JP2004254542A - Method for producing lactic acid from waste food - Google Patents

Method for producing lactic acid from waste food Download PDF

Info

Publication number
JP2004254542A
JP2004254542A JP2003046796A JP2003046796A JP2004254542A JP 2004254542 A JP2004254542 A JP 2004254542A JP 2003046796 A JP2003046796 A JP 2003046796A JP 2003046796 A JP2003046796 A JP 2003046796A JP 2004254542 A JP2004254542 A JP 2004254542A
Authority
JP
Japan
Prior art keywords
lactic acid
pressure
food waste
waste
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003046796A
Other languages
Japanese (ja)
Inventor
Akira Shindo
昌 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita Prefecture
Original Assignee
Akita Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Prefecture filed Critical Akita Prefecture
Priority to JP2003046796A priority Critical patent/JP2004254542A/en
Publication of JP2004254542A publication Critical patent/JP2004254542A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing lactic acid from waste foods, by which the lactic acid used as a raw material for biodegradable plastics can be produced from the waste vegetable foods which have been discarded. <P>SOLUTION: This method for producing the lactic acid from the waste foods, comprising subjecting the waste foods to a lactic acid fermentation, is characterized by comprising the first process for solubilizing the waste foods by a blasting treatment and the second process for subjecting the solubilized liquid obtained in the first process to a lactic acid fermentation using a diastatic enzyme and a lactobacillus. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、食品廃棄物から乳酸を製造する方法に関する。より詳細には、食品廃棄物を爆砕処理することにより可溶化し、得られた可溶化液を糖化酵素と乳酸菌を用いて乳酸発酵させて乳酸を製造する方法に関する。
【0002】
【従来の技術】
米や麦、そば、大豆などの多くの農産物は、その加工において該穀物の殻、種皮、果皮やおからなど多くの植物性食品廃棄物が排出されている。これらのほとんどは、焼却または埋め立てにより廃棄されており、環境に対する負荷がかなり大きい。
一方、環境保全の観点から生分解性プラスチックが開発され、一部で利用されているが、その原料である乳酸の価格が高いために、広く使用されるには至っていない。
仮に食品廃棄物から低コストで乳酸を生産することが可能になれば、生分解性プラスチックの広範囲にわたる実用化が期待される。例えば、農業を主体とする地域では、農業用のビニルフィルムが大量に使用されているが、廃棄される該フィルムは、近年のダイオキシン問題で焼却処分ができないため、その処理が大きな問題となっている。従って、この方面への生分解性プラスチックフィルムの応用が期待されている。
【0003】
ところで、家庭やレストラン等から排出される生ゴミを原料として乳酸を作るシステムに関する報告がある(特許文献1参照)が、これは生ゴミ中の米飯や麺類などのでんぷん質原料をグルコアミラーゼを用いて糖化したのち乳酸発酵を行うものであり、生ゴミの利用効率はきわめて低い。また、でんぷん質以外の植物性廃棄物はほとんど利用されず、廃棄物のまま残るという問題がある。
【0004】
【特許文献1】
特開2002−51793号公報
【0005】
【発明が解決しようとする課題】
現実には、食品廃棄物の多くはでんぷん質以外の植物性廃棄物であるため、該食品廃棄物を原料として乳酸を生産させるには、廃棄物の利用効率が低い。
本発明は、食品工場等から排出される植物性廃棄物を効率よく分解して、乳酸を製造する方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
そこで、本発明者は、上記の問題を解決して、食品廃棄物から効率よく乳酸を生産させるための条件について検討した。
