JP2004255394A - Method of joining hollow metal aggregated material, and impact absorption member and method of producing the same - Google Patents

Method of joining hollow metal aggregated material, and impact absorption member and method of producing the same Download PDF

Info

Publication number
JP2004255394A
JP2004255394A JP2003046748A JP2003046748A JP2004255394A JP 2004255394 A JP2004255394 A JP 2004255394A JP 2003046748 A JP2003046748 A JP 2003046748A JP 2003046748 A JP2003046748 A JP 2003046748A JP 2004255394 A JP2004255394 A JP 2004255394A
Authority
JP
Japan
Prior art keywords
closed cross
aggregate
hollow metal
section
absorbing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003046748A
Other languages
Japanese (ja)
Inventor
Yutaka Makuchi
裕 馬久地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003046748A priority Critical patent/JP2004255394A/en
Publication of JP2004255394A publication Critical patent/JP2004255394A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of joining a hollow metal aggregated material by which an aggregated material consisting of fine hollow metals can be joined to the other metal material at high strength without variation, and to obtain an impact absorption member which has excellent energy absorption performance and stability in the performance by welding the hollow metal aggregated material to a member with a closed cross-section composing an enclosure using the joining method. <P>SOLUTION: In the method of joining a hollow metal aggregated material, an aggregated material consisting of fine hollow metals is compressed, the fine hollow metal at least located on the outermost face of the aggregated material is subjected to plastic deformation so as to be flattened, further, the aggregated material is stored in the cavity part of the member with a closed cross-section, thereafter, a high energy density heat source such as a laser beam is applied from the outside of the member with a closed cross-section, and the member with a closed cross-section and the flattened plastically deformed face of the aggregate are welded. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、微小中空金属を用いて成形した集合材(軽量多孔質材)の利用技術に係わり、このような中空金属集合材を他の金属材に接合するための方法と、当該集合材を用いた衝撃吸収部材、さらにはこのような衝撃吸収部材の製造方法に関するものである。
【0002】
【従来の技術】
上記のような微小中空金属を焼結やろう付け、あるいは接着などの方法によって所定の形状に成形した中空金属集合材が知られている(非特許文献1および2参照)。
【0003】
【非特許文献1】
Metallic hollow spheres−materials for the future:Metal Powder Report, No.1, Vol.55 (2000),pp.29−33
【非特許文献2】
JRCM NWES,No.192,2002年10月
【0004】
上記のような微小中空金属から成る中空金属集合材は、多孔質金属の1種とみなすことができ、例えば発泡アルミニウムのような他の多孔質金属と同様に、圧縮荷重を受けるとほぼ一定の荷重下で変形が進行する、いわゆるプラトー現象を示し、パイプ材やチャネル形材などの閉断面部材の空洞部内に充填することによって、衝撃吸収部材への応用が考えられる。しかも、素材である中空金属球の寸法を揃えることによって、多孔質金属材としてのセルサイズのバラツキを抑えることができ、発泡アルミニウムのような一般の多孔質金属材と比べて、機械的性能を安定させることができ、より安定なエネルギ吸収性能を備えた部材とすることができるものと期待される。
【0005】
【発明が解決しようとする課題】
ここで、上記中空金属集合材を閉断面部材内に充填し、集合材を外郭を構成する閉断面部材に固定するに際して、種々の接合方法のうち、溶接によって固定できれば、簡便で接合強度も安定し、しかも重量増を招くことがないので、極めて好都合と考えられる。
【0006】
しかしながら、上記した中空金属集合材の表面は、中空金属球の表面がそのまま現れた凹凸状を呈しており、閉断面部材との接合面は不連続な点接触となることから、外部から熱源によって溶接したとしても実質的な接合面積が安定せず、従って接合強度のばらつきが顕著なものとなって、集合材自体は安定したエネルギ吸収性能を備えているにも拘わらず、これを用いた衝撃吸収部材の性能を安定させることができないという問題があり、中空金属集合材とその外郭部材としての閉断面部材の溶接における接合強度を高め、かつ安定させることが上記のような中空金属集合材を用いた衝撃吸収部材を実用化するための課題となっていた。
【0007】
本発明は、中空金属集合材を用いた衝撃吸収部材における上記課題に着目してなされたものであって、中空金属集合材を板材のような金属材に高強度に、ばらつきなく接合することができる中空金属集合材の接合方法と共に、中空金属集合材を外郭を構成する閉断面部材に溶接したものであって、エネルギ吸収性能及びその安定性に優れた衝撃吸収部材、さらにはこのような衝撃吸収部材の製造方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明の中空金属集合体の接合方法においては、微小中空金属から成る集合材を圧縮することによって、少なくとも集合材の最外面に位置する微小中空金属を塑性変形させて平坦化し、当該平坦化面を上記金属材に重ね、金属材の側から、例えば電子ビームやレーザビームのような高エネルギ密度熱源を照射して当該金属材と上記集合材を溶接するようにしている。
【0009】
また、本発明の衝撃吸収部材は、例えば上記接合方法を適用することによって得られ、外郭材としての閉断面部材の空洞部内に、微小中空金属から成る集合材が収納され、この集合材が閉断面部材に溶接されている構成としたことを特徴としている。
【0010】
さらに、本発明の衝撃吸収部材製造方法においては、上記衝撃吸収部材を製造するに際し、微小中空金属から成る集合材を同様に圧縮することによって、少なくとも集合材の最外面に位置する微小中空金属を塑性変形させて平坦化した状態の集合体を閉断面部材の空洞部内に収納したのち、閉断面部材の外側から上記のような高エネルギ密度熱源を照射して、当該閉断面部材と上記集合体の平坦化した塑性変形面とを溶接するようにしている。
