JP2004255619A - Transmission belt manufacturing method - Google Patents

Transmission belt manufacturing method Download PDF

Info

Publication number
JP2004255619A
JP2004255619A JP2003046702A JP2003046702A JP2004255619A JP 2004255619 A JP2004255619 A JP 2004255619A JP 2003046702 A JP2003046702 A JP 2003046702A JP 2003046702 A JP2003046702 A JP 2003046702A JP 2004255619 A JP2004255619 A JP 2004255619A
Authority
JP
Japan
Prior art keywords
mold
short fibers
rib
outer mold
belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003046702A
Other languages
Japanese (ja)
Other versions
JP4071131B2 (en
Inventor
Hirotaka Hara
浩孝 原
Akihiro Nagata
昭裕 永田
Takuya Yoshikawa
琢也 吉川
Tetsuji Mori
哲司 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2003046702A priority Critical patent/JP4071131B2/en
Publication of JP2004255619A publication Critical patent/JP2004255619A/en
Application granted granted Critical
Publication of JP4071131B2 publication Critical patent/JP4071131B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transmission belt manufacturing method of which the noise at the time of belt traveling is reduced by uniformly bonding short fibers to the transmission surfaces of rib parts. <P>SOLUTION: In the transmission belt manufacturing method, a rubber sheet 20 is interposed between an outer mold 46, which have rib molds 45 carved in its inner peripheral surface and have short fibers 7 bonded to its inner peripheral surface coated with an adhesive 9, and an inner mold 41 having a flexible jacket 42 mounted on its outer peripheral surface and closely brought into contact with the rib molds 45 carved in the outer mold 46 by expanding the flexible jacket 42 to form an unvulcanized premolded body 21. At least a core wire 48 is wound around the surface of the flexible jacket 42 of the inner mold separated from the outer mold and, after the inner mold 41 is again installed in the outer mold 46, the core wire 48 and the premolded body 21 are integrally vulcanized by expanding the flexible jacket 42 to manufacture a vulcanized belt sleeve 51b having the short fibers 7 bonded to the surfaces of the rib parts thereof. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は伝動ベルトの製造方法に係り、詳しくはリブ部の伝動面に短繊維を付着させてベルト走行時の騒音を軽減した伝動ベルトの製造方法に関する。
【0002】
【従来の技術】
従来の伝動ベルトの製造方法では、短繊維を含む圧延ゴムシートを、短繊維が幅方向に配向するように成形ドラムに巻き付けて得られたベルト成形体を加硫し、そしてグライダーホイールによってベルトスリーブ表面に複数のリブ部を研削し、リブ部表面に短繊維を突出させて走行時の騒音を軽減したベルトを製造していた。
【0003】
一方、このような研削方法により短繊維をリブ部表面に露出させる以外に、特許文献1には静電植毛によって動力伝動側及び被伝達面の少なくとも一方の伝達部接触表面に立毛を設け、走行時の騒音を軽減した動力伝動用部材が記載されている。
【0004】
また、特許文献2には、ベルト表面にフロック加工されたファブリックを装着し、摩擦係数を増加させた駆動面を設けた伝動ベルトが開示されている。
【0005】
【特許文献1】
特開平9−14361号公報
【特許文献2】
特開2001−82549号公報
【0006】
【発明が解決しようとする課題】
しかしながら、リブ部を有する伝動ベルトの製造方法では、静電植毛によって直接リブ部の表面に立毛すると、V形状のリブ溝の入口付近では充分な植毛が出来ても、リブ溝に奥深い個所では植毛しにくいといった問題があり、新たな製造方法の開発が望まれていた。一方、フロック加工されたファブリックを用いる場合には、不織布のようなファブリック(基体)に接着剤を塗布し、この上に短繊維フロックを機械的に、また静電気的に付着したものをベルトの製造に使用するものであり、フロック加工されたファブリックの端部をラップ接合し、あるいは突合せ接合するために、ベルト成形後にはファブリックの接合部から剥離が起こる可能性があった。
【0007】
