JP2004253572A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2004253572A
JP2004253572A JP2003041766A JP2003041766A JP2004253572A JP 2004253572 A JP2004253572 A JP 2004253572A JP 2003041766 A JP2003041766 A JP 2003041766A JP 2003041766 A JP2003041766 A JP 2003041766A JP 2004253572 A JP2004253572 A JP 2004253572A
Authority
JP
Japan
Prior art keywords
resistance element
polysilicon layer
dummy pattern
semiconductor device
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003041766A
Other languages
Japanese (ja)
Inventor
Yutaka Maruo
豊 丸尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003041766A priority Critical patent/JP2004253572A/en
Publication of JP2004253572A publication Critical patent/JP2004253572A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device having a resistor element composed of a polysilicon layer that is not exposed readily due to the effect of dishing and can maintain its shape, and to provide a method of manufacturing the device. <P>SOLUTION: On a semiconductor substrate, the resistor element 11 composed of the polysilicon layer is formed on, for example, an element separating insulating film 10. In both ends of the resistor element 11, silicide electrodes 12 are formed. The resistor element 11 is surrounded by the dummy pattern 13 of the polysilicon layer left in accordance with at least a flattened stopper film. The flattened stopper layer is composed of a silicon nitride film, but is removed in this case. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、特に半導体集積回路内に大面積の抵抗素子形成領域を有する半導体ウェハ上の被平坦化処理層を化学的機械的研磨により平坦化する工程を含む半導体装置及びその製造方法に関する。
【0002】
【従来の技術】
半導体素子の微細化、高集積化に伴い、ゲート電極や配線の細線化、ピッチの縮小化は進む一方である。配線層数は増大し、形成層間の平坦化処理には化学的機械的研磨、いわゆるCMP(Chemical Mechanical Polishing )技術は不可欠である。その中で大きな面積の抵抗素子を形成するにはCMPの影響を考慮しなければならない。すなわち、ディッシングの影響により、抵抗素子本来の形状が損なわれる危険性がある。
【0003】
図5(a),(b)は、それぞれ従来の抵抗素子部分の層間絶縁膜が平坦化される問題を説明する断面図である。ポリシリコンでなる抵抗素子パターン上に層間絶縁膜が形成されている(図5(a))。この抵抗素子パターンは大面積ゆえ、周囲の図示しない平坦化終了レベルまでCMPがなされると、抵抗素子パターンの中央付近がディッシングの影響によって露出する(図5(b))。こうなると、後のエッチング工程などで露出したポリシリコンがエッチングされ、本来の厚さが維持できない、抵抗素子として機能しない状態となる危険性がある。
【0004】
【発明が解決しようとする課題】
上記のような抵抗素子パターンは、メモリの昇圧回路などで用いられることがあり、CMP時のディッシングの影響でパターン形状が損なわれることになると問題である。
本発明は上記のような事情を考慮してなされたもので、ディッシングの影響で容易に露出せず形状を維持できるポリシリコン層でなる抵抗素子を有する半導体装置及びその製造方法を提供しようとするものである。
【0005】
【課題を解決するための手段】
本発明に係る半導体装置は、
半導体集積回路内にポリシリコン層でなる抵抗素子を有し、
前記抵抗素子が、少なくとも平坦化ストッパ膜に従って残された前記ポリシリコン層のダミーパターンに囲まれていることを特徴とする。
【0006】
上記本発明に係る半導体装置によれば、ダミーパターンが大面積の抵抗素子の周囲に設けられる。このダミーパターン上は化学的機械的研磨による平坦化時のディッシング防壁となる平坦化ストッパ膜のパターンが形成される。
なお、前記抵抗素子はその端部にシリサイド電極を有することを特徴とする。選択的にシリサイド電極を形成することにより抵抗の両端子が形成される。
【0007】