その結果、主として植物性成分からなる食品廃棄物を爆砕処理により物理的に可溶化し、さらにセルラーゼ、グルコアミラーゼ等の糖化酵素でセルロースやでんぷん質原料を単糖化した溶液を乳酸発酵させることにより、効率よく乳酸を製造できることを見いだした。この知見に基づいて本発明を完成するに至った。
【0007】
請求項1に記載の本発明は、食品廃棄物を乳酸発酵させることにより、乳酸を製造する方法において、食品廃棄物を爆砕処理により可溶化する第一の工程と、前記第一の工程で得られる可溶化液を糖化酵素および乳酸菌を用いて乳酸発酵させる第二の工程を含むことを特徴とする食品廃棄物から乳酸を製造する方法である。
請求項2に記載の本発明は、爆砕処理を、圧力10〜30kg/cm で1〜60分間の加圧処理後、0.1〜1秒間で大気圧に戻すことにより行う請求項1記載の方法である。
【0008】
【発明の実施の形態】
以下、食品廃棄物から乳酸を製造する本発明の方法について詳細に説明する。
【0009】
請求項1に記載の本発明は、食品廃棄物を爆砕処理により可溶化する第一の工程と前記第一の工程で得られる可溶化液を糖化酵素および乳酸菌を用いて乳酸発酵させる第二の工程を含む方法である。
【0010】
第一の工程における食品廃棄物の爆砕処理とは、食品廃棄物を耐圧容器に投入し、高温高圧下で処理したのち、一気に圧力を開放する(大気圧にさらす)ことにより、廃棄物中のでんぷん、セルロース、ヘミセルロースなどの多糖類を可溶化させるものである。
【0011】
本発明の方法において用いられる食品廃棄物としては、上記の多糖類を含むものであればよく、例えば籾殻、麦殻、モルト粕等のセルロースやヘミセルロースで構成され、あるいはでんぷん質原料で構成されていて、食品加工後に通常廃棄される成分を含む廃棄物があり、これらは粉砕などの前処理は一切不要である。
【0012】
次に、本発明における爆砕処理では、前記したように、一定時間加圧下においた食品廃棄物を、瞬時に常圧に戻すことにより、食品廃棄物を可溶化する操作を意味する。ここで、加圧圧力は通常ゲージ圧で10〜30kg/cmが適当である。圧力が10kg/cm 未満であると、可溶化が十分に行われない上に、可溶化により生成する糖類の収率が減少する。一方、30kg/cm は、爆砕処理に用いる装置の限界圧力である。仮に、30kg/cmを越える圧力を適用しても、それに見合う効果が得られない。
加圧時間については、通常1〜60分間、好ましくは1〜30分間である。加圧時間が1分未満であると、可溶化が十分に行われず、しかも可溶化により生成する糖類の収率が低下する。また、上限を越える加圧時間を設定しても、十分な効果が得られない。なお、加圧時の温度に関しては、特に制限はないが、通常は158〜225℃である。
【0013】
本発明における爆砕処理は、食品廃棄物を耐圧容器に入れて、水蒸気の存在下に、上記した所定時間、所定圧力に保持した後、直ちに大気圧に開放することにより行う。加圧方法としては、コンプレッサーにより容器内を加圧する方法、密閉容器を加熱することにより加圧する方法、高温高圧蒸気を容器内に導入して加圧する方法などが挙げられる。好ましい方法は、高温高圧蒸気を導入することにより加圧する方法である。
【0014】
また、直ちに大気圧に開放するとは、加圧状態から可及的速やかに大気圧に戻すことを意味し、通常は0.1〜1秒間で大気圧に開放する。時間がかかりすぎると、食品廃棄物の可溶化を効率よく行えない。なお、大気圧に開放する操作とは、容器内の爆砕処理物を瞬時に消音器付の受槽に排出することを意味する。
【0015】
食品廃棄物を爆砕処理したものは通常スラリーとして得られる。このスラリーを固−液分離する。固−液分離は、圧搾分離、遠心分離、濾過等公知の分離方法のいずれを用いても差し支えない。また、バッチ式または連続式のどちらでもよい。
このようにして食品廃棄物から可溶化糖類を容易に、かつ高収率で回収することができる。
【0016】
次に、本発明の第二の工程は、乳酸を生産させる工程である。この工程では、乳酸を生産させるための溶液を作成するために、上記の爆砕処理で得られた可溶化液を糖化酵素、すなわち糖を分解する酵素で処理する。グルコースなどの単糖を含む可溶化液をそのまま乳酸発酵用として用いても良いが、必要に応じて濃縮しても良い。この場合の濃縮方法としては、蒸留濃縮、膜濃縮、凍結濃縮など公知の方法を用いることができる。
【0017】
爆砕処理で得られた可溶化液を糖化酵素処理によって単糖化可溶化液を得る技術について具体的に説明する。糖を分解する酵素としては、セルラーゼ、ヘミセルラーゼ、グルコアミラーゼがあり、これらを単独で、あるいは組み合わせて用いる。これら酵素は、精製した酵素剤のみならずセルラーゼ、ヘミセルラーゼ、グルコアミラーゼなどの酵素を含有する菌体培養液を用いても良い。また、市販のセルラーゼ、ヘミセルラーゼ、グルコアミラーゼを用いても良い。
【0018】
第二の工程における乳酸の製造方法を実施するために、前記で得られた単糖を含む可溶化液をpH5.0〜7.0、好ましくはpH6.5〜7.0に調整した後、乳酸生産能を有する微生物を作用させて、高濃度、高選択的に乳酸を生成させる。
可溶化液のpHを調整するには、水酸化ナトリウム溶液やアンモニア水などのアルカリ性の試薬を用いることができる。
【0019】
乳酸発酵に用いる微生物については特に制限はなく、L−乳酸を生産し得るものであれば良い。このような微生物の一例としては、乳酸菌、例えばラクトバチルス(Lactobacillus)属、ストレプトコッカス(Streptococcus)属、ペディオコッカス(Pediococcus)属、ロイコノストック(Leuconostoc)属などの微生物を挙げることができる。これらのうち乳酸のみを生産することができるホモ型乳酸菌が工業生産の観点から好ましく用いることができる。
【0020】
乳酸発酵の条件は、食品廃棄物の種類、可溶化液の組成、用いる微生物の種類、その至適pH、至適温度、乳酸生成速度、用いる発酵槽のタイプや大きさ等に応じて適宜設定することができる。
【0021】
