JP2004255983A - Panel member of automobile and method for forming panel member - Google Patents

Panel member of automobile and method for forming panel member Download PDF

Info

Publication number
JP2004255983A
JP2004255983A JP2003048005A JP2003048005A JP2004255983A JP 2004255983 A JP2004255983 A JP 2004255983A JP 2003048005 A JP2003048005 A JP 2003048005A JP 2003048005 A JP2003048005 A JP 2003048005A JP 2004255983 A JP2004255983 A JP 2004255983A
Authority
JP
Japan
Prior art keywords
panel member
bead
automobile
shape
portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003048005A
Other languages
Japanese (ja)
Inventor
Koichi Ota
幸一 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003048005A priority Critical patent/JP2004255983A/en
Publication of JP2004255983A publication Critical patent/JP2004255983A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve strength of a panel member used for an automobile. <P>SOLUTION: In this panel member of the automobile, quenching parts 7 by laser, etc. are formed into grid shapes to be orthogonal each other in a direction inclined by 45° to longitudinal and lateral directions of a steel plate 5 to obtain a steel plate 9. A pattern of a grid-shaped bead part 11 parallel to a longitudinal direction of the steel plate 9 is machined by pressing, etc. in this steel plate 9. At this time, the bead part 11 is formed to cross mutual crossing parts of the quenching parts 7 in an inclined state by 45° to the linear quenching parts 7. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、自動車のパネル部材およびパネル部材の成形方法に関する。
【0002】
【従来の技術】
従来、例えば自動車などに使用されるようなパネル部材を強化する方法として、特許文献1に、レーザ照射を用いた鋼板の強化方法に関するものが開示されている。
【0003】
【特許文献1】
特開2002−275527号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上記のようにして強化したパネル部材は、自動車の衝突時において、パネル部材が面外方向(パネル部材の面に交差する方向)の入力や曲げモーメントを受けた場合に弱く、衝突性能向上において有効な負荷方向に対する等方性(複数方向に対して同等の性能)や、エネルギ吸収、荷重分散性能において不充分である。
【0005】
そこで、この発明は、自動車に使用するパネル部材の強度を向上させることを目的としている。
【0006】
【課題を解決するための手段】
前記目的を達成するために、この発明は、自動車の平面部に用いる鋼鈑からなるパネル部材において、パネル部材表面に機械加工により形成した複数のビード部と熱加工処理による複数の強化部とを形成し、少なくとも一部の前記ビード部と前記強化部の形成位置を一致させてビード部と強化部とを組み合わせた自動車のパネル部材としてある。
【0007】
【発明の効果】
この発明によれば、パネル部材に形成したビード部および焼き入れ部を、複数組み合わせて設けることで、ビード部により、パネル部材の面外方向からの曲げ入力に対する剛性が向上するとともに、焼き入れ部により、面方向の引張り強度が向上する。また、ビード部のみを設けた場合に比べ、ビード部の減少によるパネル部材の成形性向上や、ビード部の交差部の減少による強度向上が期待できる。
【0008】
【発明の実施の形態】
以下、この発明の実施の形態を図面に基づき説明する。
【0009】
図1に、自動車における主なパネル部材の概略を示す。ここでのパネル部材の強化方法は、その表面に凹凸を生じさせるため、平滑な表面性状が要求されない車体内板部が主な適用部位となる。なお、図1中で矢印F方向が車両前方、同W方向が車幅方向、同U方向が車両上方である。したがって、車両に対する衝突荷重として、Ffが前面衝突荷重、Frが後面衝突荷重、Fwが側面衝突荷重となる。
【0010】
図1において、1aがダッシュロアパネル、1bがフロントフロアパネル、1cがリヤフロアパネルであり、これらどのパネル部材もほぼ平面となる部位が大きく存在する。
【0011】
ダッシュロアパネル1aは、前面衝突の際に、フロントサイドメンバ1dやエンジン1eなどから、主に面外方向(パネル部材の表面と交差する方向)の荷重を受け、側面衝突においては面方向(パネル部材の表面と平行な方向)の圧縮荷重を受ける。
【0012】
フロントフロアパネル1bは、側面衝突の際に、主にサイドシル1fから圧縮荷重および曲げモーメントを受け、エクステンションメンバ1gやクロスメンバ1hの変形により引張り荷重も作用すると考えられる。またフロントフロアパネル1bは、前面衝突の際に、フロントサイドメンバ1dおよびエクステンションメンバ1gの伝達荷重により、エクステンションメンバ1gの変形に伴う曲げモーメントや、エクステンションメンバ1g接合部付近に引張り荷重が作用すると考えられる。
【0013】
リヤフロアパネル1cは、後面衝突の際に、ほぼ直接圧縮荷重を受け、リヤサイドメンバ1iの変形により、曲げモーメントや引張り荷重も受けると考えられる。
【0014】
以上のことから、ダッシュロアパネル1a,フロントフロアパネル1bおよびリヤフロアパネル1cの各パネル部材に、本発明の強化方法を適用することによって、圧縮,曲げ,引張り時の性能を強化し、負荷方向に対する等方性(複数方向に対して同等の性能)や異方性(複数方向に対して異なる性能)を持たせ、衝突性能向上を図ることができる。
【0015】
第1の実施形態として、図2(a)は、上記したダッシュロアパネル1a,フロントフロアパネル1bおよびリヤフロアパネル1cを構成する鋼板製のパネル部材2の強化後の全体を示す斜視図、図2(b)はその一部を拡大して示す斜視図である。
【0016】
このパネル部材2は、その表面に沿って線状となるビード部2aを、プレスなどの機械加工により格子状に形成してある。このビード部2aは、パネル部材2の面と直角な方向の一方に凸で他方に凹となるよう成形してあり、このビード部2aに囲まれて平面部2bを有する。
【0017】
平面部2bの大きさ(ビード部2a相互の間隔)は、パネル部材2に対するスポット溶接を行う際などの作業空間、ビード部2aの延長方向に対する反力および変形モードを考慮し、パネル部材2を適用する部位の要求に合わせ最適な設計を行う必要がある。
【0018】
このようにパネル部材2は、ビード部2aを設けることで、パネル部材2の面外方向からの曲げ入力に対する剛性が向上する。また、複数のビード部2aを、ビード部2aのない平面部2bを囲むように組み合わせて設けることで、パネル部材2の面外方向からの曲げ入力に対する剛性が向上する。さらに、パネル部材2が圧縮や曲げ荷重を受けると、ビード部2a同士がこの荷重を伝達しつつ歪み、ビード部2aに囲まれた平面部2bも同様に歪む。これがパネル部材面上の広範囲に及び、その結果パネル部材2のエネルギ吸収量を向上させ、荷重分散の機能も得ることができる。
【0019】
第2の実施形態として、図3(a)は、上記したダッシュロアパネル1a,フロントフロアパネル1bおよびリヤフロアパネル1cを構成する他の例による鋼板製のパネル部材3の強化後の全体を示す斜視図、図3(b)はその一部を拡大して示す斜視図である。
【0020】
このパネル部材3は、その表面に沿って、熱加工処理による強化部としての線状となる焼き入れ部3aを、レーザなどにより格子状に形成してあり、この強化した焼き入れ部3aに囲まれて平面部3bを有する。
【0021】
焼き入れ部3aの大きさや平面部3bの大きさ(焼き入れ部3a相互の間隔)は、パネル部材3の引張り強度を変化させ、その後のプレス成形性への影響があるため、パネル部材3を適用する部位の要求に合わせ最適な設計を行う必要がある。
【0022】
