JP2004254631A - Method of producing separated soybean protein - Google Patents

Method of producing separated soybean protein Download PDF

Info

Publication number
JP2004254631A
JP2004254631A JP2003050698A JP2003050698A JP2004254631A JP 2004254631 A JP2004254631 A JP 2004254631A JP 2003050698 A JP2003050698 A JP 2003050698A JP 2003050698 A JP2003050698 A JP 2003050698A JP 2004254631 A JP2004254631 A JP 2004254631A
Authority
JP
Japan
Prior art keywords
transglutaminase
protein
whey
defatted
soybean protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003050698A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kato
裕之 加藤
Hideo Sugano
秀夫 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Oil Co Ltd
Original Assignee
Fuji Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Co Ltd filed Critical Fuji Oil Co Ltd
Priority to JP2003050698A priority Critical patent/JP2004254631A/en
Publication of JP2004254631A publication Critical patent/JP2004254631A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing a separated soybean protein improved in environmental loading and having high protein yielding. <P>SOLUTION: This method of producing the separated soybean protein comprises making transglutaminase act on a nonfat soy milk and separating the product into whey and curd under acidity. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、環境負荷が改善され、蛋白収量が高い分離大豆蛋白の製造法に関する。
【0002】
【従来の技術】
通常、分離大豆蛋白は、低変性脱脂大豆に水を加えて懸濁液(スラリー)状となし、水不溶性画分であるおからを除去して脱脂豆乳を得て、この脱脂豆乳に酸を加えて大豆蛋白を沈殿させ上澄みであるホエーを除去し、加水して中和し乾燥して粉末状分離大豆蛋白とする方法が採用されている。しかしホエーは臭味がよくなく産業的な利用性が低いため、ホエーの中に溶解している蛋白を高価な分離蛋白の一部として回収する検討は殆どなされていなかった。このため、ホエーを排水として処理するコストが高くつくという問題があった。
【0003】
また大豆蛋白はおからと脱脂豆乳の分離の際におからにも残存するので最終分離大豆蛋白の収率をあげるにはおからの蛋白を効率よく抽出することが主に研究されてきた。しかし、技術的にはほぼ限界に達しており、現在の技術水準では、工業的に分離大豆蛋白の収率が1%程度でもアップすれば経済的にも生産性寄与は大きなものがある。
【0004】
一方、トランスグルタミナーゼを利用して食用蛋白を架橋改質するなどの方法が知られている。この酵素は、ペプチド鎖内にあるグルタミン残基のγ−カルボキシアミド基のアシル転移反応を触媒する酵素である。このトランスグルタミナーゼは、アシル受容体としてのタンパク質中のリジン残基のε−アミノ基に作用し、タンパク質分子の分子内において及び分子間においてε−(γ−Glu)−Lys架橋結合を形成する。また、水がアシル受容体として機能するときは、グルタミン残基が脱アミド化されてグルタミン酸残基になる反応を進行させる。トランスグルタミナーゼの大豆蛋白に対する態様に関しては、特許文献1や特特許文献2にみられるように、トランスグルタミナーゼを使用して蛋白のゲル物性を改良し、これらのゲルにかたさや弾力性を付与してきた。そして、特許文献3や特許文献4のように、大豆蛋白とトランスグルタミナーゼを反応させる際、二価金属塩や異種蛋白を共存させることにより大豆蛋白の色調や風味・物性の改良を試みてきた。しかし、トランスグルタミナーゼを利用して分離大豆蛋白の収率を向上させる方法は知られていない。
