JP2004253534A - Photoelectric transformation module for optical communication - Google Patents

Photoelectric transformation module for optical communication Download PDF

Info

Publication number
JP2004253534A
JP2004253534A JP2003041101A JP2003041101A JP2004253534A JP 2004253534 A JP2004253534 A JP 2004253534A JP 2003041101 A JP2003041101 A JP 2003041101A JP 2003041101 A JP2003041101 A JP 2003041101A JP 2004253534 A JP2004253534 A JP 2004253534A
Authority
JP
Japan
Prior art keywords
groove
light
emitting element
receiving element
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003041101A
Other languages
Japanese (ja)
Other versions
JP4195979B2 (en
Inventor
Toshinari Noda
俊成 野田
Kazunari Nishihara
和成 西原
Naoki Tachihata
直樹 立畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003041101A priority Critical patent/JP4195979B2/en
Publication of JP2004253534A publication Critical patent/JP2004253534A/en
Application granted granted Critical
Publication of JP4195979B2 publication Critical patent/JP4195979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive photoelectric transformation module for optical communication, which contrives the miniaturization as well as the reduction of height of the same and which is capable of coping with high frequency signaling and speed increasing in a transmission speed. <P>SOLUTION: In the photoelectric transformation module for optical communication, a first groove 28 formed on one surface of a substrate 27 is opposed to a second groove 29 formed on the other surface of the same, and a through hole 30 is provided so as to penetrate between the bottom surfaces of the first groove 28 and the second groove 29. Air-tight sealing is effected so that the surface of a light emitting element 21 or a photo receptor 22 which is mounted on the first groove 28, and the surfaces of optical elements 32-34 which are mounted on the second groove 29, are opposed to each other in parallel. The light emitting element module or a photo receptor module is formed by utilizing the thickness of the substrate 27 whereby the miniaturization and the reduction of height can be realized. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は光通信システムに使用される発光素子(LED,LD)または受光素子(PIN−PD,APD)を用いた光通信用光電気変換モジュールに関するものである。
【0002】
【従来の技術】
従来の光通信用に用いられる光通信用光電気変換モジュールとしては、図7に示すものがある。
【0003】
図7(a)は光通信用光電気変換モジュールの斜視図、図7(b)は従来の発光素子モジュールまたは受光素子モジュールの斜視図、図7(c)は従来の発光素子モジュールまたは受光素子モジュールの断面図である。
【0004】
図7(a)において、1,2は受光素子モジュールまたは発光素子モジュール、3は受光素子モジュールまたは受光素子モジュール1,2を制御するドライバーIC、プリアンプ、メインアンプなどのLSIを示している。4は回路を構成するチップ抵抗、積層セラミックコンデンサなどの受動部品、5はそれらを実装するための基板、6は外部取り出し用の電極を示している。
【0005】
また、図7(b),(c)に受光素子モジュールまたは発光素子モジュールを示し、7は金属製キャップ、8は金属製キャップ7に封着されているレンズ、9はチップを実装するための金属ベース、10は金属ベース9の主面から裏面に取り出すための外部取り出し電極、11は外部取り出し電極6を金属ベース9に気密封止するための低融点ガラス、12はLEDまたはPDなどの発光素子または受光素子、13は発光素子または受光素子12の電極を外部取り出し電極10に電気的に接続させるための金属ワイヤを示している。
【0006】
金属製キャップ7および金属ベース9は通常はFe−Ni−Coなどの合金が用いられ、その表面は酸化防止のためのNi−Auなどでメッキ処理されている。この金属製キャップ7と金属ベース9を抵抗溶接して気密封止する構造となっている。気密封止された内部は通常は窒素に置換または真空として発光素子または受光素子12の経年劣化を防止している。
【0007】
なお、この出願の発明に関連する先行技術文献情報としては、例えば特許文献1が知られている。
【0008】
【特許文献1】
特開昭63−282710号公報
【0009】
【発明が解決しようとする課題】
従来の発光素子モジュールまたは受光素子モジュール1,2のサイズがLSI3や受動部品4に比べて非常に大きいため、基板5の上に実装した場合、基板5が大きくなり、結果モジュール全体が大きくなる。
【0010】
また、発光素子モジュールまたは受光素子モジュール1,2と基板5を電気的に接続している外部取り出し電極10を折り曲げることにより、発光素子モジュールまたは受光素子モジュール1,2を基板5の側面に設置する場合も同様である。
【0011】
また、発光素子または受光素子12の電極を外部取り出し電極10に電気的に接続させるために金属ワイヤ13を使用するが、金属ワイヤ13のインダクタンスおよび浮遊容量により伝送する信号の高周波化、高速化への対応が困難になる。
【0012】
本発明は小型・低背化を図ると共に伝送速度の高周波化および高速化に対応できる安価な光通信用光電気変換モジュールを提供することを目的とするものである。
【0013】
【課題を解決するための手段】
上記目的を達成するために、本発明は以下の構成を有する。
【0014】