本発明はかかる問題に着目し、鋭意研究した結果、リブ部の伝動面に短繊維を均一に付着してベルト走行時の騒音を軽減した伝動ベルトの製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記した目的を達成すべく本願請求項1記載の発明は、ベルト長手方向に沿って心線を埋設したゴム層と、該ゴム層に隣接してベルトの長手方向に延びるリブ部を有する伝動ベルトの製造方法において、
短繊維を、内周面にリブ型を刻印した外型の内周面に塗布した接着剤を介して付着し、
上記内周面に短繊維を付着した外型と、外周面に可撓性ジャケットを装着した内型との間にゴムシートを介在し、
上記可撓性ジャケットを膨張させて該ゴムシートを外型の刻印したリブ型に密着して未加硫の予備成型体を作製し、
外型から離脱した内型の可撓性ジャケット面に少なくとも心線を巻き付け、再度、上記内型を外型内に設置し、可撓性ジャケットを膨張させて心線を外型に装着した予備成型体と一体的に加硫して、リブ部表面に短繊維を付着させた加硫ベルトスリーブを作製する、伝動ベルトの製造方法にある。
【0009】
この製造方法では、加硫ベルトスリーブのリブ部を型付けによって正確に作製することができ、更に外型内周面に付着させた短繊維混入接着剤を加硫時に硬化させて加硫ベルトスリーブのリブ部表面に移行させ、そして短繊維をリブ部表面に付着させることができる。
【0010】
【発明の実施の形態】
以下、添付図面を参照し、本発明の実施例を説明する。
本発明では、短繊維を幅方向に配向させた一枚のゴムシートを用いるが、その製造方法として押出方法やカレンダーによる圧延方法がある。無論、短繊維を含有させないゴムシートも使用することができる。繊維を配向させたゴムシートを押出方法で作製する場合には、予めオープンロールによってポリマー100質量部に10〜40質量部の短繊維を投入して混練した後、混練したマスターバッチをいったん放出し、これを20〜50°Cまで冷却してゴムのスコーチを防止する。
【0011】
1〜10質量部の軟化剤を投入すると、短繊維とゴムのなじみが良くなり、ゴム中への分散が良くなるばかりか、短繊維自体が絡み合って綿状になるのを防ぐ効果がある。即ち、軟化剤が短繊維に浸透し、素繊維同士の絡み合いがほぐれるための潤滑剤としての役割をはたし、短繊維が綿状になるのを阻止し、かつ短繊維とゴムのなじみが良くなって短繊維の分散が良くなる
【0012】
続いて、押出機に拡張ダイを取り付けた押出装置を用いて短繊維を幅方向に配向させた一枚のゴムシートに仕上ることができる。ここでは図示していないが、マスターバッチを押出機におけるシリンダーの押出スクリューで混練りした後、短繊維混入ゴムをシリンダーと相対向した位置にあって同一の中心軸線上に配置した内ダイ間のゴム通路で流動阻害を受けず、かつ流れ方向を変えることなくスムーズに拡張ダイのゴム通路へ流し、そして該ゴム通路の中を通過させながら短繊維を円周方向に配向させた筒状成形体に押出成形する。
【0013】
その後、連続して押出成形されたウェルドラインのない筒状成形体は、短繊維が内層から外層にかけて円周方向に均一に配向した厚さ1〜10mmのものであり、切断手段によって1個所切開しながら一枚の短繊維配向ゴムシートにし、続いて該ゴムシートを所定間隔で切断する。
【0014】
ここで使用するゴムとしては、天然ゴム、ブチルゴム、スチレン−ブタジエンゴム、クロロプレンゴム、エチレン−プロピレンゴム、アルキル化クロロスルフォン化ポリエチレン、水素化ニトリルゴム、水素化ニトリルゴムと不飽和カルボン酸金属塩との混合ポリマー、エチレン−プロピレンゴム(EPR)やエチレン−プロピレン−ジエンモノマー(EPDM)からなるエチレン−α−オレフィンエラストマー等のゴム材の単独、またはこれらの混合物が使用される。ジエンモノマーの例としては、ジシクロペンタジエン、メチレンノルボルネン、エチリデンノルボルネン、1,4−ヘキサジエン、シクロオクタジエンなどが挙げることができる。
【0015】
上記ゴムには、アラミド繊維、ポリアミド繊維、ポリエステル繊維、綿等の繊維からなり繊維の長さは繊維の種類によって異なるが、1〜10mm程度の短繊維が用いられ、例えばアラミド繊維であると3〜5mm程度、ポリアミド繊維、ポリエステル繊維、綿であると5〜10mm程度のものが用いられる。その添加量はゴム100質量部に対して10〜40質量部である。
【0016】
更に、上記ゴムには、軟化剤、カーボンブラックからなる補強剤、充填剤、老化防止剤、加硫促進剤、加硫剤等が添加される。
【0017】
上記軟化剤としては、一般的なゴム用の可塑剤、例えばジブチルフタレート(DBP)、ジオクチルフタレート(DOP)等のフタレート系、ジオクチルアジペート(DOA)等のアジペート系、ジオクチルセバケート(DOS)等のセバケート系、トリクレジルホスフェート等のホスフェートなど、あるいは一般的な石油系の軟化剤が含まれる。
【0018】
次いで、図1に示すように、円筒状の外型46の内周面に一定間隔で刻印した突状のリブ型45表面に、シリコンオイル等の離型剤を塗布した後、短繊維7を混入した未硬化の接着剤9をスプレー10により吹き付けて厚さ0.5〜3mm程度の短繊維混入塗装膜8を形成する。このときの外型46内周面の温度は室温、好ましくは20〜100℃であり短繊維混入塗装膜8の接着剤が硬化しない温度である。外型46の温度は本体内に設けた空間部(図示せず)に水蒸気等の熱媒体あるいは水等の冷媒体を通して温度調節している。
【0019】
ここで使用する短繊維7を混入した接着剤9としては、RFL(レゾリシン−ホルムアルデド−ラテックス)接着剤、酢酸ビニル系エマルジョン、スチレン系エマルジョン、未加硫ゴムをトルエン、キシレン等の溶剤に溶かしたゴム糊、有機溶剤系接着剤等がある。好ましい接着剤としては、RFL液やゴム糊が好ましく、加硫成形と同時に熱硬化反応するものである。RFL液はレゾルシンとホルムアルデドとの初期縮合体をラテックスに混合したものであり、ここで使用するラテックスとしてはクロロプレン、スチレン・ブタジエン・ビニルピリジン三元共重合体、水素化ニトリル、NBR、エチレン・α−オレフィン−ジエン共重合体である。また、RFL液にイソシアネート化合物も添加することができる。
【0020】
短繊維の吹き付け方法では、ポリエステル、ナイロン、アラミド、ビニロン、炭素繊維、ポリテトラフルオロエチレン、綿等などからなる短繊維を用い、繊維同士の絡みを解いて、空気流とともに吹き付けることによって、リブ型45表面に短繊維混入塗装膜8を形成する。
【0021】
上記短繊維の長さは0.1〜5.0mmが好ましく、アスペクト比(長さLmm/太さ直径Dmmは30〜300である。また、繊維密度は摩擦係数や走行時の音に寄与するものであり、今日使用されている伝動ベルトに近時するもので、10,000〜500,000本/cmである。
【0022】