【0005】
【特許文献1】特開昭58−149645号公報
【特許文献2】特開昭64− 27471号公報
【特許文献3】特開平 4− 63548号公報
【特許文献4】特開平10−165106号公報
【特許文献5】特公平 1− 50382号公報
【特許文献6】特開平 1−300889号公報
【非特許文献1】「昭和63年度日本水産学会秋期大会講演要旨集」:関信夫ら、167頁
【非特許文献2】「平成2年度日本水産学会春季大会講演要旨集」219頁
【0006】
【発明が解決しようとする課題】
この発明は、環境負荷が改善され、蛋白収量が高い分離大豆蛋白の製造法を目的とする。本発明者等は、上記課題を解決すべく鋭意研究を重ね、いろいろな酵素の中かからトランスグルタミナーゼに着目し、分離大豆蛋白の製造工程のいろいろな段階で該酵素を作用させて、その影響を研究するなかで、分離大豆蛋白の製造工程の特定の工程、即ち、脱脂大豆から調製した脱脂豆乳にトランスグルタミナーゼを作用させることにより上記課題を達成できることを見出し本発明を完成するに到った。
【0007】
【課題を解決するための手段】
即ち、本発明は、脱脂豆乳にトランスグルタミナーゼを作用させ、酸性下にホエーとカードに分離することを特徴とする分離大豆蛋白の製造法であり、最も好ましくは、脱脂豆乳の粗蛋白質1gあたりのトランスグルタミナーゼ量が0.1以上1.0ユニット未満であるのがよい。
【0008】
【発明の実施の形態】
脱脂豆乳の原料は、大豆から大豆油を圧搾、溶剤抽出した残りの低変性脱脂大豆を用いることができ、かかる脱脂豆乳の製法自体は公知の方法を採用することが出来る。脱脂大豆から水系下に脱脂豆乳を抽出する態様としては、脱脂大豆に水を加えて撹拌などしてスラリー状となし、遠心分離等しておからと脱脂豆乳を分離して脱脂豆乳を得ることが出来る。その他濾過などの固液分離手段を利用することも出来る。
【0009】
本発明において重要なことは、トランスグルタミナーゼの添加時期である。即ち、脱脂大豆から脱脂豆乳を調製した段階でトランスグルタミナーゼが添加されて存在することが肝要である。
【0010】
脱脂豆乳にトランスグルタミナーゼを添加する以外の工程では以下のように分離大豆蛋白の収率を上げる効果が見られない。例えば、脱脂大豆に水を加えてスラリー状とする段階でトランスグルタミナーゼを添加すると、該スラリーの粘度が上昇して脱脂豆乳とオカラの分離が困難になるだけでなく、該おからへ該脱脂豆乳が吸収され、脱脂豆乳の回収率がかえって悪くなる。この結果、該脱脂豆乳から分離大豆蛋白を製造しても原料脱脂大豆からの分離大豆蛋白の収率はかえって低下してしまう。
【0011】
また該スラリーの粘度上昇を抑えるために加水量を増やすことは可能であるが、それではホエーの水量が増大し、逆に環境悪化やコストアップにつながってしまう。排水量を増やさずにホエー中の蛋白量を低下させることは、排水処理負荷の低減もあってコスト効果に寄与する。
【0012】
また、脱脂豆乳を酸沈殿させて酸沈殿したカードと上澄みであるホエーに分離した後の工程にトランスグルタミナーゼを作用させても、もはや分離大豆蛋白の収率が上がることはない。
【0013】
トランスグルタミナーゼには、カルシウム非依存性のものとカルシウム依存性のものがある。前者の例としては微生物由来のもの(例えば、特許文献2参照)を挙げることができる。後者の例としてはモルモット肝臓由来のもの(特許文献5参照)、魚由来のもの(例えば、非特許文献1の167頁及び非特許文献2の219頁参照)を挙げることができる。この他、遺伝子組み替えにより製造されるもの(特許文献6参照)等、いずれのトランスグルタミナーゼでも用いることができ、起源及び製法に限定されることはない。但し、機能性及び経済性の点から、好ましくはカルシウム非依存性のものが適当であり、上述の微生物由来のトランスグルタミナーゼ(特許文献2)は、その例である。
【0014】
尚、本発明でいうトランスグルタミナーゼの活性単位は、次のようにして測定され、かつ定義される。即ち、ベンジルオキシカルボニル−L−グルタミニルグリシンとヒドロキシルアミンを基質として反応を行い、生成したヒドロキサム酸をトリクロル酢酸存在下で鉄錯体を形成させた後、525nmの吸光度を測定し、ヒドロキサム酸の量を検量線より求め、活性を算出する(特許文献2参照)。
【0015】
