JP2004254390A - Piezoelectric actuator - Google Patents

Piezoelectric actuator Download PDF

Info

Publication number
JP2004254390A
JP2004254390A JP2003040767A JP2003040767A JP2004254390A JP 2004254390 A JP2004254390 A JP 2004254390A JP 2003040767 A JP2003040767 A JP 2003040767A JP 2003040767 A JP2003040767 A JP 2003040767A JP 2004254390 A JP2004254390 A JP 2004254390A
Authority
JP
Japan
Prior art keywords
piezoelectric elements
piezoelectric
movable member
piezoelectric element
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003040767A
Other languages
Japanese (ja)
Inventor
Nobuaki Tanaka
伸明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2003040767A priority Critical patent/JP2004254390A/en
Publication of JP2004254390A publication Critical patent/JP2004254390A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric actuator capable of setting a coarse mode by using a resonance phenomenon when a high traveling speed is needed, and an inching mode by driving the actuator with an analog voltage when highly accurate positioning is needed, and capable of switching between high-speed traveling (coarse) and highly accurate positioning (inching). <P>SOLUTION: In the piezoelectric actuator, at least two piezoelectric elements are arranged at an arbitrary cross angle, one end of each of the piezoelectric elements is jointed with an oscillator, the other end of each of the piezoelectric elements is joined to a V-shape base, and front ends of the oscillators are abutted against a movable member. The piezoelectric elements and the oscillators are oscillated by applying a high frequency voltage which is nearly equal to the natural frequencies of the piezoelectric elements and the oscillators to the piezoelectric elements with an arbitrary phase difference. The piezoelectric actuator includes the coarse mode for moving the movable member at a high speed by generating elliptic movement at the oscillator by the oscillation, and the inching mode for inching the movable member by individually expanding and shrinking the piezoelectric elements by applying arbitrary voltages to the piezoelectric elements. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、圧電素子の変位を用い、アクチュエータの共振現象を利用して振動体に進行波を発生し、振動体の先端に生じる楕円運動によって駆動力(粗動)を得る場合と、圧電素子の変位を振動体に伝達して駆動力(微動)を得る場合の2つのモードで駆動が可能な圧電アクチュエータに関する。特に本発明の圧電アクチュエータは非磁性環境で使用され、微小位置決めが必要である半導体製造装置等の位置決め装置に最適である。
【0002】
【従来の技術】
従来は、図6に示すように1枚の圧電素子10に電圧を印加し、それによって生じる変位を利用し、圧電素子10を共振させることにより動力伝達部材に楕円運動を形成させ、物体を移動させていた(特開平7−184382:特許文献1)。即ち、電極14,18は正の直流電圧によって励起される一方、電極16,20は圧電素子10の第二の側の電極に関して負の直流電圧によって励起される。この励起状態のとき、圧電素子10の左側は右側よりも長くなり、セラミック26は右方向に動く。電圧を取り去れば、セラミック26は元の位置に復帰する。このような通電の結果、極めて僅かな動きが生じる。本例の場合、複数の電極の一部に対して、非共振的で非対称の三角パルス電圧を印加し、ごく僅かな動作が得られる。
【0003】
また、図7に示す圧電アクチュエータ10の場合、図6の場合と形状は異なるが、圧電素子90,92の変位を利用し、振動体80に共振現象を生じさせ、それによって生じる弾性体の変位により可動物体を移動させている。またこの場合、圧電アクチュエータ10の取り付け予圧は、コイルバネを用いている(US6,373,170:特許文献2)。なお、図7において、110及び112は電極である。