このようにパネル部材3は、焼き入れ部3aを設けることで、パネル部材3の面方向の引張り強度が向上する。また、複数の焼き入れ部3aを、焼き入れ部3aのない平面部3bを囲むように組み合わせて設けることで、パネル部材3の面外方向からの曲げ入力に対する剛性が向上する。さらに、パネル部材3が引張力圧を受けると、焼き入れ部3a同士がこの荷重を伝達しつつ歪み、焼き入れ部3aに囲まれた平面部3bも同様に歪む。また、焼き入れ部3aで引張り強さも得られるため、パネル部材3の強度とエネルギ吸収量を向上させることができる。
【0023】
第3の実施形態として、図4に、前記したビード部2aまたは焼き入れ部3aによって形成するパターンの例を示す。これらのパターン形状によって負荷方向に対する応答が変化する。
【0024】
図4(a)に示す格子状(4角形)のパターンは、前記図2および図3に対応するもので、パネル部材の縦横方向(図4(a)中で上下左右方向)に等方性を持たせている。すなわち、ビード部や焼き入れ部が平面部を囲む形状を多角形とし、その多角形を複数組み合わせたパターン形状を、パネル部材の周縁外方の複数方向に対して多角形同士がほぼ同形状となるようにしている。
【0025】
上記図4(a)のパターン形状は、形状もシンプルであるため、熱処理加工,成形も簡易で、後述する他のものに比較し重量も軽いため最も一般的と考えられる。
【0026】
図4(b)および(c)は、3角形およびハニカム(6角形)形状でパターンをそれぞれ構成し、縦横方向(図4(b),(c)中で上下左右方向)に非対称なパターンである。すなわち、ビード部や焼き入れ部が平面部を囲む形状を多角形とし、その多角形を複数組み合わせたパターン形状を、特定方向に対して多角形同士の形状が異なるようにしている。
【0027】
このため主な衝突方向には異方性の性質を持つことになるが、図4(b)は3方向、図4(c)は6方向にそれぞれ対称であるため、この特徴を生かす部位に限定して適用する。
【0028】
また、図4(d)は円形によるパターンで、パネル部材の縦横方向(図4(d)中で上下左右方向)に等方性を持ち、斜め方向も縦横方向に近い応答をする。
【0029】
このように、上記図4に示すように、プレスなどの加工により成形した線状のビード部やレーザなどにより形成した線状の焼き入れ部が、ビード部および焼き入れ部のない平面部を囲む形状を多角形とし、その多角形を複数組み合わせたパターン形状を、パネル部材の周縁外方の複数方向に対して多角形同士がほぼ同形状となるように組み合わせることで、負荷入力に対する応答が等しくなる。これによりパネル部材に等方性の性質を付与することができる。
【0030】
また、プレスなどの加工により成形した線状のビード部やレーザなどにより形成した線状の焼き入れ部が、ビード部および焼き入れ部のない平面部を囲む形状を多角形とし、その多角形を複数組み合わせたパターン形状を、特定方向に対して多角形同士の形状が異なるように組み合わせることで、負荷入力に対する応答が異なるようになる。これにより、パネル部材に異方性の性質を付与することができる。
【0031】
第4の実施形態として、図5に、プレスなどにより成形したビード部のパターンと、レーザなどにより強化した焼き入れ部のパターンとの組み合わせ例を示す。
【0032】
まず、図5(a)で示す鋼板(原板)5に、図5(b)に一部拡大して示すように、レーザなどによる焼き入れ部7を、鋼板5の縦横方向に対して45°傾けた方向に互いに直交するよう格子状に形成し、これにより図5(c)のパターン形状の鋼板9を得る。この焼き入れ部7は、幅や互いのピッチが機能を損なわない程度の精度を持って加工することが必要であるため、レーザの照射による熱処理加工法が有効であるが、要求精度を満たし線状の焼き入れ部7が得られればどのような方法でもよい。
【0033】
上記した鋼板9にプレスなどで、図5(d)に示すように、鋼板9の縦方向方向と平行な格子状のビード部11のパターンを加工する。図5(e)にその一部を拡大して示す。このとき、上記したビード部11は、線状の焼き入れ部7に対し45度傾いた状態で、かつ焼き入れ部7の互いの交差部を交差するように形成する。すなわち、ビード部11に囲まれた平面部13と、ビード部11相互が交差する部分とをそれぞれ強化するように、前記した焼き入れ部7が形成されることになる。
【0034】
これにより、図5(f)のように、焼き入れ部7とビード部11とが互いに交差して組み合わせたパターンを備えた鋼板15が得られる。このようにビード部と焼き入れ部との組み合わせは、レーザなどによる焼き入れ部以外は、通常の加工成形で行うことができる。
【0035】
上記図5に示したように、プレスなどの加工により成形した線状のビード部11を複数組み合わせた際に形成されるビード部11相互の交差部と、ビード部11のない平面部13を、レーザなどによる焼き入れ部7を設けて強化することにより、ビード部11相互の交差部における脆弱部を補強し、ビード部11に囲まれた平面部13が、焼入れ部7の筋交によって補強することになり、圧縮,曲げ,引張りそれぞれにおいて性能を強化することができる。
【0036】
また、図5に示した鋼板15に形成したプレスなどによる線状のビード部11およびレーザなどによる焼き入れ部7を、ビード部11および焼き入れ部7のない平面部13を囲むように組み合わせて設けることで、ビード部11により、鋼板15の面外方向からの曲げ入力に対する剛性が向上するとともに、焼き入れ部7により引張り強度が向上する。また、ビード部のみを設けた場合に比べ、ビード部の減少によるパネル部材の成形性向上や、ビード部の交差部の減少による強度向上が期待できる。さらに、ビード部11および焼き入れ部7が荷重を受けると、ビード部11および焼き入れ部7同士がこの荷重を伝達しつつ歪み、ビード部11および焼き入れ部7に囲まれた平面部13も同様に歪む。これが鋼板面上の広範囲に及び、その結果鋼板15のエネルギ吸収量を向上させ、荷重分散の機能も得ることができる。
【0037】
次に、上記したビード部および焼き入れ部のパターンの違いによる圧縮,曲げおよび引張り試験時での反力,エネルギ吸収量の評価について説明する。
【0038】
図6は、縦200mm,横200mm,厚さ1.0mmの正方形状のFEM解析用の試験用鋼板17に対し、(a)に示す圧縮、(b)に示す曲げ、(c)に示す引張りによる矢印Fで示す強制変位を与えている状態を示す。
【0039】
試験用鋼板17は、図7に示すように、未加工のもの(o)、焼き入れ部を縦横方向に平行な格子状としたもの(a)、(a)に対して45度傾けた格子状の焼き入れ部としたもの(b)、ビード部を縦横方向に平行な格子状としたもの(c)、(c)に対して45度傾けた格子状のビード部としたもの(d)、(c)と(d)とを組み合わせたもの(e)、(b)に(c)の加工を施したもの(f)、(a)に(d)の加工を施したもの(g)、の各種用意した。
【0040】
ここでプレス成形性に影響が出ないよう、図8(a)に示すように、ビード部17aの寸法は、成形高さhを2.0mm、先端と基端との間の寸法iを2.0mmとし、図8(b)に示すように、焼き入れ部17bの幅wを2.0mmとする。また、ビード部17aおよび焼き入れ部17bのそれぞれのピッチは、部材同士のスポット溶接代を考慮し20mmとする。
【0041】
図9(a)は、上記図7(o),(a)〜(d),(g)に示した各種試験用鋼板に対するFEM解析結果による圧縮方向変位θと最大エネルギ吸収量Eとの関係を示す。圧縮方向変位θは、図9(b)に示すように、前記図6(a)に示した強制変位方向Fに対してなす角度である。
【0042】
これによると、図7(o),(a),(b)で示す面上に凹凸形状のない試験用鋼板は、圧縮方向が鋼板面外方向に角度θ(約5度以上)を持つことによりエネルギ吸収量Eが、5度を下回る場合に比べて大きく低下している。
【0043】
一方、図7(c),(d),(g)のプレスなどの機械加工により凹凸形状がある試験用鋼板は、θ=0度において、図7(o),(a),(b)の鋼板に対し低い値となるが、その後角度θが15度程度まで変化してもエネルギ吸収量が低下せず、5度以上では図7(o),(a),(b)の試験用鋼板に対し高い値となる。その中でも特にビード部と焼き入れ部とを組み合わせた図7(g)の試験用鋼板が最も高いエネルギ吸収量となる。
【0044】
以上から、レーザなどによる焼き入れ部により形成したパターンのみでは、図7(o)に示す原板の応答とほとんど同じ傾向、エネルギ吸収量となるが、プレスなどの加工により成形したビード部を設けることで、鋼板は圧縮方向の変化に対して等方性を持つ。さらにビード部に、レーザなどによる焼き入れ部により形成したパターンを組み合わせると(g)、ビード部のみを設けた鋼板(c),(d)に対しエネルギ吸収量が増加する。
【0045】
以後、圧縮時の性能比較において、実際の部材適用形態や衝突形態において0度の圧縮は考えにくいため、図7(o),(a),(b)の鋼板は5度の角度を持って圧縮されるものとする。
【0046】
表1は、前記図7(o),(a)〜(g)に示した試験用鋼板のFEM解析結果を示す。
【0047】
【表1】

Figure 2004255983
表1における数値は、図7(o)に示した未加工の試験用鋼板の解析結果を基準とした相対値で示しており、重量は、成形ビード部の板厚が不変で、面積増加分重量が増加するものとしている。
【0048】
まず、前記図6(a)の圧縮試験における結果を見ると、最大反力は、図7(a)の鋼板が101.9と最も高く(ほぼ原板(図7(o)と同じ)、図7(f)の鋼板が、平均反力(約83%増加)、エネルギ吸収量(約96%増加)、重量あたりのエネルギ吸収量(約70%増加)で最も高い結果となった。圧縮における最大反力は初期に発生するため、圧縮方向剛性について、図7(a)の鋼板は原板並、図7(f)の鋼板は原板の約1/3であることが言える。
【0049】
以上のように、図7(f)の鋼板は、原板に対して大幅にエネルギ吸収性能が強化され、プレスなどの加工により成形したビード部の設定により初期発生Gを抑制することがわかる。