本発明に係る半導体装置の製造方法は、
半導体集積回路内へのポリシリコン層でなる抵抗素子の形成に関し、
少なくとも抵抗素子形成予定部を含む領域上に前記ポリシリコン層を一様に形成する工程と、
前記抵抗素子形成予定部の周囲にダミーパターン領域を含む平坦化ストッパ膜をパターニングする工程と、
前記ポリシリコン層を所定の抵抗素子形状にパターニングすると共に前記平坦化ストッパ膜のパターンに従って抵抗素子形状の周囲に所定距離離間してダミーパターンを形成する工程と、
前記抵抗素子形状及びダミーパターン上に層間の絶縁膜を形成する工程と、
前記絶縁膜を化学的機械的研磨によって前記平坦化ストッパ膜のレベルまで平坦化する工程と、
を具備したことを特徴とする。
【0008】
上記本発明に係る半導体装置の製造方法によれば、化学的機械的研磨時においてダミーパターン上部は平坦化ストッパ膜であり、ディッシングの影響が抵抗素子形状表面に及ばないようにする防壁となる。
なお、前記抵抗素子形状に対し所定の箇所を選択的にシリサイド化する工程をさらに具備することを特徴とする。
また、前記平坦化ストッパ膜は、前記平坦化する工程の後に除去される工程をさらに具備することを特徴とする。
【0009】
【発明の実施の形態】
図1は、本発明の一実施形態に係る半導体装置の要部構成を示し、抵抗素子の平面図である。半導体基板において、例えば素子分離絶縁膜10上にポリシリコン層でなる抵抗素子11が形成されている。抵抗素子11の両端部はシリサイド電極12が形成されている。この抵抗素子11は、少なくとも平坦化ストッパ膜に従って残された上記ポリシリコン層のダミーパターン13に囲まれている。上記平坦化ストッパ膜はシリコン窒化膜であるが、ここでは除去されている。
【0010】
上記実施形態によれば、ダミーパターン13が大面積の抵抗素子11の周囲に設けられる。このダミーパターン13上は平坦化ストッパ膜のパターンが形成され、化学的機械的研磨(CMP)による平坦化時のディッシング防壁となる。これにより、CMPを経た後でも抵抗素子11の形状が層間絶縁膜より露出することはなく、後のエッチング工程においても支障がない。
【0011】
図2(a)〜(d)は、本発明の半導体装置の製造方法であり、図1の構成における抵抗素子の形成を工程順に示す断面図である。図1と同様の箇所には同一の符号を付す。図2(a)に示すように、半導体基板において、例えば素子分離絶縁膜10の抵抗素子形成予定部を含む領域上にポリシリコン層11a、シリコン窒化膜13bを形成する。シリコン窒化膜13bは平坦化ストッパ膜であり、抵抗素子形成予定部の周囲のダミーパターン領域を含むようパターニングする。
【0012】
次に、図2(b)に示すように、レジスト膜21をフォトレジスト工程によりパターニングする。そして、レジスト膜21のパターン及びシリコン窒化膜13bのパターンに従ってポリシリコン層11aをエッチングする。これにより、所定の抵抗素子11の形状を形成する。抵抗素子11の形状の周囲には所定距離離間してポリシリコン層13a、シリコン窒化膜13bの積層でなるダミーパターン13が設けられる。
【0013】
次に、図2(c)に示すように、レジスト膜21を除去し、CVD(Chemical Vapor Deposition )法によって酸化膜22を形成する。抵抗素子11上方には端子部を除いてレジスト層(図示せず)をパターニングする。その後、異方性エッチングすることによって、酸化膜22による抵抗素子11の側壁及びキャップが形成される。ダミーパターン13の少なくともポリシリコン層13a側壁にも酸化膜22が残る。次に、例えばコバルト膜のスパッタリング堆積を経てポリシリコン層13aの露出部分にシリサイド電極12を形成する。
【0014】
次に、図2(d)に示すように、CVD法によって抵抗素子11及びダミーパターン13を覆う層間絶縁膜24を形成する。その後、CMP技術を用いて平坦化する。その際、ダミーパターン13にあるシリコン窒化膜13bのレベルまで研磨し平坦化が終了する。このとき、大面積の抵抗素子11へのディッシングが起こるが、ダミーパターン13におけるシリコン窒化膜13bがディッシング防壁となる。これにより、CMPを経た後でも抵抗素子11の形状が層間絶縁膜より露出することはなく、後のエッチング工程においても支障がない。
その後、ダミーパターン13にあるシリコン窒化膜13bを除去してもよい。これにより、図1に示すような、周囲にダミーパターンのある抵抗素子11が形成される。
【0015】
上記実施形態によれば、ダミーパターン13が大面積の抵抗素子11の周囲に設けられる。化学的機械的研磨時においてダミーパターン上部はシリコン窒化膜13bの平坦化ストッパ膜であり、ディッシングの影響が抵抗素子形状表面に及ばないようにする防壁となる。
【0016】
なお、抵抗素子11のパターン形状は様々考えられる。
図3、図4は、それぞれ抵抗素子11の他のパターン形状を示す平面図である。前記図1と同様の箇所には同一の符号を付す。図3に示すように長さを稼ぐための形状が考えられる。また、図5では、周囲のダミーパターン13内にも所定箇所ダミーパターン13を点在させてある。より大面積で抵抗素子を形成する場合のディッシングの影響を緩和する形態として有利である。
【0017】
以上説明したように本発明によれば、ディッシングの懸念があるある大面積の抵抗素子の周囲に所定高さのダミーパターンを形成する。ダミーパターンの下層は抵抗素子を形成するときに共に形成でき、上層は他の素子の形成に関る。この結果、ディッシングの影響で容易に露出せず形状を維持できるポリシリコン層でなる抵抗素子を有する半導体装置及びその製造方法を提供することができる。
【図面の簡単な説明】
【図1】一実施形態に係る半導体装置の要部構成で抵抗素子の平面図。
【図2】図1の構成における抵抗素子の形成を工程順に示す断面図。
【図3】抵抗素子の他のパターン形状を示す第1の平面図。
【図4】抵抗素子の他のパターン形状を示す第2の平面図。
