1 , R 2 May be the same or different from each other. Further, R in the organosilicon compound represented by the formula 1 3 Preferred are a methyl group, an ethyl group, a propyl group, and a butyl group.
[0012]
Here, the organosilicon compound represented by Formula 1 will be specifically described. First, examples of the bifunctional organosilicon compound include a compound represented by the following formula 2.
R 1 R 2 Si (OR 3 ) 2 ... Equation 2
[0013]
Examples of such bifunctional organosilicon compounds include, for example, diphenyldimethoxysilane, diphenyldiethoxysilane, diphenyldipropoxysilane, dinaphthyldimethoxysilane, dinaphthyldiethoxysilane, dinaphthyldipropoxysilane, and naphthylphenyldiethoxysilane. Silane and the like.
[0014]
The trifunctional organosilicon compound includes a compound represented by the following formula 3.
R 1 Si (OR 3 ) 3 ... Equation 3
[0015]
Examples of such a trifunctional organosilicon compound include phenyltrimethoxysilane, phenyltriethoxysilane, phenyltripropoxysilane, naphthyltrimethoxysilane, and naphthyltriethoxysilane.
[0016]
As the organosilicon compound represented by the above formula 1, it is preferable to use one or two kinds of a bifunctional organosilicon compound and a trifunctional organosilicon compound. It is more preferable to use one or two of the above-mentioned organosilicon compounds in combination with a tetrafunctional organosilicon compound described later. By using a plurality of types of organosilicon compounds in this manner, the molecular structure of the polysiloxane compound can be controlled to an optimal structure, and an organic-inorganic composite foam molded article having desired heat resistance can be obtained from the organic-inorganic composite particles. Further, by using a tetrafunctional organosilicon compound in combination, the polysiloxane compound has a linear molecular structure in the styrene-based resin, and as a result, the heating dimensional change of the obtained organic-inorganic composite foam molded article Rate can be reduced. The organic silicon compound may be mixed with a partially polycondensed organic silicon compound having a degree of polymerization of 1,000 or less.
[0017]
In addition, the compound shown by Formula 4 is mentioned as a tetrafunctional type organosilicon compound.
Si (OR 4 ) 4 ... Equation 4
[0018]
R in the organosilicon compound represented by Formula 4 4 Are preferably a methyl group, an ethyl group, a propyl group, and a butyl group. Examples of such an organosilicon compound include tetramethoxysilane, tetraethoxysilane, and tetrapropoxysilane.
[0019]
When a bifunctional organosilicon compound and a trifunctional organosilicon compound are used in combination, the content of the bifunctional organosilicon compound in the organosilicon compound is small, and the organic-inorganic composite particles are used. The foaming moldability of the organic-inorganic composite pre-expanded particles may be reduced, and if it is too large, the heat resistance of the organic-inorganic composite expanded molded product may be reduced. 0.5 to 10% by weight is more preferred.
[0020]
Further, when a tetrafunctional organosilicon compound is used in combination with one or two of the bifunctional organosilicon compound and the trifunctional organosilicon compound, the tetrafunctional organosilicon compound in the organosilicon compound is used. When the content of the silicon compound is small, the heat resistance of the organic-inorganic composite foamed molded article may be reduced, and when the content is large, a styrene-based resin obtained by polymerizing a styrene-based monomer and an organic silicon compound may be used. Since the polysiloxane compound obtained by polycondensation may be phase-separated, 0.1 to 10 parts by weight based on 100 parts by weight of the total amount of the bifunctional organosilicon compound and / or the trifunctional organosilicon compound. Parts by weight, more preferably 0.5 to 5 parts by weight.
[0021]
And if the content of the styrene-based monomer in the monomer mixture is small, the foaming moldability of the organic-inorganic composite particles is reduced and a desired organic-inorganic composite foamed molded product cannot be obtained, and If the amount is too large, the heat resistance of the organic-inorganic composite foamed molded article obtained from the organic-inorganic composite particles decreases, so the content is limited to 50 to 99.5% by weight, and preferably 60 to 99.5% by weight. For the same reason, the content of the organosilicon compound in the monomer mixture is limited to 0.5 to 50% by weight, and preferably 0.5 to 40% by weight.
[0022]
Only the organosilicon compound in the monomer mixture thus constituted is polycondensed in the presence of an acid catalyst to obtain a polycondensation mixture. Such an acid catalyst is not particularly limited as long as only the organosilicon compound can be polycondensed without polymerizing the styrene-based monomer, and examples thereof include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid. Examples include carboxylic acids such as formic acid, acetic acid, trichloroacid, trifluoroacetic acid and propionic acid, and sulfonic acids such as methanesulfonic acid, ethanesulfonic acid and p-toluenesulfonic acid.
[0023]
With respect to the amount of the acid catalyst added, if the amount is small, the organosilicon compound may not be sufficiently polycondensed, and if the amount is large, the dispersion of the styrene monomer may be caused when the styrene monomer is polymerized. Since the state may become unstable, the amount is preferably 0.001 to 0.2 parts by weight based on 100 parts by weight of the monomer mixture.
[0024]
As a method of polycondensing only the organosilicon compound in the monomer mixture in the presence of an acid catalyst, a conventionally known method can be used.For example, an acid catalyst may be used in the monomer mixture. After addition, a method of heating to room temperature to about 60 ° C. with stirring and reacting for about 1 to 100 hours to polycondensate only the organosilicon compound can be used. The polycondensation of the organosilicon compound in the monomer mixture may be performed in the presence of an inert gas such as nitrogen.