本発明の請求項1に記載の発明は、アノード電極とカソード電極とを同じ面に設けた発光素子または受光素子と、この発光素子または受光素子を制御する半導体素子および受動部品からなる光電気変換回路と、光学的な結合に用いる少なくとも1つのレンズ体、光学的絞り、窓等の光学部品と、前記発光素子または受光素子と光電気変換回路および光学素子を実装する基板からなる光通信用光電気変換モジュールにおいて、前記基板の一方の面に形成する第一の溝部と、もう一方の面に形成する第二の溝部とを対向させ、かつ第一の溝部と第二の溝部の底面の間を貫通するように貫通孔を設け、前記第一の溝部に実装する発光素子または受光素子の面と第二の溝部に実装する光学素子の面とを平行かつ対向するようにして気密封止する光通信用光電気変換モジュールであり、基板の厚みを利用して発光素子モジュールまたは受光素子モジュールを形成するため、小型化および低背化が実現できる。
【0015】
請求項2に記載の発明は、基板上の光電気変換回路と同じ面に発光素子または受光素子を実装し、かつ前記光電気変換回路を基板の長手方向の所定範囲の端部に実装しないようにした請求項1に記載の光通信用光電気変換モジュールであり、レセプタクルに設けた溝に挿入することにより、光電気変換モジュールと光導波路または光ファイバ等との光軸合わせおよび実装が同時にできるため、製造コストを低減することができる。
【0016】
請求項3に記載の発明は、基板上の光電気変換回路と異なる面に発光素子または受光素子を実装するようにした請求項1に記載の光通信用光電気変換モジュールであり、発光素子または受光素子の実装面を平坦にできるため、他の基板に光通信用光電気変換モジュールを面実装することができる。
【0017】
請求項4に記載の発明は、第二の溝部の大きさを第一の溝部の大きさより大きくした請求項1に記載の光通信用光電気変換モジュールであり、レンズ体、光学絞り、窓等の光学素子を実装する第二の溝部が発光素子または受光素子を実装する第一の溝部より大きいため、広範囲の光が集光でき光ファイバと発光素子または受光素子との結合効率を高くすることができる。
【0018】
請求項5に記載の発明は、第一の溝部の大きさが発光素子または受光素子とほぼ等しく第二の溝の大きさが光学部品とほぼ等しくかつ第一の溝と第二の溝の中心が同じとする請求項1に記載の光通信用光電気変換モジュールであり、光学素子と発光素子の発光面または受光素子の受光面との光軸調整が容易にできるため、製造コストが低減できる。
【0019】
請求項6に記載の発明は、第一の溝部の底面に電極を設け、この電極と発光素子または受光素子のアノード電極とカソード電極とを金バンプまたは半田バンプにより電気的に接続をした請求項1に記載の光通信用光電気変換モジュールであり、発光素子または受光素子の電極と基板の電極との間の配線が短くできると共にめっき法により容易にバンプが形成でき、浮遊容量およびインダクタンスが軽減できると共に実装コストが低減できる。
【0020】
請求項7に記載の発明は、第一の溝部と第二の溝部および貫通孔を真空または窒素雰囲気となるように気密封止する請求項1に記載の光通信用光電気変換モジュールであり、HOによる発光素子または受光素子の特性劣化が防止できると共に外部取り出し電極の表面酸化が防止でき、高い信頼性が得られる。
【0021】
請求項8に記載の発明は、発光素子または受光素子を第一の溝部の蓋として用いて気密封止する請求項1に記載の光通信用光電気変換モジュールであり、請求項6と同様の効果が得られると共に発光素子または受光素子を蓋代わりにできるため、コストを低減できる。
【0022】
請求項9に記載の発明は、光学素子を第二の溝部の蓋として用いて気密封止する請求項1に記載の光通信用光電気変換モジュールであり、請求項6と同様の効果が得られると共に光学素子を蓋代わりにできるため、コストを低減できる。
【0023】
請求項10に記載の発明は、発光素子または受光素子と第一の溝部の底面との間に異方性導電シートを配して電気的接続と気密封止をするようにした請求項1に記載の光通信用光電気変換モジュールであり、気密封止と電気接続を同時に行うことができるため、製造コストが削減できる。
【0024】
請求項11に記載の発明は、光学素子、発光素子、受光素子の少なくとも1つに樹脂、低融点ガラスまたははんだを用いて気密封止する請求項1に記載の光通信用光電気変換モジュールであり、HOによる発光素子または受光素子の特性劣化が防止できると共に外部取り出し電極の表面酸化が防止でき、高い信頼性が得られる。
【0025】
請求項12に記載の発明は、基板にセラミック積層基板またはポリイミド積層基板を用いた請求項1に記載の光通信用光電気変換モジュールであり、基板の吸湿が抑制できると共に発光素子の発熱を拡散または放熱できるため、発光素子または受光素子として高い信頼性が得られる。
【0026】
【発明の実施の形態】
以下、本発明の実施の形態について図を用いて説明する。
【0027】
(実施の形態1)
以下、本発明の実施の形態1による光通信用光電気変換モジュールの全体構成について図1および図2を用いて説明する。
【0028】
図1(a)は本発明の光通信用光電気変換モジュール全体の斜視図、図1(b)〜(e)は図1(a)の光通信用光電気変換モジュールのA−A断面斜視図、図2(a)は本発明の他の光通信用光電気変換モジュール全体の斜視図、図2(b)〜(e)は図2(a)の光通信用光電気変換モジュールのB−B断面斜視図である。
【0029】
図1において、21は発光素子、22は受光素子、23は抵抗、コンデンサ、インダクタなどの受動部品、24は発光素子21または受光素子22を制御するLSIを示している。25は外部取り出し電極、27は基板をそれぞれ示している。26は基板27の主表面に形成した電極であり、発光素子21または受光素子22と電気的に接続されている。30は貫通孔、31は内部配線パターンまたは層間の電気的接続を行なうためのスルーホール、32〜34はそれぞれ光学素子、28は基板27の主表面に形成した第一の溝部、29は第一の溝部28が形成された基板27の主表面に相対する主面に形成された第二の溝部を示している。
【0030】
図1(a)〜(e)において、発光素子21は代表的なものとしてLED,LDおよび面発光型のレーザダイオード(VCSEL)があり、また受光素子22はPIN−PDやAPDなどがある。これらはアノード電極とカソード電極とを同じに設けた構成となっている。
【0031】
LSI24の一例として、発光素子21を駆動させるためのドライバー、受光素子22からの光電流を電圧に変換して増幅するアンプなどがある。
【0032】
光学素子32〜34は例えば球面あるいは非球面、半球などの屈折型レンズ、フレネルレンズなどの回折型レンズ、平板ガラスなどがあり用いる素子や用途により適宜選択する。光通信用光電気変換モジュール全体を低背化するためには屈折型レンズよりも平板ガラス上に回折パターンを形成した回折型レンズが有利である。また、屈折型レンズを選択する場合は封止性を考慮すると、平坦面を有する半球形状が有利である。平板ガラスを用いる場合はその主表面に無反射(AR)コートを施すことで反射戻り光による発光素子21または受光素子22への影響や反射損失を低減することができる。
【0033】
本発明による光通信用光電気変換モジュールでは基板27としてセラミック積層基板を用いる。基板27としてセラミック積層基板を用いる理由は比較的自由な配線設計と局所的な溝部、貫通孔などが容易に成形できる点である。セラミック積層基板はグリーンシートを積層して焼成して形成する。それぞれの層に独立した配線が形成でき、またスルーホール31により各層間を結線することも比較的容易である。そのため第一の溝部28の内部に実装して封止した発光素子21または受光素子22の電極を基板27の主表面へと取り出すことが可能である。また積層において、グリーンシートにダイスやポンチを用いて貫通孔を形成することにより、所定の位置に溝形状や貫通孔を形成することが可能となる。このように全体の小型化や部品の位置決め実装に有利であり、製造コストの低減が図れる。
【0034】
所定の位置に部品実装用の溝部を形成することで以下に示す利点がある。
【0035】
第一の溝部28と第二の溝部29は基板27を挟んで対向し、かつ第一の溝部28および第二の溝部29の中心が一致するように形成されている。また第一の溝部28の大きさは実装するLED,LD,VCSELなどの発光素子21またはPIN−PD,APDなどの受光素子22の外形形状とほぼ等しく形成され、第二の溝部29の大きさは光学素子32〜34とほぼ等しく形成されている。そして第一の溝部28は第二の溝部29より小さい形状となっている。したがって発光素子21または受光素子22を第一の溝部28に実装し、さらに第二の溝部29に光学素子32〜34を実装することにより容易に発光素子21または受光素子22と光学素子32〜34との光軸調整が可能となると共に第二の溝部29の形状を大きくしているため、広範囲の光が集光でき高い結合効率が実現できる。