具体的には、発酵槽内の発酵温度は、20〜80℃の範囲、好ましくは30〜50℃の範囲に設定することができる。pH値は、4.0〜9.0の範囲、好ましくは5.0〜7.0の範囲に設定できる。発酵槽のタイプは、攪拌式発酵槽や固定化菌体によるバイオリアクター等を用いることができる。また、発酵時間については、通常1〜10日間、好ましくは3〜5日間である。
【0022】
得られた発酵液は、L−乳酸を主成分とする溶液である。この溶液は種々の不純物を含んでいるので、L−乳酸を高純度で得るためには、精製処理を行うのがよい。その1例として、前記爆砕処理によって生成した分解物や無機塩類、着色物質など、さらには酵素等をイオン交換樹脂または合成吸着剤を用いて除去する方法があり、イオン交換樹脂の代わりに電気透析膜を用いることもできる。
【0023】
【実施例】
以下に、実施例などを示すことにより本発明を詳細に説明するが、本発明はこれらにより何等限定されろものではない。
【0024】
比較例1
モルト粕をモデル植物性食品廃棄物として用い、水洗いによって溶出される糖分を調べた。すなわち、蒸留水100mlにモルト粕を湿重量で10g入れ、洗い出される糖分の分析を行った。全糖濃度は、フェノール硫酸法を用いて分析した。その結果、乾燥モルト粕100gあたり0.5gの糖しか得られなかった。
【0025】
実施例1
爆砕装置(月島機械製)を用いて、モルト粕の爆砕を行った。圧力容器(耐圧40kg/cm 、容量2L)にモルト粕を湿重量で1kg封入した。次に、高温高圧の蒸気を圧力容器に導入し、処理圧力10、20または30kg/cmで所定の時間保持した。
その後、0.5秒間で大気圧の消音器付受槽に放出した。得られたスラリーを7000rpmで30分間遠心分離を行い、上清を得た。上清中の糖濃度はフェノール硫酸法(Dubios et. al. Anal. Chem. Vol.28, p.350, 1956)により測定した。また、可溶化液の回収量をスラリー状の液量として求めた。所定の圧力で10分間保持したときの結果を図1に示す。図中,白棒は可溶化液の回収量を、黒棒は糖濃度を示す。
図1の結果から、処理圧力が大きい程、可溶化液の回収量が多く、糖濃度は処理圧力が大きい程、低くなることがわかる。
【0026】
次に、処理圧力を30kg/cm に固定し、処理時間を1〜10分とした爆砕処理を行ったときの可溶化液の回収量、糖濃度および全糖量を測定し、結果を図2に示した。図中,白棒は可溶化液の回収量を、黒棒は糖濃度を、折れ線は全糖量を示す
図から明らかなように、可溶化液の回収量は、処理時間が長くなる程、多くなり、糖濃度は、処理時間が長くなる程、低くなった。また、全糖量は、処理時間が短い程、多くなった。
以上の結果をまとめて、表1に各処理圧力および処理時間における分析値を示した。表から明らかなように、処理圧力30kg/cm 、処理時間1分のときに得られた可溶化液中の糖濃度が最も高く、得られた全糖量は60gであった。この条件で、乾燥モルト粕100gから28gの糖が生成したことになる。
【0027】
【表1】
第1表 モルト粕の爆砕試験

Figure 2004254542
【0028】
実施例2
爆砕可溶化液10mlに市販のセルラーゼ(商品名:「YN−C」、株式会社ヤクルト製)、ヘミセルラーゼ(商品名:「R−10」、株式会社ヤクルト製)、α―アミラーゼ(商品名:「TC−3」、大和化成株式会社製)、グルコアミラーゼ(商品名:「アマノ」、天野エンザイム株式会社製)をそれぞれ80μgづつ加えて、37℃で反応させ、生成した糖の分析をDX500糖分析システム(Dionex製)を用いて行った。
その結果、表2に示したように、酵素で処理することによりグルコース、キシロース、アラビノースなどの単糖が増加した。特に、セルラーゼとグルコアミラーゼによる処理が単糖生成に最も効果があった。
【0029】
【表2】
第2表 モルト粕爆砕可溶化液の糖組成に及ぼす酵素処理の影響
Figure 2004254542
【0030】
実施例3
爆砕処理により得た可溶化液を、糸状菌(Aspergillus oryzae) SS1026(J. Inst. Brew ,vol.104,p.277−281,1998、 J. Biosci. Bioeng., vol.93, p.256−263, 2001) によって生産された糖化酵素を用いて処理を行い、生成した糖の分析を行った。
すなわち、糸状菌による糖化酵素の生産は、爆砕処理で得た可溶化液と糸状菌の胞子をウレタンフォームに懸濁し、37℃で増殖させた固定化糸状菌により実施し、該固定化糸状菌から抽出した酵素溶液を用いて可溶化液を処理した。生成した糖の分析は、実施例2の方法で行った。結果を表3に示した。
表3からわかるように、単糖の生成量はコントロールより多かった。
【0031】
【表3】
第3表 固定化Aspergillus oryzae SS1026によるモルト粕可溶化液の糖化試験
Figure 2004254542
【0032】
実施例4
実施例3に記載した爆砕処理により得た可溶化液を、セルラーゼ(商品名:「YN−C」、株式会社ヤクルト製)、グルコアミラーゼ(商品名:「アマノ」、天野エンザイム株式会社製)で糖化処理を行い、得られた単糖を含む可溶化液に乳酸菌を作用させて乳酸発酵を行った。
すなわち、糖濃度を4.2%に調整した可溶化液100mlに、上記セルラーゼ800μgと上記グルコアミラーゼ800μgを添加し、乳酸菌、ラクトバチルス・ラムノサス(Lactobacillus rhamnosus) NBRC14710を植菌して、37℃で静置培養を行い、生成した乳酸量を酵素法(F−キットD/L乳酸、J.K.インターナショナル)にて測定した。その結果、培養5日目で、14.1g/LのL−乳酸を得ることができた。
【0033】
【発明の効果】
本発明によれば、従来廃棄されていた植物性食品廃棄物を爆砕処理し、得られた処理液(可溶化液)に糖化酵素および乳酸菌を作用させることにより、高効率で乳酸を生産させることができる。そのため、廃棄物の減量と環境負荷の低減を期待できる。さらに、生分解性プラスチックの原料である乳酸を低コストで製造することができ、乳酸の広範な利用が期待できる。
【図面の簡単な説明】
【図1】所定圧力で10分間爆砕処理して得た実施例1の可溶化液の回収量と糖濃度を示す。
【図2】圧力30kg/cm で所定時間爆砕処理して得た実施例1の可溶化液の回収量、糖濃度および全糖量を示す。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing lactic acid from food waste. More specifically, the present invention relates to a method for producing lactic acid by solubilizing food waste by explosive treatment and subjecting the obtained solubilized liquid to lactic acid fermentation using saccharifying enzymes and lactic acid bacteria.
[0002]
[Prior art]
Many agricultural products such as rice, barley, buckwheat, and soybeans are processed, and many vegetable food wastes such as husks, seed coats, peels, and okara are discharged. Most of these are disposed of by incineration or landfill, and the impact on the environment is considerable.
On the other hand, biodegradable plastics have been developed and partially used from the viewpoint of environmental protection, but have not been widely used due to the high price of lactic acid as a raw material.
If it becomes possible to produce lactic acid from food waste at low cost, it is expected that biodegradable plastics will be put to practical use in a wide range. For example, in regions mainly engaged in agriculture, a large amount of vinyl film for agriculture is used, but the disposal of the film cannot be incinerated due to the dioxin problem in recent years. I have. Therefore, application of a biodegradable plastic film to this area is expected.
[0003]
By the way, there is a report on a system for producing lactic acid using raw garbage discharged from homes and restaurants as a raw material (see Patent Document 1), but this uses glucoamylase for starch raw materials such as cooked rice and noodles in the raw garbage. Lactic acid fermentation is performed after saccharification, and the utilization efficiency of garbage is extremely low. Further, there is a problem that plant waste other than starch is hardly used and remains as waste.
[0004]
[Patent Document 1]
JP-A-2002-51793 [0005]
[Problems to be solved by the invention]
In reality, most of food waste is plant waste other than starch, so that the efficiency of waste utilization is low to produce lactic acid using the food waste as a raw material.
An object of the present invention is to provide a method for producing lactic acid by efficiently decomposing vegetable waste discharged from a food factory or the like.
[0006]
[Means for Solving the Problems]
Then, the present inventor studied the conditions for solving the above problem and efficiently producing lactic acid from food waste.
As a result, the food waste mainly composed of vegetable components is physically solubilized by explosion treatment, and further, lactic acid fermentation is performed on a solution obtained by monosaccharide-forming cellulose and starch raw materials with saccharifying enzymes such as cellulase and glucoamylase. It has been found that lactic acid can be produced efficiently. Based on this finding, the present invention has been completed.
[0007]
The present invention according to claim 1 is a method for producing lactic acid by subjecting food waste to lactic acid fermentation, wherein the first step of solubilizing the food waste by explosion treatment and the first step. A method for producing lactic acid from food waste, comprising a second step of lactic acid fermentation of the lysate obtained using saccharifying enzymes and lactic acid bacteria.
The present invention described in claim 2 is characterized in that the explosion treatment is performed by returning the pressure to atmospheric pressure in 0.1 to 1 second after the pressure treatment at a pressure of 10 to 30 kg / cm 2 for 1 to 60 minutes. This is the method.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the method of the present invention for producing lactic acid from food waste will be described in detail.
[0009]
The present invention according to claim 1 includes a first step of solubilizing food waste by an explosion treatment and a second step of lactic acid fermentation of the lysate obtained in the first step using a saccharifying enzyme and a lactic acid bacterium. It is a method that includes a step.
[0010]
The explosion treatment of food waste in the first step is to put the food waste into a pressure-resistant container, treat it under high temperature and high pressure, and then release the pressure at a stretch (expose to atmospheric pressure). It solubilizes polysaccharides such as starch, cellulose, and hemicellulose.
[0011]
The food waste used in the method of the present invention may be any one containing the above-mentioned polysaccharide, for example, rice hulls, wheat hulls, made of cellulose or hemicellulose such as malt meal, or made of starch raw material. In addition, there are wastes containing components that are usually discarded after food processing, and these do not require any pretreatment such as grinding.
[0012]
Next, the explosion treatment in the present invention means, as described above, an operation of solubilizing food waste by instantaneously returning the food waste pressurized for a certain period of time to normal pressure. Here, the pressurizing pressure is usually appropriate as a gauge pressure of 10 to 30 kg / cm 2 . When the pressure is less than 10 kg / cm 2 , the solubilization is not sufficiently performed, and the yield of saccharides generated by the solubilization decreases. On the other hand, 30 kg / cm 2 is the limit pressure of the device used for the explosion treatment. Even if a pressure exceeding 30 kg / cm 2 is applied, the effect corresponding thereto cannot be obtained.
The pressurizing time is usually 1 to 60 minutes, preferably 1 to 30 minutes. If the pressurization time is less than 1 minute, the solubilization is not sufficiently performed, and the yield of saccharides generated by the solubilization is reduced. Further, even if the pressurizing time exceeds the upper limit, a sufficient effect cannot be obtained. The temperature during pressurization is not particularly limited, but is usually 158 to 225 ° C.
[0013]
The explosion treatment in the present invention is carried out by placing food waste in a pressure-resistant container, maintaining the same at the predetermined pressure for the above-described predetermined time in the presence of water vapor, and immediately releasing the food waste to atmospheric pressure. Examples of the pressurizing method include a method of pressurizing the inside of the container with a compressor, a method of pressurizing a closed container by heating, and a method of introducing high-temperature and high-pressure steam into the container and pressurizing the container. A preferred method is to pressurize by introducing high temperature and high pressure steam.
[0014]
Immediately releasing to the atmospheric pressure means returning to the atmospheric pressure as soon as possible from the pressurized state. Usually, the pressure is released to the atmospheric pressure in 0.1 to 1 second. If it takes too long, the food waste cannot be solubilized efficiently. The operation of releasing to the atmospheric pressure means that the explosion-treated material in the container is instantaneously discharged to a receiving tank with a silencer.
[0015]
Explosion-treated food waste is usually obtained as a slurry. This slurry is subjected to solid-liquid separation. For solid-liquid separation, any of known separation methods such as compression separation, centrifugation, and filtration may be used. Further, either a batch type or a continuous type may be used.
Thus, the solubilized saccharide can be easily recovered from food waste in a high yield.
[0016]
Next, the second step of the present invention is a step of producing lactic acid. In this step, in order to prepare a solution for producing lactic acid, the lysate obtained by the above explosion treatment is treated with a saccharifying enzyme, that is, an enzyme that degrades sugar. A solubilized solution containing a monosaccharide such as glucose may be used as it is for lactic acid fermentation, or may be concentrated if necessary. As a concentration method in this case, a known method such as distillation concentration, membrane concentration, and freeze concentration can be used.
[0017]
A technique for obtaining a monosaccharified lysate by subjecting the lysate obtained by the explosion treatment to a saccharifying enzyme treatment will be specifically described. Examples of enzymes that degrade sugar include cellulase, hemicellulase, and glucoamylase, and these may be used alone or in combination. As these enzymes, a cell culture solution containing enzymes such as cellulase, hemicellulase and glucoamylase as well as purified enzyme agents may be used. Moreover, you may use commercially available cellulase, hemicellulase, and glucoamylase.
[0018]
In order to carry out the method for producing lactic acid in the second step, the solubilized solution containing the monosaccharide obtained above is adjusted to pH 5.0 to 7.0, preferably pH 6.5 to 7.0, A lactic acid-producing microorganism is acted on to produce lactic acid with high concentration and high selectivity.
To adjust the pH of the solubilizing solution, an alkaline reagent such as a sodium hydroxide solution or aqueous ammonia can be used.
[0019]
The microorganism used for lactic acid fermentation is not particularly limited as long as it can produce L-lactic acid. Examples of such microorganisms include lactic acid bacteria, such as microorganisms of the genus Lactobacillus, the genus Streptococcus, the genus Pediococcus, and the genus Leuconostoc. Of these, homo-type lactic acid bacteria capable of producing only lactic acid can be preferably used from the viewpoint of industrial production.
[0020]
The conditions of lactic acid fermentation are set appropriately according to the type of food waste, the composition of the solubilizing solution, the type of microorganism used, the optimal pH, the optimal temperature, the lactic acid production rate, the type and size of the fermenter used, and the like. can do.
[0021]
Specifically, the fermentation temperature in the fermenter can be set in the range of 20 to 80C, preferably in the range of 30 to 50C. The pH value can be set in the range of 4.0-9.0, preferably in the range of 5.0-7.0. As the type of fermenter, a stirred fermenter, a bioreactor using immobilized cells, or the like can be used. The fermentation time is usually 1 to 10 days, preferably 3 to 5 days.
[0022]
The obtained fermented liquid is a solution containing L-lactic acid as a main component. Since this solution contains various impurities, it is preferable to carry out a purification treatment in order to obtain L-lactic acid with high purity. As one example, there is a method of removing decomposed products, inorganic salts, coloring substances, etc. generated by the explosion treatment, and enzymes and the like using an ion exchange resin or a synthetic adsorbent. A membrane can also be used.
[0023]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples and the like, but the present invention is not limited thereto.
[0024]
Comparative Example 1
Using malt meal as a model vegetable food waste, the sugar content eluted by washing with water was examined. That is, 10 g of malt cake was added to 100 ml of distilled water by wet weight, and the sugar content washed out was analyzed. Total sugar concentration was analyzed using the phenol-sulfuric acid method. As a result, only 0.5 g of sugar was obtained per 100 g of dried malt cake.
[0025]
Example 1
Malt cake was blasted using a blasting device (Tsukishima Kikai). 1 kg of malt meal was sealed in a pressure vessel (withstand pressure of 40 kg / cm 2 , capacity of 2 L) by wet weight. Next, high-temperature and high-pressure steam was introduced into the pressure vessel and maintained at a processing pressure of 10, 20, or 30 kg / cm 2 for a predetermined time.
Thereafter, it was discharged into a receiving tank with a silencer at atmospheric pressure for 0.5 seconds. The obtained slurry was centrifuged at 7,000 rpm for 30 minutes to obtain a supernatant. The sugar concentration in the supernatant was measured by the phenol sulfate method (Dubios et al. Anal. Chem. Vol. 28, p. 350, 1956). The amount of the solubilized liquid recovered was determined as the amount of the slurry. FIG. 1 shows the results when the pressure was maintained at a predetermined pressure for 10 minutes. In the figure, the white bar indicates the amount of the solubilized solution recovered, and the black bar indicates the sugar concentration.
The results in FIG. 1 show that the higher the processing pressure, the larger the amount of the solubilized solution recovered, and the higher the processing pressure, the lower the sugar concentration.
[0026]
Next, when the processing pressure was fixed at 30 kg / cm 2 and the explosion treatment was performed with the processing time being 1 to 10 minutes, the recovered amount of the solubilized solution, the sugar concentration, and the total sugar amount were measured, and the results were plotted. 2 is shown. In the figure, the white bar indicates the amount of the lysate recovered, the black bar indicates the sugar concentration, and the broken line indicates the total sugar amount. As the treatment time increased, the sugar concentration decreased. Also, the total sugar amount increased as the treatment time was shorter.
Summarizing the above results, Table 1 shows the analysis values at each processing pressure and processing time. As is clear from the table, the saccharide concentration in the lysate obtained at a processing pressure of 30 kg / cm 2 and a processing time of 1 minute was the highest, and the total amount of saccharides obtained was 60 g. Under these conditions, 28 g of sugar was produced from 100 g of dried malt cake.