他の方法としては、円筒状の外型46の内周面に設けた突状のリブ型45表面に、短繊維を混入しない接着剤を吹き付けた後、スプレー式塗布装置で短繊維のみを吹き付けて付着させることもできる。
【0023】
他の方法としては、円筒状の外型46の内周面に設けた突状のリブ型45表面に接着剤としてトルエン、キシレン等の溶剤のみを吹き付けた後、スプレー式塗布装置で短繊維のみを吹き付けて付着させることもできる。
【0024】
他の方法としては、円筒状の外型46の内周面に設けた突状のリブ型45表面に接着剤を吹き付けた後、外型46を電荷させて短繊維を電気力線によって飛ばして植毛することもできる。
【0025】
続いて、図2に示すように内型41の外周面に設けた可撓性ジャケット42の表面に接着ゴムシート16と圧縮ゴム層を形成するゴムシート20とを順次捲き付けた内型41を、上記外型46の内側に一定の空隙部を形成するよう基台上に載置する。内型41は別の成形工程より移動してくる関係上、媒体流通口Aと媒体送入排出路Bとは分離しており、内型41を基台に載置後、媒体流通口AをジョイントJでパイプと連結する。
【0026】
媒体送入機を作動して高圧空気等の媒体送入排出路B、媒体流通口Aを経て、可撓性ジャケット42の内部に送入する。可撓性ジャケット42は、その上下部が内型41上に密閉固定されているため、可撓性ジャケット42の内面と内型41の外面の間に空気が充満し、可撓性ジャケット42は次第に膨張する。そして、その外周面に装着されている短繊維配向ゴムシート20を半径方向に均一に膨張させ、加熱ヒーター若しくは高温蒸気で100〜160℃に加熱した外型46のリブ型45と30〜120秒間接触せしめる。
【0027】
このとき、可撓性ジャケット42の膨張押圧力により、上記ゴムシート20が外型46のリブ型45に押圧され、図3のような表面に複数のV型突起を有する未加硫の予備成型体21を形成するに至る。予備成型体21は短繊維混入塗装膜8に付着するが、この段階では短繊維混入塗装膜8が未硬化のため予備成型体21と一体に接合していない。
【0028】
その後は、バルブを真空ポンプの方へ切替えて、可撓性ジャケット42内に充満している空気を排気し、次いで吸引作用で可撓性ジャケット42を図2に示す元の位置に収縮復帰せしめる。
【0029】
そして、内型41を外型46から抜き取り、内型41の可撓性ジャケット42の外周面に補強布47およびコードからなる心線48を順次に捲き付ける。その後、図4に示すようにこの内型41を外型46内へ設置した後、図5に示すように可撓性ジャケット42を膨張させ、補強布47と心線48を半径方向に均一に膨張させ、加熱ヒーター若しくは高温蒸気で100〜180℃に加熱した外型46のリブ型45に装着した予備成型体21に密着して一体的に加硫し、ベルトスリーブ51を作製する。上記製造方法のように未加硫の予備成型体21を成型することにより、成形時に可撓性ジャケット42の膨張による心線48の伸張量を抑え、また心線48を平坦に配置でき、寸法安定性に優れたVリブドベルトを作製することができる。
また、同時に、短繊維混入塗装膜8が硬化してリブ型45表面から予備成型体21側へ移行し、短繊維が予備成型体21に強固に付着する。
【0030】
加硫後は、可撓性ジャケット42を収縮させ、内型41を外型46から抜き取った後、外型46に装着した加硫済みベルトスリーブ51bを抜き取る。
【0031】
リブ部表面に短繊維を付着した加硫済みベルトスリーブ51bを1軸に装着もしくは主軸と従動軸の2軸に掛張して回転しながら円周方向に所定幅に切断し、軸より取出し反転することにより、周長が一定で、V形リブが正確に型付形成された複数のVリブドベルト1を得る。
【0032】
図6は得られたVリブドベルトの断面図である。Vリブドベルト100は、高強度で低伸度のコードよりなる心線102を接着ゴム層103中に埋設し、その下側に弾性体層である圧縮ゴム層104を有している。この圧縮ゴム層104にはベルト長手方向に伸びる断面略三角形の複数のリブ部106が設けれ、リブ部の内層110に短繊維109が波状に配置してベルトの耐側圧性を向上させ、更にリブ部の表面層111に設けた接着層107に短繊維108が分散し、リブ部表面に対してランダムに傾斜し、あるいは寝かされた状態になっている。
無論、本発明では、リブ部の内層110に短繊維109が存在しない場合も含まれる。
【0033】
接着ゴム層103に使用されるゴムとしては、短繊維を除いた圧縮ゴム層104のゴム配合物に類似している。無論、短繊維を含めてもよい。
【0034】
心線102としては、ポリエステル繊維、アラミド繊維、ガラス繊維が使用され、中でもエチレン−2,6−ナフタレートを主たる構成単位とするポリエステル繊維フィラメント群を撚り合わせた総デニール数が4,000〜8,000の接着処理したコードが、ベルトスリップ率を低く抑えることができ、ベルト寿命を延長させるために好ましい。また、心線102にはゴムとの接着性を改善する目的で接着処理が施される。このような接着処理としては繊維をレゾルシン−ホルマリン−ラテックス(RFL)液に浸漬後、加熱乾燥して表面に均一に接着層を形成するのが一般的である。しかし、これに限ることなくエポキシ又はイソシアネート化合物で前処理を行なった後に、RFL液で処理する方法等もある。
【0035】
心線102は、スピニングピッチ、即ち心線の巻き付けピッチを0.9〜1.3mmにすることで、モジュラスの高いベルトに仕上げることができる。0.9mm未満になると、コードが隣接するコードに乗り上げて巻き付けができず、一方1.3mmを越えると、ベルトのモジュラスが徐々に低くなる。
【0036】
背面補強材105は、織物、編物、不織布の繊維材料あるいはゴム材料から選択されるが、より好ましいものは不織布である。構成する繊維素材としては、例えば綿、麻、レーヨン等の天然繊維や、ポリアミド、ポリエステル、ポリエチレン、ポリウレタン、ポリスチレン、ポリフロルエチレン、ポリアクリル、ポリビニルアルコール、全芳香族ポリエステル、アラミド等の有機繊維が挙げられる。上記帆布は公知技術に従ってRFL液に浸漬後、未加硫ゴムを背面補強材105に擦り込むフリクションを行い、またRFL液に浸漬後にゴムを溶剤に溶かしたソーキング液に浸漬処理する。
【0037】
このようなVリブドベルトは、リブ部表面に付着した短繊維108がベルト走行時の騒音を軽減し、更にリブ部表面からの亀裂も発生を阻止する。
【0038】
【発明の効果】