【0036】
この場合、第一の溝部28と第二の溝部29は各々底部を貫通する貫通孔30が形成されており、この貫通孔30を介して発光素子21からの光を光学素子32〜34へ効率よく導き、また光学素子32〜34を通過した光が受光素子22の受光面へと導かれる。図2に示す本発明による光電気変換モジュールは発光素子21または受光素子22および光学素子32〜34の基板27への実装面のみが図1と異なるだけであり、図1と同じ効果が得られる。
【0037】
また、図1は発光素子21または受光素子22を光電気変換回路と同じ面に実装され、かつ光電気変換回路を基板27の長手方向の所定範囲L1の端部に実装しないため、レセプタクル(図示せず)等の溝に挿入することにより、光学素子32〜34と光導波路または光ファイバとの光軸合わせと実装とが同時に行うことができ製造コストが低減できる。
【0038】
図2は発光素子21または受光素子22を光電気変換回路と異なる面に実装する構成であり、発光素子21または受光素子22の実装面が平坦となるため、他の基板に光通信用光電気変換モジュールとして簡単に面実装することができる。
【0039】
(実施の形態2)
以下、本発明の実施の形態2による光通信用光電気変換モジュールの光学素子と発光素子または受光素子の実装部の詳細な構成について図3を用いて説明する。
【0040】
図3(a),(b)は本発明の発光素子21の実装部の断面図、図3(c)は本発明の受光素子22の実装部の断面図、また図3(d)は図3(a)〜(c)の実施の形態2に用いた発光素子または受光素子の上面図である。
【0041】
図3(a)〜(d)において21は発光素子、36は内部の配線パターン、37はスルーホール、38は発光素子21の発光面または受光素子22の受光面に設けられた取り出し電極、39は第一の封止材料、40は第二の封止材料、41は金属バンプ、28は基板27の主表面に形成した第一の溝部、29は第一の溝部28が形成された基板27の主表面に相対する主面に形成された第二の溝部をそれぞれ示している。32〜34は光学素子を示しており、例えば球面あるいは非球面、半球などの屈折型レンズ、フレネルレンズなどの回折型レンズ、平板ガラスなどであり、用いる素子や用途により適宜選択する。35は発光素子21または受光素子22と光学素子32〜34により気密封止された内部空洞、30は貫通孔をそれぞれ示している。42は第一の溝部28の底面、43は基板27に設けられた内部電極を示している。
【0042】
発光素子21または受光素子22と基板27との電気的接続には金属バンプ41を用いる。金属バンプ41の材料は形成の容易さや長期信頼性を含めた安定性、発光素子21または受光素子22の耐熱性を考慮して選択する。代表的な材料としては金、ニッケル、はんだ等がある。これらの材料はめっき法により比較的安価で容易にバンプが形成できる。ニッケルを材料とする場合には表面の酸化を防止するため金などで被覆することが望ましい。金属バンプ41は基板27の内部電極43に形成してもよいし、発光素子21の発光面または受光素子22の受光面に設けられた取り出し電極38の上に形成してもよい。基板27の内部電極43および発光素子21または受光素子22の取り出し電極38は金属バンプ41と接続して形成される金属間化合物を考慮して選択する。基板27の内部電極43に関しては焼成温度が高いため、通常タングステンなどを電極材料として用いるが表面には金で被覆することが望ましい。
【0043】
本発明による光通信用光電気変換モジュールでは基板27としてセラミック積層基板を用いる。基板27としてセラミック積層基板を用いる理由は、比較的自由な配線設計と局所的な溝部、貫通孔などが容易に成形できる点である。
【0044】
光学素子32〜34の材料にはガラスやプラスチックを用いるが、屈折率の温度特性などを考慮するとガラスが望ましい。光学素子32〜34の材料にガラスを用いる場合、第二の封止材料40とガラスのぬれ性を考慮した上で必要に応じてガラスにメタライズ加工を施す。メタライズ加工は真空蒸着法、スパッタ蒸着法、メッキ法などを用いて行う。メタライズに用いる材料の例としてNi,Cr,Cu等が挙げられる。同様に基板27にもメタライズ加工を施す。メタライズの代表的な材料としては、Mo−Mn,Ni−Cr,Ti−Cu等がある。メタライズ加工を施すことにより、光学素子32〜34と基板27の封止性が高くなる。
【0045】
光学素子32〜34の形状および発光素子21と光学素子32〜34との距離L2はLED,VCSEL等の発光素子21の光の放射角と焦点位置、また結合させる光導波線路の種類および光学特性を考慮して設計する。またPIN−PD,APD等の受光素子22の場合は受光面への入射光量を考慮して設計する。
【0046】
発光素子21または受光素子22と基板27との気密封止には第一の封止材料39を用いる。第一の封止材料39の材料は封止工法、耐湿性、発光素子21または受光素子22、基板27との密着性や長期信頼性を考慮して選択する。代表的な材料としてエポキシ、シリコーン、ポリエステル、フェノールなどの樹脂やそれらを基材にガラス繊維や無機充填材を充填したもの、低融点ガラス材料またははんだなどの金属材料が挙げられる。はんだなどの金属材料を選択する場合、特に光学素子32〜34が平面型の場合にメタライズパターンを容易に形成できるため封止工程を簡略化できる効果がある。
【0047】
次に実装方法の一例について説明する。
【0048】
基板27の第一の溝部28の底面42の内部電極43の上に第一の封止材料39を形成する。次に発光素子21または受光素子22の取り出し電極38の上に金属バンプ41を形成する。そして基板27の第一の溝部28に発光素子21または受光素子22を位置決めして固定し、加熱・加圧を行う。このときの加熱温度は金属バンプ41がはんだの場合は液相点温度以上、金バンプの場合は再結晶化温度以上にすることが望ましい。また加圧は金属バンプ41と第一の溝部28の底面42の内部電極43の間にある第一の封止材料39を排除し、電気的接続が得られるように適宜設定する。次に第二の溝部29の底面に第二の封止材料40を形成して光学素子32〜34を第二の溝部29へ位置決めして固定する。さらに光学素子32〜34を加圧および加熱して封止を完了する。発光素子21または受光素子22を位置決めしてからは窒素置換雰囲気または真空中で行なうことが望ましい。
【0049】
上記は実装方法の一例であり、例えば第一の封止材料39を発光素子21または受光素子22の取り出し電極38の上に形成してもよく、第二の封止材料40を光学素子32〜34の外周部に形成してもよい。また金属バンプ41を基板27の第一の溝部28の底面42の内部電極43の上に形成してもよく、光学素子32〜34および発光素子21または受光素子22の実装する順番を入れ替えてもよい。
【0050】
上記の実装方法において、第一の封止材料39に樹脂材料を用いる場合について説明する。封止材料39は液状またはペースト状の熱硬化性樹脂やシート状の樹脂等である。液状またはペースト状の樹脂を塗布する方法として、開口部を設けたスクリーンの開口部だけに樹脂を塗布するスクリーン印刷法やシリンジを用いて塗布するディスペンス法、スタンプピンを用いて転写するスタンピング法等がある。第一の溝部28の底面42の内部電極43の上に第一の封止材料39を形成する場合はディスペンス法またはスタンピング法が有利である。また発光素子21または受光素子22の上に第一の封止材料39を形成する場合はシート状の樹脂あるいはスクリーン印刷法が作業性に優れている。シート状の樹脂を用いる場合は、あらかじめ貼り付けたい形状にシートを加工し発光素子21または受光素子22の取り出し電極38の上に形成するため、工程を簡略化することができる。これらの方法で基板27の上に第一の封止材料39を形成することにより、第一の封止材料39の塗布量を制御することが可能であり、第二の溝部29への第一の封止材料39の漏出を防止することができる。
【0051】
(実施の形態3)
以下、本発明の実施の形態3による光通信用光電気変換モジュールの光学素子と発光素子または受光素子の実装部について図4を用いて説明する。