【0004】
更に、図8に示す圧電アクチュエータは、図7に示す例と同様な機構のアクチュエータを用い、それを駆動させることで回転体40を駆動させている(特開2002−101676:特許文献3)。即ち、所定角度をなすように配置された2つの圧電素子10A,10Bの交差部分にチップ部材20を設け、圧電素子10A,10Bを保持するベース部材30と共に、加圧部材45によりチップ部材20を回転体40に加圧接触させている。
【0005】
【特許文献1】
特開平7−184382
【0006】
【特許文献2】
US6,373,170
【0007】
【特許文献3】
特開2002−101676
【0008】
【発明が解決しようとする課題】
上述のような従来使用されているアクチュエータでは、高速移動を達成するため、その多くが共振現象を利用して駆動されている。そのため、ナノメートル(nm)という極微小な領域においても、アクチュエータが共振周波数で駆動されるため、高精度な位置決めをすることが原理的に困難であった。
【0009】
本発明は上述のような事情よりなされたものであり、本発明の目的は、高い移動速度が必要な場合には共振現象を利用した粗動モードとし、高精度な位置決め精度を要する場合には、アナログ電圧でアクチュエータを駆動させることで微動モードとし、高速移動(粗動)と高精度位置決め(微動)を切替えて実行できる圧電アクチュエータを提供することにある。
【0010】
【課題を解決するための手段】
本発明は、少なくとも2個以上の圧電素子を任意の交差角度で配設し、前記圧電素子の各一端は振動体によって接合されており、各他端はV字型のベースに接合されており、前記振動体の先端部が可動部材に当接されている圧電アクチュエータに関し、本発明の上記目的は、前記圧電素子及び振動体の固有振動数にほぼ等しい高周波電圧を任意の位相差を有して前記圧電素子に印加することによって、前記圧電素子及び振動体を振動させ、前記振動によって前記振動体に楕円運動を生じさせて前記可動部材を高速移動させる粗動モードと、前記圧電素子に任意の電圧を印加することで前記圧電素子を個別に伸縮させて前記可動部材を微動させる微動モードとを有することによって達成される。
【0011】
また、本発明の上記目的は、前記ベースに弾性ヒンジを用いたばね機構を設け、前記ばね機構で前記圧電素子に予圧を負荷することによって、或いは前記弾性ヒンジの予圧負荷方向に垂直な方向のばね定数の値を、予圧負荷方向のばね定数の値より大きくすることによって、或いは前記予圧負荷方向に垂直なばね定数の値を、前記予圧負荷方向のばね定数の値に対して10倍以上とすることによって、より効果的に達成される。
【0012】
【発明の実施の形態】
本発明の圧電アクチュエータによれば2つの駆動モードを有し、位置決め機構の目的によってモードを切替えて使用するようにしている。即ち、高速移動時は、圧電素子及び振動体の共振現象を利用した粗動モードとしており、微動時においては、複数の圧電素子に異なるアナログ電圧を印加することで圧電素子を変位させて微動モードとし、従来のアクチュエータより高精度な位置決めができるようにしている。このように粗動モードと微動モードを適宜切替えて使用することで、高速移動と高精度位置決めを行うことができる。
【0013】
そのため、本発明の圧電アクチュエータは非磁性環境で使用され、微小位置決めが必要である半導体製造装置等の位置決め装置に最適である。
【0014】
以下、本発明の実施例を、図面を参照して説明する。
【0015】
図1に本発明の第1実施例を示して説明する。
【0016】
本発明では、図1のように2つの圧電素子1A,1Bを任意の交差角度で配置し、圧電素子1A,1Bの各一端をV字型のベース3に固定すると共に、各他端を振動体2に接合している。ベース3の表面には取り付け予圧のための弾性ヒンジ4A,4B,4Cが配設され、ベース3の4つのコーナーには固定のための固定ネジ5A〜5Dが配設されている。また、振動体2の先端部には可動部材6が当接されている。
【0017】
このような構成において、2つの圧電素子1A,1Bに任意の位相差(例えば90度の位相差)を有する正弦波の電圧Vを、例えば図2(A),(B)に示すように入力する。その結果、振動体2は、入力される正弦波の位相差によって図示Aのような円運動を行い、この円運動Aによって可動部材6を図示B方向に移動させる。これにより、粗動モードを実現することができる。
【0018】
なお、正弦波の周波数は圧電素子1A,1Bと振動体2とで決まる共振周波数近傍の値にすると、圧電素子1A,1Bと振動体2との振動振幅が大きくなるので、可動部材6の駆動速度を大きくすることができる。
【0019】
このような構成において、微動の場合は図1で説明した共振現象を利用するのではなく、図3に示すような駆動方法を用いる。図3(A)において、任意の交差角度で配設された2つの圧電素子10A,10Bの各一端は振動体11に取り付けられ、各他端は固定されたベース12に取り付けられている。また、可動部材13が振動体11に当接されて配設されている。2つの圧電素子10A,10Bに異なる電圧を印加することで圧電素子10A,10Bを個別に伸縮させ、これに基づく振動体11の変位によって可動部材13を微小に移動させる。圧電素子10A,10Bには図3(B),(C)に示すように、一方の圧電素子が伸びると、他方の圧電素子が縮むように異なった電圧を印加する。その結果、圧電素子10A,10Bが変位することにより生じる振動体11の運動を伝えることにより、振動体11に当接した可動部材13が移動する。これにより微動モードを実現することができる。
【0020】
また、アクチュエータの取付け予圧は、図1に示すような弾性ヒンジ4A〜4Cを用いたばね機構でアクチュエータに負荷される。
【0021】
更に、可動部材13の移動量を測長機器で測定し、その移動量に応じて圧電素子10A,10Bに印加する電圧を制御することで、高精度な位置決めが可能となる。なお、目標位置で静止させるためには、圧電素子10A,10Bに常時電圧を印加しておく必要がある。
【0022】
本発明では上述した粗動モードと微動モードとを切替え可能とし、高い移動速度が必要な場合には粗動モードとし、高精度な位置決め精度を要する場合には微動モードとする。
【0023】
本発明のアクチュエータを微動駆動する微動モードの場合、物体を移動させるには圧電素子の変位の水平方向成分をより有効的に出力しなければならない。そこで、本発明で使用する弾性ヒンジは、予圧方向に対して横方向のばね係数が、予圧方向のばね係数に比べてできる限り大きいものを使用するようにしている。
【0024】