以上のように本願請求項に係る発明では、短繊維を、内周面にリブ型を刻印した外型の内周面に塗布した接着剤を介して付着し、上記内周面に未硬化の接着剤を付着した外型と、外周面に可撓性ジャケットを装着した内型との間にゴムシートを介在し、上記可撓性ジャケットを膨張させて該ゴムシートを外型の刻印したリブ型に密着して未加硫の予備成型体を作製し、外型から離脱した内型の可撓性ジャケット面に少なくとも心線を巻き付け、再度、上記内型を外型内に設置し、可撓性ジャケットを膨張させて心線を外型に装着した予備成型体と一体的に加硫し、接着剤を硬化して短繊維を付着させたリブ部を有する加硫ベルトスリーブを作製する伝動ベルトの製造方法にあり、加硫ベルトスリーブのリブ部を型付けによって正確に作製することができ、更に外型内周面に付着させた短繊維混入接着剤を加硫時に硬化させて加硫ベルトスリーブのリブ部表面に移行させ、そして短繊維をリブ部表面に付着させることができる効果がある。
【図面の簡単な説明】
【図1】外型46内周面に短繊維を混入した未硬化の接着剤を吹き付けて短繊維混入塗装膜を形成している状態を示す図である。
【図2】予備成型体を成形している状態の縦断図である。
【図3】予備成型体を作製した後状態の断面図である。
【図4】未加硫のベルトスリーブを作製する前状態の断面図である。
【図5】ベルトスリーブを加硫している状態の断面図である。
【図6】本発明の製造方法で得られたVリブドベルトの断面図である。
【符号の説明】
7 短繊維
8 短繊維混入塗装膜
9 接着剤
10 スプレー
20 ゴムシート
21 予備成型体
41 内型
42 可撓性ジャケット
45 リブ型
46 外型
48 心線
51b 加硫ベルトスリーブ
62 リブ部表面
63 接着剤塗布装置
64 パイル供給装置
65 短繊維
66 接着層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a power transmission belt, and more particularly to a method for manufacturing a power transmission belt in which short fibers are attached to a power transmission surface of a rib portion to reduce noise during belt running.
[0002]
[Prior art]
In a conventional method of manufacturing a power transmission belt, a belt formed body obtained by winding a rolled rubber sheet containing short fibers around a forming drum so that the short fibers are oriented in the width direction is vulcanized, and a belt sleeve is formed by a glider wheel. A plurality of ribs were ground on the surface, and short fibers were protruded from the surface of the rib to produce a belt with reduced running noise.
[0003]
On the other hand, besides exposing the short fibers to the surface of the rib portion by such a grinding method, Japanese Patent Application Laid-Open Publication No. H11-157572 discloses a method in which a brush is provided on at least one of the power transmission side and the transmission surface in contact with the transmission portion by electrostatic flocking. A power transmission member with reduced noise is described.
[0004]
Patent Document 2 discloses a power transmission belt in which a flocked fabric is mounted on the belt surface and a drive surface having an increased friction coefficient is provided.
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 9-14361 [Patent Document 2]
JP 2001-82549 A
[Problems to be solved by the invention]
However, according to the method of manufacturing a power transmission belt having a rib portion, if the surface of the rib portion is directly raised by electrostatic flocking, sufficient flocking can be performed near the entrance of the V-shaped rib groove, but flocking at a deep portion in the rib groove. Therefore, there is a problem that it is difficult to perform the development, and development of a new manufacturing method has been desired. On the other hand, in the case of using a flocked fabric, an adhesive is applied to a fabric (substrate) such as a nonwoven fabric, and a short-fiber floc is mechanically and electrostatically adhered onto the fabric to produce a belt. Since the end portions of the flocked fabric are lap-joined or butt-joined, there is a possibility that peeling will occur from the joint portion of the fabric after the belt is formed.