[0025]
Next, the polycondensation mixture obtained as described above is dispersed in an aqueous suspension containing a polymerization initiator of a styrene monomer, and the styrene monomer is heated to a temperature equal to or higher than the decomposition temperature of the polymerization initiator. Organic-inorganic composite particles can be obtained by polymerizing the body.
[0026]
The polymerization initiator of the styrene-based monomer is not particularly limited as long as it is conventionally used for polymerization of a styrene-based monomer, and examples thereof include benzoyl peroxide, t-butyl peroxybenzoate, Lauryl peroxide, t-butyl peroxide, t-butyl peroxypivalate, t-butyl peroxyisopropyl carbonate, t-butyl peroxy acetate, 2,2-t-butyl peroxybutane, t-butyl peroxy- Organic peroxides such as 3,3,5 trimethylhexanoate and di-t-butylperoxyhexahydroterephthalate, and azo compounds such as azobisisobutyronitrile and azobisdimethylvaleronitrile are exemplified.
[0027]
The above polymerization initiators can be used alone or in combination of two or more, but in order to reduce the residual styrene monomer by adjusting the molecular weight, the decomposition temperature for obtaining a half-life of 10 hours is reduced. It is desirable to use a plurality of polymerization initiators at 70 to 120 ° C. in combination.
[0028]
Further, as a suspension stabilizer used when the polycondensation mixture is dispersed in an aqueous suspension to polymerize the styrene-based monomer, hardly soluble inorganic compounds such as tribasic calcium phosphate and magnesium pyrophosphate are exemplified. .
[0029]
When a poorly soluble inorganic compound is used as the suspension stabilizer, it is preferable to use an anionic surfactant in combination. Examples of such anionic surfactant include a fatty acid soap; an N-acylamino acid or a salt thereof; Carboxylates such as alkyl ether carboxylates; sulfonates such as alkylbenzene sulfonates, alkyl naphthalene sulfonates, alkyl sulfo acetates, dialkyl sulfosuccinates, α-olefin sulfonates; higher alcohol sulfates And sulfates such as secondary higher alcohol sulfates, alkyl ether sulfates and polyoxyethylene alkyl phenyl ether sulfates; and phosphate ester salts such as alkyl ether phosphates and alkyl phosphates. Can be
[0030]
In performing the polymerization of the styrene monomer in the aqueous suspension, the styrene obtained by polymerizing the styrene monomer by appropriately adjusting the polymerization temperature or adjusting the distribution of the polymerization initiator. It is preferable to adjust the weight average molecular weight and the degree of polymerization of the system resin.
[0031]
When the weight average molecular weight Mw in terms of styrene of the styrene resin by the GPC method is small, the mechanical strength of the organic-inorganic composite foamed molded article obtained from the organic-inorganic composite particles may decrease. 150,000 to 600,000 is preferable since the foaming property of the particles may be reduced. In addition, the styrene-equivalent weight average molecular weight Mw of the styrene-based resin according to the GPC method refers to that measured by the GPC method.
[0032]
On the other hand, a styrene-based resin particle is contained in an aqueous suspension in which the polycondensation mixture is dispersed, and the styrene-based monomer is polymerized using the styrene-based resin particle as a seed particle. May be polymerized.
[0033]
Examples of the styrene resin constituting the styrene resin particles serving as the seed particles include polystyrene, a copolymer of styrene and a monomer copolymerizable therewith, and the like, and a monomer copolymerizable with styrene. Examples thereof include α-methylstyrene, acrylonitrile, methyl methacrylate, divinylbenzene, and the like. Furthermore, the organic-inorganic composite particles of the present invention may be used as the seed particles.
[0034]
And, when the particle size of the styrene resin particles is small, the polycondensation mixture may not be able to be absorbed at all, and when the particle size is large, the particle size of the obtained organic-inorganic composite particles becomes large, Since the filling property when filling the obtained organic-inorganic composite pre-expanded particles into the cavity of the molding die may be reduced, 0.3 to 1.5 mm is preferable, and 0.3 to 1.0 mm is more preferable. .
[0035]
If the content of the styrene resin particles in the aqueous suspension is small, the polycondensation mixture cannot be completely absorbed, and a large amount of polymerized powder may be generated. Since the polycondensation mixture is absorbed only on the surface, and the heat resistance of the obtained organic-inorganic composite foam molded article may be non-uniform, 10 to 900 parts by weight based on 100 parts by weight of the monomer mixture Parts by weight, preferably 15 to 700 parts by weight, more preferably 15 to 500 parts by weight.
[0036]
When the styrene-based monomer in the polycondensation mixture is polymerized by seed polymerization, the polycondensation mixture is supplied continuously or intermittently to an aqueous suspension in which seed particles are dispersed, and the polycondensation mixture is supplied. Is impregnated into the seed particles and swelled, and the styrene monomer of the polycondensation mixture is polymerized in the seed particles. When the polycondensation mixture is supplied into the aqueous suspension, if the polycondensation mixture is supplied in a large amount at a time, the styrene-based resin particles may be bonded to each other. Is preferably supplied in a constant amount to the aqueous suspension.