【0050】
次に、図6(b)の曲げ試験における結果を見ると、図7(e)〜(g)に示す鋼板の、プレスなどの加工により成形したビード部を組み合わせたパターンが良い。
【0051】
ビード部を設けることによる薄板材の座屈強度、面外剛性向上は一般的に知られているが、図7(e)のプレスなどによるビード部のみの鋼板に対し、ビード部に焼き入れ部を組み合わせた図7(g)の鋼板は同等性能、同図7(f)は性能が向上しており、かつこれら両者の鋼板は重量も図7(e)の鋼板に対して軽量である。
【0052】
また、図7(f)の鋼板は、反力で約2倍、エネルギ吸収量で約2.5倍と大幅な性能向上が得られている。
【0053】
次に、図6(c)の引張り試験における結果を見ると、最大反力は図7(a)の鋼板が最も高く(約15%増)、平均反力は図7(g)の鋼板が最も高い(約16%増)。エネルギ吸収量は図7(a)の鋼板が最も高いが(約16%増)、図7(g)の鋼板は、応力集中部の変形(引張り方向に直交する方向の変形)が約44%と小さく、かつエネルギ吸収量が約10%増加している。
【0054】
このことから図7(g)の鋼板は、荷重分散によって負荷応答が遅れるが、変形量一定とした場合には、図7(a)の鋼板よりエネルギ吸収を行うものと考えられる。
【0055】
以上のように、プレスなどの加工により成形したビード部と、レーザなどにより強化した焼き入れ部とを組み合わせたパターンを持つ図7(f),(g)の各鋼板は、圧縮,曲げ,引張りに対し良好な結果となった。このパターンは、お互いのパターンの45度方向の特性とも考えられるため、図7(f),(g)の各鋼板は、斜め方向荷重に関しても良好な性能を持つと考えられる。
【0056】
次に、図7(o)の未加工の試験用鋼板および図7(f),(g)の試験用鋼板を、図10に示すような矩形状の閉断面をもつFEM解析用の閉断面部材19に適用し、これを図11に示すような試験を行った結果について説明する。ここで、閉断面部材19の閉断面部における縦横の寸法p,qは40mm、長さrは240mmとする。
【0057】
図11(a)は、閉断面部材19を剛体壁21に対し垂直な状態で衝突させる軸圧壊、図11(b)は、閉断面部材19を剛体壁21に対しθ=30度の角度だけ傾けた状態での斜め衝突、図11(c)は、直径20mmの剛体柱に対し閉断面部材19の長手方向中央部を衝突させる曲げ衝突、をそれぞれ行う状態を示す。これら各試験結果についてFEM解析を行い、図7(o),(f),(g)の各鋼板におけるパターンの有無による有意差を確認した。なお、衝突時の初期速度は10m/sである。表2にこの解析結果を示す。
【0058】
【表2】
Figure 2004255983
図11(a)に示す軸圧壊試験において、図7(f),(g)のパターンを用いた閉断面部材19は、最大反力(初期反力)が約60,70%にそれぞれ低下する。これは成形ビード部が設定されているためである。またパターンの効果により平均反力が増加(約5%)することにより、エネルギ吸収量はパターンなしの部材とほぼ同じとなる(約96,100%)。
【0059】
この結果から、軸圧壊する衝撃吸収部材に矩形の閉断面部材19を用いた場合、図7(f),(g)の鋼板に設定したパターンを適用することで、伝達する衝撃を抑え、かつエネルギを吸収する部材とすることができる。
【0060】
図11(b)に示す斜め衝突試験においては、図7(f),(g)の鋼板を用いた閉断面部材19が、最大反力(約16,31%増),平均反力(約20,40%増)、エネルギ吸収量(約19,42%増)全てで向上する。閉断面部材19を斜めに衝突させると、横方向荷重を受け曲がるため、軸圧壊に比較して反力、エネルギ吸収量が低下するが、図7(f),(g)の鋼板に設定したパターンを適用することで、横方向荷重による曲がりによる反力が強化されたため向上したものと考えられる。
【0061】
この結果から、閉断面部材19に本件パターンを用いることにより、部材に若干の等方性を付与することができる。
【0062】
図11(c)に示す曲げ衝突試験においては、図7(g)の鋼板を用いた閉断面部材19が、最大反力(約37%増),平均反力(約52%増)、エネルギ吸収量(約20%増)全てで向上するが、図7(f)の鋼板を用いた閉断面部材19はほとんど変化がない結果となった。
【0063】
この場合も、図7(g)の鋼板に設定したパターンにより、衝突面の曲げとその裏側の引張りにおける反力が強化されたために性能が向上したことになる。また、図7(f)の鋼板を用いた閉断面部材19にほとんど効果がない結果は、パネル部材の引張り時における結果と同様である。
【0064】
以上のように、図7(f),(g)の鋼板に設定した本件パターンを矩形の閉断面部材19に用いた場合、パネル形状単体での結果と同じ傾向を示し、閉断面部材19の反力の大きさによって効果が目立たない場合もあるが、構造体に適用しても、パネル部材での作用効果を同様に得ることができる。
【0065】
このように構造体においても有効性を失わないことから、その他複雑な形状の部材(多角形や3次元形状)においても、本件パターンを適用することにより、衝突性能向上に有効なエネルギ吸収量の増加や、荷重分散の性能が達成できる。
【0066】
以上のように、パネル部材に形成した複数のビード部および焼き入れ部を、その少なくとも一部を一致させて組み合わせて設けることで、ビード部により、パネル部材の面外方向からの曲げ入力に対する剛性が向上するとともに、焼き入れ部により、面方向の引張り強度が向上する。また、ビード部のみを設けた場合に比べ、ビード部の減少によるパネル部材の成形性向上や、ビード部の交差部の減少による強度向上が期待できる。
【図面の簡単な説明】
【図1】自動車における主なパネル部材の概略を示す斜視図である。
【図2】(a)は図1における各パネル部材にビード部を設けて強化した後の全体を示す斜視図、(b)はその一部を拡大して示す斜視図である。
【図3】(a)は図1における各パネル部材に焼き入れ部を設けて強化した後の全体を示す斜視図、(b)はその一部を拡大して示す斜視図である。
【図4】ビード部または焼き入れ部によって形成するパターンの各種例を示す説明図である。
【図5】プレスなどにより成形したビード部のパターンと、レーザなどによる焼き入れ部のパターンとの組み合わせ例を示す説明図である。
【図6】FEM解析用の試験用鋼板に対し、(a)に示す圧縮、(b)に示す曲げ、(c)に示す引張りによる強制変位を与えている状態を示す説明図である。
【図7】図6の強制変位を与える際の試験用鋼板に形成する各種パターンの例を示す説明図である。
【図8】(a)はビード部の寸法を示す説明図、(b)は焼き入れ部の寸法を示す説明図である。
【図9】(a)は図7の各種試験用鋼板に対するFEM解析結果による圧縮方向変位と最大エネルギ吸収量との相関図、(b)は図6(a)での圧縮方向に対して変位させる角度を示す説明図である。
【図10】図7(o),(f),(g)の試験用鋼板を適用したFEM解析用の閉断面部材の斜視図である。
【図11】図10に示す閉断面部材に対し、(a)に示す軸圧壊、(b)に斜め衝突、(c)に示す曲げによる強制変位を与えている状態を示す説明図である。
【符号の説明】
2,3 パネル部材
2a,11 ビード部
2b,3b,13 平面部
3a,7 焼き入れ部(強化部)
5,9,15 鋼板(パネル部材)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a panel member of an automobile and a method of forming the panel member.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a method of strengthening a panel member used in an automobile or the like, for example, Patent Literature 1 discloses a method related to a method of strengthening a steel sheet using laser irradiation.
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-275527
[Problems to be solved by the invention]
However, the panel member reinforced as described above is weak when the panel member receives an input or a bending moment in an out-of-plane direction (a direction intersecting the surface of the panel member) at the time of the collision of the automobile, and the collision performance is improved. Are insufficient in effective isotropy in the load direction (equivalent performance in a plurality of directions), energy absorption, and load dispersion performance.
[0005]