この理由は、図4に示すアクチュエータにおいて電圧駆動をする場合、圧電素子1A,1Bを変位させたとき、横方向のばね定数が小さいと可動部の質量又は摩擦が大きいとき、圧電素子1A,1Bの変位の水平成分がばね要素に吸収されてしまい、圧電素子1A,1Bが変位しても可動部材6を高速には移動させることができないためである。
【0025】
その理由を下記の例で説明する。
【0026】
アクチュエータの押し付け予圧をP=6(N)、可動部材6の静止摩擦係数をμ=0.1とした場合、可動部材6の起動力F(N)は
F = P×μ = 6×0.1 = 0.6(N) …(1)
となる。なお、押し付け予圧Pと起動力Fの関係は図4に示すようになっている。
【0027】
例えば、弾性ヒンジ4A〜4Cの予圧負荷方向のばね定数をK(予圧)=1.5(N/μm)、予圧負荷方向に対し垂直な方向のばね定数をK(垂直)=1.5(N/μm)とすると、可動部材6を動かすために必要な起動力Fによって、弾性ヒンジ4A〜4Cは下記(2)式及び(3)式の値分だけ変形することになる。
【0028】
予圧負荷方向の変位=6/1.5=4μm …(2)
予圧負荷方向に対し垂直な方向の変位
=0.6/1.5=0.4μm …(3)
即ち、圧電素子1A,1Bの変位量のX方向成分が0.4μm以下の場合、圧電素子1A,1Bの変位はヒンジ4A〜4Cのばねに吸収されてしまう。従って、微動の際、可動部材13を所定の変位分動かそうとするとき、圧電素子をより大きく変位させなければならず、微小な位置決めが可能ではあるものの、位置決め速度の低下の原因となる。
【0029】
次に、予圧負荷方向に対し垂直な方向のばね定数を上記(3)式の10倍(K(垂直)=15(N/μm))にした場合は、予圧負荷方向に対し垂直な方向の変位=0.6/15=0.04μm=40nmとなり、40nm以上変位すれば可動部材6は動くことになり、予圧負荷方向に対し垂直な方向のばね定数がK(垂直)= 1.5N/μmの場合より圧電素子の変位をより効率良く出力することができる。その結果、微小位置決め時の応答性が向上し、微小位置決め速度が速くなる。
【0030】
予圧負荷方向に対し垂直な方向のばね定数をさらに強くし、K(垂直)=150(N/μm)にした場合は、予圧負荷方向に対し垂直な方向の変位=0.6/150=0.004μm=4nmとなり、4nm程度の位置決めができることになる。また、予圧負荷方向に対し垂直な方向のばね定数をさらに強くし、K(垂直)=1500(N/μm)にした場合は、予圧負荷方向に対し垂直な方向の変位=0.6/1500=0.004μm=0.4nmとなり、前述した例に比べ、更に位置決め時の応答性が向上する。
【0031】
即ち、予圧負荷方向についてはばね定数を小さく、予圧負荷方向に垂直な方向についてはばね定数を大きくする。その結果、圧電素子1A,1Bは予圧負荷方向に垂直な方向での変位損失が少なくなり、nmレベルの位置決めが可能となる。
【0032】
このように、アクチュエータの予圧付与機構は、横方向に高い剛性を持ち、極めて小さな変位を出力するために、実施例に示すようなヒンジ4A〜4Cを利用した予圧付与機構が最適である。
【0033】
なお、このばね定数の設定は、必要とする位置決め精度、圧電素子の種類、振動体、ベースの形状、材質等によって適宜選定するのが良い。また、予圧負荷方向に対し垂直なばね定数の値は、予圧負荷方向のばね定数に対して10倍以上の場合が良い。
【0034】
図5は本発明のアクチュエータを、モード切替で駆動する装置の構成例を示しており、設定値の速度及び目標値は制御装置20内のコントローラ21に入力される。コントローラ21には可動部材41に対向して配設された測長機器40からの計測値が入力され、コントローラ21は計測された計測値と入力された設定値に基づいて粗動モード又は微動モードの判定を行い、その判定に従って粗微動切替機構22を制御する。粗微動切替機構22は、粗動モードの場合には駆動装置30内の粗動モード駆動回路31を駆動し、微動モードの場合には微動モード駆動回路32を駆動する。粗動モード駆動回路31及び微動モード駆動回路32は前述のようにしてアクチュエータの圧電素子(1A,1B又は10A,10B)を駆動し、これにより可動部材41が粗動又は微動で移動する。
【0035】
即ち、現在位置(計測値)と目標位置(設定入力値)との間での距離が遠く離れている場合、アクチュエータは高速移動の粗動モードで駆動する。この際、2個の圧電素子(1A,1B又は10A,10B)には任意の位相差を持った共振周波数近傍の周波数の正弦波が入力されている。そして、計測値が目標位置にある程度近づくと、コントローラ21は粗微動切替機構22を介して駆動形態を粗動モードから微動モードに切り替える。微動モードにおいては、2個の圧電素子(1A,1B又は10A,10B)には位置偏差分に比例した電圧が印加されて圧電素子(1A,1B又は10A,10B)は変位し、可動部材41は微動する。
【0036】
なお、上述の実施例では2個の圧電素子を任意の交差角度で配設しているが、3個以上の複数個であっても良い。
【0037】
【発明の効果】
本発明によれば、粗動から微動までを1つのアクチュエータで行うことができ、さらに従来の圧電アクチュエータよりも高精度な位置決めが可能である。また、アクチュエータの予圧機構に弾性ヒンジを用いたことにより、横方向に高いばね定数を持つことができ、圧電素子の極めて小さな変位を効率良く出力できるアクチュエータとして利用できる。
【0038】
そのため、本発明の圧電アクチュエータは非磁性環境で使用され、微小位置決めが必要である半導体製造装置等の位置決め装置に最適である。
【図面の簡単な説明】
【図1】本発明の第1実施例を示す機構図である。
【図2】圧電素子の駆動例を示す図である。
【図3】本発明の第2実施例の機構及び動作を示す図である。
【図4】本発明の動作を説明するための図である。
【図5】本発明の圧電アクチュエータの駆動装置の構成例を示すブロック図である。
【図6】従来例を説明するための図である。
【図7】従来例を説明するための図である。
【図8】従来例を説明するための図である。
【符号の説明】
1A,1B 圧電素子
2 振動体
3 ベース
4A〜4C 弾性ヒンジ
5A〜5D 固定ネジ
6 可動部材
10A,10B 圧電素子
11 振動体
12 ベース
13 可動部材
20 制御装置
21 コントローラ
22 粗微動切替機構
30 駆動装置
31 粗動モード駆動回路
32 微動モード駆動回路
40 測長機器