【図5】従来の抵抗素子部分の層間絶縁膜の平坦化問題を示す断面図。
【符号の説明】
10…素子分離絶縁膜、11…抵抗素子、11a,13a…ポリシリコン層、12…シリサイド電極、13…ダミーパターン、13b…シリコン窒化膜、21…レジスト膜、22…酸化膜、24…層間絶縁膜。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device including a step of flattening a flattening processing layer on a semiconductor wafer having a large-area resistive element formation region in a semiconductor integrated circuit by chemical mechanical polishing, and a method of manufacturing the same.
[0002]
[Prior art]
With miniaturization and high integration of semiconductor elements, gate electrodes and wirings are becoming finer and pitches are being reduced. The number of wiring layers increases, and chemical mechanical polishing, a so-called CMP (Chemical Mechanical Polishing) technique, is indispensable for a planarization process between formation layers. In order to form a resistive element having a large area, the influence of CMP must be considered. That is, there is a risk that the original shape of the resistance element may be damaged by the influence of dishing.
[0003]
FIGS. 5A and 5B are cross-sectional views for explaining a problem that an interlayer insulating film in a conventional resistance element portion is flattened. An interlayer insulating film is formed on the resistive element pattern made of polysilicon (FIG. 5A). Since this resistive element pattern has a large area, when CMP is performed up to the surrounding flattening end level (not shown), the vicinity of the center of the resistive element pattern is exposed due to dishing (FIG. 5B). In this case, there is a danger that the polysilicon exposed in a later etching step or the like is etched, the original thickness cannot be maintained, and the element does not function as a resistance element.
[0004]
[Problems to be solved by the invention]
The resistive element pattern as described above is sometimes used in a booster circuit of a memory or the like, and there is a problem that the pattern shape is damaged by the influence of dishing at the time of CMP.
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a semiconductor device having a resistive element made of a polysilicon layer which is not easily exposed due to dishing and can maintain its shape, and a method of manufacturing the same. Things.
[0005]
[Means for Solving the Problems]
The semiconductor device according to the present invention includes:
Having a resistance element made of a polysilicon layer in the semiconductor integrated circuit,
The resistive element is surrounded by a dummy pattern of the polysilicon layer left at least according to the planarization stopper film.
[0006]
According to the semiconductor device of the present invention, the dummy pattern is provided around the large-area resistance element. On this dummy pattern, a pattern of a planarization stopper film serving as a dishing barrier at the time of planarization by chemical mechanical polishing is formed.
The resistive element has a silicide electrode at an end thereof. By selectively forming a silicide electrode, both terminals of the resistor are formed.
[0007]
The method for manufacturing a semiconductor device according to the present invention includes:
Regarding formation of a resistance element formed of a polysilicon layer in a semiconductor integrated circuit,
Uniformly forming the polysilicon layer on a region including at least a portion where a resistance element is to be formed;
Patterning a planarization stopper film including a dummy pattern region around the portion where the resistance element is to be formed,
Patterning the polysilicon layer into a predetermined resistance element shape and forming a dummy pattern at a predetermined distance around the resistance element shape in accordance with the pattern of the planarization stopper film;
Forming an interlayer insulating film on the resistive element shape and the dummy pattern;
Flattening the insulating film to the level of the flattening stopper film by chemical mechanical polishing,
It is characterized by having.
[0008]
According to the method of manufacturing a semiconductor device according to the present invention, the upper portion of the dummy pattern is a flattening stopper film during chemical mechanical polishing, and serves as a barrier to prevent the influence of dishing on the surface of the resistive element shape.
The method further comprises a step of selectively silicifying a predetermined portion with respect to the resistance element shape.
The method may further include a step of removing the flattening stopper film after the flattening step.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a plan view showing a configuration of a main part of a semiconductor device according to an embodiment of the present invention, and showing a resistance element. In a semiconductor substrate, for example, a resistance element 11 made of a polysilicon layer is formed on an element isolation insulating film 10. Silicide electrodes 12 are formed at both ends of the resistance element 11. This resistance element 11 is surrounded by the dummy pattern 13 of the polysilicon layer left at least according to the planarization stopper film. The flattening stopper film is a silicon nitride film, but has been removed here.
[0010]
According to the above embodiment, the dummy pattern 13 is provided around the large-area resistance element 11. A pattern of a flattening stopper film is formed on the dummy pattern 13 and serves as a dishing barrier at the time of flattening by chemical mechanical polishing (CMP). Thereby, even after the CMP, the shape of the resistance element 11 is not exposed from the interlayer insulating film, and there is no problem in the subsequent etching process.
[0011]
2A to 2D are cross-sectional views illustrating a method of manufacturing a semiconductor device according to the present invention, in which the formation of the resistive element in the configuration of FIG. The same parts as those in FIG. 1 are denoted by the same reference numerals. As shown in FIG. 2A, in a semiconductor substrate, for example, a polysilicon layer 11a and a silicon nitride film 13b are formed on a region including a portion where an element isolation insulating film 10 is to be formed with a resistance element. The silicon nitride film 13b is a planarization stopper film, and is patterned to include a dummy pattern region around a portion where a resistance element is to be formed.
[0012]
Next, as shown in FIG. 2B, the resist film 21 is patterned by a photoresist process. Then, the polysilicon layer 11a is etched according to the pattern of the resist film 21 and the pattern of the silicon nitride film 13b. Thereby, a predetermined shape of the resistance element 11 is formed. A dummy pattern 13 formed by laminating a polysilicon layer 13a and a silicon nitride film 13b is provided at a predetermined distance around the shape of the resistance element 11.
[0013]
Next, as shown in FIG. 2C, the resist film 21 is removed, and an oxide film 22 is formed by a CVD (Chemical Vapor Deposition) method. A resist layer (not shown) is patterned above the resistive element 11 except for the terminals. Thereafter, the side wall and the cap of the resistance element 11 are formed by the oxide film 22 by anisotropic etching. The oxide film 22 remains on at least the side wall of the polysilicon layer 13a of the dummy pattern 13. Next, the silicide electrode 12 is formed on the exposed portion of the polysilicon layer 13a through, for example, sputtering deposition of a cobalt film.