[0007]
The present invention focuses on such a problem, and as a result of intensive studies, it is an object of the present invention to provide a method of manufacturing a power transmission belt in which short fibers are uniformly adhered to a power transmission surface of a rib portion to reduce noise during belt running.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 of the present application is directed to a power transmission belt having a rubber layer in which a core wire is embedded along the belt longitudinal direction, and a rib portion extending in the belt longitudinal direction adjacent to the rubber layer. In the manufacturing method of
The short fibers are attached via an adhesive applied to the inner peripheral surface of the outer mold in which a rib mold is engraved on the inner peripheral surface,
A rubber sheet is interposed between the outer mold having the short fibers attached to the inner peripheral surface and the inner mold having a flexible jacket attached to the outer peripheral surface,
The flexible jacket is inflated and the rubber sheet is brought into close contact with a stamped rib mold of an outer mold to produce an unvulcanized preform,
At least a core wire is wound around the flexible jacket surface of the inner mold detached from the outer mold, and the inner mold is placed in the outer mold again, and the flexible jacket is expanded to attach the core wire to the outer mold. There is provided a method for manufacturing a power transmission belt, in which a vulcanized belt sleeve in which short fibers are adhered to the surface of a rib portion by vulcanizing integrally with a molded body is produced.
[0009]
According to this manufacturing method, the rib portion of the vulcanized belt sleeve can be accurately manufactured by molding, and the short fiber-mixed adhesive adhered to the inner peripheral surface of the outer die is cured at the time of vulcanization to cure the vulcanized belt sleeve. It can be transferred to the rib surface and the short fibers can be attached to the rib surface.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
In the present invention, a single rubber sheet in which short fibers are oriented in the width direction is used, and as a manufacturing method, there are an extrusion method and a calendering rolling method. Of course, a rubber sheet containing no short fibers can also be used. In the case of producing a rubber sheet in which fibers are oriented by an extrusion method, 10 to 40 parts by mass of short fibers are previously added to 100 parts by mass of a polymer by an open roll and kneaded, and then the kneaded master batch is released once. This is cooled to 20-50 ° C to prevent rubber scorch.
[0011]
When 1 to 10 parts by mass of a softening agent is added, the short fibers and the rubber are well blended, and not only the dispersion in the rubber is improved, but also the short fibers themselves are prevented from becoming entangled and becoming floc. In other words, the softener penetrates into the short fibers and acts as a lubricant to loosen the entanglement between the elementary fibers, prevents the short fibers from becoming cotton-like, and reduces the familiarity between the short fibers and the rubber. It becomes better and the dispersion of short fibers becomes better.
Subsequently, it is possible to finish the short fibers into one rubber sheet in which the short fibers are oriented in the width direction by using an extruder in which an extension die is attached to an extruder. Although not shown here, after kneading the master batch with the extrusion screw of the cylinder in the extruder, the short fiber-containing rubber is located between the inner dies located at the position facing the cylinder and on the same center axis. A cylindrical molded body in which flow is not hindered by the rubber passage and smoothly flows into the rubber passage of the expansion die without changing the flow direction, and the short fibers are circumferentially oriented while passing through the rubber passage. Extrusion molding.
[0013]
Thereafter, the cylindrical body without a weld line, which was continuously extruded and formed, had a thickness of 1 to 10 mm in which short fibers were uniformly oriented in the circumferential direction from the inner layer to the outer layer, and was incised at one location by a cutting means. Then, one short fiber oriented rubber sheet is formed while cutting the rubber sheet at a predetermined interval.
[0014]
As the rubber used here, natural rubber, butyl rubber, styrene-butadiene rubber, chloroprene rubber, ethylene-propylene rubber, alkylated chlorosulfonated polyethylene, hydrogenated nitrile rubber, hydrogenated nitrile rubber and unsaturated metal salt of carboxylic acid , A rubber material such as an ethylene-α-olefin elastomer composed of ethylene-propylene rubber (EPR) or ethylene-propylene-diene monomer (EPDM) alone, or a mixture thereof. Examples of the diene monomer include dicyclopentadiene, methylene norbornene, ethylidene norbornene, 1,4-hexadiene, cyclooctadiene, and the like.
[0015]
The rubber is made of fibers such as aramid fiber, polyamide fiber, polyester fiber, and cotton, and the length of the fiber varies depending on the type of the fiber. Short fibers of about 1 to 10 mm are used. Polyamide fiber, polyester fiber, and cotton having a size of about 5 to 10 mm are used. The addition amount is 10 to 40 parts by mass based on 100 parts by mass of the rubber.
[0016]
Further, a softener, a reinforcing agent composed of carbon black, a filler, an antioxidant, a vulcanization accelerator, a vulcanizing agent, and the like are added to the rubber.
[0017]
Examples of the softener include plasticizers for general rubbers, for example, phthalates such as dibutyl phthalate (DBP) and dioctyl phthalate (DOP), adipates such as dioctyl adipate (DOA), and dioctyl sebacate (DOS). It includes sebacate-based phosphates such as tricresyl phosphate, and general petroleum-based softeners.
[0018]
Next, as shown in FIG. 1, a release agent such as silicone oil is applied to the surface of the protruding rib mold 45 engraved on the inner peripheral surface of the cylindrical outer mold 46 at regular intervals, and then the short fibers 7 are removed. The mixed uncured adhesive 9 is sprayed by the spray 10 to form the short fiber mixed coating film 8 having a thickness of about 0.5 to 3 mm. At this time, the temperature of the inner peripheral surface of the outer mold 46 is room temperature, preferably 20 to 100 ° C., which is a temperature at which the adhesive of the short fiber mixed coating film 8 does not cure. The temperature of the outer mold 46 is adjusted by passing a heat medium such as steam or a coolant such as water into a space (not shown) provided in the main body.