[0037]
In supplying the polycondensation mixture into the aqueous suspension, while the polycondensation mixture is being supplied into the aqueous suspension, the styrene-based monomer is reduced to 50% by weight or less in the growing particles. It is preferable to adjust so as to add the polycondensation mixture to the aqueous suspension. This is because when the content of the styrene-based monomer in the growing particles exceeds 50% by weight, the amount of styrene-based resin particles other than the organic-inorganic composite particles increases.
[0038]
The organic-inorganic composite particles thus obtained are obtained by polycondensation of an organosilicon compound in a styrene resin obtained by polymerizing a styrene monomer, and a polysiloxane compound obtained in nanometer units. It has a dispersed composite structure.
[0039]
This composite structure can be confirmed using a measuring instrument such as 1H-NMR, 13C-NMR, UV, and FT-IR. Specifically, the styrene-based resin and the polysiloxane compound have a mutual aromatic group. The styrene-based resin and the polysiloxane compound are not unexpectedly phase-separated in the organic-inorganic composite particles by the π-π electron interaction between the styrene-based resin and the siloxane resin.
[0040]
Moreover, the organic-inorganic composite particles have excellent transparency because the polysiloxane compound is dispersed in the styrene-based resin in units of nanometers, and specifically, serve as an index of the transparency of the organic-inorganic composite particles. The whiteness is less than 60. In addition, the whiteness of the organic-inorganic composite particles refers to a value measured according to JIS K7105.
[0041]
Furthermore, since the organic-inorganic composite particles are produced in an aqueous suspension and do not use an organic solvent in their production, there is no need to recover the organic solvent as in the conventional case, and environmental sanitation is not required. Is also excellent.
[0042]
Further, the shape of the organic-inorganic composite particles may be any of a columnar shape and a spindle shape in addition to a substantially spherical shape. At this time, the organic-inorganic composite pre-expanded particles can be uniformly and reliably heat-fused with each other, and an organic-inorganic composite expanded molded article having excellent mechanical strength and uniform quality can be obtained. It is preferably substantially spherical.
[0043]
Next, the procedure for producing expandable organic-inorganic composite particles from the organic-inorganic composite particles will be described. The expandable organic-inorganic composite particles can be produced by adding a volatile blowing agent to the organic-inorganic composite particles.
[0044]
As a method for incorporating a volatile foaming agent into the organic-inorganic composite particles, a conventional method can be used conventionally.For example, a growing organic-inorganic composite is injected by injecting the volatile foaming agent into an aqueous suspension. A method of impregnating the particles with a volatile foaming agent, a method of impregnating the obtained organic-inorganic composite particles with the volatile foaming agent, and the like can be given.
[0045]
The volatile foaming agent is not particularly limited as long as it has been widely used in the past, and examples thereof include chain aliphatic hydrocarbons such as propane, butane, pentane and heptane, and dichloromonofluoroethane (HCFC-141b). ), 1-chloro-1,1-difluoroethane (HCFC-142b), chlorotetrafluoroethane (HCFC-124), 1,1,1,2-tetrafluoroethane (HFC-134a), difluoroethane (HFC-152a) And the like, and an inorganic blowing agent such as carbon dioxide and nitrogen. A chain aliphatic hydrocarbon is preferable, butane, isobutane, and pentane are more preferable. The volatile foaming agent may be used alone or in combination.
[0046]
The amount of the volatile foaming agent contained in the organic-inorganic composite particles is small, and the expansion ratio of the obtained organic-inorganic composite foam molded article is low, or when producing the obtained organic-inorganic composite foam molded article. The secondary foaming power may be reduced and the appearance of the organic-inorganic composite expanded molded article may be deteriorated. If the secondary expansion force is too high, the organic-inorganic composite expanded molded article may shrink or foam in the organic-inorganic composite pre-expanded particles. Since the adjustment of the amount of the agent and the molding cycle may be prolonged and the productivity may be reduced, 2.0 to 9.0% by weight is preferable, and 3.0 to 7.0% by weight is more preferable.
[0047]
The foamable organic-inorganic composite particles may contain a cell regulator. The foam control agent is not particularly limited as long as it has been widely used in the past. For example, zinc stearate, stearate such as ethylene bisstearate amide, triglycerin such as triglycerin hydroxystearate and the like. Fatty acid esters and the like. The content of the cell regulator in the expandable organic-inorganic composite particles is preferably from 0.01 to 0.8% by weight.
[0048]
In addition, the expandable organic-inorganic composite particles appropriately contain an antistatic agent, a foam cell nucleating agent, a filler, a flame retardant, a flame retardant auxiliary, a lubricant, a colorant, etc. as long as the physical properties are not impaired. You may let it.
[0049]
Next, a procedure for producing the organic-inorganic composite foam molded article by expanding the expandable organic-inorganic composite particles will be described. First, the expandable organic-inorganic composite particles are pre-expanded using a general-purpose pre-expansion machine to obtain organic-inorganic composite pre-expanded particles.
[0050]
If the bulk density of the organic-inorganic composite pre-expanded particles is small, the mechanical strength of the organic-inorganic composite expanded molded product may be reduced due to shrinkage of the organic-inorganic composite expanded molded product. Since the lightness of the organic-inorganic composite foamed molded article obtained by foaming the inorganic composite pre-expanded particles may be reduced, 0.01 to 0.5 g / cm 3 Is preferable, and 0.014 to 0.2 g / cm 3 Is more preferred. In addition, the bulk density of the organic-inorganic composite pre-expanded particles refers to a value measured by the method described in JIS K6911: 1995 "General Test Method for Thermosetting Plastics".