Then, this invention aims at improving the intensity | strength of the panel member used for a motor vehicle.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a panel member made of a steel plate used for a plane portion of an automobile, comprising a plurality of beads formed by machining on the surface of the panel member and a plurality of reinforced portions formed by thermal processing. It is a panel member of an automobile formed by forming at least a part of the bead portion and the reinforcing portion at the same position and combining the bead portion and the reinforcing portion.
[0007]
【The invention's effect】
According to the present invention, by providing a plurality of bead portions and quenched portions formed on the panel member in combination, the bead portion improves the rigidity of the panel member against bending input from an out-of-plane direction. Thereby, the tensile strength in the plane direction is improved. Further, as compared with the case where only the bead portion is provided, improvement in the formability of the panel member due to the decrease in the bead portion and improvement in the strength due to the decrease in the intersection portion of the bead portion can be expected.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0009]
FIG. 1 shows an outline of main panel members in an automobile. In the method of strengthening the panel member, since the surface of the panel member is made uneven, the inner plate portion of the vehicle body, which does not require smooth surface properties, is the main application site. In FIG. 1, the arrow F direction is the vehicle front, the W direction is the vehicle width direction, and the U direction is the vehicle upper direction. Therefore, as the collision load on the vehicle, Ff is the front collision load, Fr is the rear collision load, and Fw is the side collision load.
[0010]
In FIG. 1, reference numeral 1a denotes a dash lower panel, 1b denotes a front floor panel, and 1c denotes a rear floor panel. Each of these panel members has a largely flat portion.
[0011]
The dash lower panel 1a receives a load mainly in an out-of-plane direction (a direction intersecting with the surface of the panel member) from the front side member 1d or the engine 1e at the time of a frontal collision, and in a plane direction (panel member) at a side collision. In a direction parallel to the surface of the body).
[0012]
It is considered that the front floor panel 1b receives a compressive load and a bending moment mainly from the side sill 1f at the time of a side collision, and a tensile load is also applied by deformation of the extension member 1g and the cross member 1h. Further, in the front floor panel 1b, in the event of a frontal collision, a bending load accompanying deformation of the extension member 1g and a tensile load acting near the joint of the extension member 1g are considered to be applied by the transmitted load of the front side member 1d and the extension member 1g. Can be
[0013]
It is considered that the rear floor panel 1c receives a compression load almost directly at the time of a rear collision, and also receives a bending moment and a tensile load due to deformation of the rear side member 1i.
[0014]
From the above, by applying the reinforcing method of the present invention to each panel member of the dash lower panel 1a, the front floor panel 1b, and the rear floor panel 1c, the performance at the time of compression, bending, and tension is strengthened, and the performance in the load direction is improved. By providing anisotropy (equivalent performance in a plurality of directions) and anisotropy (performance different in a plurality of directions), it is possible to improve the collision performance.
[0015]
As a first embodiment, FIG. 2A is a perspective view showing the entire steel plate member 2 constituting the dash lower panel 1a, the front floor panel 1b, and the rear floor panel 1c after reinforcement, and FIG. (b) is an enlarged perspective view showing a part thereof.
[0016]
In this panel member 2, a bead portion 2a that is linear along the surface thereof is formed in a lattice shape by machining such as pressing. The bead portion 2a is formed so as to be convex on one side and concave on the other side in a direction perpendicular to the surface of the panel member 2, and has a flat portion 2b surrounded by the bead portion 2a.
