JP2004255298A - Method for coating hydrophobic particulate with silica glass - Google Patents

Method for coating hydrophobic particulate with silica glass Download PDF

Info

Publication number
JP2004255298A
JP2004255298A JP2003048879A JP2003048879A JP2004255298A JP 2004255298 A JP2004255298 A JP 2004255298A JP 2003048879 A JP2003048879 A JP 2003048879A JP 2003048879 A JP2003048879 A JP 2003048879A JP 2004255298 A JP2004255298 A JP 2004255298A
Authority
JP
Japan
Prior art keywords
particulate
water
polysilazane
fine particles
silica glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003048879A
Other languages
Japanese (ja)
Inventor
Hideaki Tamura
英明 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThreeBond Co Ltd
Original Assignee
ThreeBond Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThreeBond Co Ltd filed Critical ThreeBond Co Ltd
Priority to JP2003048879A priority Critical patent/JP2004255298A/en
Publication of JP2004255298A publication Critical patent/JP2004255298A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that water is used gradually instead of a volatile organic solvent in recent years owing to the atmospheric pollution with the solvent but when a hydrophobic particulate is dispersed in water, the particulate is apt to be precipitated or separated soon even if a surfactant is used for making the surface of the particulate hydrophilic since the surfactant is parted from the particulate by heat or with time because the lipophilic group of the surfactant is adsorbed only physically on the particulate. <P>SOLUTION: The hydrophobic particulate is coated with silica glass by adding/dispersing the particulate whose surface is wet with water in a polysilazane solution prepared by dissolving polysilazane in an organic solvent and adding water to the particulate-dispersed solution so that the polysilazane is converted chemically into silica glass having characteristics such as a shielding property, hydrophilicity and the property of changing into ceramic at a low temperature. As a result, the particulate is covered with a wall material of hydrophilic silicate to obtain a microcapsule of the particulate which becomes hydrophilic semi-permanently and is hardly precipitated or separated in a water medium. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は疎水性微粒子をシリカガラスでコーティングする方法に関するものであり、さらに詳しくはインキ、塗料、接着剤などの水を分散媒とするペースト状組成物に配合するための疎水性微粒子に被覆したものであり、当該微粒子の表面を半永久的に親水性に変えることができ、水媒体中における微粒子の沈殿、分離がおこりにくくすることを目的とする。
【0002】
【従来の技術】
従来からインク、塗料、接着剤などが使用されているが、通常、これらは有機化合物を有機溶剤に溶解したものや有機化合物の混合体が多数であり、配合される原料はほとんどが疎水性物質である。近年、有機溶剤の揮散による環境汚染や作業者の健康悪化などを考慮して分散媒体として水を使用することが増加してきた。疎水性微粒子を水媒体中に分散させるためには、その表面を界面活性剤で表面処理することが通常に行われる。
【0003】
一方、ポリシラザンは水と反応してシリカガラスを生成することは周知であり、セラミックコーティング材として利用することは特開平7−196896号公報で開示されている。さらに、このイミダゾールなどのエポキシ樹脂用の硬化剤をポリシラザンから由来するシリカガラスで被覆することが特開2000−186132号公報に開示されている。
【0004】
【発明が解決しようとする課題】
一般的に疎水性微粒子を界面活性剤で表面処理して親水性に変える方法では、微粒子の表面は官能基が少なく、かつ界面活性剤の親油基も反応性ではないので、この界面活性剤はファンデルワールス力という弱い物理的結合で疎水性微粒子の表面に吸着しているのみである。このため、界面活性剤は疎水性微粒子の表面上で吸着・脱離をしていると考えられ、熱や経時変化で疎水性微粒子の表面の親水性能が低下して、水媒体中での沈殿・分離が生じてしまう結果となる。
【0005】
【課題を解決するための手段】
本発明は、ポリシラザンを有機溶剤中に溶解させたポリシラザン溶液中に、表面を水で湿潤させた疎水性微粒子を添加して分散させ、次いでこの分散液に水を添加して疎水性微粒子の表面をポリシラザンをシリカガラスに化学変化させることを特徴とする疎水性微粒子をシリカガラスで被覆する方法である。
【0006】
すなわち、本発明の被覆方法により、疎水性微粒子は親水性シリケートの壁材で覆われたマイクロカプセル状態となるので、半永久的に親水性の微粒子となり、水媒体中で沈殿や分離が起こりにくくなる。
【0007】
ポリシラザンは親油性なので疎水性物質に対して濡れやすくかつ有機溶媒に溶解するので、疎水性微粒子をポリシラザンで被覆することは容易である。しかし、疎水性微粒子の表面をポリシラザンから由来するシリカガラスで選択的に被覆するために、本発明では前処理として疎水性微粒子を水で湿潤させておく必要がある。
【0008】
疎水性微粒子の表面が湿潤しているとポリシラザンが疎水性微粒子の表面に接触すると同時に微粒子表面の水と反応してシリカガラスに化学変化することで、微粒子の表面に薄いシリカガラス膜を形成する。ここに水を添加することにより、さらに疎水性微粒子の表面でポリシラザンがシリカガラスに変化して、微粒子の表面で膜化することができる。
【0009】
このため、本発明では疎水性微粒子の表面は水で湿潤されることができるように窒素化合物のような活性水素基を有するような物質で表面が覆われていることが好ましい。たとえば、尿素樹脂、メラミン樹脂、アミド樹脂、イソシアネート樹脂を壁材とするマイクロカプセル粒子が好ましい。
【0010】
本発明で用いられるポリシラザンとしては、下記化学式1で表わされる単位からなる主骨格を有する数平均分子量が100〜5万のポリシラザンを変性したもの(R、R及びRは、それぞれ独立に水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、またはこれらの基以外でケイ素に直結する基が炭素である基、アルキルシリル基、アルキルアミノ基、アルコキシ基を表わす。ただし、R、R及びRの少なくとも1つは水素原子である。)本発明では、R、R及びRのすべてが水素原子であるペルヒドロポリシラザンが特に好ましく、例えば、東燃(株)社製、N110,L110,NV110などが挙げられる。
【0011】
【化1】