[0019]
As the adhesive 9 mixed with the short fibers 7 used here, an RFL (resoricin-formaldehyde-latex) adhesive, a vinyl acetate emulsion, a styrene emulsion, and an unvulcanized rubber are dissolved in a solvent such as toluene and xylene. Rubber glue, organic solvent-based adhesives and the like. As a preferable adhesive, an RFL liquid or a rubber paste is preferable, and a thermosetting reaction occurs simultaneously with vulcanization molding. The RFL solution is obtained by mixing a latex with an initial condensate of resorcinol and formaldehyde, and the latex used here is chloroprene, styrene / butadiene / vinylpyridine terpolymer, hydrogenated nitrile, NBR, ethylene. α-olefin-diene copolymer. Further, an isocyanate compound can be added to the RFL liquid.
[0020]
In the method of spraying short fibers, a short fiber made of polyester, nylon, aramid, vinylon, carbon fiber, polytetrafluoroethylene, cotton, or the like is used. A short fiber mixed coating film 8 is formed on the surface of the substrate 45.
[0021]
The length of the short fibers is preferably 0.1 to 5.0 mm, and the aspect ratio (length Lmm / thickness diameter Dmm is 30 to 300. The fiber density contributes to the coefficient of friction and the sound during running. , Which is close to the power transmission belt used today, and is 10,000 to 500,000 belts / cm 2 .
[0022]
As another method, after spraying an adhesive that does not mix short fibers onto the surface of the protruding rib mold 45 provided on the inner peripheral surface of the cylindrical outer mold 46, only the short fibers are sprayed by a spray coating device. Can also be attached.
[0023]
As another method, after spraying only a solvent such as toluene or xylene as an adhesive on the surface of the protruding rib mold 45 provided on the inner peripheral surface of the cylindrical outer mold 46, only the short fibers are sprayed with a spray coating device. Can be applied by spraying.
[0024]
As another method, an adhesive is sprayed on the surface of the protruding rib mold 45 provided on the inner peripheral surface of the cylindrical outer mold 46, and then the outer mold 46 is charged and the short fibers are blown off by lines of electric force. Hair can also be planted.
[0025]
Subsequently, as shown in FIG. 2, the inner mold 41 in which the adhesive rubber sheet 16 and the rubber sheet 20 forming the compression rubber layer are sequentially wound on the surface of a flexible jacket 42 provided on the outer peripheral surface of the inner mold 41 is used. Is placed on the base so as to form a constant gap inside the outer mold 46. Since the inner mold 41 is moved from another molding step, the medium circulation port A and the medium feeding / discharging path B are separated from each other. After the inner mold 41 is placed on the base, the medium circulation port A is Connect to the pipe at joint J.
[0026]
The medium feeder is operated to feed the inside of the flexible jacket 42 through the medium feed / discharge path B for high-pressure air or the like and the medium flow port A. Since the upper and lower portions of the flexible jacket 42 are hermetically sealed on the inner mold 41, the space between the inner surface of the flexible jacket 42 and the outer surface of the inner mold 41 is filled with air. It expands gradually. Then, the short fiber oriented rubber sheet 20 mounted on the outer peripheral surface is uniformly expanded in the radial direction, and the rib mold 45 of the outer mold 46 heated to 100 to 160 ° C. with a heater or high-temperature steam is used for 30 to 120 seconds. Make contact.
[0027]
At this time, the rubber sheet 20 is pressed against the rib mold 45 of the outer mold 46 by the expansion pressing force of the flexible jacket 42, and the unvulcanized preliminary molding having a plurality of V-shaped protrusions on the surface as shown in FIG. The body 21 is formed. The preform 21 adheres to the short-fiber-mixed coating film 8, but is not integrally bonded to the preform 21 at this stage because the short-fiber-mixed coating film 8 is uncured.
[0028]
Thereafter, the valve is switched to the vacuum pump to exhaust the air filled in the flexible jacket 42, and then the flexible jacket 42 is contracted and returned to the original position shown in FIG. 2 by suction. .
[0029]
Then, the inner die 41 is pulled out from the outer die 46, and a core 48 made of a reinforcing cloth 47 and a cord is sequentially wound around the outer peripheral surface of the flexible jacket 42 of the inner die 41. Thereafter, as shown in FIG. 4, the inner mold 41 is placed in the outer mold 46, and then the flexible jacket 42 is expanded as shown in FIG. 5, and the reinforcing cloth 47 and the core wire 48 are evenly distributed in the radial direction. The belt sleeve 51 is produced by expanding and intimately and integrally vulcanizing the preform 21 attached to the rib mold 45 of the outer mold 46 heated to 100 to 180 ° C. by a heater or high-temperature steam. By molding the unvulcanized preformed body 21 as in the above-described manufacturing method, the amount of expansion of the core wire 48 due to expansion of the flexible jacket 42 during molding can be suppressed, and the core wire 48 can be arranged flat. A V-ribbed belt having excellent stability can be manufactured.
At the same time, the short fiber mixed coating film 8 hardens and moves from the surface of the rib mold 45 to the preformed body 21 side, and the short fibers adhere firmly to the preformed body 21.
[0030]
After vulcanization, the flexible jacket 42 is contracted, the inner die 41 is pulled out from the outer die 46, and then the vulcanized belt sleeve 51b attached to the outer die 46 is pulled out.
[0031]
A vulcanized belt sleeve 51b with short fibers attached to the surface of the rib is attached to one axis or cut to a predetermined width in the circumferential direction while rotating while hanging around two axes of a main axis and a driven axis, and then taken out from the axis and inverted. By doing so, a plurality of V-ribbed belts 1 having a constant circumference and V-shaped ribs are accurately formed and formed.