本発明において脱脂豆乳に添加するトランスグルタミナーゼの量は脱脂豆乳の粗蛋白質1gあたり0.01〜100ユニット(U)という広範な範囲を使用しうるが、大量生産を行う分離装置を用いるときは、1.0U未満であるのがよく、より好ましくは0.05〜0.8Uが適当である。トランスグルタミナーゼの量が0.01U未満の場合には、環境負荷の改善効果や、分離蛋白としての蛋白収量の改善効果が充分でなく、100Uを超える場合には反応制御が困難になる。また反応を進めすぎると、次の酸沈・分離工程において、カード中に分離しがたいホエーが残留していわゆるカードのゆるみを招いてしまい、あえてカードからホエーをより排除しようとすると、カード成分が一部随伴してホエー側に移り、ホエー中に沈殿性向の強い成分が以降し、かえって環境負荷を増大させ同時に分離蛋白の収率を低下させる。すなわち、工業レベルで行える分離法では、カード固形分がホエーに混入することになり、逆に歩留まりが悪くなる。極端に言えば、トランスグルタミナーゼの反応によってホエーに移行する蛋白をカード側に回収するだけの反応を行えばよい。したがって、トランスグルタミナーゼの量は少ないほど反応を制御できやすいという点でよい。
【0016】
トランスグルタミナーゼの作用温度は20〜80℃、好ましくは40〜60℃が適当である。温度が20℃未満では酵素反応が遅く、80℃以上では酵素の失活が促進される。
【0017】
トランスグルタミナーゼの作用時間は0.01〜120分、好ましくは1〜60分が適当である。反応時間が極端に短い場合には、充分な反応効果が得られず、長い場合には脱脂豆乳中に菌の増殖を誘発し、腐敗する恐れがある。
【0018】
トランスグルタミナーゼを脱脂豆乳に作用させる態様は前記の通りであるが、ホエーに移行する蛋白を十分に回収かつ得られる蛋白の物性が向上していることがポイントとなる。電気泳動によるホエー中の40kDa以上の高分子バンドが消失されていることが好ましい。このとき、トランスグルタミナーゼを過剰に反応させると、ホエー中の沈殿する蛋白は回収できるが、得られる脱脂豆乳中の蛋白が過剰重合により物性が逆に低下するので、適当な条件が必要である。
【0019】
本発明のトランスグルタミナーゼ作用により、トランスグルタミナーゼ処理したホエー中の粗蛋白質含量がトランスグルタミナーゼ処理しないホエー中の粗蛋白質含量に比べて0.01〜100重量%、好ましくは0.1〜20重量%減少することが好ましい。減少する蛋白質量が少ないと歩留まりにほとんど寄与されない。またトランスグルタミナーゼは蛋白質中にリジンやグルタミン残基をもっていれば反応するが、反応を進めすぎるとホエー中の低分子蛋白質まで回収する可能性があり、分離大豆蛋白のゲル形成能低下や風味悪化を招く恐れがある。
【0020】
本発明において、トランスグルタミナーゼを作用させた脱脂豆乳に加える酸は食用であれば鉱酸、有機酸など公知の酸を利用することが出来る。
脱脂豆乳に酸を加えて蛋白を沈殿させ上澄みのホエーと沈殿したカードに分離することが出来る。カードを生じさせるpHは等電点(pH4.5)付近であって、大豆蛋白が沈殿してカードとなる範囲であれば特に限定するものではない。
【0021】
酸沈殿したカードは食用のアルカリを用いて中和することが出来る。中和して得られる大豆蛋白溶液を必要により加熱殺菌処理し噴霧乾燥など公知の乾燥手段を利用して乾燥して粉末状分離大豆蛋白を得ることが出来る。
【0022】
本発明の方法により、トランスグルタミナーゼ処理して得られる分離大豆蛋白の脱脂大豆に対する収率がトランスグルタミナーゼ処理しないで得られる分離大豆蛋白の脱脂大豆に対する収率に比べて0.01〜5%、好ましくは0.01〜2%増加していることが重要である。収率が少ないとトランスグルタミナーゼを反応させる意味がなく、多すぎるとホエー中の低分子蛋白まで多く回収することになり、製品の物性低下を招く恐れがある。工業生産において上限の収率に到達している段階において、ほんの1%の収率アップが経済的には大きな生産性の向上につながり、産業上の意義が大きい。
【0023】
【実施例】
以下、実施例により本発明の実施態様を具体的に説明する。
【0024】
〔実施例1および比較例1〕
低変性脱脂大豆100重量部に対して、水1000重量部に添加溶解させた抽出水溶液を添加して40℃、30分間抽出を行った。抽出後、遠心分離でオカラを除き脱脂豆乳(固形分6重量%、内蛋白質4重量%)を得た。ここで、脱脂豆乳の粗蛋白質1gに対して0.5U相当のトランスグルタミナーゼ製剤「TG−Sマイルド」(味の素(株)製)を添加し、50℃・30分反応させた(実施例1)。またトランスグルタミナーゼを反応させなかったものを比較例1とした。これらを塩酸を用いてpH4.5に調整して等電点沈殿させ、遠心分離で酸沈カードを得て、これを加水し水酸化ナトリウムで中和した後、140℃で10秒の加熱後、噴霧乾燥にて各分離大豆蛋白を得た。脱脂大豆100重量部に由来する各カード、ホエー中の粗蛋白質量(重量部)を測定した。
【0025】
【表1】