【0052】
図4(a),(b)は本発明の他の発光素子の実装部の断面図、図4(c)は本発明の他の実施の形態における受光素子の実装部の断面図、また図4(d)は図4(a)は実施の形態3に用いた発光素子または受光素子の上面図である。
【0053】
図4(a)〜(d)において21は発光素子、36は内部の配線パターン、37はスルーホール、38は発光素子21の発光面または受光素子22の受光面に設けられた取り出し電極、39は第一の封止材料、40は第二の封止材料、41は金属バンプ、28は基板27の主表面に形成した第一の溝部、29は第一の溝部28が形成された基板27の主表面に相対する主面に形成された第二の溝部をそれぞれ示している。また図4(c)では22は受光素子を示している。32〜34は光学素子を示しており、例えば球面あるいは非球面、半球などの屈折型レンズ、フレネルレンズなどの回折型レンズ、平板ガラスなどであり、用いる素子や用途により適宜選択する。35は発光素子21または受光素子22と光学素子32〜34により気密封止された内部空洞、30は貫通孔をそれぞれ示している。図4(d)では42は第一の溝部28の底面、43は基板27に設けられた内部電極を示している。
【0054】
本発明による光通信用光電気変換モジュールの実装方法の一例について説明する。
【0055】
基板27の第二の溝部29の底面に第二の封止材料40を形成して、光学素子32〜34を第二の溝部29へ位置決めして固定する。次に光学素子32〜34を加圧および加熱する。そして第一の封止材料39を第一の溝部28から流し込み、第二の溝部29、貫通孔30および第一の溝部28を第一の封止材料39で充填する。第一の封止材料39の塗布量は少なくとも第一の溝部28の底面42より上になるように調整する。次に発光素子21または受光素子22の取り出し電極38の上に金属バンプ41を形成する。そして基板27の第一の溝部28に発光素子21または受光素子22を位置決めして固定する。さらに発光素子21または受光素子22を加圧しながら、基板27を加熱することにより封止を完了する。以上の工程により発光素子21の発光面または受光素子22の受光面と光学素子32〜34との空隙が完全に第一の封止材料39で充填されるため、発光素子21の受光面または受光素子22の受光面はダストなどから保護することができ、高い信頼性を得ることができる。
【0056】
上記は実装方法の一例であり、例えば第二の封止材料40を光学素子32〜34の外周部に形成してもよく、金属バンプ41を第一の溝部28の底面42の内部電極43の上に形成してもよい。
【0057】
上記の実装方法において、第一の封止材料39に樹脂材料を用いる場合について説明する。第一の封止材料39は液状またはペースト状の透明な熱硬化性樹脂等である。第一の封止材料39の塗布方法としては、温度、塗布圧力、塗布時間の制御ができるディスペンス法が有利である。ディスペンス法で第一の封止材料39の内に気泡が入らないように制御して塗布することにより、気泡による内部空洞35の内部での光の屈折を防止することができ、発光素子21からの出射光と光導波線路の結合効率および光導波線路からの入射光と受光素子22の結合効率が高くできる。本実装方法では加温工程を一回で済ますことができるため、プロセスの単純化、発光素子21および受光素子22の熱破壊の防止および実装工程中の接合部の破壊を防ぐことができる。また第一の封止材料39の供給に高い精度が要求されないため、工程の簡略化が可能になる。その他の効果については実施の形態2と同じであるため、ここでは詳細な説明は省略する。
【0058】
また、実施の形態3の実装方法の他の例について説明する。基板27の第二の溝部29の底面に第二の封止材料40を形成して、光学素子32〜34を第二の溝部29へ位置決めして固定する。そして光学素子32〜34を加圧および加熱する。次に発光素子21または受光素子22の取り出し電極38の上に金属バンプ41を形成する。次に基板27の第一の溝部28に発光素子21または受光素子22を位置決めして固定し加熱・加圧を行い、発光素子21または受光素子22と基板27の電気的接続をとる。そして第一の封止材料39を第一の溝部28と発光素子21または受光素子22の隙間から流し込み、第二の溝部29、貫通孔30および第一の溝部28の底面42を第一の封止材料39で充填する。第一の封止材料39は実装する発光素子21の発光面または受光素子22の受光面が十分に充填される量を塗布する。そして基板27を加熱することにより、第一の封止材料39を硬化させて封止を完了する。
【0059】
上記は実装方法の一例であり、例えば第二の封止材料40を光学素子32〜34の外周部に形成してもよく、金属バンプ41を第一の溝部の底面42の内部電極43の上に形成してもよい。
【0060】
上記の実装方法において、第一の封止材料39に樹脂材料を用いる場合について説明する。第一の封止材料39は液状またはペースト状の透明な熱硬化性樹脂等である。第一の封止材料39を第一の溝部28と発光素子21または受光素子22の隙間から流し込むことを考慮すると、粘度が低く、表面張力の弱い液状の熱硬化性樹脂を用いると有利である。第一の封止材料39の供給方法としてはディスペンス法が有利である。樹脂供給の際に基板27を傾けることも、第一の封止材料39の中の気泡の混入を防ぐのに有効である。
【0061】
(実施の形態4)
以下、本発明の実施の形態4による光通信用光電気変換モジュールの光学素子と発光素子または受光素子の実装部の詳細な構成について図5を用いて説明する。
【0062】
図5(a),(b)は本発明の実施の形態4における発光素子の実装部の断面図、図5(c)は本発明の他の実施の形態における受光素子の実装部の断面図、また図5(d)は実施の形態4で用いた発光素子または受光素子の上面図である。
【0063】
図5(a)〜(d)において21は発光素子、36は内部の配線パターン、37はスルーホール、38は発光素子21の発光面または受光素子22の受光面に設けられた取り出し電極、39は第一の封止材料、40は第二の封止材料、41は金属バンプ、28は基板27の主表面に形成した第一の溝部、29は第一の溝部28が形成された基板27の主表面に相対する主面に形成された第二の溝部をそれぞれ示している。また図5(c)では22は受光素子を示している。32〜34は光学素子を示しており、例えば球面あるいは非球面、半球などの屈折型レンズ、フレネルレンズなどの回折型レンズ、平板ガラスなどであり、用いる素子や用途により適宜選択する。35は発光素子21または受光素子22と光学素子32〜34により気密封止された内部空洞、30は貫通孔をそれぞれ示している。図5(d)では42は第一の溝部28の底面、43は基板27に設けられた内部電極を表している。
【0064】
本発明による光通信用光電気変換モジュールの実装方法の一例について説明する。
【0065】
基板27の第二の溝部29の底面に第二の封止材料40を形成して、光学素子32〜34を第二の溝部29へ位置決めして固定する。次に光学素子32〜34を加圧および加熱する。そして発光素子21または受光素子22の取り出し電極38の上に金属バンプ41を形成する。次に基板27の第一の溝部28に発光素子21または受光素子22を位置決めして固定し、加熱・加圧を行うことにより発光素子21または受光素子22と基板27の電気的接続をとる。さらに基板27の第一の溝部28の底面42に実装した発光素子21または受光素子22の上から第一の封止材料39を塗布する。第一の封止材料39は第一の溝部28の底面42まで漏出しないように塗布量を制御する。次に第一の封止材料39を加熱することにより硬化させて封止を完了する。光学素子32〜34の加圧および加熱から窒素置換雰囲気または真空中で行なうことが望ましい。
【0066】
上記は実装方法の一例であり、例えば第二の封止材料40を光学素子32〜34の外周部に形成してもよく、金属バンプ41を基板27の第一の溝部28の底面42の内部電極43の上に形成してもよい。また光学素子32〜34および発光素子21または受光素子22の実装する順番を入れ替えてもよい。
【0067】
上記の実装方法において、第一の封止材料39の樹脂材料を用いる場合について以下に説明する。
【0068】
第一の封止材料39には液状またはペースト状の熱硬化性樹脂または光硬化性樹脂を用いる。光硬化性樹脂を用いる場合は第一の封止材料39にUV照射を行なうことにより硬化させて封止を完了する。第一の封止材料39に光硬化樹脂を用いた場合は加温工程を減らすことができるため、発光素子21および受光素子22の熱破壊を防止することができる。また第一の封止材料39の中に熱伝導性の高いアルミナ、窒化アルミなどの微粒子を混合して分散させることにより発光素子21の発熱を基板27へ伝導または大気中に放散できるため発光素子21の温度特性を改善し、高い信頼性を得ることができる。第一の封止材料39の塗布方法としては滴下法またはディスペンス法が有利である。滴下法を用いることにより設備費コストを削減することができる。本実装方法では第一の封止材料39の供給に高い精度が要求されないため、工程の簡略化ができる。
【0069】
(実施の形態5)
以下、本発明の実施の形態5による光通信用光電気変換モジュールの光学素子と発光素子または受光素子の実装部の詳細な構成について図6を用いて説明する。
【0070】
図6(a),(b)は本発明の実施の形態5における発光素子の実装部の断面図、図6(c)は本発明の他の受光素子の実装部の断面図、また図6(d)は実施の形態5で用いた発光素子または受光素子の上面図である。
【0071】
図6(a)〜(d)において21は受光素子、36は内部の配線パターン、37はスルーホール、38は発光素子21の発光面または受光素子22の受光面に設けられた取り出し電極、44は異方性導電シート、40は第二の封止材料、41は金属バンプ、28は基板27の主表面に形成した第一の溝部、29は第一の溝部28が形成された基板27の主表面に相対する主面に形成された第二の溝部をそれぞれ示している。また図6(c)では22は受光素子を示している。32〜34は光学素子を示しており、例えば球面あるいは非球面、半球などの屈折型レンズ、フレネルレンズなどの回折型レンズ、平板ガラスなどであり、用いる素子や用途により適宜選択する。35は発光素子21または受光素子22と光学素子32〜34により気密封止された内部空洞、30は貫通孔を示している。
【0072】
図6(d)では42は第一の溝部28の底面、43は基板27に設けられた内部電極を表している。
【0073】
以下、本実施の形態の実装方法の一例について説明する。
【0074】
基板27の第一の溝部28の底面42の内部電極43の上に異方性導電シート44を形成する。次に発光素子21または受光素子22の取り出し電極38の上に金属バンプ41を形成する。そして基板27の第一の溝部28に発光素子21または受光素子22を位置決めして固定する。次に発光素子21および受光素子22を加圧および加熱して、発光素子21および受光素子22と基板27の電気的接続と封止を同時に行う。さらに第二の溝部29の底面に第二の封止材料40を形成して光学素子32〜34を第二の溝部29へ位置決めして固定する。
【0075】
次に光学素子32〜34を加圧および加熱して封止を完了する。発光素子21または受光素子22の固定からは窒素置換雰囲気または真空中で行なうことが望ましい。
【0076】
上記は実装方法の一例であり、例えば異方性導電シート44を発光素子21または受光素子22の取り出し電極38の上に形成してもよく、第二の封止材料40を光学素子32〜34の外周部に形成してもよい。また金属バンプ41を基板27の第一の溝部の底面42の内部電極43の上に形成してもよく、光学素子32〜34および発光素子21または受光素子22の実装する順番を入れ替えてもよい。
【0077】
実施の形態5において、発光素子21または受光素子22と基板27との気密封止に異方性導電シート44を用いている。異方性導電シート44は樹脂シートの中に導電性粒子を分散させたものであるが、導電性粒子の密度は低いため、シートそのものには導電性は無い。導電性粒子の材料にはNi単体、Cu単体、Niに金メッキを施したもの、樹脂を核にして金メッキを施したもの、銀粒子に絶縁樹脂コートを施したもの等を用いる。異方性導電シート44は予め貼り付けたい形状に加工しておく。基板27と発光素子21または受光素子22を加熱・加圧すると導電性粒子が電極間に挟み込まれて基板27と発光素子21または受光素子22の電気的接続をとることができると同時に、樹脂が硬化して気密封止をすることができる。
【0078】
実施の形態5ではシート状の異方性導電シート44を用いることから作業性に優れており工程の簡素化を図ることができる。異方性導電シート44の代わりにペースト状の異方性導電ペーストを用いる方法もある。この場合はスクリーン印刷法、ディスペンス法またはスタンピング法でペーストを基板27の上または発光素子21または受光素子22の取り出し電極38の上に供給する。その他の工程はシート状の異方性導電ペースト44を用いた場合と同様である。ペースト状の異方性導電ペーストを用いることにより材料費を下げることが可能である。その他の効果については本発明の実施の形態3と同等であるため、ここでは詳細な説明は省略する。
【0079】
【発明の効果】
以上のように本発明は、アノード電極とカソード電極とを同じ面に設けた発光素子または受光素子と、この発光素子または受光素子を制御する半導体素子および受動部品からなる光電気変換回路と、光学的な結合に用いる少なくとも1つのレンズ体、光学的絞り、窓等の光学部品と、前記発光素子または受光素子と光電気変換回路および光学素子を実装する基板からなる光通信用光電気変換モジュールにおいて、前記基板の一方の面に形成する第一の溝部と、もう一方の面に形成する第二の溝部とを対向させ、かつ第一の溝部と第二の溝部の底面の間を貫通するように貫通孔を設け、前記第一の溝部に実装する発光素子または受光素子の面と第二の溝部に実装する光学素子の面とを対向するようにして気密封止する光通信用光電気変換モジュールであり、基板の厚みを利用して発光素子モジュールまたは受光素子モジュールを形成するため、小型化および低背化が実現できる。
【図面の簡単な説明】
【図1】(a)本発明の光通信用光電気変換モジュールの斜視図
(b)〜(e)本発明の光通信用光電気変換モジュールの要部断面斜視図
【図2】(a)本発明の他の光通信用光電気変換モジュールの斜視図
(b)〜(e)本発明の他の光通信用光電気変換モジュールの要部断面斜視図
【図3】(a),(b)本発明の発光素子の実装部の断面図
(c)本発明の受光素子の実装部の断面図
(d)実施の形態2で用いた発光素子または受光素子の上面図
【図4】(a),(b)本発明の発光素子の実装部の断面図
(c)本発明の受光素子の実装部の断面図
(d)実施の形態3で用いた発光素子または受光素子の上面図
【図5】(a),(b)本発明の発光素子の実装部の断面図
(c)本発明の受光素子の実装部の断面図
(d)実施の形態4で用いた発光素子または受光素子の上面図
【図6】(a),(b)本発明の発光素子の実装部の断面図
(c)本発明の受光素子の実装部の断面図
(d)実施の形態5で用いた発光素子または受光素子の上面図
【図7】(a)従来の光通信用光電気変換モジュールの斜視図
(b)従来の発光素子モジュールまたは受光素子モジュールの斜視図
(c)従来の発光素子モジュールまたは受光素子モジュールの断面図
【符号の説明】
21 発光素子
22 受光素子
23 受動部品
24 LSI
25 外部取り出し電極
26 電極
27 基板
28 第一の溝部
29 第二の溝部
30 貫通孔
31 配線パターンまたはスルーホール
32〜34 光学素子
35 内部空洞
36 配線パターン
37 スルーホール
38 取り出し電極
39 第一の封止材料
40 第二の封止材料
41 金属バンプ
42 第一の溝部の底面
43 内部電極
44 異方性導電シート
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a photoelectric conversion module for optical communication using a light emitting element (LED, LD) or a light receiving element (PIN-PD, APD) used in an optical communication system.
[0002]
[Prior art]
FIG. 7 shows a conventional photoelectric conversion module for optical communication used for optical communication.