41 可動部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to the case where a driving force (coarse movement) is obtained by using a displacement of a piezoelectric element to generate a traveling wave in a vibrating body by utilizing a resonance phenomenon of an actuator, and to obtain a driving force (coarse movement) by an elliptical motion generated at a tip of the vibrating body. The present invention relates to a piezoelectric actuator which can be driven in two modes in a case where a displacement is transmitted to a vibrating body to obtain a driving force (fine movement). In particular, the piezoelectric actuator of the present invention is used in a non-magnetic environment, and is most suitable for a positioning device such as a semiconductor manufacturing device that requires minute positioning.
[0002]
[Prior art]
Conventionally, as shown in FIG. 6, a voltage is applied to one piezoelectric element 10, and the displacement generated thereby is used to resonate the piezoelectric element 10 to form an elliptical motion in the power transmission member and move the object. (Japanese Patent Laid-Open No. 7-184382: Patent Document 1). That is, the electrodes 14, 18 are excited by a positive DC voltage, while the electrodes 16, 20 are excited by a negative DC voltage with respect to the electrodes on the second side of the piezoelectric element 10. In this excited state, the left side of the piezoelectric element 10 is longer than the right side, and the ceramic 26 moves rightward. When the voltage is removed, the ceramic 26 returns to its original position. As a result of such energization, very little movement occurs. In the case of this example, a non-resonant and asymmetric triangular pulse voltage is applied to a part of the plurality of electrodes, and a very slight operation can be obtained.
[0003]
Also, in the case of the piezoelectric actuator 10 shown in FIG. 7, although the shape is different from that of FIG. 6, the displacement of the piezoelectric elements 90 and 92 is utilized to cause a resonance phenomenon in the vibrating body 80, thereby causing the displacement of the elastic body. Is moving the movable object. Further, in this case, a coil spring is used for mounting preload of the piezoelectric actuator 10 (US Pat. No. 6,373,170: Patent Document 2). In FIG. 7, reference numerals 110 and 112 represent electrodes.
[0004]
Further, the piezoelectric actuator shown in FIG. 8 uses an actuator having the same mechanism as the example shown in FIG. 7, and drives the rotating body 40 by driving the actuator (Japanese Patent Application Laid-Open No. 2002-101676: Patent Document 3). That is, the tip member 20 is provided at the intersection of the two piezoelectric elements 10A and 10B arranged at a predetermined angle, and the tip member 20 is pressed by the pressing member 45 together with the base member 30 holding the piezoelectric elements 10A and 10B. The rotating body 40 is brought into pressurized contact.
