JP2004253641A - Electromagnetic wave absorbing material - Google Patents

Electromagnetic wave absorbing material Download PDF

Info

Publication number
JP2004253641A
JP2004253641A JP2003042861A JP2003042861A JP2004253641A JP 2004253641 A JP2004253641 A JP 2004253641A JP 2003042861 A JP2003042861 A JP 2003042861A JP 2003042861 A JP2003042861 A JP 2003042861A JP 2004253641 A JP2004253641 A JP 2004253641A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
wave absorbing
absorbing material
radio wave
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003042861A
Other languages
Japanese (ja)
Inventor
Yuji Kudo
祐治 工藤
Atsushi Omote
篤志 表
Jun Kuwata
純 桑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003042861A priority Critical patent/JP2004253641A/en
Publication of JP2004253641A publication Critical patent/JP2004253641A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic wave absorbing thin and lightweight material being excellent in the properties of absorbing electromagnetic waves and having a wide band of frequencies. <P>SOLUTION: The electromagnetic wave absorbing material is partially formed of a laminate composed of laminated several kinds of compounds represented by formula, ACu<SB>3</SB>B<SB>4</SB>O<SB>12</SB>, wherein A is an alkaline earth or a mixture of alkaline earth elements, and B denotes Ti, Zr, Hf, Fe, or a mixture of them. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電磁波吸収材料に関する。
【0002】
【従来の技術】
近年、高度情報化社会の進展に伴い、携帯電話をはじめとする移動体通信の利用が急増している。今後、無線LANやETCなどが更に普及すれば、電波の利用はますます多くなると予想される。また、高速で動作する電子機器の急増に伴い、これらから発生する電磁波もまた急増している。このように、近年電波環境は多様かつ複雑化しており、これらによる電子機器の誤動作や人体への影響といったいわゆる電波障害は年々増加している。
【0003】
電波障害対策に用いられるものとして電波吸収体がある。電波吸収体は入射した電磁波を内部で熱に変換し透過波および反射波を低減させるものである。良く知られているのは、フェライト焼結体やこれを含んだものであるが、これらは重量が大きくなるため取り扱いが容易ではない。
【0004】
このため、フェライト以外の材料として誘電体を用い、電波吸収体を軽量化しようという試みがなされてきた。その一例として、カーボンブラック及び炭素繊維を樹脂に配合した組成物を用いたものがある(特許文献1参照。)。
【0005】
【特許文献1】
特開平10−27986号公報
【0006】
【発明が解決しようとする課題】
しかし、これまで知られていた電波吸収体は誘電率および誘電損失が十分には大きくないため、十分な誘電特性を有する誘電体としてデバイスや機器等に用いるためには、厚みが大きくなってしまうため、デバイスや機器の小型・軽量化は困難であった。また、空間とのインピーダンス整合が必要となるため、電波吸収体として機能する周波数帯域が狭いという問題があった。
【0007】
本発明は、薄くかつ軽量で広帯域に渡り電磁波吸収特性に優れた材料とそれを用いた電波吸収体を提供することを目的とする。
【0008】
【課題を解決するための手段】
この課題を解決するために本発明は、ACu12(Aはアルカリ土類もしくはアルカリ土類の混合体、BはTi、Zr、Hf、Feもしくはこれらの混合体)である組成物と複数種類積層した積層体を少なくとも一部に用いたことを特徴とする電磁波吸収材料である。
【0009】
上記組成物の電磁波吸収材料を用いた誘電体は、比誘電率の実数部εr’が数万から十数万、誘電損失(比誘電率の実数部εr’と虚数部εr”の比、tanδ)が0.01から10程度とこれまで知られている誘電体と比べてはるかに大きく、薄く軽量の電波吸収体が実現可能である。また、上記組成のAおよびBに混合体を用い各々の混合比率を変えることにより、εr’、tanδを調節でき、空間とのインピーダンス整合が可能である。そしてさらに、これらを複数層積層することにより、電波吸収特性の広帯域化が可能となる。
【0010】
【発明の実施の形態】
本発明の第1の発明は、ACu12(Aはアルカリ土類もしくはアルカリ土類の混合体、BはTi、Zr、Hf、Feもしくはこれらの混合体)である組成物を複数種類積層した積層体を少なくとも一部に用いたことを特徴とする電磁波吸収材料である。
【0011】
本発明の第2の発明は、前記第1の発明による電磁波吸収材料を用いた各種デバイス、機器、システムであり、電波吸収体、高周波回路、電子機器、無線通信機、無線通信システム等に用いることができる。
【0012】
以下、本発明の実施の形態について説明する。
【0013】
(実施の形態)
本発明の電磁波吸収材料は、誘電体材料として組成がACu12(Aはアルカリ土類もしくはアルカリ土類の混合体、BはTi、Zr、Hf、Feもしくはこれらの混合体)である磁器を複数種類積層して用いたものである。誘電体材料としてこの積層した磁器のみを用いても良いし、誘電率および誘電損失の調整、または成形性向上などのためにこの磁器を樹脂に配合しても良い。誘電体材料1と誘電体材料2とを積層した2層積層の場合、誘電率および誘電損失は、次の(数1)式を基に調整する。
【0014】
【数1】