Figure 2004254631
【0026】
表1より脱脂豆乳にトランスグルタミナーゼを作用させることで、ホエー蛋白が減少し、カード中の蛋白量が増加したことにより、歩留が1%以上増加していることがわかる。
【0027】
〔実験例1〕(トランスグルタミナーゼ活性を大きく働かせた場合の比較)
実施例1と同様にして脱脂豆乳を調製し、豆乳の粗蛋白質1gに対して0.5U、1U相当のトランスグルタミナーゼ製剤「TG−Sマイルド」(味の素(株)製)を添加し、50℃で30分反応させた。比較としてはトランスグルタミナーゼを作用させないものを用いた。これらを塩酸を用いてpH4.5に調整して等電点沈殿させ、遠心分離(1300g×5分)で酸沈カードとホエーを得た。そこで得られたカードの水分量を測定することで、いわゆるカードのゆるみ度合いを調べた。
【0028】
【表2】カード水分量(カード全量100当たり)
Figure 2004254631
【0029】
表2よりトランスグルタミナーゼ活性を働かせるとカードの水分量が増大し、カードのゆるみを招いていることがわかる。これは、生産規模の大きい現場実機による分離では、ホエー側への蛋白の損失が想定される緩みであった。
【0030】
〔実験例2〕(ホエーの電気泳動)
実施例1と同様にして脱脂豆乳を調製し、豆乳の粗蛋白質1gに対して1U相当のトランスグルタミナーゼ製剤「TG−Sマイルド」(味の素(株)製)を添加し、50℃・30分反応させた。比較としてトランスグルタミナーゼを作用させないものを用いた。これらを塩酸を用いてpH4.5に調整して等電点沈殿させ、遠心分離で酸沈カードとホエーを得た。そこでホエーをSDS−ポリアクリルアミド電気泳動に供し、ホエー中の蛋白の挙動を調べた。電気泳動は、Laemmliの方法[Nature,227巻,680−685(1970)]によって、2%SDS,10%β−メルカプトエタノールを含むトリス−HClバッファーにサンプルを溶解させ、0.1%SDSを含有するトリスグリシン(pH8.4)中4〜20%グラジェントゲルを使用し、40mAの定流で1時間実施した。泳動後、ゲルをクーマシーブリリアントブルーR250溶液にて染色した。この結果、トランスグルタミナーゼ反応によるホエー蛋白の挙動は、図1に示すとおり、反応により、主に60k付近の蛋白が減少しており(点線の矢印)、ホエー蛋白が減少してカード側へ移行したことが示唆された。
【0031】
〔実験例3〕(抽出工程中におけるトランスグルタミナーゼ処理の影響)
実施例1と同様に脱脂大豆を抽出する際、開始時に実験例2と同じトランスグルタミナーゼ製剤を粗蛋白質1gあたり0.25U、0.5U相当添加し反応させた。比較としてはトランスグルタミナーゼを無添加で抽出したものを用いた。抽出終了後、豆乳スラリーの粘度を測定し、該スラリーを遠心分離機「H−112」((株)コクサン製)で分離し、得られたオカラの水分量と固形分当りの粗蛋白質量を測定した。
【0032】
【表3】(抽出工程でのトランスグルタミナーゼの影響)
Figure 2004254631
【0033】
表3より、トランスグルタミナーゼの反応を進めると豆乳スラリーの粘度が上昇し、分離後のオカラの水分量は増加、粗蛋白質量も増加し、豆乳スラリーからのオカラ分離能が悪くなることがわかる。
【0034】
【発明の効果】
本発明により原料脱脂大豆から高収率で分離大豆蛋白を製造することが可能になったものであり、従来の限界の壁を越えたものである。
【0035】
【図面の簡単な説明】
【図1】トランスグルタミナーゼ処理したホエーと未処理のホエーの電気泳動パターンである。
【符号の説明】
(a)未処理
(b)トランスグルタミナーゼ処理[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an isolated soybean protein having an improved environmental load and a high protein yield.
[0002]
[Prior art]
Normally, isolated soybean protein is made into a suspension (slurry) by adding water to low-denatured defatted soybeans, removing okara, which is a water-insoluble fraction, to obtain defatted soymilk, and adding acid to the defatted soymilk. In addition, a method is employed in which soy protein is precipitated, whey as a supernatant is removed, water is added, neutralized, and dried to obtain powdery separated soy protein. However, whey has a poor smell and has low industrial applicability. Therefore, there has been almost no study on recovering protein dissolved in whey as a part of expensive separated protein. For this reason, there has been a problem that the cost of treating whey as wastewater is expensive.
[0003]
In addition, since soybean protein remains in okara when separating okara and skim soymilk, it has been mainly studied to extract okara protein efficiently in order to increase the yield of finally separated soybean protein. However, technically, it has almost reached its limit, and in the current state of the art, if the yield of isolated soybean protein is increased by about 1% on an industrial scale, there is a large economical contribution to productivity.
[0004]
On the other hand, a method of cross-linking and modifying an edible protein using transglutaminase is known. This enzyme catalyzes the acyl transfer reaction of the γ-carboxamide group of a glutamine residue in a peptide chain. This transglutaminase acts on the ε-amino group of a lysine residue in a protein as an acyl receptor and forms ε- (γ-Glu) -Lys cross-links within and between the molecules of the protein molecule. In addition, when water functions as an acyl acceptor, a reaction in which a glutamine residue is deamidated to a glutamic acid residue proceeds. Regarding the aspect of transglutaminase with respect to soybean protein, as shown in Patent Document 1 and Patent Document 2, transglutaminase has been used to improve the gel physical properties of proteins and impart hardness and elasticity to these gels. . As described in Patent Literature 3 and Patent Literature 4, when soybean protein is reacted with transglutaminase, an attempt has been made to improve the color tone, flavor and physical properties of soybean protein by coexisting a divalent metal salt and a heterologous protein. However, there is no known method for improving the yield of isolated soybean protein using transglutaminase.
[0005]
[Patent Document 1] JP-A-58-149645 [Patent Document 2] JP-A-64-27471 [Patent Document 3] JP-A-4-63548 [Patent Document 4] JP-A-10-165106 [Patent Literature 5] Japanese Patent Publication No. 1-50382 [Patent Literature 6] Japanese Patent Application Laid-Open No. 1-300889 [Non-Patent Literature 1] "Abstracts of the Autumn Meeting of the Japanese Society of Fisheries Science, 1988": Nobuo Seki, et al., P. 167 [Non-Patent Document 2] “Summary of the Abstracts of the 1990 Meeting of the Fisheries Society of Japan,” p. 219
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing an isolated soybean protein having an improved environmental load and a high protein yield. The present inventors have conducted intensive research to solve the above problems, focused on transglutaminase from various enzymes, and acted on the enzyme at various stages of the production process of isolated soy protein, and the effect During the research, the present inventors have found that the above object can be achieved by allowing transglutaminase to act on a specific step of the production process of isolated soybean protein, that is, defatted soymilk prepared from defatted soybean, and have completed the present invention. .
[0007]
[Means for Solving the Problems]
That is, the present invention is a method for producing isolated soybean protein, characterized in that transglutaminase is allowed to act on defatted soymilk, and then separated into whey and curd under acidic conditions, and most preferably, the method is based on 1 g of crude protein in defatted soymilk. The amount of transglutaminase is preferably 0.1 or more and less than 1.0 unit.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
As the raw material of the defatted soymilk, the remaining low-denatured defatted soybean obtained by squeezing soybean oil from soybean and extracting the solvent can be used, and a known method for producing such defatted soymilk can be used. As an embodiment of extracting defatted soybeans from defatted soybeans under water, adding water to defatted soybeans to form a slurry by stirring or the like, separating defatted soymilk by centrifugation etc. to obtain defatted soymilk Can be done. Other solid-liquid separation means such as filtration can also be used.
[0009]
What is important in the present invention is the timing of adding the transglutaminase. That is, it is important that transglutaminase is added and present at the stage of preparing defatted soybean milk from defatted soybeans.
[0010]
In the steps other than the addition of transglutaminase to skim soy milk, the effect of increasing the yield of isolated soybean protein is not seen as described below. For example, when transglutaminase is added at the stage where water is added to defatted soybean to form a slurry, not only does the viscosity of the slurry increase and the separation of defatted soymilk and okara becomes difficult, but also the defatted soybean milk Is absorbed, and the recovery rate of the defatted soymilk becomes worse. As a result, even if isolated soybean protein is produced from the defatted soymilk, the yield of the isolated soybean protein from the raw defatted soybean is rather reduced.
[0011]
Although it is possible to increase the amount of water to suppress the increase in viscosity of the slurry, the amount of water in the whey increases, which leads to environmental degradation and cost increase. Reducing the amount of protein in whey without increasing the amount of wastewater contributes to cost effectiveness, partly due to a reduction in wastewater treatment load.
[0012]
Further, even if transglutaminase is allowed to act on the step after acid-precipitating defatted soy milk and separating it into acid-precipitated curd and supernatant whey, the yield of isolated soybean protein does not increase anymore.
[0013]
Transglutaminase includes calcium-independent and calcium-dependent. Examples of the former include those derived from microorganisms (for example, see Patent Document 2). Examples of the latter include those derived from guinea pig liver (see Patent Document 5) and those derived from fish (for example, see page 167 of Non-Patent Document 1 and page 219 of Non-Patent Document 2). In addition, any transglutaminase, such as those produced by genetic recombination (see Patent Document 6), can be used, and the origin and production method are not limited. However, in terms of functionality and economy, a calcium-independent one is preferably suitable, and the above-mentioned microorganism-derived transglutaminase (Patent Document 2) is an example thereof.
[0014]
The activity unit of transglutaminase referred to in the present invention is measured and defined as follows. That is, a reaction was carried out using benzyloxycarbonyl-L-glutaminylglycine and hydroxylamine as substrates, and the resulting hydroxamic acid was allowed to form an iron complex in the presence of trichloroacetic acid. Thereafter, the absorbance at 525 nm was measured, and the amount of hydroxamic acid was measured. Is determined from a calibration curve, and the activity is calculated (see Patent Document 2).
[0015]