[0003]
7A is a perspective view of a photoelectric conversion module for optical communication, FIG. 7B is a perspective view of a conventional light emitting element module or light receiving element module, and FIG. 7C is a conventional light emitting element module or light receiving element. It is sectional drawing of a module.
[0004]
7A, reference numerals 1 and 2 denote light receiving element modules or light emitting element modules, and reference numeral 3 denotes LSIs such as a driver IC for controlling the light receiving element modules or the light receiving element modules 1 and 2, a preamplifier, and a main amplifier. Reference numeral 4 denotes a passive component such as a chip resistor or a multilayer ceramic capacitor that constitutes a circuit, reference numeral 5 denotes a substrate for mounting the components, and reference numeral 6 denotes an electrode for external extraction.
[0005]
7 (b) and 7 (c) show a light receiving element module or a light emitting element module, 7 is a metal cap, 8 is a lens sealed in the metal cap 7, and 9 is a chip for mounting a chip. A metal base, 10 is an external extraction electrode for extracting from the main surface to the back surface of the metal base 9, 11 is a low melting point glass for hermetically sealing the external extraction electrode 6 to the metal base 9, and 12 is light emission of LED or PD. An element or light receiving element 13 is a metal wire for electrically connecting the electrode of the light emitting element or light receiving element 12 to the external extraction electrode 10.
[0006]
The metal cap 7 and the metal base 9 are usually made of an alloy such as Fe-Ni-Co, and the surfaces thereof are plated with Ni-Au or the like for preventing oxidation. The metal cap 7 and the metal base 9 are hermetically sealed by resistance welding. The hermetically sealed interior is usually replaced with nitrogen or a vacuum to prevent the light emitting element or light receiving element 12 from aging.
[0007]
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
[0008]
[Patent Document 1]
JP-A-63-282710
[0009]
[Problems to be solved by the invention]
Since the size of the conventional light emitting element module or light receiving element module 1 or 2 is much larger than that of the LSI 3 or the passive component 4, when the light emitting element module or the light receiving element module is mounted on the substrate 5, the size of the substrate 5 becomes larger, and as a result, the entire module becomes larger.
[0010]
Further, the light emitting element module or the light receiving element module 1 or 2 is set on the side surface of the substrate 5 by bending the external extraction electrode 10 that electrically connects the light emitting element module or the light receiving element module 1 or 2 to the substrate 5. The same applies to the case.
[0011]
In addition, the metal wire 13 is used to electrically connect the electrode of the light emitting element or the light receiving element 12 to the external extraction electrode 10, but the signal transmitted by the inductance and the stray capacitance of the metal wire 13 has a higher frequency and a higher speed. Is difficult to deal with.
[0012]
SUMMARY OF THE INVENTION It is an object of the present invention to provide an inexpensive photoelectric conversion module for optical communication that can be reduced in size and height and can cope with higher and higher transmission speeds.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configurations.
[0014]
According to a first aspect of the present invention, there is provided a light-emitting or light-receiving element in which an anode electrode and a cathode electrode are provided on the same surface, a semiconductor element for controlling the light-emitting element or the light-receiving element, and a photoelectric conversion device. Optical communication light comprising a circuit, at least one lens body, an optical stop, a window, and the like used for optical coupling, and a substrate on which the light emitting element or the light receiving element, the photoelectric conversion circuit, and the optical element are mounted. In the electric conversion module, the first groove formed on one surface of the substrate and the second groove formed on the other surface are opposed to each other, and between the first groove and the bottom surface of the second groove. A through hole is provided so as to penetrate through, and the surface of the light emitting element or the light receiving element mounted in the first groove and the surface of the optical element mounted in the second groove are airtightly sealed so as to be parallel and opposed to each other. Optical communication A photoelectric conversion module, for forming the light-emitting element module or the light receiving element module by utilizing the thickness of the substrate, miniaturization and height reduction can be achieved.
[0015]
According to a second aspect of the present invention, the light emitting element or the light receiving element is mounted on the same surface of the substrate as the photoelectric conversion circuit, and the photoelectric conversion circuit is not mounted on an end of a predetermined range in the longitudinal direction of the substrate. 2. The optical-electrical conversion module for optical communication according to claim 1, wherein the optical axis conversion and the optical axis of the optical-electrical conversion module and an optical waveguide or an optical fiber can be simultaneously performed by inserting the optical-electrical conversion module into a groove provided in the receptacle. Therefore, manufacturing costs can be reduced.
[0016]
According to a third aspect of the present invention, there is provided the photoelectric conversion module for optical communication according to the first aspect, wherein the light emitting element or the light receiving element is mounted on a surface of the substrate different from the photoelectric conversion circuit. Since the mounting surface of the light receiving element can be made flat, the photoelectric conversion module for optical communication can be surface mounted on another substrate.
[0017]
According to a fourth aspect of the present invention, there is provided the optical-electrical conversion module for optical communication according to the first aspect, wherein the size of the second groove is larger than the size of the first groove. Since the second groove for mounting the optical element is larger than the first groove for mounting the light emitting element or the light receiving element, a wide range of light can be collected and the coupling efficiency between the optical fiber and the light emitting element or the light receiving element is increased. Can be.
[0018]
According to a fifth aspect of the present invention, the size of the first groove is substantially equal to the light emitting element or the light receiving element, the size of the second groove is substantially equal to the optical component, and the center of the first groove and the second groove. 2. The optical-electrical conversion module for optical communication according to claim 1, wherein the optical axis of the optical element and the light-emitting surface of the light-emitting element or the light-receiving surface of the light-receiving element can be easily adjusted, so that the manufacturing cost can be reduced. .
[0019]
According to a sixth aspect of the present invention, an electrode is provided on the bottom surface of the first groove, and the electrode is electrically connected to an anode electrode and a cathode electrode of a light emitting element or a light receiving element by gold bumps or solder bumps. The photoelectric conversion module for optical communication according to 1, wherein the wiring between the electrode of the light emitting element or the light receiving element and the electrode of the substrate can be shortened, and the bump can be easily formed by the plating method, thereby reducing the stray capacitance and inductance. And the mounting cost can be reduced.
[0020]
The invention according to claim 7 is the photoelectric conversion module for optical communication according to claim 1, wherein the first groove, the second groove, and the through hole are hermetically sealed so as to be in a vacuum or nitrogen atmosphere. H 2 It is possible to prevent the deterioration of the characteristics of the light emitting element or the light receiving element due to O and prevent the surface oxidation of the external extraction electrode, thereby obtaining high reliability.
[0021]
The invention according to claim 8 is the photoelectric conversion module for optical communication according to claim 1, wherein the light-emitting element or the light-receiving element is used as a lid of the first groove and hermetically sealed. The effect can be obtained and the light emitting element or the light receiving element can be used as a cover, so that the cost can be reduced.
[0022]
According to a ninth aspect of the present invention, there is provided the photoelectric conversion module for optical communication according to the first aspect, wherein the optical element is hermetically sealed by using the optical element as a lid of the second groove. In addition, the cost can be reduced because the optical element can be used instead of the lid.
[0023]
According to a tenth aspect of the present invention, an anisotropic conductive sheet is disposed between the light emitting element or the light receiving element and the bottom surface of the first groove to provide electrical connection and hermetic sealing. The optical-to-electrical conversion module for optical communication described above, which can perform hermetic sealing and electrical connection at the same time, so that manufacturing costs can be reduced.
[0024]
The invention according to claim 11 is the photoelectric conversion module for optical communication according to claim 1, wherein at least one of the optical element, the light emitting element, and the light receiving element is hermetically sealed using resin, low melting point glass, or solder. Yes, H 2 It is possible to prevent the deterioration of the characteristics of the light emitting element or the light receiving element due to O and prevent the surface oxidation of the external extraction electrode, thereby obtaining high reliability.
[0025]
According to a twelfth aspect of the present invention, there is provided the photoelectric conversion module for optical communication according to the first aspect, wherein a ceramic laminated substrate or a polyimide laminated substrate is used as the substrate, and it is possible to suppress moisture absorption of the substrate and diffuse heat generated by the light emitting element. Alternatively, since heat can be dissipated, high reliability as a light emitting element or a light receiving element can be obtained.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0027]
(Embodiment 1)
Hereinafter, an overall configuration of the photoelectric conversion module for optical communication according to the first embodiment of the present invention will be described with reference to FIGS.
[0028]
1A is a perspective view of the entire optical-electrical conversion module for optical communication of the present invention, and FIGS. 1B to 1E are cross-sectional perspective views of the optical-electrical conversion module for optical communication taken along line AA in FIG. FIG. 2A is a perspective view of the entire optical-electrical conversion module for optical communication of the present invention, and FIGS. 2B to 2E are B of the optical-electrical conversion module for optical communication in FIG. FIG.
[0029]
In FIG. 1, reference numeral 21 denotes a light emitting element, 22 denotes a light receiving element, 23 denotes a passive component such as a resistor, a capacitor, or an inductor, and 24 denotes an LSI that controls the light emitting element 21 or the light receiving element 22. Reference numeral 25 denotes an external extraction electrode, and reference numeral 27 denotes a substrate. Reference numeral 26 denotes an electrode formed on the main surface of the substrate 27, and is electrically connected to the light emitting element 21 or the light receiving element 22. 30 is a through hole, 31 is a through hole for making an internal wiring pattern or an electrical connection between layers, 32 to 34 are optical elements, 28 is a first groove formed on the main surface of the substrate 27, and 29 is a first groove. 2 shows a second groove formed on the main surface of the substrate 27 opposite to the main surface on which the groove 28 is formed.
[0030]
1A to 1E, the light emitting element 21 is typically a LED, LD, or surface emitting laser diode (VCSEL), and the light receiving element 22 is a PIN-PD, APD, or the like. These have a configuration in which an anode electrode and a cathode electrode are provided in the same manner.
[0031]
Examples of the LSI 24 include a driver for driving the light emitting element 21 and an amplifier that converts a photocurrent from the light receiving element 22 into a voltage and amplifies the voltage.
[0032]
The optical elements 32 to 34 include, for example, a refraction lens such as a spherical or aspherical surface or a hemisphere, a diffractive lens such as a Fresnel lens, a flat glass, and the like. In order to reduce the overall height of the photoelectric conversion module for optical communication, a diffractive lens having a diffraction pattern formed on a flat glass is more advantageous than a refractive lens. When a refraction lens is selected, a hemispherical shape having a flat surface is advantageous in consideration of sealing properties. When a flat glass is used, an anti-reflection (AR) coating is applied to the main surface of the flat glass, so that the influence of reflected return light on the light emitting element 21 or the light receiving element 22 and reflection loss can be reduced.
[0033]
In the photoelectric conversion module for optical communication according to the present invention, a ceramic laminated substrate is used as the substrate 27. The reason for using a ceramic laminated substrate as the substrate 27 is that a relatively free wiring design and local grooves, through holes, and the like can be easily formed. The ceramic laminated substrate is formed by laminating and firing green sheets. Independent wiring can be formed in each layer, and it is relatively easy to connect each layer by the through hole 31. Therefore, it is possible to take out the electrode of the light emitting element 21 or the light receiving element 22 mounted and sealed inside the first groove portion 28 to the main surface of the substrate 27. In the lamination, by forming a through hole in the green sheet using a die or a punch, it becomes possible to form a groove shape or a through hole at a predetermined position. As described above, it is advantageous for miniaturization of the whole and positioning and mounting of components, and reduction in manufacturing cost can be achieved.
[0034]
Forming a groove for component mounting at a predetermined position has the following advantages.
[0035]
The first groove 28 and the second groove 29 face each other with the substrate 27 interposed therebetween, and are formed such that the centers of the first groove 28 and the second groove 29 coincide. The size of the first groove 28 is substantially equal to the outer shape of the light emitting element 21 such as LED, LD, VCSEL or the like and the light receiving element 22 such as PIN-PD, APD to be mounted. Are formed substantially equal to the optical elements 32-34. The first groove 28 has a smaller shape than the second groove 29. Therefore, by mounting the light emitting element 21 or the light receiving element 22 in the first groove 28 and further mounting the optical elements 32 to 34 in the second groove 29, the light emitting element 21 or the light receiving element 22 and the optical elements 32 to 34 can be easily formed. And the shape of the second groove 29 is enlarged, so that a wide range of light can be collected and high coupling efficiency can be realized.
[0036]
In this case, the first groove portion 28 and the second groove portion 29 each have a through hole 30 penetrating the bottom, and light from the light emitting element 21 is efficiently transmitted to the optical elements 32 to 34 via the through hole 30. Light that is well guided and that has passed through the optical elements 32 to 34 is guided to the light receiving surface of the light receiving element 22. The photoelectric conversion module according to the present invention shown in FIG. 2 differs from FIG. 1 only in the mounting surface of the light emitting element 21 or the light receiving element 22 and the optical elements 32 to 34 on the substrate 27, and the same effect as in FIG. .
[0037]
In FIG. 1, the light emitting element 21 or the light receiving element 22 is mounted on the same surface as the photoelectric conversion circuit, and the photoelectric conversion circuit is not mounted on the end of the predetermined range L1 of the substrate 27 in the longitudinal direction. (Not shown), the optical axes of the optical elements 32 to 34 and the optical waveguide or the optical fiber can be aligned and mounted at the same time, and the manufacturing cost can be reduced.
[0038]
FIG. 2 shows a configuration in which the light emitting element 21 or the light receiving element 22 is mounted on a surface different from that of the photoelectric conversion circuit. Since the mounting surface of the light emitting element 21 or the light receiving element 22 becomes flat, the photoelectric It can be easily surface-mounted as a conversion module.
[0039]
(Embodiment 2)
Hereinafter, a detailed configuration of a mounting portion of the optical element and the light emitting element or the light receiving element of the photoelectric conversion module for optical communication according to the second embodiment of the present invention will be described with reference to FIG.
[0040]
3A and 3B are cross-sectional views of a mounting portion of the light emitting element 21 of the present invention, FIG. 3C is a cross-sectional view of a mounting portion of the light receiving element 22 of the present invention, and FIG. It is a top view of the light emitting element or the light receiving element used for Embodiment 2 of 3 (a)-(c).
[0041]
3A to 3D, 21 is a light emitting element, 36 is an internal wiring pattern, 37 is a through hole, 38 is an extraction electrode provided on the light emitting surface of the light emitting element 21 or the light receiving surface of the light receiving element 22, 39 Is a first sealing material, 40 is a second sealing material, 41 is a metal bump, 28 is a first groove formed on the main surface of the substrate 27, and 29 is a substrate 27 on which the first groove 28 is formed. 2 shows second groove portions formed on the main surface opposite to the main surface. Reference numerals 32 to 34 denote optical elements, which are, for example, refractive lenses such as spherical or aspherical or hemispherical lenses, diffractive lenses such as Fresnel lenses, flat glass, and the like, which are appropriately selected according to the elements used and applications. Reference numeral 35 denotes an internal cavity hermetically sealed by the light emitting element 21 or the light receiving element 22 and the optical elements 32-34, and reference numeral 30 denotes a through hole. Reference numeral 42 denotes a bottom surface of the first groove 28, and reference numeral 43 denotes an internal electrode provided on the substrate 27.