[0051]
Then, the organic-inorganic composite pre-expanded particles are aged at normal pressure for a predetermined period to adjust the content of the volatile foaming agent in the organic-inorganic composite pre-expanded particles. When the aging temperature of the organic-inorganic composite pre-expanded particles is low, the aging period of the organic-inorganic composite pre-expanded particles may be long, and when the aging temperature is high, the content of the volatile blowing agent in the organic-inorganic composite pre-expanded particles may be increased. , And the moldability of the organic-inorganic composite pre-expanded particles may decrease, so that the temperature is preferably from 15 to 60 ° C, more preferably from 20 to 40 ° C.
[0052]
Thereafter, the organic-inorganic composite pre-expanded particles are filled in a cavity having a desired shape of a molding die and heated with steam or the like to expand the organic-inorganic composite pre-expanded particles and heat the organic-inorganic composite pre-expanded particles together. By fusing and integrating, an organic-inorganic composite foamed molded article having a desired shape can be obtained.
[0053]
Further, since the polysiloxane compound in the organic-inorganic composite particles exhibits a plasticizing effect on the styrene-based resin molecules, the organic-inorganic composite pre-expanded particles produced from the organic-inorganic composite particles have excellent foam moldability. ing.
[0054]
And, as described above, since the organic-inorganic composite pre-expanded particles are excellent in foam moldability, when producing a foam molded article using the organic-inorganic composite pre-expanded particles, a foaming auxiliary is used as in the related art. There is no necessity, and the heat resistance of the foamed molded article does not decrease due to the addition of the foaming aid.Therefore, the organic-inorganic composite foamed molded article obtained using the organic-inorganic composite particles has excellent heat resistance. Have.
[0055]
【Example】
(Example 1)
A monomer mixture consisting of 2,000 parts by weight of styrene and 200 parts by weight of phenyltrimethoxysilane was supplied to a polymerization vessel equipped with a stirrer and stirred, and 3 parts by weight of 0.1N hydrochloric acid as an acid catalyst was added to the polymerization vessel equipped with a stirrer. After stirring at 30 ° C. for 24 hours, phenyltrimethoxysilane was polycondensed to obtain a polycondensation mixture.
[0056]
Next, 2000 parts by weight of water, 100 parts by weight of magnesium pyrophosphate as a suspension stabilizer, and 2.0 parts by weight of sodium dodecylbenzenesulfonate as a surfactant were fed into the polycondensation mixture in the polymerization vessel, and the mixture was stirred. 7.6 parts by weight of benzoyl peroxide (decomposition temperature for obtaining a half-life of 10 hours: 73.6 ° C.) and t-butyl peroxybenzoate (decomposition temperature for obtaining a half-life of 10 hours: 105 ° C.) 1 After adding 0.3 parts by weight, the aqueous suspension in the polymerization vessel was heated to 90 ° C. and maintained for 6 hours to polymerize styrene in the aqueous suspension.
[0057]
Further, the aqueous suspension in the polymerization vessel was heated to a temperature of 125 ° C. and kept for 2 hours to polymerize styrene, and then cooled, dehydrated and dried to obtain organic-inorganic composite particles. The whiteness of the organic-inorganic composite particles was 40.5. And generation | occurrence | production of the polymerization powder was also very small.
[0058]
Next, 2,000 parts by weight of water, 1800 parts by weight of organic-inorganic composite particles, 6.0 parts by weight of magnesium pyrophosphate and 0.4 part by weight of sodium dodecylbenzenesulfonate were fed into another polymerization vessel equipped with a stirrer and stirred. The liquid was heated and maintained at a temperature of 90 ° C.
[0059]
Thereafter, 162 parts by weight of butane was pressed into the polymerization vessel and held for 6 hours to impregnate the organic-inorganic composite particles with butane. Got. The butane content in the expandable organic-inorganic composite particles was 6.5% by weight.
[0060]
After drying the obtained expandable organic-inorganic composite particles, the surface of the expandable organic-inorganic composite particles is coated with polyethylene glycol as an antistatic agent. Of zinc stearate and triglycerin hydroxystearate as an anti-binding agent is applied to the expandable organic-inorganic composite particles in an amount of 0.05% by weight, and the expandable organic-inorganic composite particles are placed in a constant temperature room at 13 ° C. for 5 days. It was left to mature.
[0061]
Next, the foamable organic-inorganic composite particles were subjected to a bulk density of 0.033 g / cm using a preliminary foaming machine. 3 After pre-expanded to obtain organic-inorganic composite pre-expanded particles, the organic-inorganic composite pre-expanded particles were aged at 20 ° C. for 24 hours.
[0062]
Thereafter, the organic-inorganic composite pre-expanded particles are filled in the cavity of the molding die, and the organic-inorganic composite pre-expanded particles are heated and vaporized by steam, and the organic-inorganic composite pre-expanded particles are thermally fused and integrated. Thus, a rectangular parallelepiped organic-inorganic composite foam molded article having a length of 400 mm, a width of 300 mm and a height of 30 mm was obtained.