In the present invention, the amount of transglutaminase to be added to defatted soy milk can be in a wide range of 0.01 to 100 units (U) per gram of crude protein of defatted soy milk, but when using a separation device for mass production, It is preferably less than 1.0 U, more preferably 0.05 to 0.8 U. When the amount of transglutaminase is less than 0.01 U, the effect of improving the environmental load and the effect of improving the protein yield as a separated protein are not sufficient. When the amount exceeds 100 U, reaction control becomes difficult. If the reaction proceeds too much, in the subsequent acid precipitation / separation step, the hard-to-separate whey remains in the curd, causing so-called loosening of the curd. Partially moves to the whey side, and a component having a strong tendency to precipitate is formed in the whey, which increases the environmental load and at the same time lowers the yield of the separated protein. That is, in the separation method that can be performed at an industrial level, the curd solids are mixed into whey, and conversely, the yield is reduced. Extremely speaking, it is only necessary to carry out a reaction for recovering, to the curd side, a protein which is transferred to whey by the reaction of transglutaminase. Therefore, it is good in that the smaller the amount of transglutaminase, the more easily the reaction can be controlled.
[0016]
The action temperature of transglutaminase is suitably from 20 to 80 ° C, preferably from 40 to 60 ° C. When the temperature is lower than 20 ° C., the enzyme reaction is slow, and when the temperature is 80 ° C. or higher, inactivation of the enzyme is promoted.
[0017]
The action time of transglutaminase is suitably from 0.01 to 120 minutes, preferably from 1 to 60 minutes. If the reaction time is extremely short, a sufficient reaction effect cannot be obtained, and if the reaction time is long, the proliferation of bacteria in skim soy milk is induced, and there is a risk of spoilage.
[0018]
The mode of causing transglutaminase to act on defatted soymilk is as described above, but the point is that the protein migrating to whey is sufficiently recovered and the physical properties of the obtained protein are improved. It is preferable that the high molecular band of 40 kDa or more in whey by electrophoresis has disappeared. At this time, if the transglutaminase is excessively reacted, the precipitated protein in the whey can be recovered, but the protein in the obtained defatted soymilk has a physical property which is adversely reduced due to excessive polymerization. Therefore, appropriate conditions are required.
[0019]
Due to the transglutaminase action of the present invention, the crude protein content in whey treated with transglutaminase is reduced by 0.01 to 100% by weight, preferably 0.1 to 20% by weight, as compared with the content of crude protein in whey not treated with transglutaminase. Is preferred. If the amount of reduced protein is small, it hardly contributes to the yield. Transglutaminase reacts if it has lysine or glutamine residues in the protein, but if the reaction is advanced too much, it may recover even low-molecular-weight proteins in whey. There is a risk of inviting.
[0020]
In the present invention, known acids such as mineral acids and organic acids can be used as the acid to be added to the defatted soymilk on which transglutaminase has been acted, if it is edible.
Acid can be added to the defatted soy milk to precipitate the protein, which can be separated into the supernatant whey and the precipitated curd. The pH at which the curd is formed is not particularly limited as long as the pH is around the isoelectric point (pH 4.5) and the soybean protein precipitates to form the curd.
[0021]
The acid precipitated curd can be neutralized using edible alkali. If necessary, the soybean protein solution obtained by neutralization may be subjected to heat sterilization treatment and dried using a known drying means such as spray drying to obtain a powdery separated soybean protein.
[0022]
According to the method of the present invention, the yield of isolated soybean protein obtained by transglutaminase treatment relative to defatted soybean is preferably 0.01 to 5%, compared to the yield of isolated soybean protein obtained without transglutaminase treatment relative to defatted soybean. It is important that is increased by 0.01 to 2%. If the yield is low, there is no point in reacting the transglutaminase. If the yield is too high, a large amount of the low-molecular-weight protein in the whey will be recovered, and the physical properties of the product may be reduced. In the stage where the upper limit of the yield is reached in industrial production, an increase of only 1% leads to a great improvement in productivity economically, and has great industrial significance.
[0023]
【Example】
Hereinafter, embodiments of the present invention will be specifically described with reference to examples.
[0024]
[Example 1 and Comparative Example 1]