[0014]
Next, as shown in FIG. 2D, an interlayer insulating film 24 covering the resistance element 11 and the dummy pattern 13 is formed by a CVD method. After that, planarization is performed by using a CMP technique. At this time, polishing is performed to the level of the silicon nitride film 13b in the dummy pattern 13 to complete the planarization. At this time, dishing occurs in the large-area resistance element 11, but the silicon nitride film 13b in the dummy pattern 13 serves as a dishing barrier. Thereby, even after the CMP, the shape of the resistance element 11 is not exposed from the interlayer insulating film, and there is no problem in the subsequent etching process.
Thereafter, the silicon nitride film 13b in the dummy pattern 13 may be removed. As a result, as shown in FIG. 1, a resistor element 11 having a dummy pattern around it is formed.
[0015]
According to the above embodiment, the dummy pattern 13 is provided around the large-area resistance element 11. At the time of chemical mechanical polishing, the upper portion of the dummy pattern is a planarization stopper film of the silicon nitride film 13b, and serves as a barrier to prevent the influence of dishing on the surface of the resistive element shape.
[0016]
Note that the pattern shape of the resistance element 11 can be variously considered.
3 and 4 are plan views showing other pattern shapes of the resistance element 11, respectively. The same parts as those in FIG. 1 are denoted by the same reference numerals. As shown in FIG. 3, a shape for increasing the length is conceivable. Further, in FIG. 5, predetermined dummy patterns 13 are also scattered in the surrounding dummy patterns 13. This is advantageous as a mode for alleviating the influence of dishing when forming a resistive element with a larger area.
[0017]
As described above, according to the present invention, a dummy pattern having a predetermined height is formed around a large-area resistive element having a fear of dishing. The lower layer of the dummy pattern can be formed together when forming the resistive element, and the upper layer relates to the formation of other elements. As a result, it is possible to provide a semiconductor device having a resistive element made of a polysilicon layer that can maintain its shape without being easily exposed due to dishing, and a method of manufacturing the same.
[Brief description of the drawings]
FIG. 1 is a plan view of a resistance element in a main part configuration of a semiconductor device according to an embodiment.
FIG. 2 is a sectional view showing the formation of the resistance element in the configuration of FIG. 1 in the order of steps.
FIG. 3 is a first plan view showing another pattern shape of the resistance element.
FIG. 4 is a second plan view showing another pattern shape of the resistance element.
FIG. 5 is a cross-sectional view showing a conventional problem of flattening an interlayer insulating film in a resistance element portion.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... element isolation insulating film, 11 ... resistance element, 11a, 13a ... polysilicon layer, 12 ... silicide electrode, 13 ... dummy pattern, 13b ... silicon nitride film, 21 ... resist film, 22 ... oxide film, 24 ... interlayer insulation film.

Claims (5)

半導体集積回路内にポリシリコン層でなる抵抗素子を有し、前記抵抗素子が、少なくとも平坦化ストッパ膜に従って残された前記ポリシリコン層のダミーパターンに囲まれていることを特徴とする半導体装置。A semiconductor device having a resistor element made of a polysilicon layer in a semiconductor integrated circuit, wherein the resistor element is surrounded by a dummy pattern of the polysilicon layer left at least according to a planarization stopper film. 前記抵抗素子はその端部にシリサイド電極を有することを特徴とする請求項1記載の半導体装置。2. The semiconductor device according to claim 1, wherein said resistance element has a silicide electrode at an end thereof. 半導体集積回路内へのポリシリコン層でなる抵抗素子の形成に関し、
少なくとも抵抗素子形成予定部を含む領域上に前記ポリシリコン層を一様に形成する工程と、
前記抵抗素子形成予定部の周囲にダミーパターン領域を含む平坦化ストッパ膜をパターニングする工程と、
前記ポリシリコン層を所定の抵抗素子形状にパターニングすると共に前記平坦化ストッパ膜のパターンに従って抵抗素子形状の周囲に所定距離離間してダミーパターンを形成する工程と、
前記抵抗素子形状及びダミーパターン上に層間の絶縁膜を形成する工程と、
前記絶縁膜を化学的機械的研磨によって前記平坦化ストッパ膜のレベルまで平坦化する工程と、
を具備したことを特徴とする半導体装置の製造方法。
Regarding formation of a resistance element formed of a polysilicon layer in a semiconductor integrated circuit,
Uniformly forming the polysilicon layer on a region including at least a portion where a resistance element is to be formed;
Patterning a planarization stopper film including a dummy pattern region around the portion where the resistance element is to be formed,
Patterning the polysilicon layer into a predetermined resistance element shape and forming a dummy pattern at a predetermined distance around the resistance element shape in accordance with the pattern of the planarization stopper film;
Forming an interlayer insulating film on the resistive element shape and the dummy pattern;
Flattening the insulating film to the level of the flattening stopper film by chemical mechanical polishing,
A method for manufacturing a semiconductor device, comprising:
前記抵抗素子形状に対し所定の箇所を選択的にシリサイド化する工程をさらに具備することを特徴とする請求項3記載の半導体装置の製造方法。4. The method of manufacturing a semiconductor device according to claim 3, further comprising a step of selectively silicifying a predetermined portion with respect to the resistance element shape. 前記平坦化ストッパ膜は、前記平坦化する工程の後に除去される工程をさらに具備することを特徴とする請求項3または4記載の半導体装置の製造方法。5. The method according to claim 3, further comprising a step of removing the planarization stopper film after the planarizing step.
JP2003041766A 2003-02-19 2003-02-19 Semiconductor device and its manufacturing method Withdrawn JP2004253572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003041766A JP2004253572A (en) 2003-02-19 2003-02-19 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003041766A JP2004253572A (en) 2003-02-19 2003-02-19 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004253572A true JP2004253572A (en) 2004-09-09

Family

ID=33025248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003041766A Withdrawn JP2004253572A (en) 2003-02-19 2003-02-19 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004253572A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289942A (en) * 2008-05-29 2009-12-10 Micronics Japan Co Ltd Multilayer wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009289942A (en) * 2008-05-29 2009-12-10 Micronics Japan Co Ltd Multilayer wiring board

Similar Documents

Publication Publication Date Title
JP3300643B2 (en) Method for manufacturing semiconductor device
US7410879B1 (en) System and method for providing a dual via architecture for thin film resistors
US7808048B1 (en) System and method for providing a buried thin film resistor having end caps defined by a dielectric mask
JP2001015594A (en) Formation of multilayered metallic wiring of semiconductor device
JP3786413B2 (en) Method for forming semiconductor element
JP2006100571A (en) Semiconductor device and its manufacturing method
US20110312152A1 (en) Methods of Fabricating Integrated Circuit Devices Using Selective Etching Techniques that Account for Etching Distance Variations
TWI223380B (en) Semiconductor device and method of fabricating the same
JP2007129030A (en) Semiconductor device and its fabrication process
US6855585B1 (en) Integrating multiple thin film resistors
JP2007258309A (en) Semiconductor device, process for fabricating the same and method for forming alignment mark
JP4227727B2 (en) Method for forming overlay vernier of semiconductor element
JP2004253572A (en) Semiconductor device and its manufacturing method
US7005343B2 (en) Semiconductor device and method of manufacturing the same
KR100965215B1 (en) Method of manufacturing Metal- Insulator-Metal capacitor of a semiconductor device
JPH11186274A (en) Dual damascene technique
JP2004273600A (en) Method of manufacturing semiconductor device
JP2005506700A (en) Multi-level polycrystalline silicon tiling for semiconductor circuit manufacturing
JP2007049139A (en) Method of forming metal-insulator-metal (mim)capacitor together with passivation film on dielectric film, and its element
JP4379245B2 (en) Manufacturing method of semiconductor device
US20070148986A1 (en) Semiconductor device and method for manufacturing same
KR100579858B1 (en) Method of fabricating mim(metal-insulator-metal) capacitor
JP2000003883A (en) Manufacture of semiconductor device
JP2003179062A (en) Method of manufacturing semiconductor device
JP2010027950A (en) Semiconductor device, and method of manufacturing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509