[0032]
FIG. 6 is a sectional view of the obtained V-ribbed belt. The V-ribbed belt 100 has a cord 102 made of a cord of high strength and low elongation embedded in an adhesive rubber layer 103, and has a compression rubber layer 104 as an elastic layer below the core. The compressed rubber layer 104 is provided with a plurality of ribs 106 having a substantially triangular cross section extending in the longitudinal direction of the belt, and short fibers 109 are arranged in a wavy manner on the inner layer 110 of the ribs to improve the lateral pressure resistance of the belt. The short fibers 108 are dispersed in the adhesive layer 107 provided on the surface layer 111 of the rib portion, and are randomly inclined or laid down on the surface of the rib portion.
Of course, the present invention includes a case where the short fiber 109 does not exist in the inner layer 110 of the rib portion.
[0033]
The rubber used for the adhesive rubber layer 103 is similar to the rubber compound of the compressed rubber layer 104 except for short fibers. Of course, short fibers may be included.
[0034]
As the core wire 102, polyester fiber, aramid fiber, and glass fiber are used, and among them, a total denier of 4,000 to 8, which is obtained by twisting a polyester fiber filament group having ethylene-2,6-naphthalate as a main constituent unit, is used. 000 bonded cords are preferred because the belt slip rate can be kept low and the belt life is extended. The core wire 102 is subjected to an adhesive treatment for the purpose of improving the adhesiveness with rubber. As such an adhesive treatment, the fiber is generally immersed in a resorcinol-formalin-latex (RFL) solution and then dried by heating to form an adhesive layer uniformly on the surface. However, without being limited to this, there is a method of performing a pretreatment with an epoxy or isocyanate compound and then treating with an RFL solution.
[0035]
The core wire 102 can be finished into a belt having a high modulus by setting the spinning pitch, that is, the winding pitch of the core wire to 0.9 to 1.3 mm. If it is less than 0.9 mm, the cord runs over the adjacent cord and cannot be wound, while if it exceeds 1.3 mm, the modulus of the belt gradually decreases.
[0036]
The back reinforcing member 105 is selected from a fiber material or a rubber material of a woven fabric, a knitted fabric, or a nonwoven fabric, and a more preferable one is a nonwoven fabric. Examples of the fiber material include natural fibers such as cotton, hemp and rayon, and organic fibers such as polyamide, polyester, polyethylene, polyurethane, polystyrene, polyfluoroethylene, polyacryl, polyvinyl alcohol, wholly aromatic polyester, and aramid. No. The canvas is immersed in an RFL solution according to a known technique, and then subjected to friction for rubbing the unvulcanized rubber with the back reinforcing material 105, and then immersed in a soaking solution in which the rubber is dissolved in a solvent after immersion in the RFL solution.
[0037]
In such a V-ribbed belt, the short fibers 108 adhering to the surface of the rib reduce noise during belt running, and also prevent the generation of cracks from the surface of the rib.
[0038]
【The invention's effect】
As described above, in the invention according to the claims of the present application, the short fiber is attached via an adhesive applied to the inner peripheral surface of the outer mold in which a rib mold is stamped on the inner peripheral surface, and the uncured A rubber sheet is interposed between an outer mold to which an adhesive is attached and an inner mold having a flexible jacket attached to the outer peripheral surface, and the flexible jacket is inflated so that the rubber sheet is engraved on the outer mold. A non-vulcanized pre-molded body is produced in close contact with the mold, and at least a core wire is wound around the flexible jacket surface of the inner mold separated from the outer mold, and the inner mold is set in the outer mold again, A transmission that expands the flexible jacket and vulcanizes integrally with the preform with the core wire attached to the outer mold, cures the adhesive, and creates a vulcanized belt sleeve with ribs to which short fibers are attached. It is in the belt manufacturing method, and the rib part of the vulcanized belt sleeve is accurately manufactured by molding. In addition, the adhesive containing short fibers adhering to the inner peripheral surface of the outer mold is cured during vulcanization to be transferred to the rib surface of the vulcanized belt sleeve, and the short fibers are adhered to the rib surface. There is an effect that can be done.
[Brief description of the drawings]
FIG. 1 is a view showing a state in which an uncured adhesive mixed with short fibers is sprayed on the inner peripheral surface of an outer mold 46 to form a short fiber mixed coating film.
FIG. 2 is a longitudinal sectional view showing a state in which a preform is being formed.
FIG. 3 is a cross-sectional view of a state after a preformed body is manufactured.
FIG. 4 is a sectional view of a state before an unvulcanized belt sleeve is manufactured.
FIG. 5 is a cross-sectional view of a state where the belt sleeve is vulcanized.
FIG. 6 is a sectional view of a V-ribbed belt obtained by the manufacturing method of the present invention.