[0027]
[Table 1]
Table 1 Explosion test of malt cake
Figure 2004254542
[0028]
Example 2
Commercially available cellulase (trade name: “YN-C”, manufactured by Yakult Co., Ltd.), hemicellulase (trade name: “R-10”, manufactured by Yakult Co., Ltd.), α-amylase (trade name: 10 ml) “TC-3” (manufactured by Daiwa Kasei Co., Ltd.) and glucoamylase (trade name: “Amano”, manufactured by Amano Enzyme Co., Ltd.) were added in an amount of 80 μg each, and reacted at 37 ° C .. The analysis was performed using an analysis system (manufactured by Dionex).
As a result, as shown in Table 2, monosaccharides such as glucose, xylose, and arabinose increased by the treatment with the enzyme. In particular, treatment with cellulase and glucoamylase was most effective in producing monosaccharides.
[0029]
[Table 2]
Table 2 Effect of enzyme treatment on sugar composition of malt cake explosion lysate
Figure 2004254542
[0030]
Example 3
The solubilized solution obtained by the explosion treatment was subjected to filamentous fungus (Aspergillus oryzae) SS1026 (J. Inst. Brew, vol. 104, p. 277-281, 1998, J. Biosci. Bioeng., Vol. 93, p. 256). -263, 2001), and the resulting saccharide was analyzed.
That is, the production of the saccharifying enzyme by the filamentous fungus is carried out by the immobilized filamentous fungus which is obtained by suspending the lysate obtained by the explosion treatment and the spores of the filamentous fungus in urethane foam and growing at 37 ° C. The lysate was treated with the enzyme solution extracted from the lysate. The produced sugar was analyzed by the method of Example 2. The results are shown in Table 3.
As can be seen from Table 3, the amount of monosaccharide produced was greater than the control.
[0031]
[Table 3]
Table 3 Saccharification test of malt cake solubilized solution by immobilized Aspergillus oryzae SS1026
Figure 2004254542
[0032]
Example 4
The solubilized solution obtained by the explosion treatment described in Example 3 was treated with cellulase (trade name: “YN-C”, manufactured by Yakult Co., Ltd.) and glucoamylase (trade name: “Amano”, manufactured by Amano Enzyme Co., Ltd.). A saccharification treatment was performed, and lactic acid bacteria were allowed to act on the solubilized solution containing the obtained monosaccharide to perform lactic acid fermentation.
That is, 800 μg of the above cellulase and 800 μg of the above glucoamylase were added to 100 ml of the solubilized solution whose sugar concentration was adjusted to 4.2%, and lactic acid bacteria, Lactobacillus rhamnosus NBRC14710 were inoculated and inoculated at 37 ° C. Static culture was performed, and the amount of lactic acid generated was measured by an enzyme method (F-kit D / L lactic acid, JK International). As a result, on the 5th day of culture, 14.1 g / L of L-lactic acid was obtained.
[0033]
【The invention's effect】
According to the present invention, lactic acid is produced with high efficiency by subjecting conventionally-disposed plant food waste to explosion treatment, and allowing the saccharifying enzyme and lactic acid bacteria to act on the obtained treatment liquid (solubilized liquid). Can be. Therefore, reduction of waste and reduction of environmental load can be expected. Furthermore, lactic acid, which is a raw material of biodegradable plastic, can be produced at low cost, and wide use of lactic acid can be expected.
[Brief description of the drawings]
FIG. 1 shows the recovered amount of solubilized solution and the sugar concentration of Example 1 obtained by explosion treatment at a predetermined pressure for 10 minutes.
FIG. 2 shows the recovery amount, sugar concentration, and total sugar amount of the solubilized solution of Example 1 obtained by explosion treatment at a pressure of 30 kg / cm 2 for a predetermined time.

Claims (2)

食品廃棄物を乳酸発酵させることにより、乳酸を製造する方法において、食品廃棄物を爆砕処理により可溶化する第一の工程と、前記第一の工程で得られる可溶化液を糖化酵素および乳酸菌を用いて乳酸発酵させる第二の工程を含むことを特徴とする食品廃棄物から乳酸を製造する方法。By subjecting food waste to lactic acid fermentation, in a method for producing lactic acid, a first step of solubilizing food waste by an explosion treatment, and a lysate obtained in the first step is converted to a saccharifying enzyme and a lactic acid bacterium. A method for producing lactic acid from food waste, comprising a second step of lactic acid fermentation using lactic acid. 爆砕処理を、圧力10〜30kg/cm で1〜60分間の加圧処理後、0.1〜1秒間で大気圧に戻すことにより行う請求項1記載の方法。The method according to claim 1, wherein the explosion treatment is performed by pressurizing at a pressure of 10 to 30 kg / cm 2 for 1 to 60 minutes and then returning to atmospheric pressure for 0.1 to 1 second.