【0011】
なお、本発明において、微小中空金属とは、略球状をなし、直径が数mmで殻の厚さが1mm以下の金属の中空体を意味し、集合材とはこれらの微小中空金属を所定の形状に集積し、例えば焼結などの手段によって相互に固着し、全体として一体の形状をなすようにしたもののことを言う。
また、衝撃吸収部材とは、例えば自動車のサイドメンバーやピラーなどの部材に適用され、衝撃荷重を受けた際に優先的に変形して衝撃エネルギを吸収し、車体の要保護部分、例えば客室や燃料タンクなどに変形が及ばないようにする部材のことを意味する。さらに、閉断面部材とは、パイプ材やチャネル形材などのように、中空金属集合材を収納する中空部や空洞部を備え、衝撃吸収部材の外表面を形成する部材のことを言う。
【0012】
【発明の実施の形態】
本発明の衝撃吸収部材に用いる中空金属集合材は、上記のように内部が中空で薄い金属殻で覆われた微小中空金属球を集合し、相互に接合したものであって、当然のことながら、このような成形体は、軽量で他の発泡金属と同じようにエネルギ吸収性能を有している。
【0013】
このような微小中空金属、あるいはこれらの集合材を製造する方法としては、例えば、上記非特許文献2に記載されているように、スチロール球表面に流動床プロセスによりバインダと金属粉をコーティングした後、焼成することによって球体中空金属の単体や、同時にこれら中空金属から成る集合体を得る方法が知られている。スチロール球とバインダは焼結時に消滅する。
これ以外にも幾つかの方法により中空金属球を得ることができ、例えば当該中空金属球を所望の形状に集積して加熱することにより、金属球を相互に焼結して集合材を作製することができる。
【0014】
このようにして得られた中空金属集合材は、軽量でエネルギ吸収性能が優れることから、このような集合材を閉断面部材によって覆い、当該集合材と閉断面部材の間を互いに接合することによって、衝撃吸収部材への応用が可能になる。
【0015】
本発明の中空金属集合材の接合方法においては、中空金属集合材に予め圧縮加工を施し、少なくとも表面に位置する中空金属を塑性変形させて平坦化した面を相手の金属材に重ね、金属材の側から高エネルギ密度熱源を照射して、金属材及び集合材を共に溶融せしめ、両者を溶接するようにしていることから、集合材の接合面が点接触から面接触になり、接触面積が増すことによって、安定な溶接が可能になり、高い接合強度が安定して得られることになる。
【0016】
このときの溶接熱源としては、高密度エネルギのものが入熱が小さく、従って変形や熱影響が少なくて済むことになる。具体的には、電子ビームやプラズマアークなどを適用することができるが、生産性や作業性の面から、レーザビームを用いることが望ましい。このような高密度エネルギ熱源で溶接することによって、相手金属材の材質が鉄鋼材料の場合には、その溶接部も急冷凝固組織となって高強度化するという利点もある。
溶接部の断面形状としては、溶融金属が相手金属材をわずかに貫通して、集合材の中空金属の殻と融合するような入熱条件を選び、ジグを使って集合材を金属材に密着させ、接合面に隙間がないように設定して溶接することにより、極めて安定した接合が可能になる。
【0017】
中空金属集合材の作成方法としては、上記したように、焼結によって中空金属球同士を接合させることが好ましいが、このような焼結による方法の他に、接着剤による成形固着も可能であり、焼結のように高温に加熱する必要もなく、簡便名利点がある反面、中空金属球相互の接合部が延性に欠け、圧縮による中空金属の塑性変形の際に接着層が破断することがないとは言えない。
また、接着剤に代えて、中空金属球同士をろう付けするようになすことも可能である。この場合、焼結よりは低温での成形が可能であるが、ろう材の材質の制約や供給方法に問題があり、ろう材の分だけ重量増にもなる難点がある。
【0018】
微小中空金属の集合材を圧縮して最表面の中空金属層を塑性変形させるときの圧縮の程度としては、5〜15%の圧縮率とすることが望ましい。
すなわち、5%以下では、中空金属球の塑性変形の程度が小さく、接合面が十分に平坦化せず、相手金属材との接触面積が十分に得られないことがあり、一方、圧縮率が15%を超えても、変形がより内部の中空金属に進行するだけであって、最表面の中空金属層の塑性変形の程度はほとんど変わらないことによる。
【0019】
本発明の衝撃吸収部材は、空洞部を備え、外表面を形成する閉断面部材の上記空洞部内に、微小中空金属から成る集合材が収納されており、この集合材を閉断面部材に溶接したものであって、上記接合方法を適用することによって得ることができ、したがって、上記集合材の閉断面部材との接合面に位置する微小中空金属が塑性変形していることになる。
【0020】
閉断面部材としては、パイプ材のように中空部を備えた一体型のものや、ハット形や溝形断面を有する複数の部材を組合わせることによって空洞部が形成されるものを使用することができるが、中空金属集合材の収納が容易であることから、一体型のものより、複数部材からなるものの使用が好ましい。
【0021】
すなわち、閉断面部材は、断面がハット形状の部材と板状の部材とからなり、両部材をハット形断面部材のフランジ部で接合したものが一般に用いられる。
したがって、製造手順としては、ハット形状部材の内面(空洞部)形状を考慮して中空金属球の集合材を作成し、それを上記部材の空洞部内に収納したのち、レーザビーム等を照射して両者を溶接し、次に板状部材を被せてフランジ部においてこれらハット形状部材と板状部材を溶接する。さらに、必要に応じて、板状部材と内側の集合材とをレーザビーム等によって溶接するようになす。
【0022】
上記閉断面部材の材質については、強度、成形性、溶接性、コストの面から鉄系材料、すなわち、炭素鋼や合金鋼、ステンレス鋼などが好適に用いられる。なお、軽量化の要求が厳しい場合には、アルミニウム系材料を使用することが考えられるが、その場合には、溶接性の観点から中空金属球の材質もアルミニウム系材料を用いることが望ましい。
【0023】
また、微小中空金属球の材質についても、強度、コスト、溶接性の面から上記のような鉄系材料とすることが望ましい。上記のようなアルミニウム系材料の場合は軽量であるが、強度が低く、しかも焼結が難しいことから、高強度の成形体を得るには不適当である。
【0024】
中空金属集合材の見掛け密度については、0.3〜1.0g/cmの範囲することが望ましい。見掛け密度が0.3g/cmより小さいと、中空球の殻の厚さが球径に比べかなり小さくなり、圧縮したときに均等に塑性変形しなくなり、1.0g/cmを超えると、殻も相対的に厚くなり、圧縮したときの塑性変形が表面層だけでなく内部にも進行してしまう傾向がある。また、閉断面部材の内部に中空金属の集合材を充填した衝撃吸収部材において、少ない重量増で効率的にその強度、反力を向上させるには、中空金属集合材の強度と重量のバランスからも集合材の密度を上記範囲ないのものとすることが望ましい。すなわち、見掛け密度が0.3g/cmより小さい場合は、集合体の強度も小さく強度向上効果も望めない。一方、1.0g/cmを超えると重量増が無視できなくなると共に、衝撃荷重を受けた時のピーク反力も大きくなり好ましくない。
【0025】
また、中空金属の集合材の断面形状については、必ずしも全断面が中空金属で満たされている必要はない。すなわち、閉断面部材中に充填された集合材は、特に部材の軸方向に外力が作用したときの反力を向上させるのに有効なのは成形体の外周部であることから、より少ない重量増で全体としての強度、反力を効率的に向上させるためには、いわゆる中抜きの状態、すなわち中心部が空洞の集合材を用いる方が好ましいことになる。
ここで、通常の四角形断面の場合、中心部が空洞の集合材(「ロ」の字形断面)を成形するのは困難であるのに対し、4辺のうちの1辺を開放させた「コ」の字状断面に成形するのは比較的容易であると共に、このような「コ」の字形断面の集合体によっても強度向上の効果が得られることから、集合体の空洞が閉断面部材の4辺のうちの少なくとも3辺から離れた位置に存在するようになすことが望ましいことになる。
【0026】
そして、当該衝撃吸収部材が長手方向に衝撃荷重を受ける軸圧壊衝撃吸収部材である場合には、閉断面部材と内部の中空金属集合材との溶接を荷重の作用方向と同方向、すなわち閉断面部材の長手方向に連続溶接することが望ましく、これによって、溶接部の剥離に対する抵抗及び閉断面部材の溶接部の抵抗が大きくなり、反力、強度が効果的に向上することになる。
【0027】
また、当該衝撃吸収部材が側面方向から衝撃荷重を受ける曲げ衝撃吸収部材である場合にも、荷重を受ける面における溶接線方向が閉断面部材の長手方向である方が望ましく、直角方向にある場合に較べて内部の集合体の変形抵抗及び閉断面部材の溶接部の強度向上による変形抵抗が大きなものとなって、曲げ衝撃に対する衝撃吸収性能が向上することになる。
【0028】