To 100 parts by weight of low-denatured defatted soybeans, an aqueous extraction solution added and dissolved in 1000 parts by weight of water was added, and extraction was performed at 40 ° C. for 30 minutes. After the extraction, the okara was removed by centrifugation to obtain defatted soymilk (solid content: 6% by weight, protein: 4% by weight). Here, a transglutaminase preparation “TG-S Mild” (manufactured by Ajinomoto Co., Inc.) equivalent to 0.5 U was added to 1 g of the crude protein of defatted soymilk, and reacted at 50 ° C. for 30 minutes (Example 1). . Further, Comparative Example 1 was not reacted with transglutaminase. These were adjusted to pH 4.5 with hydrochloric acid and subjected to isoelectric point precipitation, and an acid precipitation card was obtained by centrifugation, which was added with water, neutralized with sodium hydroxide, and heated at 140 ° C. for 10 seconds. Then, each separated soybean protein was obtained by spray drying. The amount of crude protein (parts by weight) in each curd and whey derived from 100 parts by weight of defatted soybean was measured.
[0025]
[Table 1]
Figure 2004254631
[0026]
From Table 1, it can be seen that the effect of transglutaminase on defatted soy milk reduced whey protein and increased the amount of protein in curd, thereby increasing the yield by 1% or more.
[0027]
[Experimental Example 1] (Comparison when transglutaminase activity was exerted significantly)
A defatted soymilk was prepared in the same manner as in Example 1, and a transglutaminase preparation “TG-S Mild” (manufactured by Ajinomoto Co., Inc.) equivalent to 0.5 U and 1 U was added to 1 g of the crude protein of the soymilk, and 50 ° C. For 30 minutes. As a comparison, one without the action of transglutaminase was used. These were adjusted to pH 4.5 with hydrochloric acid and subjected to isoelectric point precipitation, and centrifuged (1300 g × 5 minutes) to obtain an acid precipitated curd and whey. The so-called degree of looseness of the card was examined by measuring the moisture content of the obtained card.
[0028]
[Table 2] Card moisture content (per 100 total cards)
Figure 2004254631
[0029]
From Table 2, it can be seen that when the transglutaminase activity is exerted, the moisture content of the curd increases, causing the curd to loosen. This was a slack that would be expected to result in loss of protein to the whey side when separation was carried out by an actual on-site machine with a large production scale.
[0030]
[Experimental Example 2] (Electrophoresis of whey)
Skim soy milk was prepared in the same manner as in Example 1, and 1 g of a transglutaminase preparation “TG-S Mild” (manufactured by Ajinomoto Co., Inc.) was added to 1 g of the crude protein of the soy milk and reacted at 50 ° C. for 30 minutes. I let it. As a comparison, one without transglutaminase action was used. These were adjusted to pH 4.5 using hydrochloric acid and subjected to isoelectric point precipitation, followed by centrifugation to obtain an acid precipitated curd and whey. Then, whey was subjected to SDS-polyacrylamide electrophoresis to examine the behavior of the protein in whey. In the electrophoresis, a sample was dissolved in a Tris-HCl buffer containing 2% SDS and 10% β-mercaptoethanol by the method of Laemmli [Nature, Vol. 227, 680-685 (1970)], and 0.1% SDS was dissolved. Using a 4-20% gradient gel in trisglycine (pH 8.4) containing, it was carried out at a constant flow of 40 mA for 1 hour. After the electrophoresis, the gel was stained with Coomassie Brilliant Blue R250 solution. As a result, as shown in FIG. 1, the behavior of whey protein by the transglutaminase reaction showed that mainly the protein near 60 k was reduced by the reaction (dotted arrow), and the whey protein was reduced and shifted to the card side. It has been suggested.
[0031]
[Experimental example 3] (Effect of transglutaminase treatment during extraction process)
When extracting defatted soybeans in the same manner as in Example 1, at the start, the same transglutaminase preparation as in Experimental Example 2 was added and reacted in an amount corresponding to 0.25 U and 0.5 U per 1 g of the crude protein. As a comparison, a transglutaminase extracted without addition was used. After completion of the extraction, the viscosity of the soymilk slurry was measured, and the slurry was separated with a centrifuge “H-112” (manufactured by Kokusan), and the water content of the obtained okara and the crude protein mass per solid content were determined. It was measured.
[0032]
[Table 3] (Effect of transglutaminase in the extraction process)
Figure 2004254631
[0033]
From Table 3, it can be seen that as the transglutaminase reaction proceeds, the viscosity of the soymilk slurry increases, the water content of okara after separation increases, the crude protein mass also increases, and the okara separation ability from the soymilk slurry deteriorates.
[0034]
【The invention's effect】
According to the present invention, it has become possible to produce isolated soybean protein from raw defatted soybean in high yield, which is beyond the conventional limit wall.
[0035]
[Brief description of the drawings]
FIG. 1 is an electrophoresis pattern of whey treated with transglutaminase and untreated whey.
[Explanation of symbols]
(A) untreated (b) transglutaminase treatment

Claims (2)

脱脂豆乳にトランスグルタミナーゼを作用させ、酸性下にホエーとカードに分離することを特徴とする分離大豆蛋白の製造法。A method for producing an isolated soy protein, wherein transglutaminase is allowed to act on defatted soy milk and the mixture is separated into whey and curd under acidic conditions. 脱脂豆乳の粗蛋白質1gあたりのトランスグルタミナーゼ量が0.05以上1.0ユニット未満である請求項1の製造法。2. The method according to claim 1, wherein the amount of transglutaminase per gram of the crude protein in the defatted soy milk is 0.05 or more and less than 1.0 unit.
JP2003050698A 2003-02-27 2003-02-27 Method of producing separated soybean protein Pending JP2004254631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003050698A JP2004254631A (en) 2003-02-27 2003-02-27 Method of producing separated soybean protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003050698A JP2004254631A (en) 2003-02-27 2003-02-27 Method of producing separated soybean protein

Publications (1)

Publication Number Publication Date
JP2004254631A true JP2004254631A (en) 2004-09-16

Family

ID=33116045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003050698A Pending JP2004254631A (en) 2003-02-27 2003-02-27 Method of producing separated soybean protein

Country Status (1)

Country Link
JP (1) JP2004254631A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1731041A1 (en) * 2004-03-30 2006-12-13 Fuji Oil Company, Ltd. Process for producing soybean protein and process for producing processed meat food using the soybean protein

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1731041A1 (en) * 2004-03-30 2006-12-13 Fuji Oil Company, Ltd. Process for producing soybean protein and process for producing processed meat food using the soybean protein
EP1731041A4 (en) * 2004-03-30 2009-07-22 Fuji Oil Co Ltd Process for producing soybean protein and process for producing processed meat food using the soybean protein

Similar Documents

Publication Publication Date Title
AU758318B2 (en) Fractionation of soybean 7S globulin and 11S globulin and process for producing the same
JPWO2005094608A1 (en) Method for producing soy protein and method for producing processed meat food using this soy protein
WO2017009100A1 (en) Use of peptidylarginine deiminase to solubilize proteins or to reduce their foaming tendency
JPS5836345A (en) Separation and isolation 7s and 11s protein from isoelectrically precipitated vegetable protein mixture
JP2008531054A (en) Multi-anion treated soy protein and method for preparing the substance
US20110305817A1 (en) Method for Separating Protein from Food
NL8102994A (en) IMPROVEMENTS IN AND WITH REGARD TO A PROTEOLYTIC AGENT AND A PROTEIN HYDROLYSIS PROCESS.
US20020132288A1 (en) Process for preparation of protein-hydrolysate from milk protein
JPH04112753A (en) Hydrolyzed whey protein having decreased allergen content and production thereof
JP2004254631A (en) Method of producing separated soybean protein
JP5421117B2 (en) Process for producing yeast extract
Jiang et al. Preparation of grape seed polypeptide and its calcium chelate with determination of calcium bioaccessibility and structural characterisation
WO2001080665A1 (en) A method of treating soy proteins and a soy protein product produced by this method
JP2958801B2 (en) Method for producing debittered functional peptide
JP2003250460A (en) Method for modifying functionality of milk protein
US8304005B2 (en) Method for production of defatted soymilk peptide
JP2000300185A (en) Production of soy protein
JP2006141231A (en) Method for producing soybean protein
Yamagishi et al. Effect of sulphydryl and disulphide compounds on the formation and quality of thermal aggregates of soya bean 11S globulin
JPH04108343A (en) Production of soybean protein
JPS62232340A (en) Production of food material
US6569484B1 (en) High gelling protein and a process for obtaining same from soybean
MIYAGUCHI et al. Gelation of porcine blood globin by calf rennet
JPS62232341A (en) Production of nongelatinized soybean protein
CN116172118B (en) Soybean protein isolate calcium procoagulant gel and preparation method and application thereof