Figure 2004255298
【0012】
数平均分子量が100より小さいと収率が低く、5万より大きいと溶液の安定性が低く、健全な膜が得られない。
【0013】
ポリシラザンを添加する有機溶剤は脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素の炭化水素溶媒、ハロゲン化メタン、ハロゲン化エタン、ハロゲン化ベンゼン等のハロゲン化炭化水素、脂肪族エーテル、脂環式エーテル等のエーテル類が使用できる。好ましい溶媒は、塩化メチレン、クロロホルム、四塩化炭素、ブロモホルム、塩化エチレン、塩化エチリデン、トリクロロエタン、テトラクロロエタン等のハロゲン化炭化水素、エチルエーテル、イソプロピルエーテル、エチルブチルエーテル、ブチルエーテル、1,2−ジオキシエタン、ジオキサン、ジメチルジオキサン、テトラヒドロフラン、テトラヒドロピラン等のエーテル類、ペンタンヘキサン、イソヘキサン、メチルペンタン、ヘプタン、イソヘプタン、オクタン、イソオクタン、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、ベンゼン、トルエン、キシレン、エチルベンゼン等の炭化水素等である。
【0014】
ポリシラザンと有機溶剤の配合割合は0.1wt%〜50wt%である。0.1wt%より少ないと、ポリシラザンから由来するシリカガラスによる疎水性微粒子に対する被覆が不完全になりやすく、50wt%より多いとポリシラザンから由来するシリカガラスが疎水性微粒子の被覆に必要以上に多く存在することになり、この過剰なシリカガラスはシリカ微粒子となって溶液中に分散するだけとなるからである。
【0015】
上記溶液中に被覆される物質である疎水性微粒子を分散させる。疎水性微粒子は前述のとおり、水に浸して表面を湿潤させておく。この疎水性性微粒子該溶液中に添加し分散させる。さらに、該溶液中に水を添加することによりポリシラザンが化学反応を起こしシリカガラスと変化する。このとき、疎水性微粒子の表面に均一のセラミックガラスが生成して、マイクロカプセルのような膜壁となる。
ポリシラザン溶液に添加する水は水そのものを添加してもかまわないが、急激な濃度変化を防止するため、エチレングリコールやアルコールなど水溶性の有機溶媒と混合して添加することもできる。また、ポリシラザンの化学反応を促進するために水にアミン化合物を添加しても良い。アミン化合物としてはメチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、ジプロピルアミン、トリプロピルアミン、ブチルアミン、ジブチルアミン、トリブチルアミン、ペンチルアミン、ジペンチルアミン、トリペンチルアミン、ヘキシルアミン、ジヘキシルアミン、トリヘキシルアミン、ヘプチルアミン、ジヘプチルアミン、オクチルアミン、ジオクチルアミン、トリオクチルアミン、フェニルアミン、ジフェニルアミン、トリフェニルアミン等(なお、炭化水素鎖は直鎖でも分枝鎖でもよい。)、また、ピリジン類としては、例えば、ピリジン、α−ピコリン、β−ピコリン、γ−ピコリン、ピペリジン、ルチジン、ピリミジン、ピリダジン等が挙げられ、更に、DBU、DBNなどが挙げられる。
【0016】
本発明のシリカガラスで被覆された疎水性微粒子は水性溶媒の組成物に配合される。水性溶媒の組成物は水性エマルジョンが挙げられる。
【0017】
【発明の実施例】
以下、本発明の優れた効果を実証すべく実施例を行う。ただし、本発明は実施例に限定されるわけではない。
【0018】
実施例
エポキシ樹脂(商品名:エピコート828)を芯材とし、メチロールメラミン樹脂を壁材とする平均粒径55ミクロンのマイクロカプセルを疎水性微粒子とした。これを水に一晩浸しておき、濾過して水を除去し風乾して水が表面に吸着しかつ凝集していない粉末状態の疎水性微粒子を10g用意する。
【0019】
この疎水性微粒子をポリシラザンのキシレン溶液50g(ポリシラザン濃度:2wt%、商品名;LP―10、クラリアントジャパン社製)中に分散させるために、12時間室温状態で撹拌を続ける。さらに、水:エチレングリコールの混合液(1:1)に0.1wt%のポリオキシエチレンノニルフェニルエーテルを含む溶液50g添加して、乳化状態にして24時間さらに撹拌を続けた。
【0020】
この水の添加により、溶液中のポリシラザンがシリカガラスに化学変化するので副生成物のアンモニアガスの発生を確認した。
【0021】
この乳化状態の溶液を吸引濾過して、水で洗浄してマイクロカプセルを回収する。回収された被覆された疎水性微粒子の電子顕微鏡と元素マッピングで観察し、マイクロカプセルがシリカガラスで被覆されていることを確認した。
【0022】
また、このシリカガラスで被覆されたマイクロカプセル5gを20gの水に分散させて後1時間静置して沈殿・分離することなく分散状態を維持することを確認した。
【0023】
比較例
前記実施例で水を吸着させたマイクロカプセル粒子の代わりに、50℃で乾燥して水分の含有量が0.1%以下(カールフィッシャー法で測定)の同じ組成のマイクロカプセル粒子を用いて実施例と同様な操作で処理をした。
【0024】
さらに、この被覆処理および濾過で回収した粉体を電子顕微鏡と元素マッピングで観察したが、メチロールメラミン樹脂で覆われたマイクロカプセルとシリカガラスの粉体の混合物であることが確認され、シリカガラスでマイクロカプセルは覆われていなかった。
【0025】
また、このマイクロカプセルとシリカガラスとの混合粉体の5gを20gの水に分散させて後1時間静置したところ、白濁した上澄み液と白い沈殿物を確認した。
【0026】
【発明の効果】
以上のように、本発明は疎水性微粒子の表面にポリシラザン由来のシリカガラスをコーティングすることで組成性微粒子が親水性の微粒子となる。界面活性剤などで表面した場合と違い長期的にも親水性能が低下することが無く、水分散媒中でも沈殿・分離が生じることが無く、均一に分散可能となる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for coating hydrophobic fine particles with silica glass, and more particularly to a method for coating hydrophobic fine particles for mixing in a paste-like composition using water as a dispersion medium such as ink, paint, and adhesive. It is an object of the present invention to make the surface of the fine particles semi-permanently hydrophilic so that precipitation and separation of the fine particles in an aqueous medium hardly occur.
[0002]
[Prior art]
Conventionally, inks, paints, adhesives, etc. have been used, but usually these are a large number of organic compounds dissolved in organic solvents and mixtures of organic compounds. It is. In recent years, the use of water as a dispersing medium has been increasing in consideration of environmental pollution due to evaporation of an organic solvent and deterioration of worker's health. In order to disperse the hydrophobic fine particles in an aqueous medium, the surface is usually subjected to a surface treatment with a surfactant.
[0003]
On the other hand, it is well known that polysilazane reacts with water to form silica glass, and its use as a ceramic coating material is disclosed in Japanese Patent Application Laid-Open No. 7-196896. JP-A-2000-186132 discloses that a curing agent for an epoxy resin such as imidazole is coated with silica glass derived from polysilazane.
[0004]
[Problems to be solved by the invention]
In general, in a method in which hydrophobic fine particles are surface-treated with a surfactant to make them hydrophilic, the surface of the fine particles has few functional groups, and the lipophilic group of the surfactant is not reactive. Is merely adsorbed on the surface of hydrophobic fine particles by a weak physical bond called van der Waals force. For this reason, it is considered that the surfactant is adsorbing and desorbing on the surface of the hydrophobic fine particles, and the hydrophilicity of the surface of the hydrophobic fine particles is reduced due to heat or aging, and the surfactant is precipitated in an aqueous medium. -The result is that separation occurs.