本発明の衝撃吸収部材の製造方法においては、微小中空金属から成る集合材を圧縮、望ましくは5〜15%圧縮することによって、当該集合材の最外面に位置する微小中空金属を塑性変形させて平坦化し、閉断面部材の空洞部内に収納したのち、閉断面部材の外側から上記のような高エネルギ密度熱源を照射して、当該閉断面部材と上記集合体の塑性変形面とを溶接するようにしていることから、集合材と閉断面部材との接触面積が増し、高い接合強度の溶接部が安定して得られるようになり、高い衝撃吸収性能を備えた衝撃吸収部材が安定して得られることになる。
【0029】
以下に、本発明の衝撃吸収部材の製造手順を図面に基づいて順次説明する。
【0030】
まず、図1に示すように、所定形状の型の中に中空金属球を入れ、図2に示すように、非酸化性雰囲気中において、型の外部から加熱し所定温度に昇温することにより上記中空金属同士を焼結し、これによって、図3に示すような中空金属の焼結集合材を得る。
このとき、上記型の形状・寸法としては、焼結による収縮しろと共に、焼結後の圧縮を考慮したものとし、圧縮加工を施して塑性変形させた状態で、後述する閉断面部材の空洞部寸法に一致させることが必要となる。
【0031】
次に、図4に示すように、上記によって得られた中空金属の集合材を、望ましくは5〜15%の圧縮率で圧縮加工し、図5に示すように、集合材の最上層部と最下層部に位置する中空金属を塑性変形させ、集合材の上下両面を平坦化する。そして、図6に示すように、圧縮加工を施した上記集合材を閉断面部材としてのハット形部材の空洞部内に収納すると共に、クロージングプレートとして板材を被せて、当該集合材を覆ったのち、図7に示すように、閉断面部材の下方側から、例えばレーザビームを照射し、閉断面部材を通して集合材の塑性変形部分を溶融させ、当該閉断面部材と集合材とを溶接する。さらに、ハット形部材のフランジ部において、例えばスポット溶接によって、当該ハット形部材と板材とを接合し、必要に応じて板材の側からレーザビームを照射することによって板材と集合材とを溶接する。
【0032】
以上の手順によって、図8に示すような断面形状を備えた衝撃吸収部材が完成する。
【0033】
【実施例】
以下、本発明を実施例に基づいて具体的に説明する。
【0034】
(実施例1)
外径2.5mm、殻厚さ50μmのステンレス鋼製中空金属球を50mm角に成形し、これを非酸化性雰囲気中において1250℃に加熱して焼結し、見かけ密度が約0.45g/cmの中空金属集合材を作製した。
【0035】
次に、この集合材を種々の圧縮率でプレス成形することによって、塑性変形させ、厚さの異なる2次成形体とし、これらの塑性変形面に、図9に示すように板厚1.6mmの軟鋼板に重ね、鋼板側から、出力3kWのYAGレーザを照射し、4m/分の速度で溶接した。この溶接材を溶接方向と直角をなす方向に引張り、引張り剪断強さを測定した。
この結果として、集合材の圧縮率と溶接強度との関係を表1に示す。
【0036】
【表1】

Figure 2004255394
【0037】
この結果から明らかなように、圧縮率を5%以上とすることによって溶接強度が向上する一方、圧縮率が15%を超えても、強度はそれ以上ほとんど変わらないことが確認された。
【0038】
(実施例2)
厚さ1.4mmの鋼板をハット形状にプレス成形して成る2枚の部材をフランジ部でスポット溶接して、80mm角、長さ240mmの中空の角筒を作製して、閉断面部材となし、この閉断面部材の空洞部内に、実施例1と同仕様の中空金属集合材を約10%圧縮成形することにより塑性変形させた状態で挿入し、図10に示すように、塑性変形面の外部から出力3kWのレーザビームを、4m/分の速度で照射することによって、長手方向全長に亘って、一方の面ごとに2回、合計4回溶接を行い、都合4本の溶接ビードを形成した。
【0039】
そして、この部材に衝突時の速度が約7.6m/秒となるように、500kgの鋼製ブロックを長手方向に衝突させて衝撃力を与え、変位が100mmまでの吸収エネルギを調査し、中空金属集合材を挿入することなく角筒のみの場合、中空金属集合材を挿入したのものの溶接を行なわなかった場合、さらに角筒の長手方向と垂直方向に一方の面について6本、合計12本のレーザ溶接ビードを形成した場合と比較した。この結果を表2及び図11に示す。
【0040】
【表2】
Figure 2004255394
【0041】
この結果から明らかなように、中空金属集合材を閉断面部材内に充填し、これらをレーザ溶接して互いに接合することによって、衝撃吸収特性が大幅に向上することが確認された。
【0042】
【発明の効果】
以上、説明してきたように、本発明の中空金属集合材の接合方法によれば、微小中空金属から成る集合材を圧縮して、少なくとも最表面に位置する中空金属を塑性変形させて平坦化した状態で重ね合わせて溶接するようにしており、重ね合わせた被接合金属材との接触面積が増し、接合面積が増加することから、簡便に高強度で安定して集合材を金属材に接合することができる。また、閉断面部材の空洞部に収納した中空金属集合材と上記閉断面部材との間の溶接に上記接合方法を適用することによって、エネルギ吸収能の優れた衝撃吸収部材の作製が可能となるというきわめて優れた効果がもたらされる。
【図面の簡単な説明】
【図1】本発明の衝撃吸収部材の製造方法における中空金属球のセット工程を示す概略図である。
【図2】上記製造方法における焼結工程を示す概略図である。
【図3】上記製造方法において焼結集合材の完成状態を示す概略図である。
【図4】上記製造方法における圧縮工程を示す概略図である。
【図5】上記製造方法において焼結集合材の表面層が塑性変形された状態を示す概略図である。
【図6】上記製造方法において塑性変形された集合材を閉断面部材内に収納された状態を示す概略図である。
【図7】上記製造方法における溶接工程を示す概略図である。
【図8】上記製造方法における衝撃吸収部材の完成状態を示す概略図である。
【図9】実施例1における中空金属集合材と板材との溶接要領及び引張り試験要領を示す概略図である。
【図10】実施例2において試作した衝撃吸収部材の形状を示す斜視図である。
【図11】実施例2における衝撃試験結果を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for using an aggregate material (lightweight porous material) formed using a minute hollow metal, a method for joining such a hollow metal aggregate material to another metal material, and the aggregate material. The present invention relates to a shock absorbing member used, and a method of manufacturing such a shock absorbing member.
[0002]
[Prior art]
There is known a hollow metal aggregate obtained by molding the above-described minute hollow metal into a predetermined shape by a method such as sintering, brazing, or bonding (see Non-Patent Documents 1 and 2).
[0003]
[Non-Patent Document 1]
Metallic hollow spheres-materials for the future: Metal Powder Report, No. 1, Vol. 55 (2000), pp. 29-33
[Non-Patent Document 2]
JRCM NWES, No. 192, October 2002 [0004]
A hollow metal assembly made of such a fine hollow metal can be regarded as a kind of porous metal and, like other porous metals such as foamed aluminum, is almost constant when subjected to a compressive load. A so-called plateau phenomenon in which deformation progresses under a load, and filling in a hollow portion of a closed cross-sectional member such as a pipe material or a channel shape member can be applied to an impact absorbing member. In addition, by aligning the dimensions of the hollow metal spheres that are the material, it is possible to suppress variations in cell size as a porous metal material, and mechanical performance is improved compared to general porous metal materials such as foamed aluminum. It is expected that the member can be stabilized and can have a more stable energy absorption performance.