Figure 2004253641
【0015】
前記樹脂としては、用途に応じた誘電率、誘電損失、強度、耐熱性、成形性などの特性を有する樹脂を用いることができる。電波吸収体を形成する場合、前記磁器もしくは磁器を前記樹脂に配合した複合誘電体材料を単独で用いても良いし、誘電体層として前記磁器もしくは前記複合誘電体材料を用い、これと電波反射層を積層し電波吸収体を形成しても良い。さらにこれらに付加的な層、たとえば耐環境性を有する表面層を有することも可能である。
【0016】
この電波吸収体は薄くかつ軽量であるので、これを使用することにより高周波回路や電子機器、無線通信機を小型化、軽量化することができる。
【0017】
また、室内の壁や天井に施工することも容易であるため、無線を用いた屋内システムにおけるマルチパス等を低減することができ、システムの信頼性を容易に向上させることができる。
【0018】
さらに、建造物骨組みや壁材にかける重量負荷が小さいため、外壁にこの電波吸収体を用いることも容易である。
【0019】
【実施例】
以下、本発明の実施例を説明する。
【0020】
(実施例)
始めに、炭酸カルシウムCaCO、酸化銅CuO 、酸化チタンTiOをモル比で1:3:4となるよう秤量し、ボールミルにて5日間混合、粉砕し、1000度で4時間、仮焼成した。
【0021】
次に、この粉体をらいかいきにて粉砕した後、有機バインダと有機溶媒を加え、ボールミルにて6日間混合し、ドクターブレード法を用いてベースフィルムに塗布しグリーンシートとした。
【0022】
次に、炭酸カルシウムCaCO、酸化銅CuO 、ジルコニアZrOをモル比で1:3:4となるよう秤量し、上記の工程と同様の工程を用いてグリーンシートとした。
【0023】
これらのグリーンシートを100mm×100mmに裁断した後、圧着し、1100度で6時間、本焼成し、厚さ80μmのシートを得た。
【0024】
この電波吸収体の反射減衰量を、ネットワークアナライザを用いて測定した。測定結果と従来例(上記特許文献1の実施例1)との比較を、次の(表1)に示す。
【0025】
【表1】
Figure 2004253641
【0026】
(表1)からわかるように、本実施例による電波吸収体は、従来例と比較して、およそ同じ周波数領域において遜色ない電波吸収能を、広帯域に渡り、はるかに薄い厚みで実現することができる。
【0027】
【発明の効果】
以上のように本発明によれば、従来を比べて非常に薄く且つ軽量で、広帯域に渡って電磁波吸収特性に優れた電磁波吸収材料が実現可能となるという有利な効果が得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electromagnetic wave absorbing material.
[0002]
[Prior art]
2. Description of the Related Art In recent years, with the development of a highly information-oriented society, the use of mobile communication such as mobile phones has been rapidly increasing. It is expected that the use of radio waves will increase more and more as wireless LANs and ETCs become more widespread in the future. Also, with the rapid increase of electronic devices operating at high speed, the electromagnetic waves generated from these devices have also increased rapidly. Thus, in recent years, the radio wave environment has become diversified and complicated, and so-called radio disturbances such as malfunctions of electronic devices and effects on the human body due to these are increasing year by year.
[0003]
A radio wave absorber is used as a measure against radio interference. The radio wave absorber converts an incident electromagnetic wave into heat inside to reduce transmitted and reflected waves. Well-known are ferrite sintered bodies and those containing them, but these are not easy to handle due to their large weight.
[0004]
For this reason, attempts have been made to reduce the weight of the radio wave absorber by using a dielectric as a material other than ferrite. As one example, there is one using a composition in which carbon black and carbon fiber are mixed with a resin (see Patent Document 1).
[0005]
[Patent Document 1]
JP-A-10-27986
[Problems to be solved by the invention]
However, conventionally known radio wave absorbers do not have sufficiently large dielectric constant and dielectric loss, and therefore have a large thickness in order to be used as a dielectric having sufficient dielectric properties in devices and devices. Therefore, it has been difficult to reduce the size and weight of devices and equipment. Further, since impedance matching with space is required, there is a problem that a frequency band functioning as a radio wave absorber is narrow.
[0007]
An object of the present invention is to provide a material that is thin, lightweight, and excellent in electromagnetic wave absorption characteristics over a wide band, and a radio wave absorber using the same.
[0008]
[Means for Solving the Problems]
In order to solve this problem, the present invention provides a composition which is ACu 3 B 4 O 12 (A is an alkaline earth or a mixture of alkaline earths, and B is Ti, Zr, Hf, Fe or a mixture thereof). And an electromagnetic wave absorbing material characterized in that at least a part of a laminate obtained by laminating a plurality of types is used.
[0009]
The dielectric using the electromagnetic wave absorbing material of the above composition has a real part εr ′ of relative permittivity of tens of thousands to several hundred thousand, and a dielectric loss (ratio of real part εr ′ of relative permittivity to imaginary part εr ″, tanδ). ) Is about 0.01 to 10, which is much larger than known dielectrics, and a thin and lightweight radio wave absorber can be realized. Εr ′ and tan δ can be adjusted by changing the mixing ratio of, and impedance matching with the space can be achieved, and further, by laminating a plurality of these layers, it is possible to broaden the radio wave absorption characteristics.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The first invention of the present invention provides a composition comprising ACu 3 B 4 O 12 (where A is an alkaline earth or a mixture of alkaline earths, and B is Ti, Zr, Hf, Fe or a mixture thereof). An electromagnetic-wave-absorbing material characterized in that at least a part of a laminated body is used.
[0011]
A second invention of the present invention is various devices, apparatuses, and systems using the electromagnetic wave absorbing material according to the first invention, and is used for a radio wave absorber, a high-frequency circuit, an electronic device, a wireless communication device, a wireless communication system, and the like. be able to.
[0012]
Hereinafter, embodiments of the present invention will be described.
[0013]
(Embodiment)
The electromagnetic wave absorbing material of the present invention has a composition of ACu 3 B 4 O 12 (A is an alkaline earth or a mixture of alkaline earths, B is Ti, Zr, Hf, Fe or a mixture thereof) as a dielectric material. A plurality of types of porcelain are stacked and used. The laminated porcelain alone may be used as a dielectric material, or the porcelain may be blended with a resin for the purpose of adjusting the dielectric constant and the dielectric loss or improving the moldability. In the case of a two-layer laminate in which the dielectric material 1 and the dielectric material 2 are laminated, the dielectric constant and the dielectric loss are adjusted based on the following (Equation 1).
[0014]
(Equation 1)
Figure 2004253641
[0015]
As the resin, a resin having characteristics such as a dielectric constant, a dielectric loss, strength, heat resistance, and moldability according to a use can be used. When forming the radio wave absorber, the porcelain or a composite dielectric material obtained by mixing the porcelain with the resin may be used alone, or the porcelain or the composite dielectric material may be used as a dielectric layer, and the radio wave reflection may be performed. Layers may be stacked to form a radio wave absorber. It is also possible to have additional layers on these, for example surface layers which are environmentally resistant.
[0016]
Since this radio wave absorber is thin and light, the use of the radio wave absorber can reduce the size and weight of high-frequency circuits, electronic devices, and wireless communication devices.
[0017]
In addition, since it is easy to install on a wall or ceiling in a room, a multipath or the like in a wireless indoor system can be reduced, and the reliability of the system can be easily improved.
[0018]
Furthermore, since the weight load applied to the building framework and wall material is small, it is easy to use this radio wave absorber for the outer wall.
[0019]
【Example】
Hereinafter, examples of the present invention will be described.
[0020]
(Example)
First, calcium carbonate CaCO 3 , copper oxide CuO 2, and titanium oxide TiO 2 were weighed at a molar ratio of 1: 3: 4, mixed in a ball mill for 5 days, pulverized, and calcined at 1000 ° C. for 4 hours. .
[0021]
Next, this powder was pulverized by crushing, an organic binder and an organic solvent were added, mixed for 6 days by a ball mill, and applied to a base film using a doctor blade method to obtain a green sheet.
[0022]
Next, calcium carbonate CaCO 3 , copper oxide CuO 2 , and zirconia ZrO 2 were weighed so as to have a molar ratio of 1: 3: 4, and a green sheet was formed using the same steps as those described above.
[0023]
After cutting these green sheets into 100 mm x 100 mm, they were pressed and baked at 1100 ° C for 6 hours to obtain sheets having a thickness of 80 µm.
[0024]
The return loss of this radio wave absorber was measured using a network analyzer. The following (Table 1) shows a comparison between the measurement results and a conventional example (Example 1 of Patent Document 1).
[0025]
[Table 1]
Figure 2004253641
[0026]
As can be seen from (Table 1), the radio wave absorber according to the present embodiment can realize a radio wave absorption capacity comparable to that of the conventional example in a substantially same frequency region with a much thinner thickness over a wide band. it can.
[0027]
【The invention's effect】
As described above, according to the present invention, there is obtained an advantageous effect that it is possible to realize an electromagnetic wave absorbing material which is extremely thin and lightweight as compared with the related art, and has excellent electromagnetic wave absorbing characteristics over a wide band.

Claims (6)

ACu12(Aはアルカリ土類もしくはアルカリ土類の混合体、BはTi、Zr、Hf、Feもしくはこれらの混合体)である組成物を複数種類積層した積層体を少なくとも一部に用いたことを特徴とする電磁波吸収材料。At least a part of a laminate obtained by laminating a plurality of types of compositions of ACu 3 B 4 O 12 (A is an alkaline earth or a mixture of alkaline earths, B is Ti, Zr, Hf, Fe or a mixture thereof) An electromagnetic wave absorbing material used for: 請求項1記載の電磁波吸収材料を誘電体の一部または全部として用いた電波吸収体。A radio wave absorber using the electromagnetic wave absorbing material according to claim 1 as a part or all of a dielectric. 請求項1記載の電磁波吸収材料を用いた高周波回路。A high-frequency circuit using the electromagnetic wave absorbing material according to claim 1. 請求項1記載の電磁波吸収材料を用いた電子機器。An electronic device using the electromagnetic wave absorbing material according to claim 1. 請求項1記載の電磁波吸収材料を用いた無線通信機。A wireless communication device using the electromagnetic wave absorbing material according to claim 1. 請求項1記載の電磁波吸収材料を用いた無線通信システム。A wireless communication system using the electromagnetic wave absorbing material according to claim 1.
JP2003042861A 2003-02-20 2003-02-20 Electromagnetic wave absorbing material Pending JP2004253641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003042861A JP2004253641A (en) 2003-02-20 2003-02-20 Electromagnetic wave absorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003042861A JP2004253641A (en) 2003-02-20 2003-02-20 Electromagnetic wave absorbing material

Publications (1)

Publication Number Publication Date
JP2004253641A true JP2004253641A (en) 2004-09-09

Family

ID=33026030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003042861A Pending JP2004253641A (en) 2003-02-20 2003-02-20 Electromagnetic wave absorbing material

Country Status (1)

Country Link
JP (1) JP2004253641A (en)

Similar Documents

Publication Publication Date Title
JP5256612B2 (en) Hexagonal ferrite and antenna and communication equipment using the same
EP1113459A2 (en) Composite dielectric material containing ceramic powders and substrate coated with this material
JP2005278067A (en) Antenna device
WO2006035912A1 (en) Electromagnetic wave absorber
JP5322429B2 (en) Composite sintered body of magnetic body and dielectric body and LC composite electronic component
JP2006128664A (en) Electromagnetic wave absorber
JP5218396B2 (en) Electromagnetic interference suppression sheet, high-frequency signal flat cable, flexible printed circuit board, and electromagnetic interference suppression sheet manufacturing method
US7205253B2 (en) Dielectric ceramic composition, method for manufacture thereof and multilayer ceramic part
JP2004253640A (en) Electromagnetic wave absorbing material
US11096318B2 (en) Ferrite laminate and noise suppression sheet
US7205254B2 (en) Dielectric ceramic composition and multilayer ceramic part
JP2004253641A (en) Electromagnetic wave absorbing material
CN106830919A (en) Low-temperature sintering wolframite structure microwave-medium ceramics and preparation method thereof
RU2657018C1 (en) Absorber electromagnetic waves of the gigahertz range
JP2001130952A (en) Dielectric porcelain and laminated body
CN104909751A (en) Temperature-stable low-dielectric-constant microwave dielectric ceramic CaLi3Nd3W2O13
CN114479418A (en) Magnetic dielectric resin composition and application thereof
CN112538254A (en) Magnetic dielectric resin composition, laminated board containing same and printed circuit board containing laminated board
JP2010150051A (en) Magnetic composition, inductor, and substrate for electronic circuit
JP2006344407A (en) Composite dielectric material, prepreg using the same, metal foil painted object, molded compact, composite dielectric base board, multi-layered base board, and manufacturing method of composite dielectric material
JP4249690B2 (en) High frequency dielectric ceramics and laminates
KR100455342B1 (en) Broad-band electromagnetic wave absorber
US20240010810A1 (en) Magnetic dielectric resin composition, and prepreg and copper clad laminate comprising same
JP2003243218A (en) Soft magnetic hexagonal ferrite compound particle powder, green sheet using the same, and soft magnetic hexagonal ferrite sintered body
KR100606174B1 (en) Broad-band electromagnetic wave absorber