[0063]
After the thus obtained organic-inorganic composite foam molded article was cultivated in a drying chamber at 50 ° C. for 6 hours, the density of the organic-inorganic composite foam molded article was measured to be 0.033 g / cm. 3 Met.
[0064]
(Example 2)
An organic-inorganic composite foam molded article was obtained in the same manner as in Example 1, except that phenyltrimethoxysilane was used in place of 200 parts by weight and 20 parts by weight. The whiteness of the organic-inorganic composite particles was 39.3, and the amount of butane in the expandable organic-inorganic composite particles was 6.3% by weight.
[0065]
(Example 3)
An organic-inorganic composite foam molded article was obtained in the same manner as in Example 1, except that phenyltrimethoxysilane was used in place of 200 parts by weight and 1000 parts by weight. The whiteness of the organic-inorganic composite particles was 53.5, and the butane content in the expandable organic-inorganic composite particles was 6.1% by weight.
[0066]
(Example 4)
An organic-inorganic composite foam molded article was obtained in the same manner as in Example 1, except that 200 parts by weight of phenyltrimethoxysilane and 10 parts by weight of tetraethoxysilane were used as the organosilicon compound. The whiteness of the organic-inorganic composite particles was 43.2, and the amount of butane in the expandable organic-inorganic composite particles was 6.7% by weight.
[0067]
(Comparative Example 1)
A foam molded article was obtained in the same manner as in Example 1 except that phenyltrimethoxysilane was not added. The whiteness of the polystyrene particles was 40.5, and the amount of butane in the expandable polystyrene particles was 6.5% by weight.
[0068]
(Comparative Example 2)
An attempt was made to produce an organic-inorganic composite foamed article in the same manner as in Example 1 except that 200 parts by weight of tetraethoxysilane was used instead of 200 parts by weight of phenyltrimethoxysilane. It was not possible to obtain an organic-inorganic composite foamed molded article due to low properties. The polystyrene and the polysiloxane compound in the organic-inorganic composite particles were phase-separated, and the whiteness of the organic-inorganic composite particles was 73.5. The amount of butane in the expandable organic-inorganic composite particles was 6.4% by weight.
[0069]
(Comparative Example 3)
The polycondensation of phenyltrimethoxysilane was not performed in styrene, and only phenyltrimethoxysilane was polycondensed in an aqueous suspension to obtain polyphenyltrimethoxysilane.
[0070]
Then, 200 parts by weight of the above polyphenyltrimethoxysilane was taken out from the aqueous suspension, and 200 parts by weight of the taken out polyphenyltrimethoxysilane was added to an aqueous suspension in which 2000 parts by weight of styrene was dispersed to polymerize styrene. Was performed to obtain organic-inorganic composite particles. The polystyrene and the polysiloxane compound in the obtained organic-inorganic composite particles were phase-separated, and the whiteness of the organic-inorganic composite particles was 71.6.
[0071]
Next, an attempt was made to form an organic-inorganic composite foam molded article from the organic-inorganic composite particles in the same manner as in Example 1. I couldn't get it.
[0072]
(Example 5)
While supplying 1500 parts by weight of styrene and 200 parts by weight of phenyltrimethoxysilane into a polymerization vessel equipped with a stirrer and stirring, 3 parts by weight of 0.1 N hydrochloric acid as an acid catalyst were supplied into the polymerization vessel, and the mixture was heated at 30 ° C. for 24 hours. With stirring, polycondensation of phenyltrimethoxysilane was performed to obtain a polycondensation mixture. While stirring the polycondensation mixture, 7.6 parts by weight of benzoyl peroxide (decomposition temperature for obtaining a half-life of 10 hours: 73.6 ° C.) and t-butylperoxybenzoate (10 hours) (Decomposition temperature for obtaining a half-life of 105 ° C.): 1.3 parts by weight.
[0073]
On the other hand, in another polymerization vessel equipped with a stirrer, 500 parts by weight of polystyrene particles having a particle size of 0.45 to 0.71 mm as seed particles, 2,000 parts by weight of water, 100 parts by weight of magnesium pyrophosphate as a suspension stabilizer, and a surfactant Then, 2.0 parts by weight of sodium dodecylbenzenesulfonate was supplied to form an aqueous suspension, and the temperature of the aqueous suspension was raised to 90 ° C. and maintained at a polymerization temperature.
[0074]
Next, while stirring the aqueous suspension, the polycondensation mixture is continuously supplied into the reaction vessel at a uniform rate over 3 hours into the aqueous suspension to allow the polycondensation mixture to be absorbed by the seed particles. The polymerization of styrene was carried out while heating.
[0075]
The organic-inorganic composite particles that were growing were collected at intervals of 20 minutes from the start of the supply of the polycondensation mixture into the aqueous suspension until the supply was completed, and the styrene content in the organic-inorganic composite particles was measured. As a result, the styrene content in the organic-inorganic composite particles was 40% by weight or less.
[0076]
After the supply of the polycondensation mixture into the aqueous suspension is completed, the aqueous suspension is allowed to stand at 90 ° C. for 2 hours. Thereafter, the temperature of the aqueous suspension is raised to 125 ° C., and then left for 2 hours. Then, the aqueous suspension was cooled to obtain organic-inorganic composite particles. The whiteness of the organic-inorganic composite particles was 37.5. Further, generation of polymerization powder was very small.
[0077]
Next, 2,000 parts by weight of water, 1800 parts by weight of organic-inorganic composite particles, 6.0 parts by weight of magnesium pyrophosphate and 0.4 part by weight of sodium dodecylbenzenesulfonate were fed into another polymerization vessel equipped with a stirrer and stirred. The liquid was heated and maintained at a temperature of 90 ° C.
[0078]
Thereafter, 162 parts by weight of butane was pressed into the polymerization vessel and held for 6 hours to impregnate the organic-inorganic composite particles with butane. Got. The butane content in the expandable organic-inorganic composite particles was 6.6% by weight.
[0079]
After drying the obtained expandable organic-inorganic composite particles, the surface of the expandable organic-inorganic composite particles is coated with polyethylene glycol as an antistatic agent. Of zinc stearate and triglycerin hydroxystearate as an anti-binding agent is applied to the expandable organic-inorganic composite particles in an amount of 0.05% by weight, and the expandable organic-inorganic composite particles are placed in a constant temperature room at 13 ° C. for 5 days. It was left to mature.
[0080]
Next, the foamable organic-inorganic composite particles were subjected to a bulk density of 0.033 g / cm using a preliminary foaming machine. 3 After pre-expanded to obtain organic-inorganic composite pre-expanded particles, the organic-inorganic composite pre-expanded particles were aged at 20 ° C. for 24 hours.
[0081]
Thereafter, the organic-inorganic composite pre-expanded particles are filled in the cavity of the molding die, and the organic-inorganic composite pre-expanded particles are heated and vaporized by steam, and the organic-inorganic composite pre-expanded particles are thermally fused and integrated. Thus, a rectangular parallelepiped organic-inorganic composite foam molded article having a length of 400 mm, a width of 300 mm and a height of 30 mm was obtained.
[0082]
After the thus obtained organic-inorganic composite foam molded article was cultivated in a drying chamber at 50 ° C. for 6 hours, the density of the organic-inorganic composite foam molded article was measured to be 0.033 g / cm. 3 Met.
[0083]
(Example 6)
An organic-inorganic composite foam molded article was obtained in the same manner as in Example 5, except that phenyltrimethoxysilane was changed to 20 parts by weight instead of 200 parts by weight. The whiteness of the organic-inorganic composite particles was 36.8, and the amount of butane in the expandable organic-inorganic composite particles was 6.5% by weight.
[0084]
(Example 7)
An organic-inorganic composite foam molded article was obtained in the same manner as in Example 5, except that phenyltrimethoxysilane was used in place of 200 parts by weight and 1000 parts by weight. The whiteness of the organic-inorganic composite particles was 36.8, and the amount of butane in the expandable organic-inorganic composite particles was 6.5% by weight.
[0085]
(Comparative Example 4)
A foam molded article was obtained in the same manner as in Example 5, except that phenyltrimethoxysilane was not added. The whiteness of the polystyrene particles was 39.0, and the amount of butane in the expandable polystyrene particles was 6.4% by weight.
[0086]
(Comparative Example 5)
An organic-inorganic composite foam molded article was obtained in the same manner as in Example 5, except that 200 parts by weight of phenyltrimethoxysilane was used instead of 200 parts by weight of phenyltrimethoxysilane. Although the whiteness of the organic-inorganic composite particles was 56.8, a large amount of fine powder containing a large amount of the polysiloxane compound was generated in the organic-inorganic composite particles. The amount of butane in the expandable organic-inorganic composite particles was 6.4% by weight.
[0087]
The weight average molecular weight Mw in terms of styrene according to the GPC method for the polystyrene constituting the organic-inorganic composite particles obtained as described above, the whiteness of the organic-inorganic composite particles, the heating dimensional change rate of the organic-inorganic composite foamed molded article, and the thermal fusion The percentage was measured by the method described below, and the results are shown in Table 1.
[0088]
(Weight average molecular weight Mw)
A solution prepared by dissolving 30 g of the organic-inorganic composite particles in 10 ml of chloroform is filtered through a 0.45 μm chromato disk. The chloroform in which the filtered organic-inorganic composite particles were dissolved was measured using a gas chromatograph (trade name “HPLC (Detector484, Pump510)” manufactured by Waters). The measurement conditions are as follows.
[0089]
Figure 2004256653
[0090]
(Whiteness)
The whiteness of the organic-inorganic composite particles is measured according to JIS K7105. Specifically, a quartz sample container (φ30 mm × 13 mm, sample area: φ30 mm) is filled with organic-inorganic composite particles, and an integrating sphere color difference meter (trade name “ND-1001 DP” manufactured by Nippon Denshoku Industries Co., Ltd.) , The whiteness of the organic-inorganic composite particles is measured by a reflection method with the tristimulus values of the standard plate set to Y = 82.6, X = 81.2, and Z = 92.5.
[0091]
(Heating dimensional change rate)
The heating dimensional change rate of the organic-inorganic composite foam molded article is measured according to JIS K6767. Specifically, a rectangular parallelepiped test piece of 150 mm long × 150 mm wide × 30 mm high is cut out from the organic-inorganic composite foam molded article.
[0092]
On the upper surface of the test piece, three straight lines having an appropriate length are written at 50 mm intervals in the vertical direction. Then, the length of each straight line is measured, and the average value is calculated to be the dimension before heating. Thereafter, the test piece is placed horizontally in a dryer maintained at 90 ° C. and left for 22 hours, and then left for 1 hour in a space maintained at a temperature of 23 ° C. and a relative humidity of 50%. Then, the length of each of the three straight lines described on the upper surface of the test piece is measured, and the average value thereof is calculated to obtain the dimension after heating.
(Heating dimensional change rate) = 100 × (Dimension after heating-Dimension before heating) / Dimension before heating
[0093]
(Heat fusion rate)
From the organic-inorganic composite foamed molded article, a plate-shaped test piece having a length of 400 mm, a width of 300 mm and a thickness of 30 mm is cut out and deepened with a cutter knife along a straight line connecting the center portions of the long sides on the upper surface of the test piece. A cut of about 3 mm was made.
[0094]
Then, the test piece is divided into two along the cut, and for the foamed particles exposed on the fracture surface of the test piece, the number of particles a broken in the foamed particles, and the broken at the interface between the foamed particles. The number of particles b was visually observed, and the thermal fusion rate was calculated by the following equation.
Thermal fusion rate (%) = 100 × particle number a / (particle number a + particle number b)
[0095]
[Table 1]
Figure 2004256653
[0096]
【The invention's effect】
The organic-inorganic composite particles of the present invention were obtained by polycondensing only the organosilicon compound in the monomer mixture obtained by mixing the styrene monomer and the organosilicon compound at a predetermined ratio in the styrene monomer. Since the styrene monomer is polymerized in the aqueous suspension later, a polysiloxane compound obtained by polycondensation of the organosilicon compound is obtained by polymerizing the styrene monomer. It has a composite structure finely dispersed in styrene resin in nanometer units, and has excellent heat resistance.
[0097]
Moreover, the styrene-based resin and the polysiloxane compound constituting the organic-inorganic composite particles are bonded by π-π electron interaction between the aromatic groups, and the styrene-based resin and the polysiloxane compound are unexpectedly separated. The organic-inorganic composite particles stably maintain excellent heat resistance.
[0098]
Furthermore, as described above, the polysiloxane compound constituting the organic-inorganic composite particles is excellent in transparency because it is finely dispersed in the styrene-based resin in units of nanometers. The obtained organic-inorganic composite foam molded article has excellent transparency and excellent appearance.
[0099]
In the organic-inorganic composite particles, since the polysiloxane compound exhibits a plasticizing effect on the styrene resin, the organic-inorganic composite particles obtained by impregnating the organic-inorganic composite particles with a volatile foaming agent and pre-foaming are obtained. The pre-expanded particles have a sufficient foaming property, and it is not necessary to add a foaming aid which causes a decrease in heat resistance as in the prior art. Therefore, the organic-inorganic composite expanded molded article obtained by expanding the organic-inorganic composite pre-expanded particles has excellent heat resistance and excellent appearance.

Claims (7)

スチレン系単量体50〜99.5重量%と、加水分解性有機基及び芳香族基を有する有機ケイ素化合物0.5〜50重量%とを混合してなる単量体混合物中の有機ケイ素化合物のみを酸触媒の存在下にて重縮合させて得られる重縮合混合物を、スチレン系単量体の重合開始剤を含む水系懸濁液中に分散させて上記スチレン系単量体を重合させてなることを特徴とする有機無機複合粒子。Organosilicon compound in a monomer mixture obtained by mixing 50 to 99.5% by weight of a styrene monomer and 0.5 to 50% by weight of an organosilicon compound having a hydrolyzable organic group and an aromatic group Only the polycondensation mixture obtained by polycondensation in the presence of an acid catalyst is dispersed in an aqueous suspension containing a polymerization initiator of a styrene monomer to polymerize the styrene monomer. An organic-inorganic composite particle, comprising: 水系懸濁液には、単量体混合物100重量部に対してスチレン系樹脂粒子10〜900重量部が含有されてなることを特徴とする請求項1に記載の有機無機複合粒子。The organic-inorganic composite particles according to claim 1, wherein the aqueous suspension contains 10 to 900 parts by weight of styrene resin particles based on 100 parts by weight of the monomer mixture. 請求項1又は請求項2に記載の有機無機複合粒子に揮発性発泡剤を含有させてなることを特徴とする発泡性有機無機複合粒子。3. An expandable organic-inorganic composite particle comprising the organic-inorganic composite particle according to claim 1 or 2 and a volatile foaming agent. 請求項3に記載の発泡性有機無機複合粒子を嵩密度0.01〜0.5g/cm に予備発泡させてなることを特徴とする有機無機複合予備発泡粒子。An organic-inorganic composite pre-expanded particle obtained by pre-expanding the expandable organic-inorganic composite particle according to claim 3 to a bulk density of 0.01 to 0.5 g / cm 3 . 請求項4に記載の有機無機複合予備発泡粒子を成形金型のキャビティ内に充填して発泡成形させてなることを特徴とする有機無機複合発泡成形体。An organic-inorganic composite foam molded article obtained by filling the cavity of a molding die with the organic-inorganic composite pre-expanded particles according to claim 4 and foam-molding the same. スチレン系単量体50〜99.5重量%と、加水分解性有機基及び芳香族基を有する有機ケイ素化合物0.5〜50重量%とを混合してなる単量体混合物を酸触媒の存在下にて上記有機ケイ素化合物のみを重縮合させ、得られた重縮合混合物をスチレン系単量体の重合開始剤を含む水系懸濁液中に分散させて上記スチレン系単量体を重合させることを特徴とする有機無機複合粒子の製造方法。A monomer mixture obtained by mixing 50 to 99.5% by weight of a styrene monomer and 0.5 to 50% by weight of an organosilicon compound having a hydrolyzable organic group and an aromatic group is used in the presence of an acid catalyst. Polycondensation of only the above-mentioned organosilicon compound is performed, and the obtained polycondensation mixture is dispersed in an aqueous suspension containing a polymerization initiator of a styrene-based monomer to polymerize the styrene-based monomer. A method for producing organic-inorganic composite particles, comprising: 水系懸濁液には、単量体混合物100重量部に対してスチレン系樹脂粒子10〜900重量部が含有されてなることを特徴とする請求項6に記載の有機無機複合粒子の製造方法。The method for producing organic-inorganic composite particles according to claim 6, wherein the aqueous suspension contains 10 to 900 parts by weight of styrene resin particles based on 100 parts by weight of the monomer mixture.
JP2003048427A 2003-02-26 2003-02-26 Organic/inorganic composite particle, method for producing the same, expandable organic/inorganic composite particle, organic/inorganic composite pre-expanded particle, and organic/inorganic composite expansion molded article Pending JP2004256653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003048427A JP2004256653A (en) 2003-02-26 2003-02-26 Organic/inorganic composite particle, method for producing the same, expandable organic/inorganic composite particle, organic/inorganic composite pre-expanded particle, and organic/inorganic composite expansion molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003048427A JP2004256653A (en) 2003-02-26 2003-02-26 Organic/inorganic composite particle, method for producing the same, expandable organic/inorganic composite particle, organic/inorganic composite pre-expanded particle, and organic/inorganic composite expansion molded article

Publications (1)

Publication Number Publication Date
JP2004256653A true JP2004256653A (en) 2004-09-16

Family

ID=33114385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003048427A Pending JP2004256653A (en) 2003-02-26 2003-02-26 Organic/inorganic composite particle, method for producing the same, expandable organic/inorganic composite particle, organic/inorganic composite pre-expanded particle, and organic/inorganic composite expansion molded article

Country Status (1)

Country Link
JP (1) JP2004256653A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091854A (en) * 2005-09-28 2007-04-12 Sekisui Plastics Co Ltd Silica-compounded polymer particle and method for producing the same
JP2013053237A (en) * 2011-09-05 2013-03-21 Aica Kogyo Co Ltd Composite fine particle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091854A (en) * 2005-09-28 2007-04-12 Sekisui Plastics Co Ltd Silica-compounded polymer particle and method for producing the same
JP2013053237A (en) * 2011-09-05 2013-03-21 Aica Kogyo Co Ltd Composite fine particle

Similar Documents

Publication Publication Date Title
JP4653405B2 (en) Method for producing expandable styrene resin particles, expandable styrene resin particles, pre-expanded styrene resin particles, and styrene resin foam molded article
JP3730805B2 (en) Aliphatic polyester resin pre-expanded particles having biodegradability, molded product thereof and method for producing the pre-expanded particles
JP3732418B2 (en) Expandable styrene resin particles
JP3970191B2 (en) Self-extinguishing foamable styrenic resin particles, pre-foamed particles, and foamed molded products
US6342540B1 (en) Method for producing water expandable styrene polymers
JP6055687B2 (en) Flame-retardant styrenic resin particles, expandable particles, expanded particles and expanded molded articles
JP2003335891A (en) Expandable polystyrene resin particle, polystyrene expansion molded product and its preparation process
JP2014145066A (en) Flame-retardant styrene resin particle and method for producing the same, foamable particle, foaming particle, and formed-molded body
JP2002194130A (en) Expandable polystyrene resin particle and method of manufacturing the same
JP2004256653A (en) Organic/inorganic composite particle, method for producing the same, expandable organic/inorganic composite particle, organic/inorganic composite pre-expanded particle, and organic/inorganic composite expansion molded article
JP2012077149A (en) Expandable resin, method for producing the same, pre-expanded particle, and expansion molded body
KR102119032B1 (en) Expandable resin composition, foam using the same and method of the foam
JP2011208066A (en) Expansion-molded item, interior material for vehicle, tire spacer for vehicle and luggage box for vehicle
JP3935849B2 (en) Self-extinguishing styrene resin foam particles and self-extinguishing foam
EP1745091B1 (en) Process for the preparation of a composition of an expandable styrene polymer in the form of beads
JPH01289841A (en) Expanded styrene resin particle and its production
KR102196615B1 (en) Expandable resin composition, method for preparing the same, and foamed molded article
KR102242090B1 (en) Method for preparing expandable aromatic vinyl resin bead
JP4065795B2 (en) Heat-resistant styrenic resin foam molding
EP1828268A1 (en) Flame retardant polystyrene foam compositions
JP5810007B2 (en) Styrenic resin particles, method for producing the same, expandable particles, expanded particles and expanded molded article
JP5592731B2 (en) Expandable polystyrene resin particles, process for producing the same, pre-expanded particles, and expanded molded body
KR100703823B1 (en) Method for preparing expandable polystyrene
KR20210086753A (en) Method for preparing expandable aromatic vinyl resin bead
KR20190114615A (en) Method for preparing expandable aromatic vinyl resin bead