[0005]
[Problems to be solved by the invention]
Here, when the hollow metal aggregate is filled in the closed cross-section member and the aggregate is fixed to the closed cross-section member constituting the outer shell, if it can be fixed by welding among various joining methods, the joint strength is stable and stable. Moreover, since it does not cause an increase in weight, it is considered extremely convenient.
[0006]
However, the surface of the hollow metal assembly described above has an uneven shape in which the surface of the hollow metal sphere appears as it is, and the joint surface with the closed cross-section member becomes discontinuous point contact. Even if it is welded, the substantial bonding area is not stable, and thus the variation in bonding strength becomes remarkable. Even though the aggregate itself has stable energy absorption performance, the impact using this There is a problem that the performance of the absorbing member cannot be stabilized, and it is possible to increase the bonding strength in welding of the hollow metal aggregate and the closed cross-section member as its outer member, and to stabilize the hollow metal aggregate as described above. It has been a problem for putting the used shock absorbing member into practical use.
[0007]
The present invention has been made by paying attention to the above-mentioned problems in the impact absorbing member using a hollow metal assembly, and can join the hollow metal assembly to a metal material such as a plate with high strength and no variation. A hollow metal assembly is welded to a closed cross-section member constituting the outer shell, together with a method for joining the hollow metal assembly, and an impact absorbing member excellent in energy absorption performance and stability, and such an impact. It aims at providing the manufacturing method of an absorption member.
[0008]
[Means for Solving the Problems]
In the method for joining hollow metal aggregates of the present invention, by compressing an aggregate material made of micro hollow metal, at least the micro hollow metal located at the outermost surface of the aggregate material is plastically deformed and flattened, and the flattened surface Is stacked on the metal material, and a high energy density heat source such as an electron beam or a laser beam is irradiated from the metal material side to weld the metal material and the aggregate material.
[0009]
In addition, the shock absorbing member of the present invention is obtained, for example, by applying the above joining method, and an aggregate material made of a minute hollow metal is accommodated in a cavity of a closed cross-section member as an outer shell material, and the aggregate material is closed. It is characterized in that it is configured to be welded to the cross-sectional member.
[0010]
Furthermore, in the shock absorbing member manufacturing method of the present invention, at the time of manufacturing the shock absorbing member, by compressing the aggregate material composed of the minute hollow metal in the same manner, at least the minute hollow metal positioned on the outermost surface of the aggregate material is obtained. After storing the assembly in the state of plastic deformation and flattened in the cavity of the closed cross-section member, the closed cross-section member and the aggregate are irradiated by irradiating the high energy density heat source as described above from the outside of the closed cross-section member. Are welded to the flattened plastic deformation surface.
[0011]
In the present invention, the micro hollow metal means a hollow metal body having a substantially spherical shape, a diameter of several millimeters, and a shell thickness of 1 mm or less. It refers to the one that is accumulated in a shape and fixed to each other by means of, for example, sintering to form an integral shape as a whole.
Further, the impact absorbing member is applied to a member such as a side member or a pillar of an automobile, for example, and preferentially deforms when receiving an impact load to absorb impact energy, so that a necessary protection part of the vehicle body such as a cabin or It means a member that prevents deformation of the fuel tank or the like. Furthermore, the closed cross-section member refers to a member that includes a hollow portion or a hollow portion that accommodates a hollow metal aggregate, such as a pipe material or a channel shape member, and forms the outer surface of the impact absorbing member.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The hollow metal assembly used in the shock absorbing member of the present invention is a collection of minute hollow metal spheres that are hollow inside and covered with a thin metal shell as described above, and are naturally joined together. Such a molded body is light in weight and has energy absorption performance like other foam metals.
[0013]
As a method for producing such a fine hollow metal or an aggregate of these, for example, as described in Non-Patent Document 2, after coating a binder and metal powder on the surface of a styrene ball by a fluidized bed process. A method for obtaining a single spherical hollow metal or an aggregate of these hollow metals by firing is known. The polystyrene sphere and binder disappear during sintering.
In addition to this, hollow metal spheres can be obtained by several methods. For example, by collecting and heating the hollow metal spheres in a desired shape, the metal spheres are sintered together to produce an aggregate. be able to.
[0014]
Since the hollow metal aggregate obtained in this way is lightweight and has excellent energy absorption performance, it is possible to cover such an aggregate with a closed cross-section member and join the aggregate and the closed cross-section member together. Application to shock absorbing members becomes possible.
[0015]
In the method for joining hollow metal aggregates of the present invention, the hollow metal aggregates are pre-compressed, and at least the hollow metal located on the surface is plastically deformed and flattened on the mating metal material. By irradiating a high energy density heat source from the side, the metal material and the aggregate material are melted together and welded together, so that the joint surface of the aggregate material changes from point contact to surface contact, and the contact area is By increasing, stable welding becomes possible, and high joint strength can be obtained stably.
[0016]
As the welding heat source at this time, a heat source having a high density energy has a small heat input, and therefore, deformation and heat influence are small. Specifically, an electron beam, a plasma arc, or the like can be applied, but it is preferable to use a laser beam from the viewpoint of productivity and workability. By welding with such a high-density energy heat source, when the material of the counterpart metal material is a steel material, there is also an advantage that the welded portion becomes a rapidly solidified structure and is strengthened.
As the cross-sectional shape of the weld, select heat input conditions that allow the molten metal to penetrate the mating metal slightly and fuse with the hollow metal shell of the aggregate, and use a jig to adhere the aggregate to the metal In addition, it is possible to perform extremely stable joining by setting and welding so that there is no gap on the joining surface.
[0017]
As described above, it is preferable to join the hollow metal spheres by sintering as a method for producing the hollow metal aggregate. However, in addition to the method by sintering, molding and fixing with an adhesive is also possible. There is no need for heating to a high temperature as in the case of sintering, and there is an advantage of a simple name, but the joint part of the hollow metal spheres lacks ductility, and the adhesive layer may break during plastic deformation of the hollow metal due to compression. I can't say it isn't.
Further, it is possible to braze the hollow metal spheres in place of the adhesive. In this case, molding can be performed at a temperature lower than that of sintering, but there is a problem in the restriction of the material of the brazing material and the supply method, and there is a problem that the weight is increased by the amount of the brazing material.
[0018]
The degree of compression when compressing the aggregate of minute hollow metals and plastically deforming the outermost hollow metal layer is preferably 5 to 15%.
That is, if it is 5% or less, the degree of plastic deformation of the hollow metal sphere is small, the joint surface is not sufficiently flattened, and the contact area with the counterpart metal material may not be sufficiently obtained. Even if it exceeds 15%, deformation only progresses to the inner hollow metal, and the degree of plastic deformation of the outermost hollow metal layer is hardly changed.
[0019]
The shock absorbing member of the present invention has a hollow portion, and an aggregate material made of a minute hollow metal is accommodated in the hollow portion of the closed cross-section member forming the outer surface, and the aggregate material is welded to the closed cross-section member. Therefore, it can be obtained by applying the above-described joining method. Therefore, the minute hollow metal located on the joining surface of the aggregate with the closed cross-section member is plastically deformed.
[0020]
As the closed cross-section member, it is possible to use an integral type provided with a hollow portion such as a pipe material, or a member in which a hollow portion is formed by combining a plurality of members having a hat-shaped or groove-shaped cross section. However, since it is easy to store the hollow metal assembly material, it is preferable to use a plurality of members rather than an integral type.
[0021]
That is, the closed cross-section member is generally composed of a hat-shaped member and a plate-shaped member, and both members are joined by a flange portion of the hat-shaped cross-section member.
Therefore, as a manufacturing procedure, considering the shape of the inner surface (hollow part) of the hat-shaped member, a hollow metal sphere aggregate is prepared and stored in the hollow part of the member, and then irradiated with a laser beam or the like. Both are welded, and then a plate-like member is put on and the hat-shaped member and the plate-like member are welded at the flange portion. Further, if necessary, the plate member and the inner assembly are welded by a laser beam or the like.
[0022]
As the material of the closed cross-section member, an iron-based material, that is, carbon steel, alloy steel, stainless steel, or the like is preferably used in terms of strength, formability, weldability, and cost. In addition, when the request | requirement of weight reduction is severe, it is possible to use an aluminum-type material, but in that case, it is desirable to use an aluminum-type material also for the material of a hollow metal ball | bowl from a viewpoint of weldability.
[0023]
Further, the material of the minute hollow metal sphere is preferably an iron-based material as described above from the viewpoint of strength, cost, and weldability. The aluminum-based material as described above is lightweight, but has low strength and is difficult to sinter, and thus is unsuitable for obtaining a high-strength molded body.
[0024]
The apparent density of the hollow metal aggregate is preferably in the range of 0.3 to 1.0 g / cm 3 . When the apparent density is less than 0.3 g / cm 3 , the thickness of the shell of the hollow sphere is considerably smaller than the diameter of the sphere, and when compressed, it does not plastically deform evenly, and when it exceeds 1.0 g / cm 3 , The shell also becomes relatively thick, and plastic deformation when compressed tends to proceed not only to the surface layer but also to the inside. In addition, in an impact absorbing member filled with a hollow metal aggregate inside a closed cross-section member, in order to improve its strength and reaction force efficiently with a small increase in weight, it is necessary to balance the strength and weight of the hollow metal aggregate. However, it is desirable that the density of the aggregate is not in the above range. That is, when the apparent density is less than 0.3 g / cm 3 , the strength of the aggregate is small and the effect of improving the strength cannot be expected. On the other hand, if it exceeds 1.0 g / cm 3 , an increase in weight cannot be ignored, and the peak reaction force when subjected to an impact load increases, which is not preferable.
[0025]
Moreover, about the cross-sectional shape of the aggregate | assembly material of a hollow metal, the whole cross section does not necessarily need to be filled with the hollow metal. In other words, the aggregate filled in the closed cross-section member is effective for improving the reaction force when an external force is applied in the axial direction of the member, particularly the outer peripheral portion of the molded body. In order to efficiently improve the strength and reaction force as a whole, it is preferable to use a so-called hollowed state, that is, an aggregate with a hollow central portion.
Here, in the case of a normal rectangular cross section, it is difficult to form an aggregate with a hollow center ("B" -shaped cross section), whereas "co" with one of the four sides open. It is relatively easy to form a "" -shaped cross-section, and the effect of improving the strength can be obtained by such an assembly of "-"-shaped cross sections. It is desirable to make it exist in a position away from at least three of the four sides.
[0026]
When the impact absorbing member is an axial crushing impact absorbing member that receives an impact load in the longitudinal direction, the welding between the closed cross-section member and the internal hollow metal aggregate is the same as the direction of load application, that is, the closed cross-section. It is desirable to perform continuous welding in the longitudinal direction of the member, which increases resistance to peeling of the welded portion and resistance of the welded portion of the closed cross-section member, and effectively improves reaction force and strength.
[0027]
Also, when the impact absorbing member is a bending impact absorbing member that receives an impact load from the side surface direction, the weld line direction on the surface that receives the load is preferably the longitudinal direction of the closed cross-section member, and is in a perpendicular direction In comparison with this, the deformation resistance of the inner assembly and the deformation resistance due to the improvement of the strength of the welded portion of the closed cross-section member become large, and the shock absorbing performance against bending impact is improved.
[0028]
In the manufacturing method of the shock absorbing member of the present invention, the hollow metal located on the outermost surface of the aggregate is plastically deformed by compressing, preferably 5-15%, the aggregate made of the hollow metal. After flattening and storing in the cavity of the closed cross-section member, the high energy density heat source as described above is irradiated from the outside of the closed cross-section member to weld the closed cross-section member and the plastic deformation surface of the assembly. Therefore, the contact area between the aggregate and the closed cross-section member is increased, and a welded portion having high joint strength can be stably obtained, and a shock absorbing member having high shock absorbing performance can be stably obtained. Will be.
[0029]
Below, the manufacturing procedure of the impact-absorbing member of this invention is demonstrated sequentially based on drawing.
[0030]
First, as shown in FIG. 1, a hollow metal sphere is placed in a mold having a predetermined shape, and as shown in FIG. 2, by heating from the outside of the mold and raising the temperature to a predetermined temperature in a non-oxidizing atmosphere. The hollow metals are sintered to obtain a hollow metal sintered aggregate as shown in FIG.
At this time, the shape and dimensions of the above mold are considered to allow for compression after sintering as well as shrinkage due to sintering, and in a state of being subjected to compression processing and plastically deformed, a cavity of a closed cross-section member described later It is necessary to match the dimensions.
[0031]
Next, as shown in FIG. 4, the hollow metal aggregate obtained as described above is preferably compressed at a compression rate of 5 to 15%, and as shown in FIG. The hollow metal located in the lowermost layer is plastically deformed to flatten the upper and lower surfaces of the aggregate. And, as shown in FIG. 6, the above-mentioned aggregated material subjected to compression processing is accommodated in the cavity of the hat-shaped member as a closed cross-section member, and after covering the aggregated material by covering with a plate material as a closing plate, As shown in FIG. 7, for example, a laser beam is irradiated from the lower side of the closed cross-section member, the plastic deformation portion of the aggregate material is melted through the closed cross-section member, and the closed cross-section member and the aggregate material are welded. Further, at the flange portion of the hat-shaped member, the hat-shaped member and the plate material are joined by, for example, spot welding, and the plate material and the aggregate material are welded by irradiating a laser beam from the plate material side as necessary.
[0032]
By the above procedure, an impact absorbing member having a cross-sectional shape as shown in FIG. 8 is completed.
[0033]
【Example】
Hereinafter, the present invention will be specifically described based on examples.
[0034]
(Example 1)
A stainless steel hollow metal sphere having an outer diameter of 2.5 mm and a shell thickness of 50 μm was formed into a 50 mm square, which was sintered by heating to 1250 ° C. in a non-oxidizing atmosphere, and an apparent density of about 0.45 g / A hollow metal aggregate of cm 3 was produced.
[0035]
Next, this aggregate is subjected to press molding at various compression ratios to be plastically deformed into secondary molded bodies having different thicknesses, and a thickness of 1.6 mm is formed on these plastically deformed surfaces as shown in FIG. The YAG laser with an output of 3 kW was irradiated from the steel plate side and welded at a speed of 4 m / min. The welding material was pulled in a direction perpendicular to the welding direction, and the tensile shear strength was measured.
As a result, Table 1 shows the relationship between the compressibility of the aggregate and the welding strength.
[0036]
[Table 1]
Figure 2004255394
[0037]
As is clear from this result, it was confirmed that the weld strength was improved by setting the compression rate to 5% or more, while the strength hardly changed even if the compression rate exceeded 15%.
[0038]
(Example 2)
Two members formed by pressing a steel plate with a thickness of 1.4 mm into a hat shape are spot-welded at the flange to produce a hollow square tube with an 80 mm square and a length of 240 mm, which is a closed section member. The hollow metal assembly having the same specifications as in Example 1 was inserted into the hollow portion of the closed cross-section member in a state of being plastically deformed by compression molding, and as shown in FIG. By irradiating a laser beam with an output of 3 kW from the outside at a speed of 4 m / min, welding is performed twice on each side for a total of four times over the entire length in the longitudinal direction, forming four weld beads. did.