[0005]
[Means for Solving the Problems]
The present invention relates to a method for adding and dispersing hydrophobic fine particles whose surface is wetted with water to a polysilazane solution in which polysilazane is dissolved in an organic solvent, and then adding water to the dispersion to obtain a surface of the hydrophobic fine particles. Is a method of coating hydrophobic fine particles with silica glass, which is characterized by chemically converting polysilazane into silica glass.
[0006]
That is, according to the coating method of the present invention, since the hydrophobic fine particles are in a microcapsule state covered with the wall material of the hydrophilic silicate, they become semi-permanently hydrophilic fine particles, and precipitation and separation in an aqueous medium are unlikely to occur. .
[0007]
Since polysilazane is lipophilic, it is easily wetted by a hydrophobic substance and is dissolved in an organic solvent. Therefore, it is easy to coat hydrophobic fine particles with polysilazane. However, in order to selectively coat the surface of the hydrophobic fine particles with silica glass derived from polysilazane, it is necessary in the present invention to wet the hydrophobic fine particles with water as a pretreatment.
[0008]
When the surface of the hydrophobic fine particles is wet, the polysilazane comes into contact with the surface of the hydrophobic fine particles and simultaneously reacts with water on the surface of the fine particles to chemically change into silica glass, thereby forming a thin silica glass film on the surface of the fine particles. . By adding water, polysilazane is further changed to silica glass on the surface of the hydrophobic fine particles, and a film can be formed on the surface of the fine particles.
[0009]
Therefore, in the present invention, the surface of the hydrophobic fine particles is preferably covered with a substance having an active hydrogen group such as a nitrogen compound so that the surface can be wetted with water. For example, microcapsule particles using a urea resin, a melamine resin, an amide resin, or an isocyanate resin as a wall material are preferable.
[0010]
As the polysilazane used in the present invention, a modified polysilazane having a main skeleton composed of a unit represented by the following chemical formula 1 and having a number average molecular weight of 100 to 50,000 (R 1 , R 2 and R 3 are each independently R 1 represents a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, or a group in which a group other than these groups directly bonded to silicon is carbon, an alkylsilyl group, an alkylamino group, or an alkoxy group, provided that R 1 , R 2 and R 3 are hydrogen atoms.) In the present invention, perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms is particularly preferred. N110, L110, and NV110.
[0011]
Embedded image
Figure 2004255298
[0012]
If the number average molecular weight is less than 100, the yield is low, and if it is more than 50,000, the stability of the solution is low and a sound film cannot be obtained.
[0013]
Organic solvents to be added with polysilazane include aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbon hydrocarbon solvents, halogenated hydrocarbons such as halogenated methane, halogenated ethane, and halogenated benzene, aliphatic ethers, and aliphatic hydrocarbons. Ethers such as cyclic ethers can be used. Preferred solvents include methylene chloride, chloroform, carbon tetrachloride, bromoform, ethylene chloride, halogenated hydrocarbons such as ethylidene chloride, trichloroethane, tetrachloroethane, ethyl ether, isopropyl ether, ethyl butyl ether, butyl ether, 1,2-dioxyethane, dioxane , Such as ethers such as dimethyldioxane, tetrahydrofuran and tetrahydropyran, pentanehexane, isohexane, methylpentane, heptane, isoheptane, octane, isooctane, cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, benzene, toluene, xylene, ethylbenzene and the like. Hydrocarbons and the like.
[0014]
The mixing ratio of polysilazane and the organic solvent is 0.1 wt% to 50 wt%. If the amount is less than 0.1 wt%, the coating of the hydrophobic fine particles with the silica glass derived from polysilazane tends to be incomplete. If the amount is more than 50 wt%, the silica glass derived from the polysilazane is present more than necessary for coating the hydrophobic fine particles. This is because the excess silica glass becomes fine silica particles and is only dispersed in the solution.
[0015]
Hydrophobic fine particles, which are substances to be coated, are dispersed in the solution. As described above, the hydrophobic fine particles are immersed in water to wet the surface. The hydrophobic fine particles are added and dispersed in the solution. Further, when water is added to the solution, the polysilazane undergoes a chemical reaction and changes to silica glass. At this time, uniform ceramic glass is generated on the surface of the hydrophobic fine particles, and becomes a film wall like a microcapsule.
The water to be added to the polysilazane solution may be water itself, but may be mixed with a water-soluble organic solvent such as ethylene glycol or alcohol to prevent a rapid change in concentration. Further, an amine compound may be added to water to promote the chemical reaction of polysilazane. As the amine compound, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, propylamine, dipropylamine, tripropylamine, butylamine, dibutylamine, tributylamine, pentylamine, dipentylamine, tripentylamine, hexylamine, Dihexylamine, trihexylamine, heptylamine, diheptylamine, octylamine, dioctylamine, trioctylamine, phenylamine, diphenylamine, triphenylamine, etc. (The hydrocarbon chain may be a straight chain or a branched chain.) Examples of pyridines include pyridine, α-picoline, β-picoline, γ-picoline, piperidine, lutidine, pyrimidine, and pyridazine. U, DBN and the like.
[0016]
The hydrophobic fine particles coated with the silica glass of the present invention are blended in an aqueous solvent composition. Aqueous solvent compositions include aqueous emulsions.
[0017]
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Examples will be described below to demonstrate the excellent effects of the present invention. However, the present invention is not limited to the embodiments.
[0018]
Example Microcapsules having an average particle size of 55 μm using an epoxy resin (trade name: Epicoat 828) as a core material and a methylolmelamine resin as a wall material were used as hydrophobic fine particles. This is soaked in water overnight, filtered to remove water, and air-dried to prepare 10 g of powdery hydrophobic fine particles in which water is adsorbed on the surface and is not aggregated.
[0019]
In order to disperse the hydrophobic fine particles in 50 g of a polysilazane xylene solution (polysilazane concentration: 2 wt%, trade name: LP-10, manufactured by Clariant Japan KK), stirring is continued at room temperature for 12 hours. Further, 50 g of a solution containing 0.1 wt% of polyoxyethylene nonylphenyl ether was added to a mixed solution of water: ethylene glycol (1: 1), and the mixture was emulsified to continue stirring for 24 hours.
[0020]
By the addition of the water, the polysilazane in the solution was chemically changed into silica glass, so generation of ammonia gas as a by-product was confirmed.
[0021]
The emulsified solution is suction-filtered and washed with water to recover microcapsules. The collected coated hydrophobic fine particles were observed with an electron microscope and element mapping, and it was confirmed that the microcapsules were coated with silica glass.
[0022]
In addition, it was confirmed that 5 g of the microcapsules coated with the silica glass were dispersed in 20 g of water, and then left still for 1 hour to maintain a dispersed state without sedimentation / separation.
[0023]
Comparative Example Instead of the microcapsule particles to which water was adsorbed in the above example, microcapsule particles having the same composition and dried at 50 ° C. and having a water content of 0.1% or less (measured by the Karl Fischer method) were used. The processing was performed in the same manner as in the example.
[0024]
Further, the powder recovered by this coating treatment and filtration was observed with an electron microscope and element mapping, and it was confirmed that the powder was a mixture of microcapsules covered with methylolmelamine resin and silica glass powder. The microcapsules were not covered.
[0025]
When 5 g of the mixed powder of the microcapsules and silica glass was dispersed in 20 g of water and allowed to stand for 1 hour, a turbid supernatant liquid and a white precipitate were confirmed.
[0026]
【The invention's effect】
As described above, in the present invention, the compositional fine particles become hydrophilic fine particles by coating the surface of the hydrophobic fine particles with silica glass derived from polysilazane. Unlike the case where the surface is surfaced with a surfactant or the like, hydrophilicity does not decrease over a long period of time, and precipitation and separation do not occur even in an aqueous dispersion medium, and uniform dispersion can be achieved.

Claims (2)

ポリシラザンを有機溶剤中に溶解させたポリシラザン溶液中に、表面を水で湿潤させた疎水性微粒子を添加して分散させ、次いでこの分散液に水を添加してポリシラザンをシリカガラスに化学変化させることを特徴とする疎水性微粒子をシリカガラスで被覆する方法。In a polysilazane solution in which polysilazane is dissolved in an organic solvent, hydrophobic fine particles whose surface is wetted with water are added and dispersed, and then water is added to the dispersion to chemically convert polysilazane into silica glass. A method of coating hydrophobic fine particles with silica glass. 前記疎水性微粒子が、尿素樹脂、メラミン樹脂、ナイロン樹脂、イソシアネート樹脂のいずれかから選ばれた壁材で覆われたマイクロカプセル粒子であることを特徴とする請求項1に記載の疎水性微粒子をシリカガラスで被覆する方法。The hydrophobic fine particles according to claim 1, wherein the hydrophobic fine particles are microcapsule particles covered with a wall material selected from urea resin, melamine resin, nylon resin, and isocyanate resin. A method of coating with silica glass.
JP2003048879A 2003-02-26 2003-02-26 Method for coating hydrophobic particulate with silica glass Pending JP2004255298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003048879A JP2004255298A (en) 2003-02-26 2003-02-26 Method for coating hydrophobic particulate with silica glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003048879A JP2004255298A (en) 2003-02-26 2003-02-26 Method for coating hydrophobic particulate with silica glass

Publications (1)

Publication Number Publication Date
JP2004255298A true JP2004255298A (en) 2004-09-16

Family

ID=33114713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003048879A Pending JP2004255298A (en) 2003-02-26 2003-02-26 Method for coating hydrophobic particulate with silica glass

Country Status (1)

Country Link
JP (1) JP2004255298A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097575A (en) * 2003-08-26 2005-04-14 Nissan Chem Ind Ltd Cured amino resin particle and method for surface-treating the same
CN114854368A (en) * 2022-04-21 2022-08-05 贵州合圣材料科技有限公司 Formaldehyde-free flame-retardant waterproof adhesive and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097575A (en) * 2003-08-26 2005-04-14 Nissan Chem Ind Ltd Cured amino resin particle and method for surface-treating the same
JP4631016B2 (en) * 2003-08-26 2011-02-16 日産化学工業株式会社 Surface-treated cured amino resin particles and method for producing the same
CN114854368A (en) * 2022-04-21 2022-08-05 贵州合圣材料科技有限公司 Formaldehyde-free flame-retardant waterproof adhesive and preparation method thereof

Similar Documents

Publication Publication Date Title
DE60219179T2 (en) Heat-stable, moisture-curing polysilazanes and polysiloxanes
US7938902B2 (en) Cationically stabilized aqueous silica dispersion, method for its production and its use
JP5795840B2 (en) Silica particle material, silica particle material-containing composition, and silica particle surface treatment method
WO1997012945A1 (en) Aqueous thixotropes for waterborne systems
CN110980711A (en) Two-dimensional MXENE particle surfaces surface-modified with saturated or unsaturated hydrocarbon-containing functional groups, method for the production thereof and use thereof
RU2009142601A (en) COMPOSITION FOR COATING METAL SUBSTRATES
CN1986644A (en) Stable silanized polymer emulsion and its preparing method and use
KR101261931B1 (en) Resin Coating Method using of nano diamond particle
WO2007000834A1 (en) Process for producing water repellent particulate
JPH1190315A (en) Coating agent composition, formation of hydrophilic film and product coated with hydrophilic coating film
DE10330020A1 (en) Highly filled silane preparation
WO2007077673A1 (en) Water-repellent inorganic powder and process for production thereof
CN105642184A (en) Graphene dispersant and applications thereof
JP2603291B2 (en) Fine powder of silicone resin containing quaternary ammonium group
CN105645388A (en) Graphene dispersant and applications thereof
WO2019095642A1 (en) Anti-corrosion coating composition, method for preparing anti-corrosion coating, and anti-corrosion coating
CN111662611A (en) Composite coating with anticorrosion function and preparation method thereof
CN110330815A (en) A kind of nitrogen-doped carbon quantum dot and the preparation method and application thereof
CN113683953A (en) Preparation method of renewable double self-cleaning super-hydrophobic photocatalytic coating
KR102458995B1 (en) Methods of making products comprising surface-modified silver nanowires, and uses of the products
JP2004255298A (en) Method for coating hydrophobic particulate with silica glass
JP3511269B2 (en) Inorganic oxide colloid particles and coating composition
JP4771574B2 (en) Photocatalyst composition
JP2009274900A (en) Carbon nanotube having low molecular weight polyaniline grafted thereto and its dispersion liquid
JP2003201112A (en) Surface modified silica powder and its silica slurry