[Explanation of symbols]
7 Short fiber 8 Short fiber mixed coating film 9 Adhesive 10 Spray 20 Rubber sheet 21 Preform 41 Inner mold 42 Flexible jacket 45 Rib mold 46 Outer mold 48 Core wire 51b Vulcanized belt sleeve 62 Rib surface 63 Adhesive Coating device 64 Pile supply device 65 Short fiber 66 Adhesive layer

Claims (3)

ベルト長手方向に沿って心線を埋設したゴム層と、該ゴム層に隣接してベルトの長手方向に延びるリブ部を有する伝動ベルトの製造方法において、
短繊維を、内周面にリブ型を刻印した外型の内周面に塗布した接着剤を介して付着し、
上記内周面に短繊維を付着した外型と、外周面に可撓性ジャケットを装着した内型との間にゴムシートを介在し、
上記可撓性ジャケットを膨張させて該ゴムシートを外型の刻印したリブ型に密着して未加硫の予備成型体を作製し、
外型から離脱した内型の可撓性ジャケット面に少なくとも心線を巻き付け、再度、上記内型を外型内に設置し、可撓性ジャケットを膨張させて心線を外型に装着した予備成型体と一体的に加硫して、リブ部表面に短繊維を付着させた加硫ベルトスリーブを作製する、
ことを特徴とする伝動ベルトの製造方法。
In a method for manufacturing a power transmission belt having a rubber layer in which a cord is embedded along the belt longitudinal direction and a rib portion extending in the longitudinal direction of the belt adjacent to the rubber layer,
The short fibers are attached via an adhesive applied to the inner peripheral surface of the outer mold in which a rib mold is engraved on the inner peripheral surface,
A rubber sheet is interposed between the outer mold having the short fibers attached to the inner peripheral surface and the inner mold having a flexible jacket attached to the outer peripheral surface,
The flexible jacket is inflated and the rubber sheet is brought into close contact with a stamped rib mold of an outer mold to produce an unvulcanized preform,
At least a core wire is wound around the flexible jacket surface of the inner mold detached from the outer mold, and the inner mold is placed in the outer mold again, and the flexible jacket is expanded to attach the core wire to the outer mold. Vulcanizing integrally with the molded body to produce a vulcanized belt sleeve with short fibers attached to the rib surface,
A method for manufacturing a power transmission belt, comprising:
ゴムシートが短繊維を含み、配向している請求項1記載の伝動ベルトの製造方法。The method according to claim 1, wherein the rubber sheet contains short fibers and is oriented. ゴムシートが短繊維を含有していない請求項1記載の伝動ベルトの製造方法。The method for producing a power transmission belt according to claim 1, wherein the rubber sheet does not contain short fibers.
JP2003046702A 2003-02-25 2003-02-25 Transmission belt manufacturing method Expired - Fee Related JP4071131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003046702A JP4071131B2 (en) 2003-02-25 2003-02-25 Transmission belt manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003046702A JP4071131B2 (en) 2003-02-25 2003-02-25 Transmission belt manufacturing method

Publications (2)

Publication Number Publication Date
JP2004255619A true JP2004255619A (en) 2004-09-16
JP4071131B2 JP4071131B2 (en) 2008-04-02

Family

ID=33113138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003046702A Expired - Fee Related JP4071131B2 (en) 2003-02-25 2003-02-25 Transmission belt manufacturing method

Country Status (1)

Country Link
JP (1) JP4071131B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010102236A (en) * 2008-10-27 2010-05-06 Teijin Fibers Ltd Manufacturing method for sound-absorbing structure, and the sound-absorbing structure
US20120058849A1 (en) * 2009-05-20 2012-03-08 Bando Chemical Industries, Ltd Friction drive belt and manufacturing method thereof
US9822842B2 (en) 2011-10-28 2017-11-21 Bando Chemical Industries, Ltd. Friction drive belt and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010102236A (en) * 2008-10-27 2010-05-06 Teijin Fibers Ltd Manufacturing method for sound-absorbing structure, and the sound-absorbing structure
US20120058849A1 (en) * 2009-05-20 2012-03-08 Bando Chemical Industries, Ltd Friction drive belt and manufacturing method thereof
DE112010003337B4 (en) * 2009-05-20 2019-10-31 Bando Chemical Industries, Ltd. V-ribbed belt, belt transmission system and method of manufacturing a V-ribbed belt
US9822842B2 (en) 2011-10-28 2017-11-21 Bando Chemical Industries, Ltd. Friction drive belt and manufacturing method therefor

Also Published As

Publication number Publication date
JP4071131B2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
KR101422450B1 (en) Method for manufacturing a v-ribbed belt
WO2013105191A1 (en) Friction transmission belt, manufacturing method thereof, and belt transmission device
JP4071131B2 (en) Transmission belt manufacturing method
JP4485147B2 (en) V-ribbed belt manufacturing method
JP4329925B2 (en) Transmission belt manufacturing method
JP2004316787A (en) V-ribbed belt and manufacturing method thereof
JP2004276581A (en) Method for manufacturing transmission belt
JP2004174772A (en) Method for producing transmission belt
JP4233930B2 (en) Transmission belt manufacturing method
JP2008213145A (en) Method for producing transmission belt and transmission belt
JP2008044151A (en) Method for producing driving belt
JP2008265031A (en) Manufacturing method for transmission belt
JP2006009946A (en) Method for manufacturing transmission belt
JP2004076927A (en) V-ribbed belt and manufacturing method thereof
JP2005096388A (en) Method for producing transmission belt
JP2006007450A (en) Manufacturing method of transmission belt and transmission belt
JP5112744B2 (en) Transmission belt manufacturing method
JP2008030460A (en) Manufacturing process of driving belt
WO2016027392A1 (en) V-ribbed belt, method for manufacturing same, and belt transmission device
JP4233924B2 (en) Transmission belt manufacturing method
JP2008213144A (en) Method for producing transmission belt
JP2010053909A (en) Driving belt and its manufacturing method
JP2004230679A (en) Method for manufacturing transmission belt
JP2008281153A (en) V-ribbed belt and its manufacturing method
JP2002187131A (en) Method for manufacturing vulcanizing sleeve and mold used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4071131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees