JP2004256338A - Method of manufacturing chlorosilane - Google Patents

Method of manufacturing chlorosilane Download PDF

Info

Publication number
JP2004256338A
JP2004256338A JP2003047372A JP2003047372A JP2004256338A JP 2004256338 A JP2004256338 A JP 2004256338A JP 2003047372 A JP2003047372 A JP 2003047372A JP 2003047372 A JP2003047372 A JP 2003047372A JP 2004256338 A JP2004256338 A JP 2004256338A
Authority
JP
Japan
Prior art keywords
chlorosilanes
concentrated
impurity
silicon
distillation column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003047372A
Other languages
Japanese (ja)
Inventor
Shozo Matsunaga
省三 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP2003047372A priority Critical patent/JP2004256338A/en
Publication of JP2004256338A publication Critical patent/JP2004256338A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing high purity chlorosilanes with high yield without causing the plugging of a pipeline by efficiently removing the fine powder of metal silicon or aluminum chloride. <P>SOLUTION: In the method of recovering chlorosilanes by reacting metal silicon 2 and hydrogen chloride or metal silicon and silicon tetrachloride with hydrogen, cooling and distilling a crude mixed liquid of resultant chlorosilanes in a distillation column 7, an impurity concentrated liquid 11 containing concentrated impurities (fine powder or aluminum chloride) is drawn from the distillation column and chlorosilanes remaining in the concentrated liquid is recovered by heating the concentrated liquid in a re-concentration apparatus 12. In the drawing of the concentrated impurity from the re-concentration apparatus, the drawing quantity of the impurity concentrated liquid from the distillation column is controlled to 1-20 kg per 1 kg metal silicon to be reacted and the drawing quantity of concentrated impurity from the re-concentration apparatus is controlled to 0.05-0.45 kg per 1 kg metal silicon to be reacted. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、トリクロロシラン(SiHCl)と四塩化珪素(SiCl)を主体とするクロロシラン類の製造方法、詳しくは、前記製造の過程で発生するシリコン(Si)の微粉(原料として用いた金属シリコンの未反応微粉)や、金属シリコンまたは金属シリコンに含まれるAl、Fe等が塩素化されて発生する高沸点物質を効率的に除去し、高純度のクロロシラン類を製造する方法に関する。
【0002】
【従来の技術】
半導体デバイスの製造に用いられるシリコン単結晶は、多結晶シリコンから種々の育成法によりつくられているが、このとき出発原料として用いられる多結晶シリコンは、極めて高い純度が要求される。そのため、多結晶シリコンは、通常、純度95%以上の金属シリコンが充填された層(固定層、流動層)に塩化水素(HCl)、または、四塩化珪素(SiCl)とHを送気してトリクロロシラン(SiHCl)を生成させ、これを蒸留法により精製し、得られた高純度トリクロロシラン(SiHCl)をCVD炉内で高純度水素により還元する方法により製造されている。
【0003】
前記の高純度トリクロロシラン(SiHCl)を製造するプロセスでは、先ず、反応炉で、金属シリコンに作用させるガスの違いに応じて、主に下記▲1▼式または▲2▼式のような反応が起こる。
【0004】
Si+3HCl→SiHCl+H ・・・▲1▼
Si+3SiCl+2H→4SiHCl ・・・▲2▼
前記反応後のガス中には、生成したトリクロロシランや副生物としての四塩化珪素、水素、未反応ガス等の他、金属シリコンの微粉や、金属シリコンまたは金属シリコンに含まれるシリコン以外の物質(Al、Fe等)が塩素化されて発生する固体状およびガス状の高沸点物質(以下、単に「高沸点物質」ともいう)が含まれている。
【0005】
続いて、反応後のガスは冷却され、ガス中のトリクロロシラン(沸点:31.8℃)、四塩化珪素(沸点:57.6℃)等の沸点の低いシリコンの塩化物(以下、これらを「クロロシラン類」ともいう)は凝縮液化し、液化しない水素、未反応ガスは別途回収される。一方、前記の微粉や塩素化されて生じた固体状の高沸点物質は、冷却前にフィルターで除去されるか、またはそのままクロロシラン類の凝縮液中に取り込まれる。しかし、フィルターによる除去は、微粉に対してはある程度の効果はあるが、完全ではなく、またフィルターを通過するガス状の高沸点物質に対しては効果がなかった(前記の微粉や高沸点物質を、以下、「不純物」ともいう)。
【0006】
その後、凝縮液は蒸留塔へ導かれ、蒸留を受ける間に、クロロシラン類の純度が向上する。一方、凝縮液中に取り込まれた微粉や塩化アルミニウム、塩化鉄等の高沸点物質(不純物)は塔底に濃縮、蓄積されるが、これら高沸点物質の濃度が上昇することはクロロシラン類の品質低下につながるため好ましくなく、また、あまり高濃度に濃縮すると、金属シリコンに含まれるAl、Fe等が塩素化されて発生した塩化アルミニウム、塩化鉄等が蒸留塔のリボイラーおよび配管等の内壁に固着し、場合によっては閉塞させるため、プロセス自体が機能しなくなることがあった。
【0007】
そのため、微粉や高沸点物質を蒸留塔の塔底から抜き出し、それを加水分解処理した後、産業廃棄物として処理する方法が採られる場合が多いが、この塔底から抜き出した液中にはクロロシラン類が含まれているので、有用成分の損失が大きい。また、抜き出し後の加水分解処理等に要する費用も嵩み、経済的にも不利である。
【0008】
また、特許文献1には、塩化アルミニウムを含有するクロロシラン類液からクロロシラン類を蒸発させて回収する際に、前記蒸発を薄膜蒸発法により行い、かつ、塩化アルミニウムの濃縮物を液状で取り出す方法が開示されている。しかし、前記濃縮物を液状で取り出そうとすると、微粉の影響が大きく、制御が困難になるという難点がある。
【0009】
そのため、微粉や高沸点物質(不純物)を含むクロロシラン類の凝集液からクロロシラン類を回収するに際し、配管等の閉塞を引き起こす原因となる高沸点物質等を除去し、高い収率で高純度のクロロシラン類を回収する技術の開発が望まれていた。
【0010】
【特許文献1】
特開2001−261324号公報
【0011】
【発明が解決しようとする課題】
本発明はこのような状況に鑑みなされたもので、その目的は、金属シリコンの微粉や、金属シリコンまたは金属シリコンに含まれるAl、Fe等が塩素化されて発生する高沸点物質を含むクロロシラン類(トリクロロシランや四塩化珪素)から前記の微粉、高沸点物質(不純物)を効率的に除去し、配管等の詰まりを発生させずに、高い収率で高純度のクロロシラン類を製造する方法を提供することにある。
【0012】
【課題を解決するための手段】
上記の課題を解決するため、本発明者は、蒸留塔の底に塔底液として濃縮された微粉や高沸点物質の一定量を抜き出して、別容器で加熱し、有用成分であるトリクロロシランおよび四塩化珪素をガス化分離して蒸留塔に戻し、この別容器(再濃縮装置)の底部に濃縮した(すなわち、蒸留塔の底に濃縮された塔底液が再濃縮した)微粉や高沸点物質を系外へ抜き出す方法について検討した。
【0013】
その結果、蒸留塔の底に溜まる塔底液の抜き出し量、再濃縮装置から系外への抜き出し量を適正な範囲に設定すれば、上記の目的を達成できることを知見した。
【0014】
本発明の要旨は、下記のクロロシラン類の製造方法にある。
【0015】
金属シリコンと塩化水素、または金属シリコンと四塩化珪素および水素を反応させた後、冷却し、得られるクロロシラン類の未精製混合液を蒸留塔で蒸留してクロロシラン類を回収するクロロシラン類の製造方法であって、未精製混合液中の不純物が濃縮した不純物濃縮液を蒸留塔から抜き出し、再濃縮装置で加熱することにより前記濃縮液に残存するクロロシラン類を回収するとともに、濃縮した不純物を再濃縮装置から抜き出すに際し、前記反応させる金属シリコン量1kgに対して、蒸留塔からの不純物濃縮液の抜き出し量を1〜20kgとし、再濃縮装置からの濃縮不純物の抜き出し量を0.05〜0.45kgとするクロロシラン類の製造方法。前記の「クロロシラン類」とは、先にも述べたように、ここでは、トリクロロシランおよび副生品として生成する四塩化珪素をいう。なお、四塩化珪素には、原料として用いられ未反応のまま排出されるものが含まれる場合もある。
【0016】
また、「不純物」とは、前記の金属シリコンと塩化水素、または、金属シリコンと四塩化珪素および水素との反応における、未反応の金属シリコンの微粉や、反応の際に生成する金属シリコンまたは金属シリコンに含まれるシリコン以外の物質(Al、Fe等)が塩素化されて発生する高沸点物質をいう。
【0017】
【発明の実施の形態】
以下に、本発明のクロロシラン類の製造方法を図面を用いて詳細に説明する。
【0018】
図1は、本発明の方法を実施するためのトリクロロシランの製造設備の一例の概略構成図で、破線で囲んだ部分が本発明の方法において実施する工程である。
【0019】
図1において、符号1は前記の▲2▼式の反応を生じさせる反応炉であり、前記反応炉1から排出されるガスを冷却するクエンチャー4と、クエンチャー4から供給される凝縮液を蒸留してクロロシラン類を回収する蒸留塔7が順に連結されている。図1に例示した設備では、この蒸留塔7から原料(金属シリコン)の微粉や高沸点物質が濃縮した塔底液を抜き出し、加熱して、混在しているクロロシラン類を分離回収するとともに、さらに濃縮(つまり、再濃縮)させた不純物を系外へ抜き出すための再濃縮装置12が取り付けられている。
【0020】
このトリクロロシランの製造設備において、反応炉1に原料である金属シリコン2(純度約95%以上)を装入し、約600℃に加熱された水素(H)および四塩化珪素(SiCl)を送入して流動層とする。反応炉1内では下記の反応(前記▲2▼の反応)が起こる。
【0021】
Si+3SiCl+2H→4SiHCl
反応炉1からの出口ガス3中には、反応生成物であるSiHClの他に、未反応のH、SiClおよび未反応の金属シリコンの微粉や、金属シリコンまたは金属シリコンに含まれるシリコン以外の物質(Al、Fe等)が塩素化されて発生した高沸点物質が存在している。
【0022】
続いて、前記出口ガス3をクエンチャー4で冷却し、SiHCl、SiCl等を凝縮、液化するとともに、金属シリコンの微粉や液化しない高沸点物質をSiHCl、SiCl等の凝縮液中に捕集する。冷却方法は、SiHCl、SiCl等の凝縮液に前記の微粉や液化しなかった高沸点物質が捕集された状態の液(これを「混合液」という)を冷却しながらポンプ5で強制循環する方法である。クエンチャー4で凝縮せず、または捕集もされないHおよび未反応ガス6はクエンチャー4の上方部から回収され、反応炉1の原料ガスとして再利用される。一方、前記混合液は強制循環経路から一部が抜き出され、蒸留塔7へ送られる。
【0023】
蒸留塔7では、前記の抜き出された混合液がリボイラー10でスチーム加熱され、SiHCl、SiClは蒸発して高沸点物質や金属シリコンの微粉と分離される。分離されたSiHCl8はその用途に応じてさらに精留され、SiCl9は反応炉1へ送入する原料として再利用される。一方、SiHCl、SiClから分離された金属シリコンの微粉や高沸点物質は、分離されずに残留しているSiHCl、SiClの凝縮液に濃縮した状態(これを「不純物濃縮液」という)で蒸留塔7の底部に溜まり、再度底部から抜き出され、リボイラー10での加熱、分離が繰り返される。
【0024】
従来のトリクロロシランの製造方法においては、このリボイラーでの加熱、分離が繰り返される間に、高沸点物質である金属シリコン中のAl、Fe等が塩素化されて発生した塩化アルミニウム、塩化鉄等が濃化し、過飽和になって、配管等の内壁に析出、固着し、配管を閉塞させる場合もあったのであるが、本発明の方法においては、リボイラー10と蒸留塔7の間の循環経路から一部が不純物濃縮液11として抜き出され、再濃縮装置12へ送られる。
【0025】
再濃縮装置12は、上部に不純物濃縮液送入口13とクロロシラン類排出口14を備え、円筒形でその下方が凸状をなす蒸発容器15で、この容器15の内側には攪拌手段が設けられている。蒸発容器15は二重壁構造をなし(図示せず)、内壁と外壁の間を蒸気が通過して、容器15内へ供給される不純物濃縮液11を加熱できるように構成され、さらに、底部には、不純物濃縮液11が再濃縮されて生じた不純物(以下、「濃縮不純物」という)を系外へ抜き出すために一時溜め置く濃縮不純物溜まり16が設けられている。符号23は濃縮不純物を系外へ抜き出すための排出管で、定量ポンプ24が取り付けられている。
【0026】
攪拌手段は、蒸発容器15の中央に垂直に取り付けられた回転軸17と、その回転軸17の下方に放射状に、かつ蒸発容器15の下方の内壁に沿うように設けられた攪拌羽根18と、濃縮不純物溜まり16内を攪拌し、系外への抜き出しを円滑に行うための攪拌羽根19を有し、回転軸17の上部に連結されたモータ20により正逆両方向に回転できるように構成されている。
【0027】
攪拌羽根18を前記のように内壁に沿うように設けるのは、蒸発容器15内を攪拌することによって容器15の内壁面における濃縮不純物の固着を防止するためである。攪拌羽根18の下端に、例えば、真鍮(BsBM)等の材質ででき、自重で前記内壁面に接触し、攪拌羽根18が一方の方向へ回転するときは壁面の液を掻き上げ、それとは逆の方向へ回転するときは液を掻き下げるように溝、または角度を付与された、羽根18の長手方向で複数に分割されたスクレーパーブロック(図示せず)が設けられていれば、前記の固着防止効果はより大きくなる。
【0028】
クロロシラン類排出口14は回収されたクロロシラン類を凝縮させるための凝縮器21に接続され、流量計22を経て蒸留塔7に連結されている。
【0029】
再濃縮装置12へ送られた不純物濃縮液11は、蒸発容器15内で容器の内外壁間を通過する蒸気により加熱され、不純物濃縮液11に残留するクロロシラン類はガス化して、クロロシラン類排出口14から蒸発容器15外へ排出される。蒸発容器15内の不純物濃縮液11は再濃縮されるが、蒸発容器15の下方の内壁(加熱面)に沿うように設けられた攪拌羽根18により攪拌されているので、濃縮液11中の塩化アルミニウム等の高沸点物質が内壁面に固着することはない。
【0030】
蒸発容器15外へ排出されたクロロシラン類は凝縮器21で液化し、流量計22を経て蒸留塔7へ戻され、SiHCl8、SiCl9として回収される。一方、再濃縮された不純物濃縮液11は濃縮不純物溜まり16内で攪拌羽根19により攪拌されつつ排出管23から系外へ抜き出される。
【0031】
前記の不純物濃縮液11の抜き出し量、すなわち濃縮液11の再濃縮装置12への移送量は、反応させる金属シリコン量、すなわち反応炉1における金属シリコンの消費量1kgに対して1〜20kgとする。不純物濃縮液11の抜き出し量が20kgより多ければ経済的に不利であり、1kgより少なければ再濃縮装置12の処理量が少なく、高沸点物質を十分抜き出しできず、配管、塔の詰まりの原因になる。なお、詰まりが生じやすいため、再濃縮装置12に不純物濃縮液11の抜き出し量を測定する流量計は設置されていないが、流量計22でクロロシラン類の回収量を知ることができ、次に述べるように、定量ポンプ24で再濃縮装置12からの抜き出し量を管理できるので、両者の和として不純物濃縮液11の抜き出し量を求めることができる。
【0032】
再濃縮装置12からの濃縮不純物の抜き出し量は前記金属シリコンの消費量1kgに対して0.05〜0.45kgとする。この濃縮不純物の抜き出し量は、金属シリコン中の高沸点物質、特にAlの濃度、および金属シリコンの微粉の発生量によっても大きく左右されるが、これらについて考慮しつつ濃縮不純物の抜き出し量を前記範囲内で適宜設定すれば、再濃縮装置12の円滑な運転が可能である。なお、抜き出し量の管理は、粘性の高い物質でも排出可能な定量ポンプ24を例えばコンピュータで断続運転させることにより行うことができる。
【0033】
前記の抜き出し量が0.05kgより少なければ、再濃縮装置12内での高沸点物質の濃度が高くなり、排出管23に詰まりが発生し、さらに高沸点物質の濃度が高くなることによって濃縮不純物の液自体の沸点が上昇するため、塩化アルミニウム等が蒸気として蒸留塔7に戻る場合も生じる。また、抜き出し量が0.45kgより多い場合は、クロロシラン類の分離、回収が十分ではなく、系外への排出損失が大きくなる。
【0034】
再濃縮装置12から系外へ抜き出された濃縮不純物は、加水分解後、産業廃棄物として処理される。
【0035】
再濃縮装置12内の運転時の圧力は、大気圧〜0.2MPa(絶対圧)とするのが好ましい。より好ましくは、大気圧〜0.15MPa(絶対圧)である。装置内の圧力が高すぎると、攪拌手段の回転軸17と蒸発容器15とのシール部からクロロシラン類の漏れが発生しやすく、メンテナンス頻度が増加するからである。
【0036】
再濃縮装置12内の運転時の温度は、80℃以下とするのが好ましい。運転温度がこれより上昇すると、高沸点物質(塩化アルミニウム等)の蒸気圧が上昇するため、蒸気として蒸留塔7に戻る場合が生じるからである。なお、再濃縮装置12内の温度は、不純物濃縮液11を沸騰させ、トリクロロシラン(沸点:31.8℃)の分離を促進できるように、40℃以上とするのが好ましい。
【0037】
前記本発明のクロロシラン類の製造方法で使用する原料としての金属シリコンは、比較的純度が高いものが望ましく、具体的にはAlの濃度が500〜6000ppm程度のものが望ましい。
【0038】
また、金属シリコンの反応炉への投入は、連続投入、断続投入(例えば、数時間毎の投入)のいずれでもよい。断続投入の場合、本発明における「金属シリコンの反応量(すなわち、投入量)」は、例えば、金属シリコンの1日当たりの投入量を「24時間平均」の投入量に換算して求めればよい。この場合、蒸留塔からの不純物濃縮液の抜き出し量も、同様に「24時間平均」の量として求める。
【0039】
再濃縮装置からの濃縮不純物の抜き出しも、連続、断続のいずれでもよいが、断続抜き出しの場合、その間隔が長すぎると、再濃縮装置の容量によっては蒸発容器内の濃縮不純物の濃度が上昇して粘性が増すため排出管に詰まりが生じ、抜き出しが困難となる場合もある。そのため、本発明で規定する「反応させる(投入する)金属シリコン量1kgに対して、濃縮不純物の抜き出し量を0.05〜0.45kgとする」を、長いスパンで考えて、例えば、金属シリコン投入量6000kgに対して濃縮不純物の抜き出し量を300〜2700kgとし(前記の1kgに対する0.05〜0.45kgと同じ比率である)、この300〜2700kgを、前記6000kgを投入するのに要した時間で平均化して抜き出せば、断続抜き出しでその間隔が比較的長くなった場合でも、抜き出し量が平均されるので、前記排出管の詰まり防止の観点から望ましい。
【0040】
上述した本発明のクロロシラン類の製造方法では、蒸留塔の底部に溜まる不純物濃縮液中のクロロシラン類を回収し、高沸点物質等の不純物を除去するために、図1に例示した再濃縮装置を用いているが、必ずしもこれに限定されない。前記不純物濃縮液を処理して所期の目的(クロロシラン類の回収および不純物の除去)を達成できるもの(蒸発装置)であればよく、蒸留塔からの不純物濃縮液の抜き出し量(すなわち、前記蒸発装置への移送量)および再濃縮した不純物の前記蒸発装置からの抜き出し量を上述した範囲内で適宜調整すれば、蒸留塔のリボイラー、配管等の詰まりを発生させずに、円滑な運転を行うことが可能である。
【0041】
上記本発明のクロロシラン類の製造方法によれば、金属シリコンの微粉や、金属シリコンまたは金属シリコンに含まれるAl、Fe等が塩素化されて発生する高沸点物質を含むクロロシラン類(四塩化珪素やトリクロロシラン)から前記微粉、高沸点物質を効率的に除去し、蒸留塔のリボイラー、配管等の詰まりを発生させずに、高い収率で高純度のクロロシラン類を製造することができる。
【0042】
【実施例】
前記の図1に示した構成のトリクロロシランの製造設備を用いて本発明の方法を実施した。
【0043】
先ず、反応炉1に、純度が98%の金属シリコン2を装入し、550℃に加熱された水素(H)および四塩化珪素(SiCl)を送入して流動層とし、下記の反応を生じさせた。
【0044】
Si+3SiCl+2H→4SiHCl
次いで、反応炉1からの出口ガス3(SiHCl、H、SiClおよび金属シリコンの微粉、高沸点物質が含まれる)をクエンチャー4で冷却し、凝縮液に前記の微粉や液化しなかった高沸点物質が捕集された状態の混合液の強制循環経路から一部を抜き出して蒸留塔7へ送り、リボイラー10でスチーム加熱して、SiHCl、SiClをガス化回収した。
【0045】
蒸留塔7の底部に溜まった高沸点物質や金属シリコンの微粉がガス化していないSiHCl、SiClの凝縮液に濃縮した状態の不純物濃縮液11を、反応炉1における金属シリコンの消費量1kgに対して1kgの割合で再濃縮装置12へ送った。
【0046】
再濃縮装置12では、攪拌しつつ加熱処理を行って不純物濃縮液11中に残留しているクロロシラン類をガス化回収し、再濃縮させて得られた濃縮不純物を反応炉1における金属シリコンの消費量1kgに対して0.05kgの割合で再濃縮装置12から抜き出した。なお、再濃縮装置12内の圧力は0.15MPa(絶対圧)とし、運転温度は65℃とした。
【0047】
上記のように、12ヶ月間にわたってトリクロロシランの製造設備の運転を行った結果、蒸留塔のリボイラーや配管の詰まりは皆無であった。
【0048】
表1に、上述した運転条件および配管等の閉塞状況、ならびにクロロシラン類の損失量等をまとめて示す(実施例)。表1において、「蒸気使用量」とは、再濃縮装置12の蒸発容器15での使用量であり、「クロロシラン類の損失量」とは、再濃縮装置12から抜き出された濃縮不純物中に含まれているクロロシラン類の損失量をいう。
【0049】
上記の実施例に対して、比較のために、不純物濃縮液11の再濃縮装置12への移送量、濃縮不純物の再濃縮装置12からの抜き出し量を種々変更して運転を行った(比較例1〜5)。運転条件、配管等の閉塞状況、クロロシラン類の損失量、問題点等を、前記の表1に併せて示す。
【0050】
【表1】

Figure 2004256338
【0051】
表1において、比較例1は、不純物濃縮液11の再濃縮装置12への移送量および濃縮不純物の再濃縮装置12からの抜き出し量のいずれも、本発明の方法で規定する量より少なかった場合であるが、再濃縮装置12の運転温度が高すぎて装置12内の圧力が0.4MPa(絶対圧)まで上昇したため、攪拌手段の回転軸17と蒸発容器15とのシール部からの漏れが発生し、2ヶ月経過した段階で、再濃縮装置12への移送量がさらに低下し、3ヶ月目には配管の閉塞が発生した。また、蒸留塔7のリボイラー10中の伝熱管の約半数は完全に閉塞していることが確認された。
【0052】
比較例2は、不純物濃縮液11の再濃縮装置12への移送量が本発明で規定する量より少なかった場合、比較例4は濃縮不純物の再濃縮装置12からの抜き出し量が本発明で規定する量より少なかった場合であるが、いずれも配管等の詰まりが発生した。
【0053】
比較例3は、不純物濃縮液11の再濃縮装置12への移送量が本発明で規定する量より多かった場合であるが、配管等の詰まりはなかったが、蒸気使用量が多く、経済性が悪かった。
【0054】
従来例1は、不純物濃縮液11を再濃縮装置12を通さずに、そのまま加水分解処理したものである。この場合、配管等の詰まりはなく、再濃縮装置12を加熱する蒸気も必要ないが、加水分解処理の費用が嵩み、有効成分であるクロロシラン類の損失も極めて大きいため、経済的に不利であった。
【0055】
【発明の効果】
本発明のクロロシラン類の製造方法によれば、金属シリコンの微粉や、金属シリコンまたは金属シリコンに含まれるAl、Fe等が塩素化されて発生する高沸点物質を含むクロロシラン類(四塩化珪素やトリクロロシラン)から前記微粉、高沸点物質を効率的に除去し、蒸留塔のリボイラー、配管等の詰まりを発生させずに、高い収率で高純度のクロロシラン類を製造することができる。
【図面の簡単な説明】
【図1】本発明の方法を実施するためのトリクロロシランの製造設備の一例の概略構成図である。
【符号の説明】
1:反応炉
2:金属シリコン
3:出口ガス
4:クエンチャー
5:ポンプ
6:Hおよび未反応ガス
7:蒸留塔
8:SiHCl
9:SiCl
10:リボイラー
11:不純物濃縮液
12:再濃縮装置
13:不純物濃縮液送入口
14:クロロシラン類排出口
15:蒸発容器
16:濃縮不純物溜まり
17:回転軸
18:攪拌羽根
19:攪拌羽根
20:モータ
21:凝縮器
22:流量計
23:排出管
24:定量ポンプ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing chlorosilanes mainly composed of trichlorosilane (SiHCl 3 ) and silicon tetrachloride (SiCl 4 ), more specifically, fine powder of silicon (Si) generated during the production process (metal used as a raw material). The present invention relates to a method for producing high-purity chlorosilanes by efficiently removing high-boiling substances generated by chlorinating unreacted fine powder of silicon), metal silicon or Al, Fe contained in metal silicon.
[0002]
[Prior art]
Silicon single crystals used for manufacturing semiconductor devices are produced from polycrystalline silicon by various growing methods. At this time, polycrystalline silicon used as a starting material requires extremely high purity. Therefore, polycrystalline silicon usually supplies hydrogen chloride (HCl) or silicon tetrachloride (SiCl 4 ) and H 2 to a layer (fixed layer, fluidized bed) filled with metallic silicon having a purity of 95% or more. To produce trichlorosilane (SiHCl 3 ), which is purified by a distillation method, and the resulting high-purity trichlorosilane (SiHCl 3 ) is reduced by high-purity hydrogen in a CVD furnace.
[0003]
In the process of producing high-purity trichlorosilane (SiHCl 3 ), first, a reaction furnace mainly reacts according to the following equation (1) or ( 2 ) according to the difference in the gas acting on the metal silicon. Happens.
[0004]
Si + 3HCl → SiHCl 3 + H 2 ... (1)
Si + 3SiCl 4 + 2H 2 → 4SiHCl 3 ... (2)
In the gas after the reaction, trichlorosilane produced, silicon tetrachloride as a by-product, hydrogen, unreacted gas and the like, fine powder of metallic silicon, and substances other than silicon contained in metallic silicon or metallic silicon ( Al and Fe) are contained as solid and gaseous high-boiling substances (hereinafter also simply referred to as “high-boiling substances”) generated by chlorination.
[0005]
Subsequently, the gas after the reaction is cooled, and silicon chloride having a low boiling point such as trichlorosilane (boiling point: 31.8 ° C.) and silicon tetrachloride (boiling point: 57.6 ° C.) (hereinafter, these are referred to as “gas”). (Chlorosilanes) are condensed and liquefied, and unliquefied hydrogen and unreacted gas are separately recovered. On the other hand, the fine powder or the solid high-boiling substance generated by chlorination is removed by a filter before cooling, or is directly taken into a condensate of chlorosilanes. However, although removal by a filter has some effect on fine powder, it is not perfect and has no effect on gaseous high-boiling substances passing through the filter (the fine powder and high-boiling substances described above). Is hereinafter also referred to as “impurity”).
[0006]
Thereafter, the condensate is led to a distillation column, and while undergoing distillation, the purity of the chlorosilanes is improved. On the other hand, high-boiling substances (impurities) such as fine powder, aluminum chloride, and iron chloride taken into the condensate are concentrated and accumulated at the bottom of the column. However, an increase in the concentration of these high-boiling substances indicates that the quality of chlorosilanes is high. If the concentration is too high, aluminum chloride, iron chloride, etc. generated by chlorinating Al, Fe, etc. contained in metallic silicon will adhere to the inner walls of the reboiler and pipes of the distillation column. However, in some cases, the process itself did not function due to the blockage.
[0007]
For this reason, a method is often adopted in which fine powder and high-boiling substances are extracted from the bottom of the distillation column, hydrolyzed, and then treated as industrial waste.However, chlorosilane is contained in the liquid extracted from the bottom of the distillation column. , The loss of useful components is large. In addition, the cost required for the hydrolysis treatment after the extraction is increased, which is economically disadvantageous.
[0008]
Further, Patent Document 1 discloses a method in which when evaporating and recovering chlorosilanes from a chlorosilanes solution containing aluminum chloride, the chlorosilanes are evaporated by a thin-film evaporation method, and a concentrate of aluminum chloride is removed in a liquid state. It has been disclosed. However, if the concentrate is to be taken out in a liquid state, there is a disadvantage that the influence of the fine powder is large and the control becomes difficult.
[0009]
Therefore, when recovering chlorosilanes from a flocculant of chlorosilanes containing fine powder or high-boiling substances (impurities), high-boiling substances that cause blockage of piping and the like are removed, and chlorosilanes with high yield and high purity are obtained. The development of a technology for collecting species has been desired.
[0010]
[Patent Document 1]
JP 2001-261324A [0011]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and has as its object to provide fine powder of metallic silicon or chlorosilanes containing high boiling substances generated by chlorinating metallic silicon or Al, Fe, etc. contained in metallic silicon. (Trichlorosilane or silicon tetrachloride) to efficiently remove the above-mentioned fine powder and high-boiling substances (impurities) and produce high-purity chlorosilanes in high yield without causing clogging of pipes and the like. To provide.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventor extracts a certain amount of fine powder or a high-boiling substance concentrated as a bottom solution at the bottom of a distillation column, heats the resultant in a separate container, and uses trichlorosilane as a useful component and The silicon tetrachloride is gasified and separated and returned to the distillation column, and concentrated at the bottom of this separate vessel (reconcentrator) (that is, the bottom liquid concentrated at the bottom of the distillation column is reconcentrated) or fine powder or high boiling point The method of extracting substances out of the system was studied.
[0013]
As a result, it has been found that the above object can be achieved by setting the amount of the bottom liquid collected at the bottom of the distillation column and the amount of the liquid extracted from the re-concentrator to the outside of the system within appropriate ranges.
[0014]
The gist of the present invention resides in the following method for producing chlorosilanes.
[0015]
A method for producing chlorosilanes in which metal silicon and hydrogen chloride or metal silicon and silicon tetrachloride and hydrogen are reacted and then cooled, and the resulting crude mixture of chlorosilanes is distilled in a distillation column to recover the chlorosilanes. The impurity concentrate in which the impurities in the unpurified mixture are concentrated is extracted from the distillation column, and chlorosilanes remaining in the concentrate are recovered by heating with a re-concentrator, and the concentrated impurities are re-concentrated. When extracting from the apparatus, the amount of impurity-concentrated liquid extracted from the distillation column is set to 1 to 20 kg and the amount of concentrated impurity extracted from the re-concentrator is set to 0.05 to 0.45 kg for 1 kg of the metal silicon to be reacted. For producing chlorosilanes. As described above, the “chlorosilanes” herein refer to trichlorosilane and silicon tetrachloride produced as a by-product. In some cases, silicon tetrachloride may be used as a raw material and discharged without being reacted.
[0016]
Further, “impurities” refers to fine powder of unreacted metal silicon or metal silicon or metal generated during the reaction between the above-mentioned metal silicon and hydrogen chloride, or between metal silicon and silicon tetrachloride and hydrogen. A high-boiling substance generated by chlorinating substances (Al, Fe, etc.) other than silicon contained in silicon.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the method for producing chlorosilanes of the present invention will be described in detail with reference to the drawings.
[0018]
FIG. 1 is a schematic configuration diagram of an example of a facility for producing trichlorosilane for carrying out the method of the present invention. Portions surrounded by broken lines are steps to be carried out in the method of the present invention.
[0019]
In FIG. 1, reference numeral 1 denotes a reaction furnace for producing the reaction of the above formula (2), and a quencher 4 for cooling gas discharged from the reaction furnace 1 and a condensate supplied from the quencher 4. A distillation column 7 for recovering chlorosilanes by distillation is connected in order. In the equipment illustrated in FIG. 1, the fine powder of the raw material (metallic silicon) and the bottom liquid in which the high-boiling substances are concentrated are extracted from the distillation column 7 and heated to separate and recover the mixed chlorosilanes. A re-concentration device 12 for extracting the concentrated (that is, re-concentrated) impurities to the outside of the system is provided.
[0020]
In the trichlorosilane production facility, metal silicon 2 (purity of about 95% or more) as a raw material is charged into a reaction furnace 1, and hydrogen (H 2 ) and silicon tetrachloride (SiCl 4 ) heated to about 600 ° C. Into a fluidized bed. The following reaction (reaction (2)) occurs in the reaction furnace 1.
[0021]
Si + 3SiCl 4 + 2H 2 → 4SiHCl 3
In the outlet gas 3 from the reaction furnace 1, in addition to SiHCl 3 as a reaction product, unreacted H 2 , SiCl 4 and fine powder of unreacted metallic silicon, metallic silicon or silicon contained in metallic silicon Other substances (Al, Fe, etc.) are chlorinated and high boiling substances are generated.
[0022]
Subsequently, the outlet gas 3 is cooled by the quencher 4 to condense and liquefy SiHCl 3 , SiCl 4 and the like, and to disperse the fine powder of metal silicon and the non-liquefied high-boiling substance into the condensate such as SiHCl 3 and SiCl 4. Collect. The cooling method is as follows: a liquid in which the fine powder and the high-boiling substance not liquefied are collected in a condensate such as SiHCl 3 , SiCl 4 or the like (this is referred to as a “mixture”) is forced by the pump 5 while cooling. It is a circulating method. H 2 and unreacted gas 6 that are not condensed or collected in the quencher 4 are recovered from the upper part of the quencher 4 and reused as the raw material gas of the reaction furnace 1. On the other hand, a part of the mixture is withdrawn from the forced circulation path and sent to the distillation column 7.
[0023]
In the distillation tower 7, the extracted liquid mixture is steam-heated by the reboiler 10, and SiHCl 3 and SiCl 4 evaporate and are separated from high-boiling substances and metal silicon fine powder. The separated SiHCl 3 8 is further rectified according to its use, and the SiCl 4 9 is reused as a raw material to be sent to the reaction furnace 1. On the other hand, SiHCl 3, SiCl 4 fine and high boiling point of the separated metallic silicon from material while concentrated condensate SiHCl 3, SiCl 4 remaining without being separated (this is called "impurities concentrate" ), It collects at the bottom of the distillation column 7, is again taken out from the bottom, and heating and separation in the reboiler 10 are repeated.
[0024]
In the conventional method for producing trichlorosilane, aluminum chloride, iron chloride, and the like generated by chlorinating Al, Fe, and the like in metal silicon, which is a high-boiling substance, during repeated heating and separation in the reboiler, are generated. In some cases, the solution became concentrated and became supersaturated, and was deposited and fixed on the inner wall of a pipe or the like, thereby blocking the pipe. However, in the method of the present invention, one cycle was taken from the circulation path between the reboiler 10 and the distillation column 7. The part is withdrawn as the impurity concentrate 11 and sent to the re-concentrator 12.
[0025]
The re-concentrator 12 is provided with an impurity-concentrated liquid inlet 13 and a chlorosilanes outlet 14 in the upper part, and is a cylindrical evaporation vessel 15 having a convex lower part. Inside the vessel 15, a stirring means is provided. ing. The evaporating container 15 has a double-wall structure (not shown), and is configured such that steam can pass between the inner wall and the outer wall to heat the impurity concentrated liquid 11 supplied into the container 15. Is provided with a concentrated impurity reservoir 16 for temporarily storing impurities (hereinafter, referred to as “concentrated impurities”) generated by re-concentrating the impurity concentrated liquid 11 to the outside of the system. Reference numeral 23 denotes a discharge pipe for extracting the concentrated impurities to the outside of the system, to which a metering pump 24 is attached.
[0026]
The stirring means includes a rotating shaft 17 vertically attached to the center of the evaporating container 15, a stirring blade 18 provided radially below the rotating shaft 17 and along the inner wall below the evaporating container 15. It has a stirring blade 19 for stirring the inside of the concentrated impurity reservoir 16 and smoothly extracting it from the system, and is configured to be able to rotate in both forward and reverse directions by a motor 20 connected to the upper part of the rotating shaft 17. I have.
[0027]
The reason why the stirring blade 18 is provided along the inner wall as described above is to prevent the concentrated impurities from being fixed on the inner wall surface of the container 15 by stirring the inside of the evaporation container 15. The lower end of the stirring blade 18 is made of, for example, a material such as brass (BsBM), and comes into contact with the inner wall surface by its own weight. When the stirring blade 18 rotates in one direction, the liquid on the wall surface is lifted up. If a scraper block (not shown) divided into a plurality of pieces in the longitudinal direction of the blade 18 provided with a groove or an angle so as to scrape the liquid when rotating in the direction of The prevention effect is greater.
[0028]
The chlorosilanes outlet 14 is connected to a condenser 21 for condensing the recovered chlorosilanes, and is connected to the distillation column 7 via a flow meter 22.
[0029]
The impurity concentrate 11 sent to the re-concentrator 12 is heated by the vapor passing between the inner and outer walls of the container in the evaporating vessel 15, and chlorosilanes remaining in the impurity concentrate 11 are gasified and discharged from the chlorosilanes outlet. It is discharged from the evaporating container 15 from the outside. Although the impurity concentrate 11 in the evaporation container 15 is re-concentrated, it is stirred by the stirring blade 18 provided along the inner wall (heating surface) below the evaporation container 15, so that the chloride in the concentrate 11 is concentrated. High-boiling substances such as aluminum do not adhere to the inner wall surface.
[0030]
Chlorosilanes discharged into the evaporation container 15 outside liquefied in the condenser 21, and returned to the distillation column 7 via a flow meter 22, is recovered as SiHCl 3 8, SiCl 4 9. On the other hand, the re-concentrated impurity concentrate 11 is drawn out of the system from the discharge pipe 23 while being stirred by the stirring blade 19 in the concentrated impurity reservoir 16.
[0031]
The withdrawal amount of the impurity concentrate 11, that is, the transfer amount of the concentrate 11 to the re-concentrator 12 is 1 to 20 kg with respect to the amount of metal silicon to be reacted, that is, 1 kg of metal silicon consumption in the reaction furnace 1. . If the withdrawal amount of the impurity concentrate 11 is more than 20 kg, it is economically disadvantageous, and if it is less than 1 kg, the processing amount of the re-concentrator 12 is small, and high boiling substances cannot be sufficiently extracted, which may cause clogging of pipes and columns. Become. Since the clogging is likely to occur, a flow meter for measuring the amount of the condensate 11 extracted is not provided in the re-concentrator 12, but the flow meter 22 can be used to know the recovered amount of chlorosilanes. As described above, the amount of withdrawal from the reconcentrator 12 can be controlled by the metering pump 24, so that the amount of withdrawal of the impurity concentrate 11 can be obtained as the sum of the two.
[0032]
The amount of concentrated impurities extracted from the re-concentrator 12 is set to 0.05 to 0.45 kg with respect to the consumption of 1 kg of the metal silicon. The extraction amount of the concentrated impurities is greatly influenced by the concentration of the high-boiling substance in the metal silicon, particularly Al, and the amount of the fine powder of the metal silicon. If it is set appropriately, the re-concentrator 12 can be operated smoothly. The extraction amount can be controlled by, for example, intermittently operating a computer with the metering pump 24 capable of discharging even a highly viscous substance.
[0033]
If the withdrawal amount is less than 0.05 kg, the concentration of the high-boiling substance in the re-concentrator 12 increases, the clogging of the discharge pipe 23 occurs, and the concentration of the high-boiling substance increases. Since the boiling point of the liquid itself rises, aluminum chloride or the like may return to the distillation column 7 as vapor. If the withdrawal amount is more than 0.45 kg, the separation and recovery of chlorosilanes are not sufficient, and the loss of discharge to the outside of the system increases.
[0034]
The concentrated impurities extracted out of the system from the re-concentrator 12 are hydrolyzed and then treated as industrial waste.
[0035]
It is preferable that the pressure during operation in the re-concentration device 12 be between atmospheric pressure and 0.2 MPa (absolute pressure). More preferably, the pressure is from atmospheric pressure to 0.15 MPa (absolute pressure). This is because if the pressure in the apparatus is too high, chlorosilanes are likely to leak from the seal between the rotating shaft 17 of the stirring means and the evaporating container 15, and the frequency of maintenance increases.
[0036]
The temperature during operation in the reconcentrator 12 is preferably set to 80 ° C. or less. If the operating temperature is higher than this, the vapor pressure of the high-boiling substance (such as aluminum chloride) will increase, so that it may return to the distillation column 7 as vapor. The temperature in the re-concentrator 12 is preferably set to 40 ° C. or higher so that the impurity concentrate 11 can be boiled to promote the separation of trichlorosilane (boiling point: 31.8 ° C.).
[0037]
Metal silicon as a raw material used in the method for producing chlorosilanes of the present invention preferably has a relatively high purity, and specifically, preferably has an Al concentration of about 500 to 6000 ppm.
[0038]
The metal silicon may be charged into the reaction furnace either continuously or intermittently (for example, every several hours). In the case of intermittent charging, the “reaction amount of metal silicon (that is, charging amount)” in the present invention may be obtained by, for example, converting the daily charging amount of metal silicon into the “24-hour average” charging amount. In this case, the withdrawal amount of the impurity concentrate from the distillation column is also obtained as the “24-hour average” amount.
[0039]
Withdrawal of the concentrated impurities from the re-concentrator may be continuous or intermittent, but in the case of intermittent withdrawal, if the interval is too long, the concentration of the concentrated impurities in the evaporation container may increase depending on the capacity of the re-concentrator. Due to the increased viscosity, the discharge pipe may be clogged, making it difficult to remove the pipe. For this reason, it is considered that “the amount of concentrated impurities to be extracted should be 0.05 to 0.45 kg per 1 kg of the metal silicon to be reacted (added)” specified in the present invention over a long span. The extraction amount of the concentrated impurities was set to 300 to 2700 kg with respect to the input amount of 6000 kg (the same ratio as 0.05 to 0.45 kg with respect to 1 kg). It is desirable from the viewpoint of preventing the clogging of the discharge pipe that the extraction pipes are averaged over time and that the discharge pipes are averaged even if the intervals are relatively long due to intermittent extraction.
[0040]
In the above-described method for producing chlorosilanes of the present invention, the re-concentration apparatus illustrated in FIG. 1 is used to collect chlorosilanes in the impurity concentrated liquid collected at the bottom of the distillation column and remove impurities such as high-boiling substances. Although it is used, it is not necessarily limited to this. Any substance (evaporator) that can achieve the intended purpose (recovery of chlorosilanes and removal of impurities) by treating the impurity concentrated liquid may be used, and the amount of the impurity concentrated liquid withdrawn from the distillation column (that is, the evaporation rate) The amount of transfer to the apparatus) and the amount of re-concentrated impurities withdrawn from the evaporator are appropriately adjusted within the above-mentioned ranges, so that smooth operation can be performed without causing clogging of the reboiler and piping of the distillation column. It is possible.
[0041]
According to the method for producing chlorosilanes of the present invention described above, chlorosilanes (such as silicon tetrachloride or silicon tetrachloride) containing fine powder of metallic silicon or high boiling substances generated by chlorinating metallic silicon or Al, Fe, etc. contained in metallic silicon. It is possible to efficiently remove the fine powder and high-boiling substances from trichlorosilane) and produce high-purity chlorosilanes at a high yield without causing clogging of a reboiler, a pipe or the like of a distillation column.
[0042]
【Example】
The method of the present invention was carried out using the trichlorosilane production facility having the configuration shown in FIG.
[0043]
First, metal silicon 2 having a purity of 98% is charged into a reaction furnace 1, and hydrogen (H 2 ) and silicon tetrachloride (SiCl 4 ) heated to 550 ° C. are fed to form a fluidized bed. A reaction occurred.
[0044]
Si + 3SiCl 4 + 2H 2 → 4SiHCl 3
Next, the outlet gas 3 (containing SiHCl 3 , H 2 , SiCl 4 and fine particles of metallic silicon and high-boiling substances) from the reaction furnace 1 is cooled by the quencher 4 and the condensate does not become the fine powder or liquefaction. A part of the mixed liquid in which the high-boiling substances were collected was withdrawn from the forced circulation path, sent to the distillation column 7, and steam-heated by the reboiler 10 to gasify and recover SiHCl 3 and SiCl 4 .
[0045]
The impurity-concentrated liquid 11 in a state in which high-boiling substances and metal silicon fine powder accumulated at the bottom of the distillation column 7 are condensed into a condensate of SiHCl 3 and SiCl 4 which has not been gasified is consumed in an amount of 1 kg of metal silicon consumed in the reaction furnace 1. Was sent to the reconcentrator 12 at a rate of 1 kg.
[0046]
In the re-concentration device 12, heat treatment is performed while stirring, and chlorosilanes remaining in the impurity-concentrated liquid 11 are gasified and collected, and the concentrated impurities obtained by re-concentration are consumed by the metal furnace in the reaction furnace 1. It was extracted from the re-concentrator 12 at a ratio of 0.05 kg to 1 kg. The pressure inside the re-concentrator 12 was 0.15 MPa (absolute pressure), and the operating temperature was 65 ° C.
[0047]
As described above, as a result of operating the trichlorosilane production facility for 12 months, there was no clogging of the reboiler and piping of the distillation column.
[0048]
Table 1 collectively shows the above-mentioned operating conditions, the clogging state of the pipes and the like, the loss amount of chlorosilanes, and the like (Example). In Table 1, “the amount of steam used” is the amount used in the evaporating vessel 15 of the reconcentrator 12, and “the loss amount of chlorosilanes” is included in the concentrated impurities extracted from the reconcentrator 12. It refers to the loss of chlorosilanes contained.
[0049]
In comparison with the above embodiment, for comparison, the operation was carried out by changing the transfer amount of the impurity concentrate 11 to the re-concentrator 12 and the extraction amount of the concentrated impurity from the re-concentrator 12 (Comparative Example). 1-5). The operating conditions, the clogging status of the pipes and the like, the loss amount of chlorosilanes, problems, and the like are also shown in Table 1 above.
[0050]
[Table 1]
Figure 2004256338
[0051]
In Table 1, Comparative Example 1 shows a case where both the transfer amount of the impurity concentrate 11 to the re-concentrator 12 and the withdrawal amount of the concentrated impurity from the re-concentrator 12 were smaller than the amounts specified by the method of the present invention. However, since the operating temperature of the re-concentrator 12 is too high and the pressure in the device 12 has risen to 0.4 MPa (absolute pressure), leakage from the seal between the rotating shaft 17 of the stirring means and the evaporating vessel 15 has occurred. After two months, the transfer amount to the re-concentrator 12 was further reduced, and the piping was blocked at the third month. It was also confirmed that about half of the heat transfer tubes in the reboiler 10 of the distillation column 7 were completely closed.
[0052]
In Comparative Example 2, when the transfer amount of the impurity concentrated liquid 11 to the re-concentration device 12 was smaller than the amount specified in the present invention, in Comparative Example 4, the extraction amount of the concentrated impurity from the re-concentration device 12 was specified in the present invention. However, in all cases, clogging of piping and the like occurred.
[0053]
Comparative Example 3 is a case where the transfer amount of the impurity concentrated liquid 11 to the re-concentration device 12 was larger than the amount specified in the present invention. Was bad.
[0054]
In Conventional Example 1, the impurity concentrate 11 is hydrolyzed as it is without passing through the re-concentrator 12. In this case, there is no clogging of pipes and the like, and no steam for heating the re-concentrator 12 is required. However, the cost of the hydrolysis treatment is increased, and the loss of chlorosilanes as an active ingredient is extremely large. there were.
[0055]
【The invention's effect】
According to the method for producing chlorosilanes of the present invention, chlorosilanes (such as silicon tetrachloride and trichloride) containing fine powder of metallic silicon or high boiling substances generated by chlorinating metallic silicon or Al, Fe, and the like contained in metallic silicon. It is possible to efficiently remove the fine powder and high-boiling substances from chlorosilane) and produce high-purity chlorosilanes at a high yield without causing clogging of a reboiler, a pipe or the like of a distillation column.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an example of a facility for producing trichlorosilane for carrying out the method of the present invention.
[Explanation of symbols]
1: reactor 2: metallic silicon 3: outlet gas 4: Quencher 5: Pump 6: H 2 and unreacted gas 7: distillation column 8: SiHCl 3
9: SiCl 4
10: reboiler 11: impurity concentrate 12: reconcentrator 13: impurity concentrate feed port 14: chlorosilanes outlet 15: evaporation vessel 16: concentrated impurity reservoir 17: rotating shaft 18: stirring blade 19: stirring blade 20: motor 21: condenser 22: flow meter 23: discharge pipe 24: metering pump

Claims (2)

金属シリコンと塩化水素、または金属シリコンと四塩化珪素および水素を反応させた後、冷却し、得られるクロロシラン類の未精製混合液を蒸留塔で蒸留してクロロシラン類を回収するクロロシラン類の製造方法であって、未精製混合液中の不純物が濃縮した不純物濃縮液を蒸留塔から抜き出し、再濃縮装置で加熱することにより前記濃縮液に残存するクロロシラン類を回収するとともに、濃縮した不純物を再濃縮装置から抜き出すに際し、前記反応させる金属シリコン量1kgに対して、蒸留塔からの不純物濃縮液の抜き出し量を1〜20kgとし、再濃縮装置からの濃縮不純物の抜き出し量を0.05〜0.45kgとすることを特徴とするクロロシラン類の製造方法。A method for producing chlorosilanes in which metal silicon is reacted with hydrogen chloride or metal silicon is reacted with silicon tetrachloride and hydrogen and then cooled, and the obtained crude liquid mixture of chlorosilanes is distilled in a distillation column to recover chlorosilanes. The impurity concentrate in which the impurities in the unpurified mixture are concentrated is extracted from the distillation column, and the chlorosilanes remaining in the concentrate are recovered by heating with a re-concentrator, and the concentrated impurities are re-concentrated. When extracting from the apparatus, the amount of impurity-concentrated liquid extracted from the distillation column is set to 1 to 20 kg and the amount of concentrated impurity extracted from the re-concentrator is set to 0.05 to 0.45 kg for 1 kg of the metal silicon to be reacted. A process for producing chlorosilanes. 再濃縮装置内の温度が80℃以下であることを特徴とする請求項1に記載のクロロシラン類の製造方法。The method for producing chlorosilanes according to claim 1, wherein the temperature in the reconcentrator is 80 ° C or lower.
JP2003047372A 2003-02-25 2003-02-25 Method of manufacturing chlorosilane Pending JP2004256338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003047372A JP2004256338A (en) 2003-02-25 2003-02-25 Method of manufacturing chlorosilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003047372A JP2004256338A (en) 2003-02-25 2003-02-25 Method of manufacturing chlorosilane

Publications (1)

Publication Number Publication Date
JP2004256338A true JP2004256338A (en) 2004-09-16

Family

ID=33113645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003047372A Pending JP2004256338A (en) 2003-02-25 2003-02-25 Method of manufacturing chlorosilane

Country Status (1)

Country Link
JP (1) JP2004256338A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101279734B (en) * 2008-05-30 2010-06-02 广州吉必盛科技实业有限公司 Method for synthesizing polysilicon raw material trichlorosilane
JP2011504452A (en) * 2008-04-07 2011-02-10 ロード・リミテッド・エルピー Method for removing aluminum chloride and other metal chlorides from chlorosilanes
US20110110839A1 (en) * 2009-11-06 2011-05-12 Gt Solar Incorporated Systems and methods of producing trichlorosilane
JP2013001632A (en) * 2011-06-21 2013-01-07 Shin-Etsu Chemical Co Ltd Method for purifying chlorosilanes
JP2013010648A (en) * 2011-06-28 2013-01-17 Mitsubishi Materials Corp Method for producing trichlorosilane
CN104140104A (en) * 2014-07-18 2014-11-12 中国恩菲工程技术有限公司 Method for preparing trichlorosilane through device for preparing trichlorosilane
JP2016190749A (en) * 2015-03-31 2016-11-10 信越化学工業株式会社 Apparatus for forming carbon film, method for forming carbon film, anode material for lithium ion battery and lithium ion battery
CN113226987A (en) * 2018-12-27 2021-08-06 株式会社德山 Process for producing chlorosilanes

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011504452A (en) * 2008-04-07 2011-02-10 ロード・リミテッド・エルピー Method for removing aluminum chloride and other metal chlorides from chlorosilanes
JP4691213B2 (en) * 2008-04-07 2011-06-01 ロード・リミテッド・エルピー Method for removing aluminum chloride and other metal chlorides from chlorosilanes
CN101279734B (en) * 2008-05-30 2010-06-02 广州吉必盛科技实业有限公司 Method for synthesizing polysilicon raw material trichlorosilane
US20110110839A1 (en) * 2009-11-06 2011-05-12 Gt Solar Incorporated Systems and methods of producing trichlorosilane
US8298490B2 (en) * 2009-11-06 2012-10-30 Gtat Corporation Systems and methods of producing trichlorosilane
JP2013001632A (en) * 2011-06-21 2013-01-07 Shin-Etsu Chemical Co Ltd Method for purifying chlorosilanes
JP2013010648A (en) * 2011-06-28 2013-01-17 Mitsubishi Materials Corp Method for producing trichlorosilane
CN104140104A (en) * 2014-07-18 2014-11-12 中国恩菲工程技术有限公司 Method for preparing trichlorosilane through device for preparing trichlorosilane
JP2016190749A (en) * 2015-03-31 2016-11-10 信越化学工業株式会社 Apparatus for forming carbon film, method for forming carbon film, anode material for lithium ion battery and lithium ion battery
CN113226987A (en) * 2018-12-27 2021-08-06 株式会社德山 Process for producing chlorosilanes
CN113226987B (en) * 2018-12-27 2023-09-19 株式会社德山 Process for producing chlorosilanes

Similar Documents

Publication Publication Date Title
US7736614B2 (en) Process for removing aluminum and other metal chlorides from chlorosilanes
KR101778068B1 (en) System and methods of producing trichlorosilane
TWI436946B (en) Method for producing polycrystal silicon and polycrystal silicon production equipment
JP5040717B2 (en) Manufacturing method of high purity silicon
JP2008184378A (en) Method for producing high-purity trichlorosilane
EP2540666B1 (en) Method for manufacturing trichlorosilane
JP6287081B2 (en) Tetrachlorosilane recovery method and polycrystalline silicon production method
JP4128983B2 (en) Method for producing silicon chloride and method for producing polycrystalline silicon using the same
JP6446164B2 (en) Residue disposal method and method for producing trichlorosilane
JP2004256338A (en) Method of manufacturing chlorosilane
JP4463502B2 (en) Method for recovering chlorosilanes
CN109467089B (en) Polycrystalline silicon production method
CN111533164B (en) Vanadium removal method for titanium tetrachloride in boiling chlorination system
CN214270230U (en) Equipment for removing aluminum through chlorosilane complexation
JP6391389B2 (en) Method for producing octachlorotrisilane and octachlorotrisilane produced by the method
JP6486049B2 (en) Method for producing pentachlorodisilane and pentachlorodisilane produced by the method
TW201210940A (en) Process for separating monosilane from chlorosilanes-rich mixture
CN112408396A (en) Process and equipment for removing aluminum by chlorosilane complexation
JP3850621B2 (en) Method for recovering chlorosilanes
RU2280010C1 (en) Method of production 0f trichlorosilane
JP2023112747A (en) Recovery method of chlorosilanes

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060228

A131 Notification of reasons for refusal

Effective date: 20060905

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070116