JP2003046796A 2003-02-25 2003-02-25 Method for producing lactic acid from waste food Pending JP2004254542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003046796A JP2004254542A (en) 2003-02-25 2003-02-25 Method for producing lactic acid from waste food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003046796A JP2004254542A (en) 2003-02-25 2003-02-25 Method for producing lactic acid from waste food

Publications (1)

Publication Number Publication Date
JP2004254542A true JP2004254542A (en) 2004-09-16

Family

ID=33113207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003046796A Pending JP2004254542A (en) 2003-02-25 2003-02-25 Method for producing lactic acid from waste food

Country Status (1)

Country Link
JP (1) JP2004254542A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010099580A (en) * 2008-10-23 2010-05-06 Mitsui Eng & Shipbuild Co Ltd Pretreatment method for use in saccharification of empty fruit bunch, and method of producing ethanol using pretreatment method
JP2018145050A (en) * 2017-03-06 2018-09-20 楽しい株式会社 Recycling method of organic waste
CN112792092A (en) * 2020-12-16 2021-05-14 青岛尚德生物技术有限公司 Application of lactobacillus paradisi in preparation of microbial agent for degrading kitchen waste
CN115820753A (en) * 2022-11-30 2023-03-21 青岛君康洁净科技有限公司 Wet garbage full-scale treatment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010099580A (en) * 2008-10-23 2010-05-06 Mitsui Eng & Shipbuild Co Ltd Pretreatment method for use in saccharification of empty fruit bunch, and method of producing ethanol using pretreatment method
JP2018145050A (en) * 2017-03-06 2018-09-20 楽しい株式会社 Recycling method of organic waste
CN112792092A (en) * 2020-12-16 2021-05-14 青岛尚德生物技术有限公司 Application of lactobacillus paradisi in preparation of microbial agent for degrading kitchen waste
CN115820753A (en) * 2022-11-30 2023-03-21 青岛君康洁净科技有限公司 Wet garbage full-scale treatment method

Similar Documents

Publication Publication Date Title
Omemu et al. Hydrolysis of raw tuber starches by amylase of Aspergillus niger AM07 isolated from the soil
KR101037125B1 (en) Biomass Pretreatment Method for Preparing Bioethanol
Singh et al. Production of inulinase from Kluyveromyces marxianus YS-1 using root extract of Asparagus racemosus
CN102775504B (en) Process for producing maize starch by using enzymic method
CN104905278B (en) A kind of extracting method of sweet potato dregs diet fibre
Kumar et al. Citric acid production by Aspergillus niger van. Tieghem MTCC 281 using waste apple pomace as a substrate
JP2000513925A (en) Method for producing N-acetyl-D-glucosamine
WO2003093420A2 (en) Methods for enzymatic hydrolysis of lignocellulose
JP2018503393A (en) Strain and method for producing glucosamine by fermentation of a kind of microorganism
CN106244658B (en) Preparation method of sweet potato protein polypeptide
Sugumaran et al. Conventional optimization of aqueous extraction of pullulan in solid-state fermentation of cassava bagasse and Asian palm kernel
Sujithra et al. Production and optimization of xanthan gum from three-step sequential enzyme treated cassava bagasse hydrolysate
Omojasola et al. Cellulase production by Trichoderma longi, Aspergillus niger and Saccharomyces cerevisae cultured on waste materials from orange
CN106434770B (en) Method for producing ethanol by fermenting penicillium chrysogenum residues
CN107227273A (en) Bacillus coagulans and its application for preparing L lactic acid
CN106636230A (en) Method for producing lactic acid through combined fermentation of kitchen waste having undergone enzymatic hydrolysis and corn stalk
Ilgın et al. Statistical and kinetic modeling of Aspergillus niger inulinase fermentation from carob extract and its partial concentration
CN109576324A (en) A kind of astragalus polyose and its biological extraction method
CN103911420A (en) Method for preparing rapeseed peptide through synergistic fermentation of lysozyme and rapeseed dregs
JP2004254542A (en) Method for producing lactic acid from waste food
Demirci et al. Xanthan gum production from hydrolyzed rice bran as a carbon source by Xanthomonas spp
JP5408999B2 (en) Soluble low calorie fiber composition and process for preparing the same
WO2016029432A1 (en) Methods of producing bacterial nanocellulose from cassava bagasse
CN106947796A (en) A kind of D trehaloses purifying technique
JP6123504B2 (en) Ethanol production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090128