[0005]
[Patent Document 1]
JP-A-7-184382
[0006]
[Patent Document 2]
US 6,373,170
[0007]
[Patent Document 3]
JP-A-2002-101676
[0008]
[Problems to be solved by the invention]
Most of the conventionally used actuators described above are driven by utilizing a resonance phenomenon in order to achieve high-speed movement. Therefore, even in an extremely small area of nanometer (nm), since the actuator is driven at the resonance frequency, it has been difficult in principle to perform high-precision positioning.
[0009]
The present invention has been made in view of the above circumstances, and an object of the present invention is to set a coarse movement mode using a resonance phenomenon when a high moving speed is required, and to perform a high-precision positioning accuracy when a high-precision positioning accuracy is required. Another object of the present invention is to provide a piezoelectric actuator which can perform a fine movement mode by driving an actuator with an analog voltage, and can switch between high-speed movement (coarse movement) and high-precision positioning (fine movement).
[0010]
[Means for Solving the Problems]
According to the present invention, at least two or more piezoelectric elements are arranged at an arbitrary crossing angle, one end of each of the piezoelectric elements is joined by a vibrator, and the other end is joined to a V-shaped base. The object of the present invention relates to a piezoelectric actuator in which a tip end portion of the vibrating body is in contact with a movable member, and a high frequency voltage substantially equal to the natural frequency of the piezoelectric element and the vibrating body having an arbitrary phase difference. A coarse motion mode in which the piezoelectric element and the vibrating body are vibrated by applying to the piezoelectric element to generate an elliptical motion in the vibrating body to move the movable member at a high speed; And a fine movement mode in which the piezoelectric elements are individually expanded and contracted by applying the above voltage to finely move the movable member.
[0011]
Further, the object of the present invention is to provide a spring mechanism using an elastic hinge on the base, and applying a preload to the piezoelectric element by the spring mechanism, or a spring in a direction perpendicular to a preload loading direction of the elastic hinge. By making the value of the constant larger than the value of the spring constant in the preload direction, or making the value of the spring constant perpendicular to the preload direction more than 10 times the value of the spring constant in the preload direction. This is achieved more effectively.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the piezoelectric actuator of the present invention, there are two drive modes, and the modes are switched according to the purpose of the positioning mechanism. That is, when moving at high speed, the coarse movement mode is used, which utilizes the resonance phenomenon of the piezoelectric element and the vibrating body. At the time of fine movement, the piezoelectric elements are displaced by applying different analog voltages to a plurality of piezoelectric elements, and the fine movement mode is set. In this way, the positioning can be performed with higher accuracy than the conventional actuator. In this manner, by switching between the coarse movement mode and the fine movement mode as appropriate, high-speed movement and high-precision positioning can be performed.
[0013]
Therefore, the piezoelectric actuator of the present invention is used in a non-magnetic environment, and is most suitable for a positioning device such as a semiconductor manufacturing device that requires minute positioning.
[0014]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015]
FIG. 1 shows a first embodiment of the present invention.
[0016]
In the present invention, as shown in FIG. 1, two piezoelectric elements 1A and 1B are arranged at an arbitrary crossing angle, one end of each of the piezoelectric elements 1A and 1B is fixed to a V-shaped base 3, and the other end is vibrated. It is joined to the body 2. Elastic hinges 4A, 4B and 4C for mounting preload are provided on the surface of the base 3, and fixing screws 5A to 5D for fixing are provided at four corners of the base 3. The movable member 6 is in contact with the tip of the vibrating body 2.
[0017]
In such a configuration, a sine wave voltage V having an arbitrary phase difference (for example, a phase difference of 90 degrees) is input to the two piezoelectric elements 1A and 1B, for example, as shown in FIGS. 2A and 2B. I do. As a result, the vibrating body 2 performs a circular motion as shown in the figure A by the phase difference of the input sine wave, and moves the movable member 6 in the direction of the figure B by the circular movement A. Thereby, the coarse movement mode can be realized.
[0018]
If the frequency of the sine wave is set to a value near the resonance frequency determined by the piezoelectric elements 1A and 1B and the vibrating body 2, the vibration amplitude of the piezoelectric elements 1A and 1B and the vibrating body 2 increases, so that the driving of the movable member 6 is performed. Speed can be increased.