[0039]
Then, a 500 kg steel block is collided in the longitudinal direction to give an impact force so that the speed at the time of collision is about 7.6 m / sec. The impact energy is investigated up to a displacement of 100 mm. In the case of only a square tube without inserting a metal aggregate, when a hollow metal aggregate is inserted and welding is not carried out, there are further 6 on one surface in a direction perpendicular to the longitudinal direction of the square cylinder, a total of 12 This was compared with the case of forming a laser weld bead. The results are shown in Table 2 and FIG.
[0040]
[Table 2]
Figure 2004255394
[0041]
As is clear from this result, it was confirmed that the impact absorption characteristics are greatly improved by filling the hollow metal assembly into the closed cross-section member and joining them together by laser welding.
[0042]
【The invention's effect】
As described above, according to the method for joining hollow metal aggregates of the present invention, the aggregate composed of minute hollow metals is compressed, and at least the hollow metal located at the outermost surface is plastically deformed and flattened. Since it is superposed and welded in a state, the contact area with the superposed metal materials increases and the joint area increases, so it is easy to join the aggregate material to the metal material with high strength and stability. be able to. Further, by applying the joining method to welding between the hollow metal aggregate housed in the cavity of the closed cross-section member and the closed cross-section member, it is possible to produce an impact absorbing member with excellent energy absorption capability. This is a very good effect.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a hollow metal sphere setting step in a method for producing an impact absorbing member of the present invention.
FIG. 2 is a schematic view showing a sintering step in the production method.
FIG. 3 is a schematic view showing a completed state of a sintered aggregate in the manufacturing method.
FIG. 4 is a schematic view showing a compression step in the manufacturing method.
FIG. 5 is a schematic view showing a state in which a surface layer of a sintered aggregate is plastically deformed in the manufacturing method.
FIG. 6 is a schematic view showing a state in which an aggregate material plastically deformed in the manufacturing method is stored in a closed cross-section member.
FIG. 7 is a schematic view showing a welding process in the manufacturing method.
FIG. 8 is a schematic view showing a completed state of the impact absorbing member in the manufacturing method.
9 is a schematic view showing a welding procedure and a tensile test procedure between a hollow metal aggregate and a plate material in Example 1. FIG.
FIG. 10 is a perspective view showing the shape of a shock absorbing member made as a prototype in Example 2. FIG.
11 is a graph showing an impact test result in Example 2. FIG.

Claims (14)

微小中空金属から成る集合材を金属材に接合するに際して、上記集合材を圧縮し、少なくとも最外面に位置する微小中空金属を塑性変形させて平坦化した面を上記金属材に重ね、金属材の側から高エネルギ密度熱源を照射して当該金属材と上記集合材を溶接することを特徴とする中空金属集合材の接合方法。When joining an aggregate material made of micro hollow metal to a metal material, the aggregate material is compressed, and at least the micro hollow metal located at the outermost surface is plastically deformed and flattened on the metal material. A method for joining hollow metal aggregates comprising irradiating a high energy density heat source from the side and welding the metal material and the aggregate material. 上記集合材を5〜15%圧縮して塑性変形させることを特徴とする請求項1に記載の中空金属集合材の接合方法。The method for joining hollow metal aggregates according to claim 1, wherein the aggregate material is compressed and deformed by 5 to 15%. 空洞部を備えた閉断面部材の上記空洞部内に、微小中空金属から成る集合材が収納され、当該集合材が閉断面部材に溶接されていることを特徴とする衝撃吸収部材。An impact-absorbing member, characterized in that an aggregate material made of a minute hollow metal is accommodated in the hollow portion of a closed cross-section member having a hollow portion, and the aggregate material is welded to the closed cross-section member. 上記集合材の少なくとも閉断面部材との接合面に位置する微小中空金属が塑性変形していることを特徴とする請求項3に記載の衝撃吸収部材。4. The impact absorbing member according to claim 3, wherein a minute hollow metal located at a joint surface of at least the closed cross-section member of the aggregate material is plastically deformed. 上記閉断面部材が複数の部材から成り、複数の部材の組合わせによって空洞部が形成されていることを特徴とする請求項3又は4に記載の衝撃吸収部材。The impact-absorbing member according to claim 3 or 4, wherein the closed cross-section member includes a plurality of members, and a cavity is formed by a combination of the plurality of members. 上記閉断面部材が鉄系材料から成ることを特徴とする請求項3〜5のいずれか1つの項に記載の衝撃吸収部材。The impact absorbing member according to any one of claims 3 to 5, wherein the closed cross-section member is made of an iron-based material. 上記微小中空金属が鉄系材料から成ることを特徴とする請求項3〜6のいずれか1つの項に記載の衝撃吸収部材。The impact-absorbing member according to any one of claims 3 to 6, wherein the minute hollow metal is made of an iron-based material. 上記集合材の見かけ密度が0.3〜1.0g/cmであることを特徴とする請求項3〜7のいずれか1つの項に記載の衝撃吸収部材。The impact-absorbing member according to any one of claims 3 to 7, wherein an apparent density of the aggregate is 0.3 to 1.0 g / cm 3 . 上記閉断面部材が四角形断面を有すると共に、上記集合材が空洞を備え、該空洞が上記閉断面部材の少なくとも3面から離れた位置に存在していることを特徴とする請求項3〜8のいずれか1つの項に記載の衝撃吸収部材。The closed cross-section member has a quadrangular cross section, the aggregate includes a cavity, and the cavity exists at a position away from at least three surfaces of the closed cross-section member. The impact absorbing member according to any one of the items. 軸圧壊衝撃吸収部材であって、上記集合材と閉断面部材とが当該閉断面部材の長手方向に連続溶接されていることを特徴とする請求項3〜9のいずれか1つの項に記載の衝撃吸収部材。It is an axial crushing impact absorption member, Comprising: The said aggregate and a closed cross-section member are continuously welded to the longitudinal direction of the said closed cross-section member, The statement of any one of Claims 3-9 characterized by the above-mentioned. Shock absorbing member. 曲げ衝撃吸収部材であって、上記集合材と閉断面部材とが連続溶接されており、衝撃荷重が作用する面における溶接方向が閉断面部材の長手方向であることを特徴とする請求項3〜9のいずれか1つの項に記載の衝撃吸収部材。The bending impact absorbing member, wherein the aggregate and the closed cross-section member are continuously welded, and the welding direction on the surface on which the impact load acts is the longitudinal direction of the closed cross-section member. 10. The impact absorbing member according to any one of items 9 to 9. 請求項3〜11のいずれか1つの項に記載の衝撃吸収部材を製造するに際し、微小中空金属から成る集合材を圧縮し、少なくとも最外面に位置する微小中空金属を塑性変形させて平坦化した状態の集合体を閉断面部材の空洞部内に収納したのち、閉断面部材の外側から高エネルギ密度熱源を照射して、当該閉断面部材と上記集合体の塑性変形面とを溶接することを特徴とする衝撃吸収部材の製造方法。In manufacturing the impact absorbing member according to any one of claims 3 to 11, the aggregate material made of a minute hollow metal is compressed, and at least the minute hollow metal located at the outermost surface is plastically deformed and flattened. The assembly in a state is stored in the cavity of the closed cross-section member, and then a high energy density heat source is irradiated from the outside of the closed cross-section member to weld the closed cross-section member and the plastic deformation surface of the aggregate. A method of manufacturing the shock absorbing member. 上記集合材の形成に際して、微小中空金属を上記閉断面部材の空洞部と略同一形状に集積し、焼結して一体化することを特徴とする請求項12に記載の衝撃吸収部材の製造方法。13. The method of manufacturing an impact absorbing member according to claim 12, wherein when forming the aggregate, the micro hollow metal is accumulated in substantially the same shape as the hollow portion of the closed cross-section member, and is integrated by sintering. . 上記集合材を5〜15%圧縮して塑性変形させることを特徴とする請求項12又は13に記載の衝撃吸収部材の製造方法。The method for producing an impact absorbing member according to claim 12 or 13, wherein the aggregate is compressed and deformed by 5 to 15%.
JP2003046748A 2003-02-25 2003-02-25 Method of joining hollow metal aggregated material, and impact absorption member and method of producing the same Pending JP2004255394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003046748A JP2004255394A (en) 2003-02-25 2003-02-25 Method of joining hollow metal aggregated material, and impact absorption member and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003046748A JP2004255394A (en) 2003-02-25 2003-02-25 Method of joining hollow metal aggregated material, and impact absorption member and method of producing the same

Publications (1)

Publication Number Publication Date
JP2004255394A true JP2004255394A (en) 2004-09-16

Family

ID=33113174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003046748A Pending JP2004255394A (en) 2003-02-25 2003-02-25 Method of joining hollow metal aggregated material, and impact absorption member and method of producing the same

Country Status (1)

Country Link
JP (1) JP2004255394A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009034981A (en) * 2007-07-11 2009-02-19 Jfe Techno Research Corp Laminated sheet excellent in rigidity, vibration absorptivity and conductivity
JP2012167787A (en) * 2011-02-16 2012-09-06 Isuzu Motors Ltd Composite structure of impact energy absorber, and impact energy absorber
JP2015058455A (en) * 2013-09-19 2015-03-30 東京瓦斯株式会社 Metallic member and metallic member manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009034981A (en) * 2007-07-11 2009-02-19 Jfe Techno Research Corp Laminated sheet excellent in rigidity, vibration absorptivity and conductivity
JP2012167787A (en) * 2011-02-16 2012-09-06 Isuzu Motors Ltd Composite structure of impact energy absorber, and impact energy absorber
JP2015058455A (en) * 2013-09-19 2015-03-30 東京瓦斯株式会社 Metallic member and metallic member manufacturing method

Similar Documents

Publication Publication Date Title
Yu et al. Metal foaming by a powder metallurgy method: Production, properties and applications
US6085965A (en) Pressure bonding and densification process for manufacturing low density core metal parts
Alkhatib et al. Deformation modes and crashworthiness energy absorption of sinusoidally corrugated tubes manufactured by direct metal laser sintering
KR101719944B1 (en) Impact-absorbing component
EP1379346B1 (en) Foamable or foamed metal pellets, parts and panels
CA2674037A1 (en) Aluminum-based composite materials and methods of preparation thereof
CN104175623A (en) Foamed aluminum-corrugated plate composite sandwich plate and preparation method thereof
JP4355774B2 (en) COMPOSITE MATERIAL COMPRISING FOAMED METAL CORE AND SOLID COVER PLATE, COMPONENT COMPONENT COMPRISING THE COMPOSITE MATERIAL, METHOD OF USING THE SAME, AND MANUFACTURING METHOD
US7516529B2 (en) Method for producing in situ metallic foam components
JP4903383B2 (en) Method for producing porous plate-like metal composite
JP2004255394A (en) Method of joining hollow metal aggregated material, and impact absorption member and method of producing the same
JP6156514B2 (en) Shock absorbing parts
US7138598B2 (en) Apparatus and method for accommodating part mismatch during joining
Bernard et al. Mechanical properties of structures of semifinished products joined to aluminium foams
JP2018115370A (en) Copper porous body, copper porous composite member, manufacturing method of copper porous body and manufacturing method of copper porous composite member
JP2003105407A (en) Porous energy-absorbing member, and member for car body frame
JP2005247165A (en) Impact energy absorbing member and its manufacturing method
JP3900101B2 (en) Brazed porous aluminum substrate and method for producing the same
JP2005502530A (en) Manufacturing method of structural elements
Eifert et al. Weight savings by aluminum metal foams: production, properties and applications in automotive
Mishra et al. Review of Advanced Joining Technique for Aluminium Alloys and its Properties
KR102355057B1 (en) How to manufacture semi-finished products for composite materials
ES2285453T3 (en) PROCEDURE FOR STABILIZING AN ELEMENT OF CONSTRUCTION OF DEFORMABLE CELL MATERIAL, THE CONSTRUCTION ELEMENT AND ITS USE.
JP7477097B2 (en) Dissimilar material joint member and manufacturing method thereof
JP6690288B2 (en) Titanium-encapsulating structure and method for producing titanium multilayer material