[0017]
The size of the flat portion 2b (interval between the bead portions 2a) is determined by taking into consideration the working space when spot welding is performed on the panel member 2 and the reaction force and deformation mode in the extending direction of the bead portion 2a. It is necessary to design optimally according to the requirements of the part to be applied.
[0018]
By providing the bead portion 2a in the panel member 2 in this manner, the rigidity of the panel member 2 against bending input from an out-of-plane direction is improved. In addition, by providing a plurality of bead portions 2a in combination so as to surround the flat portion 2b without the bead portions 2a, the rigidity of the panel member 2 against bending input from an out-of-plane direction is improved. Further, when the panel member 2 receives a compressive or bending load, the beads 2a are distorted while transmitting the load, and the flat portion 2b surrounded by the bead 2a is similarly distorted. This extends over a wide area on the panel member surface, and as a result, the energy absorption amount of the panel member 2 can be improved, and the function of load distribution can also be obtained.
[0019]
As a second embodiment, FIG. 3A is a perspective view showing the whole of a steel plate member 3 according to another example of the dash lower panel 1a, the front floor panel 1b, and the rear floor panel 1c after being strengthened. FIG. 3B is an enlarged perspective view of a part of FIG.
[0020]
In the panel member 3, a linear hardened portion 3a as a reinforced portion formed by thermal processing is formed in a lattice shape by a laser or the like along a surface thereof, and is surrounded by the reinforced hardened portion 3a. And has a flat portion 3b.
[0021]
The size of the quenched portion 3a and the size of the flat portion 3b (the distance between the quenched portions 3a) change the tensile strength of the panel member 3 and affect the subsequent press formability. It is necessary to design optimally according to the requirements of the part to be applied.
[0022]
By providing the quenched portion 3a in the panel member 3, the tensile strength in the surface direction of the panel member 3 is improved. Further, by providing a plurality of hardened portions 3a in combination so as to surround the flat portion 3b having no hardened portion 3a, the rigidity of the panel member 3 against bending input from an out-of-plane direction is improved. Further, when the panel member 3 receives tensile pressure, the quenched portions 3a are distorted while transmitting this load, and the flat portion 3b surrounded by the quenched portions 3a is similarly distorted. Further, since the quenched portion 3a also has a tensile strength, the strength of the panel member 3 and the amount of energy absorption can be improved.
[0023]
As a third embodiment, FIG. 4 shows an example of a pattern formed by the bead portion 2a or the quenched portion 3a. The response to the load direction changes depending on these pattern shapes.
[0024]
The grid-like (square) pattern shown in FIG. 4A corresponds to FIGS. 2 and 3 and isotropic in the vertical and horizontal directions of the panel member (up and down and right and left directions in FIG. 4A). Have. That is, the shape in which the bead portion or the quenched portion surrounds the plane portion is a polygon, and the pattern shape obtained by combining a plurality of the polygons is substantially the same shape in a plurality of directions outside the peripheral edge of the panel member. I am trying to become.
[0025]
The pattern shape shown in FIG. 4A is considered to be the most common because the shape is simple, the heat treatment and the forming are easy, and the weight is lighter than those described later.
[0026]
FIGS. 4B and 4C show patterns each having a triangular shape and a honeycomb (hexagonal) shape, which are asymmetrical in the vertical and horizontal directions (vertical and horizontal directions in FIGS. 4B and 4C). is there. That is, the shape in which the bead portion or the quenched portion surrounds the plane portion is a polygon, and the pattern shape obtained by combining a plurality of the polygons is such that the shapes of the polygons are different in a specific direction.
[0027]
For this reason, the main collision direction has an anisotropic property, but FIG. 4B is symmetrical in three directions, and FIG. 4C is symmetrical in six directions. Limited and apply.
[0028]
FIG. 4D shows a circular pattern, which is isotropic in the vertical and horizontal directions (up, down, left and right directions in FIG. 4D) of the panel member, and responds obliquely in the vertical and horizontal directions.
[0029]
In this way, as shown in FIG. 4, a linear bead portion formed by processing such as pressing or a linear quenched portion formed by a laser or the like surrounds a flat portion having no bead portion and no quenched portion. The shape is a polygon, and a combination of a plurality of the polygons is combined so that the polygons have substantially the same shape in a plurality of directions outside the peripheral edge of the panel member, so that the response to the load input is equal. Become. Thereby, the isotropic property can be given to the panel member.
[0030]
In addition, a linear bead formed by processing such as pressing or a linear quenched portion formed by a laser or the like forms a polygon surrounding a bead portion and a flat portion without a quenched portion, and the polygon is formed. By combining a plurality of combined pattern shapes so that the shapes of the polygons are different from each other in a specific direction, the response to a load input becomes different. Thereby, the anisotropic property can be given to the panel member.
[0031]
As a fourth embodiment, FIG. 5 shows an example of a combination of a bead pattern formed by a press or the like and a quenched pattern strengthened by a laser or the like.
[0032]
First, as shown in a partially enlarged view in FIG. 5B, a quenched portion 7 formed by a laser or the like is attached to a steel plate (original plate) 5 shown in FIG. The steel plates 9 are formed in a lattice shape so as to be orthogonal to each other in the inclined direction, thereby obtaining the steel plate 9 having the pattern shown in FIG. Since the quenched portion 7 needs to be processed with an accuracy that does not impair the function of the width and the pitch of each other, a heat treatment method by laser irradiation is effective. Any method may be used as long as the quenched portion 7 having a shape like that can be obtained.
[0033]
As shown in FIG. 5D, a pattern of the grid-shaped bead portion 11 parallel to the longitudinal direction of the steel plate 9 is processed on the steel plate 9 by pressing or the like. FIG. 5 (e) shows an enlarged part of this. At this time, the above-described bead portion 11 is formed so as to be inclined by 45 degrees with respect to the linear quenched portion 7 and to intersect each other at the intersection of the quenched portions 7. That is, the quenched portion 7 is formed so as to strengthen the flat portion 13 surrounded by the bead portion 11 and the portion where the bead portions 11 cross each other.
[0034]
Thereby, as shown in FIG. 5F, a steel sheet 15 having a pattern in which the quenched portion 7 and the bead portion 11 intersect with each other and are combined is obtained. As described above, the combination of the bead portion and the quenched portion can be performed by ordinary processing and forming except for the quenched portion by laser or the like.
[0035]
As shown in FIG. 5 described above, the intersection of the beads 11 formed when a plurality of linear beads 11 formed by processing such as pressing are combined, and the flat part 13 without the beads 11 are formed as follows. By providing a quenched portion 7 by laser or the like and strengthening it, a fragile portion at the intersection of the bead portions 11 is reinforced, and a flat portion 13 surrounded by the bead portion 11 is reinforced by bracing of the quenched portion 7. That is, the performance can be enhanced in each of compression, bending, and tension.
[0036]
Further, a linear bead portion 11 formed by pressing or the like formed on the steel plate 15 shown in FIG. 5 and a quenched portion 7 formed by laser or the like are combined so as to surround the bead portion 11 and the flat portion 13 having no quenched portion 7. With the provision, the bead portion 11 improves the rigidity of the steel plate 15 against bending input from an out-of-plane direction, and the quenched portion 7 improves the tensile strength. Further, as compared with the case where only the bead portion is provided, improvement in the formability of the panel member due to the decrease in the bead portion and improvement in the strength due to the decrease in the intersection portion of the bead portion can be expected. Further, when the load is applied to the bead portion 11 and the quenched portion 7, the bead portion 11 and the quenched portion 7 are distorted while transmitting the load, and the flat portion 13 surrounded by the bead portion 11 and the quenched portion 7 is also deformed. Similarly distorted. This extends over a wide area on the surface of the steel sheet, and as a result, the energy absorption amount of the steel sheet 15 can be improved, and a function of dispersing the load can be obtained.
[0037]
Next, the evaluation of the reaction force and the amount of energy absorption in the compression, bending and tensile tests based on the difference in the pattern of the bead portion and the quenched portion will be described.
[0038]
FIG. 6 shows a compression test shown in (a), a bending test shown in (b), and a tensile test shown in (c) of a square test steel plate 17 for FEM analysis having a length of 200 mm, a width of 200 mm and a thickness of 1.0 mm. Shows a state where a forced displacement shown by an arrow F is given.
[0039]
As shown in FIG. 7, the test steel plate 17 is unprocessed (o), a quenched portion is formed in a grid shape parallel to the vertical and horizontal directions (a), and a grid inclined at 45 degrees to (a). (B), a bead having a lattice shape parallel to the vertical and horizontal directions (c), and a bead having a lattice inclined at 45 degrees to (c) (d) , (C) and (d) combined (e), (b) processed (c) (f), (a) processed (d) (g) , Of various prepared.
[0040]
Here, as shown in FIG. 8 (a), the dimensions of the bead portion 17a are such that the molding height h is 2.0 mm and the dimension i between the distal end and the proximal end is 2 so that the press formability is not affected. The width w of the quenched portion 17b is 2.0 mm, as shown in FIG. 8B. The pitch of each of the bead portion 17a and the quenched portion 17b is set to 20 mm in consideration of a spot welding margin between members.
[0041]
FIG. 9A shows the relationship between the displacement θ in the compression direction and the maximum energy absorption E based on the FEM analysis results of the various test steel plates shown in FIGS. 7O, 7A to 7D, and 7G. Is shown. The compression direction displacement θ is, as shown in FIG. 9B, an angle formed with respect to the forcible displacement direction F shown in FIG. 6A.
[0042]
According to this, a test steel sheet having no irregularities on the surfaces shown in FIGS. 7 (o), (a), and (b) has a compression direction having an angle θ (about 5 degrees or more) outside the steel sheet surface. As a result, the amount of energy absorption E is greatly reduced as compared with the case where it is less than 5 degrees.
[0043]
On the other hand, the test steel sheet having an uneven shape by machining such as pressing shown in FIGS. 7C, 7D, and 7G has the shape shown in FIGS. 7O, 7A, and 7B at θ = 0 degrees. However, even if the angle θ changes to about 15 degrees thereafter, the energy absorption does not decrease, and when the angle θ is 5 degrees or more, the test results shown in FIGS. 7 (o), (a) and (b) are used. High value for steel sheet. Among them, especially the test steel sheet of FIG. 7 (g) in which the bead portion and the quenched portion are combined has the highest energy absorption.
[0044]
From the above, only the pattern formed by the quenched portion by laser or the like has almost the same tendency and energy absorption as the response of the original plate shown in FIG. 7 (o), but it is necessary to provide a bead portion formed by processing such as pressing. Thus, the steel sheet is isotropic with respect to changes in the compression direction. Further, when a pattern formed by a quenched portion using a laser or the like is combined with the bead portion (g), the amount of energy absorption increases for steel plates (c) and (d) provided with only the bead portion.
[0045]
Thereafter, in the performance comparison at the time of compression, since the compression of 0 degree is unlikely in the actual application form or the collision form, the steel sheets of FIGS. 7 (o), (a) and (b) have an angle of 5 degrees. Shall be compressed.
[0046]
Table 1 shows the FEM analysis results of the test steel plates shown in FIGS. 7 (o) and (a) to (g).
[0047]
[Table 1]
Figure 2004255983
The numerical values in Table 1 are shown as relative values based on the analysis results of the unprocessed test steel plate shown in FIG. 7 (o). It is assumed that the weight will increase.
[0048]
First, looking at the results of the compression test in FIG. 6A, the maximum reaction force is the highest in the steel sheet in FIG. 7A at 101.9 (almost the same as the original plate (same as FIG. 7O)). Steel sheet 7 (f) had the highest results in average reaction force (approximately 83% increase), energy absorption (approximately 96% increase), and energy absorption per weight (approximately 70% increase). Since the maximum reaction force is initially generated, it can be said that the steel sheet in FIG. 7A is about the same as the original sheet and the steel sheet in FIG.
[0049]
As described above, it can be seen that the steel sheet of FIG. 7F has a significantly enhanced energy absorption performance with respect to the original sheet, and suppresses the initial generation G by setting the bead portion formed by processing such as pressing.
[0050]
Next, looking at the results of the bending test shown in FIG. 6B, it is preferable that the steel sheet shown in FIGS. 7E to 7G be combined with a bead portion formed by processing such as pressing.
[0051]
It is generally known that the buckling strength and out-of-plane rigidity of a thin sheet material are improved by providing a bead portion. However, a steel sheet having only a bead portion by pressing as shown in FIG. 7 (g) having the same performance, the performance is improved in FIG. 7 (f), and both steel sheets are lighter in weight than the steel sheet in FIG. 7 (e).
[0052]
Further, the steel plate of FIG. 7 (f) has a large improvement in performance of about twice the reaction force and about 2.5 times the energy absorption.
[0053]
Next, looking at the results of the tensile test in FIG. 6C, the steel sheet of FIG. 7A has the highest maximum reaction force (about 15% increase), and the average reaction force of the steel sheet of FIG. Highest (up about 16%). Although the steel sheet of FIG. 7A has the highest energy absorption (approximately 16% increase), the steel sheet of FIG. 7G has about 44% of the deformation of the stress concentration portion (the deformation in the direction perpendicular to the tensile direction). And the energy absorption is increased by about 10%.
[0054]
From this, it is considered that the load response of the steel sheet of FIG. 7 (g) is delayed due to the dispersion of the load, but when the deformation amount is constant, the steel sheet of FIG. 7 (a) absorbs more energy.
[0055]
As described above, each of the steel sheets shown in FIGS. 7F and 7G having a pattern in which the bead portion formed by pressing or the like and the quenched portion strengthened by laser or the like are compressed, bent, and pulled. Good results. Since this pattern is also considered to be the characteristic of the patterns in the 45-degree direction, it is considered that each steel sheet of FIGS. 7F and 7G has good performance with respect to the oblique load.
[0056]
Next, the unprocessed test steel sheet of FIG. 7 (o) and the test steel sheets of FIGS. 7 (f) and 7 (g) were closed with a rectangular closed cross section as shown in FIG. 10 for FEM analysis. The result of a test applied to the member 19 and shown in FIG. 11 will be described. Here, the vertical and horizontal dimensions p and q in the closed cross section of the closed cross section member 19 are 40 mm, and the length r is 240 mm.
[0057]
FIG. 11A shows axial crushing in which the closed section member 19 collides with the rigid wall 21 in a perpendicular direction, and FIG. 11B shows the closed section member 19 with respect to the rigid wall 21 by an angle of θ = 30 degrees. FIG. 11 (c) shows a state in which an oblique collision in an inclined state and a bending collision in which a longitudinal center portion of the closed section member 19 collides with a rigid column having a diameter of 20 mm are performed. FEM analysis was performed on each of these test results, and a significant difference due to the presence or absence of a pattern in each steel plate in FIGS. 7 (o), (f), and (g) was confirmed. The initial speed at the time of collision is 10 m / s. Table 2 shows the results of this analysis.
[0058]
[Table 2]
Figure 2004255983
In the axial crush test shown in FIG. 11A, the maximum reaction force (initial reaction force) of the closed section member 19 using the patterns of FIGS. 7F and 7G is reduced to about 60 and 70%, respectively. . This is because a molding bead portion is set. Further, the average reaction force increases (about 5%) due to the effect of the pattern, so that the amount of energy absorption becomes almost the same as that of the member without the pattern (about 96, 100%).
[0059]
From this result, when the rectangular closed cross-section member 19 is used as the shock absorbing member that undergoes axial crush, the transmitted shock is suppressed by applying the pattern set to the steel plates in FIGS. 7F and 7G, and It can be a member that absorbs energy.
[0060]
In the oblique collision test shown in FIG. 11B, the closed section member 19 using the steel plates of FIGS. 7F and 7G has the maximum reaction force (approximately 16, 31% increase) and the average reaction force (approx. 20 and 40% increase) and energy absorption (about 19 and 42% increase). When the closed section member 19 collides obliquely, it bends in response to a lateral load, so that the reaction force and the amount of energy absorbed are reduced as compared with the axial crush. However, the steel sheet shown in FIGS. 7 (f) and 7 (g) was set. It is considered that the application of the pattern strengthened the reaction force due to the bending due to the lateral load, and thus improved.
[0061]
From this result, by using the present pattern for the closed cross section member 19, it is possible to impart some isotropy to the member.
[0062]
In the bending impact test shown in FIG. 11C, the closed section member 19 using the steel sheet of FIG. 7G has the maximum reaction force (approximately 37% increase), the average reaction force (approximately 52% increase), and the energy. Although the absorption amount is improved at all (increased by about 20%), the closed section member 19 using the steel sheet shown in FIG.
[0063]
In this case as well, the pattern set on the steel sheet in FIG. 7 (g) enhances the performance because the reaction force in bending the impact surface and pulling the back side thereof is strengthened. The result of having little effect on the closed section member 19 using the steel plate in FIG. 7F is similar to the result when the panel member is pulled.
[0064]
As described above, when the present pattern set on the steel sheet in FIGS. 7F and 7G is used for the rectangular closed section member 19, the same tendency as the result of the panel shape alone is shown. The effect may not be noticeable depending on the magnitude of the reaction force. However, even when applied to a structure, the effect of the panel member can be similarly obtained.
[0065]
As described above, since the effectiveness is not lost even in the structure, the energy absorption amount effective for improving the collision performance can be obtained by applying the present pattern to other complicated members (polygons and three-dimensional shapes). Increase and load distribution performance can be achieved.
[0066]
As described above, by providing a plurality of bead portions and quenched portions formed on the panel member in combination with at least a part of them being matched, the bead portion allows the panel member to have a rigidity against bending input from an out-of-plane direction. And the quenched portion improves the tensile strength in the plane direction. Further, as compared with the case where only the bead portion is provided, improvement in the formability of the panel member due to the decrease in the bead portion and improvement in the strength due to the decrease in the intersection portion of the bead portion can be expected.
[Brief description of the drawings]
FIG. 1 is a perspective view schematically showing a main panel member in an automobile.
2A is a perspective view showing the entire panel member of FIG. 1 after a bead portion is provided and strengthened, and FIG. 2B is a perspective view showing a part of the panel member in an enlarged manner.
FIG. 3A is a perspective view showing the entire panel member shown in FIG. 1 after hardening by providing a quenched portion, and FIG. 3B is an enlarged perspective view showing a part thereof.
FIG. 4 is an explanatory diagram showing various examples of patterns formed by a bead portion or a quenched portion.
FIG. 5 is an explanatory diagram showing an example of a combination of a bead pattern formed by a press or the like and a quenched pattern by a laser or the like;
FIG. 6 is an explanatory view showing a state in which a compression steel sheet shown in (a), a bending sheet shown in (b), and a forced displacement shown in (c) are applied to a test steel sheet for FEM analysis.
FIG. 7 is an explanatory view showing examples of various patterns formed on the test steel sheet when the forced displacement shown in FIG. 6 is given.
FIG. 8A is an explanatory view showing dimensions of a bead part, and FIG. 8B is an explanatory view showing dimensions of a quenched part.
9A is a correlation diagram between the displacement in the compression direction and the maximum energy absorption based on the results of FEM analysis of the various test steel plates in FIG. 7, and FIG. 9B is the displacement in the compression direction in FIG. 6A. It is explanatory drawing which shows the angle made.
FIG. 10 is a perspective view of a closed section member for FEM analysis to which the test steel sheets of FIGS. 7 (o), (f) and (g) are applied.
11 is an explanatory view showing a state in which the closed section member shown in FIG. 10 is subjected to axial crushing shown in (a), oblique collision to (b), and forced displacement due to bending shown in (c).
[Explanation of symbols]
2, 3 panel members 2a, 11 bead portions 2b, 3b, 13 plane portions 3a, 7 quenched portion (reinforced portion)
5,9,15 Steel plate (panel member)

Claims (11)

自動車の平面部に用いる鋼鈑からなるパネル部材において、パネル部材表面に機械加工により形成した複数のビード部と熱加工処理による複数の強化部とを形成し、少なくとも一部の前記ビード部と前記強化部の形成位置を一致させてビード部と強化部とを組み合わせたことを特徴とする自動車のパネル部材。In a panel member made of a steel plate used for a plane portion of an automobile, a plurality of bead portions formed by machining on the surface of the panel member and a plurality of reinforced portions formed by thermal processing are formed, and at least a part of the bead portion and the A panel member for an automobile, wherein a bead portion and a reinforcing portion are combined so that the formation positions of the reinforcing portions are matched. 前記機械加工によるビード部は、プレスなどの押圧加工により線状に形成されたことを特徴とする請求項1記載の自動車のパネル部材。The vehicle panel member according to claim 1, wherein the bead portion formed by the mechanical processing is formed in a linear shape by a pressing process such as a press. 前記熱加工による強化部は、レーザなどの焼入れにより形成される焼入れ部からなることを特徴とする請求項1記載の自動車のパネル部材。The automobile panel member according to claim 1, wherein the reinforced portion formed by the thermal processing comprises a quenched portion formed by quenching with a laser or the like. 前記熱加工による複数の強化部が、この強化部および前記ビード部のない平面部分を囲むように組み合わされていることを特徴とする請求項1ないし3のいずれかに記載の自動車のパネル部材。The automobile panel member according to any one of claims 1 to 3, wherein the plurality of reinforced portions formed by the thermal processing are combined so as to surround the reinforced portion and a flat portion without the bead portion. 前記機械加工による複数のビード部が、このビード部および前記強化部のない平面部を囲むように組み合わされていることを特徴とする請求項1ないし3のいずれかに記載の自動車のパネル部材。The vehicle panel member according to any one of claims 1 to 3, wherein the plurality of machined beads are combined so as to surround the bead and the flat part without the reinforcement. 前記ビード部に囲まれた平面部と、前記ビード部相互が交差する部分とをそれぞれ強化するように、前記熱加工による強化部を形成したことを特徴とする請求項5記載の自動車のパネル部材。6. The panel member according to claim 5, wherein a reinforced portion formed by the thermal processing is formed so as to reinforce a flat portion surrounded by the bead portion and a portion where the bead portions cross each other. . 前記複数のビード部が前記平面部を囲むようにして組み合わされた形状を多角形とし、その多角形を複数組み合わせたパターン形状を、パネル部材の周縁外方の複数方向に対して多角形同士がほぼ同形状となるようにしたことを特徴とする請求項5記載の自動車のパネル部材。The shape formed by combining the plurality of bead portions so as to surround the plane portion is a polygon, and the pattern shape obtained by combining the plurality of polygons is substantially the same in a plurality of directions outside the peripheral edge of the panel member. The automobile panel member according to claim 5, wherein the panel member has a shape. 前記複数のビード部が前記平面部を囲むようにして組み合わされた形状を多角形とし、その多角形を複数組み合わせたパターン形状を、特定方向に対して多角形同士の形状が異なるようにしたことを特徴とする請求項5記載の自動車のパネル部材。The shape in which the plurality of bead portions are combined so as to surround the plane portion is a polygon, and a pattern shape in which the plurality of polygons are combined has a different shape in a specific direction. The automobile panel member according to claim 5, wherein 前記複数の強化部が前記平面部を囲むようにして組み合わされた形状を多角形とし、その多角形を複数組み合わせたパターン形状を、パネル部材の周縁外方の複数方向に対して多角形同士がほぼ同形状となるようにしたことを特徴とする請求項4記載の自動車のパネル部材。The shape formed by combining the plurality of reinforcing portions so as to surround the plane portion is a polygon, and the pattern shape obtained by combining the plurality of polygons is substantially the same in a plurality of directions outside the peripheral edge of the panel member. 5. The vehicle panel member according to claim 4, wherein the panel member has a shape. 前記複数の強化部が前記平面部を囲むようにして組み合わされた形状を多角形とし、その多角形を複数組み合わせたパターン形状を、特定方向に対して多角形同士の形状が異なるようにしたことを特徴とする請求項4記載の自動車のパネル部材。The shape in which the plurality of reinforcing portions are combined so as to surround the plane portion is a polygon, and the pattern shape in which the plurality of polygons are combined is such that the shapes of the polygons are different in a specific direction. The vehicle panel member according to claim 4, wherein 自動車の平面部に用いる鋼鈑からなるパネル部材の成形方法において、パネル部材表面に機械加工により形成した複数のビード部を形成する工程と、熱加工処理による複数の強化部とを形成する工程とを備え、前記少なくとも一部のビード部と前記強化部の形成位置を一致させてビード部と強化部とを組み合わせたことを特徴とする自動車のパネル部材の成形方法。In a method of forming a panel member made of a steel plate used for a plane portion of an automobile, a step of forming a plurality of beads formed by machining on the surface of the panel member, and a step of forming a plurality of reinforced portions by thermal processing. A method of forming a panel member for an automobile, comprising: combining at least a part of the bead portion and the reinforcing portion so that the formation positions of the bead portion and the reinforcing portion are matched.
JP2003048005A 2003-02-25 2003-02-25 Panel member of automobile and method for forming panel member Pending JP2004255983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003048005A JP2004255983A (en) 2003-02-25 2003-02-25 Panel member of automobile and method for forming panel member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003048005A JP2004255983A (en) 2003-02-25 2003-02-25 Panel member of automobile and method for forming panel member

Publications (1)

Publication Number Publication Date
JP2004255983A true JP2004255983A (en) 2004-09-16

Family

ID=33114093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003048005A Pending JP2004255983A (en) 2003-02-25 2003-02-25 Panel member of automobile and method for forming panel member

Country Status (1)

Country Link
JP (1) JP2004255983A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174122A (en) * 2007-01-19 2008-07-31 Honda Motor Co Ltd Vehicle body rear part structure
JP2011016409A (en) * 2009-07-08 2011-01-27 Mazda Motor Corp Frame structure for vehicle
JP2011178327A (en) * 2010-03-03 2011-09-15 Mazda Motor Corp Frame structure for vehicle
JP2012086693A (en) * 2010-10-20 2012-05-10 Mazda Motor Corp Vehicle frame structure
JP2015151004A (en) * 2014-02-14 2015-08-24 スズキ株式会社 Floor panel structure of vehicle
DE102015219918A1 (en) 2014-11-12 2016-05-12 Hyundai Motor Company Panel with block pattern bead for vehicle body
WO2018078990A1 (en) * 2016-10-24 2018-05-03 本田技研工業株式会社 Vehicle floor panel and vehicle floor panel manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174122A (en) * 2007-01-19 2008-07-31 Honda Motor Co Ltd Vehicle body rear part structure
JP2011016409A (en) * 2009-07-08 2011-01-27 Mazda Motor Corp Frame structure for vehicle
JP2011178327A (en) * 2010-03-03 2011-09-15 Mazda Motor Corp Frame structure for vehicle
JP2012086693A (en) * 2010-10-20 2012-05-10 Mazda Motor Corp Vehicle frame structure
JP2015151004A (en) * 2014-02-14 2015-08-24 スズキ株式会社 Floor panel structure of vehicle
DE102015219918A1 (en) 2014-11-12 2016-05-12 Hyundai Motor Company Panel with block pattern bead for vehicle body
US9540048B2 (en) 2014-11-12 2017-01-10 Hyundai Motor Company Panel with pattern block bead for car body
WO2018078990A1 (en) * 2016-10-24 2018-05-03 本田技研工業株式会社 Vehicle floor panel and vehicle floor panel manufacturing method
US11230082B2 (en) 2016-10-24 2022-01-25 Honda Motor Co., Ltd. Automobile floor panel and automobile floor panel manufacturing method

Similar Documents

Publication Publication Date Title
JP5196079B2 (en) Shock absorbing member
JP4723942B2 (en) Vehicle shock absorber and vehicle shock absorption structure
EP2889188B1 (en) Crash box and automobile body
US5118160A (en) Car body member with beads
WO2012026580A1 (en) Impact absorbing member
JP5549964B2 (en) Frame structure for vehicles with excellent collision resistance
JP5168023B2 (en) Bumper reinforcement and manufacturing method thereof
JPWO2005010398A1 (en) Shock absorbing member
KR20130004346A (en) Hood structure for vehicle
JP6484190B2 (en) Bumper reinforcement
RU2719114C1 (en) Structural element for vehicle (embodiments)
US11208150B2 (en) Automotive frame member and electric vehicle
WO2017061631A1 (en) Structural member and vehicle
EP3909832A1 (en) Automobile hood
US20220097774A1 (en) Automobile hood
WO2012081269A1 (en) Plate material having concavo-convex portion, and vehicle panel using same and laminated structure
KR101779568B1 (en) Shock absorbing member
JP2004255983A (en) Panel member of automobile and method for forming panel member
JP5488769B2 (en) Shock absorbing member
JP4983865B2 (en) Vehicle frame structure
JP7368710B2 (en) Steel parts for vehicles
JP7453538B2 (en) columnar member
JP2021172117A (en) Vehicular skeleton member and electric vehicle
JPH0648177A (en) Lightweight door reinforcing pipe with excellent shock absorbing characteristic
JP2004026080A (en) Member for reinforcing vehicle body