[0019]
In such a configuration, in the case of fine movement, a driving method as shown in FIG. 3 is used instead of using the resonance phenomenon described in FIG. In FIG. 3A, one end of each of two piezoelectric elements 10A and 10B arranged at an arbitrary intersection angle is attached to a vibrating body 11, and the other end is attached to a fixed base 12. Further, the movable member 13 is disposed in contact with the vibrating body 11. By applying different voltages to the two piezoelectric elements 10A and 10B, the piezoelectric elements 10A and 10B are individually expanded and contracted, and the movable member 13 is minutely moved by the displacement of the vibrating body 11 based on this. As shown in FIGS. 3B and 3C, different voltages are applied to the piezoelectric elements 10A and 10B so that when one piezoelectric element expands, the other piezoelectric element contracts. As a result, the movement of the vibrating body 11 caused by the displacement of the piezoelectric elements 10A and 10B is transmitted, so that the movable member 13 in contact with the vibrating body 11 moves. Thereby, the fine movement mode can be realized.
[0020]
The preload for mounting the actuator is applied to the actuator by a spring mechanism using elastic hinges 4A to 4C as shown in FIG.
[0021]
Furthermore, by measuring the amount of movement of the movable member 13 with a length measuring device and controlling the voltage applied to the piezoelectric elements 10A and 10B according to the amount of movement, highly accurate positioning is possible. In order to stop at the target position, it is necessary to always apply a voltage to the piezoelectric elements 10A and 10B.
[0022]
In the present invention, the above-described coarse movement mode and fine movement mode can be switched, and the coarse movement mode is set when a high moving speed is required, and the fine movement mode is set when a high positioning accuracy is required.
[0023]
In the case of the fine movement mode for finely driving the actuator of the present invention, the horizontal component of the displacement of the piezoelectric element must be output more effectively in order to move the object. Therefore, the elastic hinge used in the present invention has a spring coefficient in the transverse direction to the preload direction that is as large as possible compared to the spring coefficient in the preload direction.
[0024]
The reason for this is that when the actuator shown in FIG. 4 is driven by a voltage, when the piezoelectric elements 1A and 1B are displaced, the mass or friction of the movable part is large if the lateral spring constant is small, the piezoelectric elements 1A and 1B This is because the horizontal component of the displacement is absorbed by the spring element, and the movable member 6 cannot be moved at high speed even if the piezoelectric elements 1A and 1B are displaced.
[0025]
The reason will be described in the following example.
[0026]
When the pre-pressing force of the actuator is P = 6 (N) and the coefficient of static friction of the movable member 6 is μ = 0.1, the starting force F (N) of the movable member 6 is F = P × μ = 6 × 0. 1 = 0.6 (N) (1)
It becomes. The relationship between the preload P and the starting force F is as shown in FIG.
[0027]
For example, the spring constant of the elastic hinges 4A to 4C in the preload direction is K (preload) = 1.5 (N / μm), and the spring constant in the direction perpendicular to the preload direction is K (vertical) = 1.5 ( N / μm), the elastic hinges 4A to 4C are deformed by the values of the following expressions (2) and (3) due to the starting force F required to move the movable member 6.
[0028]
Displacement in the preload direction = 6 / 1.5 = 4 μm (2)
Displacement in the direction perpendicular to the preload direction = 0.6 / 1.5 = 0.4 μm (3)
That is, when the X direction component of the displacement of the piezoelectric elements 1A and 1B is 0.4 μm or less, the displacement of the piezoelectric elements 1A and 1B is absorbed by the springs of the hinges 4A to 4C. Therefore, when trying to move the movable member 13 by a predetermined displacement at the time of fine movement, the piezoelectric element must be displaced more greatly, and although fine positioning is possible, it causes a reduction in positioning speed.
[0029]
Next, if the spring constant in the direction perpendicular to the preload direction is set to 10 times (K (vertical) = 15 (N / μm)) of the above equation (3), the direction perpendicular to the preload direction is set. Displacement = 0.6 / 15 = 0.04 μm = 40 nm. If the displacement is more than 40 nm, the movable member 6 moves, and the spring constant in the direction perpendicular to the preload direction is K (vertical) = 1.5 N / The displacement of the piezoelectric element can be output more efficiently than in the case of μm. As a result, the responsiveness at the time of fine positioning is improved, and the fine positioning speed is increased.
[0030]
When the spring constant in the direction perpendicular to the preload direction is further increased and K (vertical) = 150 (N / μm), the displacement in the direction perpendicular to the preload direction = 0.6 / 150 = 0. 0.004 μm = 4 nm, and positioning of about 4 nm can be performed. When the spring constant in the direction perpendicular to the preload direction is further increased and K (vertical) = 1500 (N / μm), the displacement in the direction perpendicular to the preload direction = 0.6 / 1500. = 0.004 μm = 0.4 nm, and the response at the time of positioning is further improved as compared with the above-described example.
[0031]
That is, the spring constant is reduced in the preload direction, and the spring constant is increased in the direction perpendicular to the preload direction. As a result, the displacement loss of the piezoelectric elements 1A and 1B in the direction perpendicular to the preload direction is reduced, and positioning at the nm level is possible.
[0032]
As described above, the preload applying mechanism of the actuator has high rigidity in the lateral direction and outputs an extremely small displacement. Therefore, the preload applying mechanism using the hinges 4A to 4C as shown in the embodiment is optimal.
[0033]
The setting of the spring constant may be appropriately selected according to the required positioning accuracy, the type of the piezoelectric element, the shape and the material of the vibrating body and the base, and the like. The value of the spring constant perpendicular to the preload direction is preferably 10 times or more the spring constant in the preload direction.
[0034]
FIG. 5 shows a configuration example of a device for driving the actuator of the present invention by mode switching. The speed and the target value of the set value are input to the controller 21 in the control device 20. The controller 21 receives a measurement value from a length measuring device 40 disposed opposite the movable member 41, and the controller 21 performs a coarse movement mode or a fine movement mode based on the measured measurement value and the input set value. Is determined, and the coarse / fine movement switching mechanism 22 is controlled according to the determination. The coarse / fine movement switching mechanism 22 drives the coarse movement mode drive circuit 31 in the drive device 30 in the coarse movement mode, and drives the fine movement mode drive circuit 32 in the fine movement mode. The coarse movement mode drive circuit 31 and the fine movement mode drive circuit 32 drive the piezoelectric elements (1A, 1B or 10A, 10B) of the actuator as described above, whereby the movable member 41 moves by coarse movement or fine movement.
[0035]
That is, when the distance between the current position (measured value) and the target position (set input value) is far, the actuator is driven in the high-speed coarse movement mode. At this time, a sine wave of a frequency near the resonance frequency having an arbitrary phase difference is input to the two piezoelectric elements (1A, 1B or 10A, 10B). When the measured value approaches the target position to some extent, the controller 21 switches the driving mode from the coarse movement mode to the fine movement mode via the coarse / fine movement switching mechanism 22. In the fine movement mode, a voltage proportional to the positional deviation is applied to the two piezoelectric elements (1A, 1B or 10A, 10B), and the piezoelectric elements (1A, 1B or 10A, 10B) are displaced. Moves slightly.
[0036]
In the above-described embodiment, two piezoelectric elements are arranged at an arbitrary crossing angle, but three or more piezoelectric elements may be provided.
[0037]
【The invention's effect】
According to the present invention, coarse movement to fine movement can be performed by one actuator, and more accurate positioning than conventional piezoelectric actuators is possible. Further, by using an elastic hinge for the preload mechanism of the actuator, a high spring constant can be obtained in the lateral direction, and the actuator can be used as an actuator capable of efficiently outputting extremely small displacement of the piezoelectric element.
[0038]
Therefore, the piezoelectric actuator of the present invention is used in a non-magnetic environment, and is most suitable for a positioning device such as a semiconductor manufacturing device that requires minute positioning.
[Brief description of the drawings]
FIG. 1 is a mechanism diagram showing a first embodiment of the present invention.
FIG. 2 is a diagram illustrating a driving example of a piezoelectric element.
FIG. 3 is a view showing a mechanism and operation of a second embodiment of the present invention.
FIG. 4 is a diagram for explaining the operation of the present invention.
FIG. 5 is a block diagram illustrating a configuration example of a driving device for a piezoelectric actuator according to the present invention.
FIG. 6 is a diagram for explaining a conventional example.
FIG. 7 is a diagram for explaining a conventional example.
FIG. 8 is a diagram for explaining a conventional example.
[Explanation of symbols]
1A, 1B Piezoelectric element 2 Vibrator 3 Base 4A-4C Elastic hinge 5A-5D Fixing screw 6 Movable member 10A, 10B Piezoelectric element 11 Vibrator 12 Base 13 Movable member 20 Controller 21 Controller 22 Coarse / fine movement switching mechanism 30 Drive 31 Coarse mode drive circuit 32 Fine mode drive circuit 40 Length measuring device 41 Movable member

Claims (4)

少なくとも2個以上の圧電素子を任意の交差角度で配設し、前記圧電素子の各一端は振動体によって接合されており、各他端はV字型のベースに接合されており、前記振動体の先端部が可動部材に当接されている圧電アクチュエータであり、前記圧電素子及び振動体の固有振動数にほぼ等しい高周波電圧を任意の位相差を有して前記圧電素子に印加することによって、前記圧電素子及び振動体を振動させ、前記振動によって前記振動体に楕円運動を生じさせて前記可動部材を高速移動させる粗動モードと、前記圧電素子に任意の電圧を印加することで前記圧電素子を個別に伸縮させて前記可動部材を微動させる微動モードとを有することを特徴とする圧電アクチュエータ。At least two or more piezoelectric elements are arranged at an arbitrary crossing angle, one end of each of the piezoelectric elements is joined by a vibrating body, and the other end is joined to a V-shaped base. By applying a high-frequency voltage substantially equal to the natural frequency of the piezoelectric element and the vibrating body to the piezoelectric element with an arbitrary phase difference, the tip of which is in contact with the movable member, A coarse movement mode in which the piezoelectric element and the vibrating body are vibrated, and the vibrating body causes an elliptical motion to move the movable member at a high speed, and an arbitrary voltage is applied to the piezoelectric element to cause the piezoelectric element A fine movement mode in which the movable member is finely moved by individually expanding and contracting the movable members. 前記ベースに弾性ヒンジを用いたばね機構を設け、前記ばね機構で前記圧電素子に予圧を負荷するようになっている請求項1に記載の圧電アクチュエータ。The piezoelectric actuator according to claim 1, wherein a spring mechanism using an elastic hinge is provided on the base, and the spring mechanism applies a preload to the piezoelectric element. 前記弾性ヒンジの予圧負荷方向に垂直な方向のばね定数の値が、予圧負荷方向のばね定数の値より大きくなっている請求項2に記載の圧電アクチュエータ。The piezoelectric actuator according to claim 2, wherein a value of a spring constant of the elastic hinge in a direction perpendicular to a preloading direction is larger than a value of a spring constant in a preloading direction. 前記予圧負荷方向に垂直なばね定数の値が、前記予圧負荷方向のばね定数の値に対して10倍以上である請求項3に記載の圧電アクチュエータ。4. The piezoelectric actuator according to claim 3, wherein a value of a spring constant perpendicular to the preload direction is 10 times or more a value of a spring constant in the preload direction.
JP2003040767A 2003-02-19 2003-02-19 Piezoelectric actuator Pending JP2004254390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003040767A JP2004254390A (en) 2003-02-19 2003-02-19 Piezoelectric actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003040767A JP2004254390A (en) 2003-02-19 2003-02-19 Piezoelectric actuator

Publications (1)

Publication Number Publication Date
JP2004254390A true JP2004254390A (en) 2004-09-09

Family

ID=33024527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003040767A Pending JP2004254390A (en) 2003-02-19 2003-02-19 Piezoelectric actuator

Country Status (1)

Country Link
JP (1) JP2004254390A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006271022A (en) * 2005-03-22 2006-10-05 Taiheiyo Cement Corp Method of driving ultrasonic motor
US7554243B2 (en) 2004-07-02 2009-06-30 Nokia Corporation Class DE driving amplifier for piezoelectric actuators
US7642696B2 (en) 2007-07-11 2010-01-05 Panasonic Corporation Vibration actuator and drive unit including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7554243B2 (en) 2004-07-02 2009-06-30 Nokia Corporation Class DE driving amplifier for piezoelectric actuators
JP2006271022A (en) * 2005-03-22 2006-10-05 Taiheiyo Cement Corp Method of driving ultrasonic motor
JP4585343B2 (en) * 2005-03-22 2010-11-24 太平洋セメント株式会社 Driving method of ultrasonic motor
US7642696B2 (en) 2007-07-11 2010-01-05 Panasonic Corporation Vibration actuator and drive unit including the same

Similar Documents

Publication Publication Date Title
KR101656112B1 (en) Semi-resonant driving systems and methods thereof
JPH07274552A (en) Linear motor
CN110959254B (en) Method for closed-loop motion control of ultrasonic motor
Newton et al. A linear piezoelectric motor
CN107005177B (en) Method and apparatus for controlling a piezoelectric motor
KR20050114208A (en) High resolution piezoelectric motor
US5760528A (en) Vibration actuator
JP4794901B2 (en) Driving system for vibration type actuator and driving method thereof
JP4814948B2 (en) Control device for vibration actuator
JPH09182468A (en) Oscillatory actuator
KR20080041126A (en) Actuation device
JP2004254390A (en) Piezoelectric actuator
JP4804037B2 (en) Impact drive actuator
US5300851A (en) Linear-type actuator
JP2004140946A (en) Actuator
JP4578799B2 (en) Piezoelectric actuator and electronic device using the same
JP3190636B2 (en) Computer-readable storage medium storing a piezoelectric actuator, a method for controlling a piezoelectric actuator, and a program for causing a computer to execute the method for controlling a piezoelectric actuator
JPH08182351A (en) Ultrasonic actuator
JPH0965668A (en) Vibration actuator and its adjustment
JP2005261080A (en) Actuator
JPH04145873A (en) Ultrasonic motor
JP2005010320A (en) Optical scanner, method of driving oscillating mirror, optical write device and image forming device
JPH11191967A (en) Driver
JP4533097B2 (en) Piezoelectric device and actuator and speaker using the same
JP2004274837A (en) Method and device for driving ultrasonic motor