[0042]
A metal bump 41 is used for electrical connection between the light emitting element 21 or the light receiving element 22 and the substrate 27. The material of the metal bump 41 is selected in consideration of ease of formation, stability including long-term reliability, and heat resistance of the light emitting element 21 or the light receiving element 22. Typical materials include gold, nickel, and solder. These materials are relatively inexpensive and can easily form bumps by plating. When nickel is used as the material, it is desirable to cover the surface with gold or the like to prevent oxidation of the surface. The metal bump 41 may be formed on the internal electrode 43 of the substrate 27, or may be formed on the extraction electrode 38 provided on the light emitting surface of the light emitting element 21 or the light receiving surface of the light receiving element 22. The internal electrode 43 of the substrate 27 and the extraction electrode 38 of the light emitting element 21 or the light receiving element 22 are selected in consideration of an intermetallic compound formed by connecting to the metal bump 41. Since the firing temperature is high for the internal electrode 43 of the substrate 27, usually tungsten or the like is used as an electrode material, but the surface is desirably coated with gold.
[0043]
In the photoelectric conversion module for optical communication according to the present invention, a ceramic laminated substrate is used as the substrate 27. The reason for using a ceramic laminated substrate as the substrate 27 is that a relatively free wiring design and local grooves, through holes, and the like can be easily formed.
[0044]
Glass or plastic is used as a material for the optical elements 32 to 34, and glass is desirable in consideration of the temperature characteristics of the refractive index and the like. When glass is used as the material of the optical elements 32 to 34, the glass is subjected to metallization as necessary in consideration of the wettability of the second sealing material 40 and the glass. The metallization is performed using a vacuum deposition method, a sputter deposition method, a plating method, or the like. Examples of materials used for metallization include Ni, Cr, Cu, and the like. Similarly, the substrate 27 is subjected to metallization. Representative materials for metallization include Mo-Mn, Ni-Cr, Ti-Cu and the like. By performing the metallizing process, the sealing property between the optical elements 32 to 34 and the substrate 27 is improved.
[0045]
The shape of the optical elements 32 to 34 and the distance L2 between the light emitting element 21 and the optical elements 32 to 34 are determined by the radiation angle and focal position of light of the light emitting element 21 such as an LED or VCSEL, and the type and optical characteristics of the optical waveguide to be coupled. Design in consideration of. In the case of the light receiving element 22 such as PIN-PD, APD, etc., it is designed in consideration of the amount of light incident on the light receiving surface.
[0046]
The first sealing material 39 is used for hermetic sealing between the light emitting element 21 or the light receiving element 22 and the substrate 27. The material of the first sealing material 39 is selected in consideration of a sealing method, moisture resistance, adhesion to the light emitting element 21 or the light receiving element 22, and the substrate 27 and long-term reliability. Typical materials include resins such as epoxy, silicone, polyester, and phenol, and materials obtained by filling them with glass fibers or inorganic fillers, and low-melting glass materials or metal materials such as solder. When a metal material such as solder is selected, particularly when the optical elements 32 to 34 are of a flat type, a metallized pattern can be easily formed, and thus there is an effect that the sealing step can be simplified.
[0047]
Next, an example of a mounting method will be described.
[0048]
A first sealing material 39 is formed on the internal electrode 43 on the bottom surface 42 of the first groove 28 of the substrate 27. Next, a metal bump 41 is formed on the extraction electrode 38 of the light emitting element 21 or the light receiving element 22. Then, the light emitting element 21 or the light receiving element 22 is positioned and fixed in the first groove 28 of the substrate 27, and is heated and pressed. The heating temperature at this time is desirably equal to or higher than the liquidus temperature when the metal bumps 41 are solder, and equal to or higher than the recrystallization temperature when the metal bumps 41 are gold bumps. The pressure is appropriately set so as to eliminate the first sealing material 39 between the metal bump 41 and the internal electrode 43 on the bottom surface 42 of the first groove 28, and to obtain an electrical connection. Next, a second sealing material 40 is formed on the bottom surface of the second groove 29, and the optical elements 32 to 34 are positioned and fixed in the second groove 29. Further, the optical elements 32 to 34 are pressed and heated to complete the sealing. After the positioning of the light emitting element 21 or the light receiving element 22, it is desirable to carry out in a nitrogen-substituted atmosphere or a vacuum.
[0049]
The above is an example of the mounting method. For example, the first sealing material 39 may be formed on the extraction electrode 38 of the light emitting element 21 or the light receiving element 22, and the second sealing material 40 may be formed on the optical elements 32 to 34 may be formed on the outer peripheral portion. Further, the metal bump 41 may be formed on the internal electrode 43 on the bottom surface 42 of the first groove 28 of the substrate 27, and the order of mounting the optical elements 32 to 34 and the light emitting element 21 or the light receiving element 22 may be changed. Good.
[0050]
The case where a resin material is used for the first sealing material 39 in the above mounting method will be described. The sealing material 39 is a liquid or paste-like thermosetting resin, a sheet-like resin, or the like. As a method of applying a liquid or paste-like resin, a screen printing method of applying a resin only to an opening of a screen having an opening, a dispensing method of applying a resin using a syringe, a stamping method of transferring using a stamp pin, and the like. There is. When the first sealing material 39 is formed on the internal electrode 43 on the bottom surface 42 of the first groove 28, a dispense method or a stamping method is advantageous. When the first sealing material 39 is formed on the light emitting element 21 or the light receiving element 22, a sheet-shaped resin or a screen printing method is excellent in workability. When a sheet-shaped resin is used, the sheet can be processed in advance into a desired shape and formed on the extraction electrode 38 of the light-emitting element 21 or the light-receiving element 22, so that the process can be simplified. By forming the first sealing material 39 on the substrate 27 by these methods, it is possible to control the application amount of the first sealing material 39, and to apply the first sealing material 39 to the second groove 29. Of the sealing material 39 can be prevented.
[0051]
(Embodiment 3)
Hereinafter, a mounting portion of the optical element and the light emitting element or the light receiving element of the photoelectric conversion module for optical communication according to the third embodiment of the present invention will be described with reference to FIG.
[0052]
4A and 4B are cross-sectional views of a mounting portion of another light emitting element of the present invention, and FIG. 4C is a cross-sectional view of a mounting portion of a light receiving element according to another embodiment of the present invention. FIG. 4D is a top view of the light emitting element or the light receiving element used in the third embodiment.
[0053]
4A to 4D, 21 is a light emitting element, 36 is an internal wiring pattern, 37 is a through hole, 38 is an extraction electrode provided on the light emitting surface of the light emitting element 21 or the light receiving surface of the light receiving element 22, 39 Is a first sealing material, 40 is a second sealing material, 41 is a metal bump, 28 is a first groove formed on the main surface of the substrate 27, and 29 is a substrate 27 on which the first groove 28 is formed. 2 shows second groove portions formed on the main surface opposite to the main surface. In FIG. 4C, reference numeral 22 denotes a light receiving element. Reference numerals 32 to 34 denote optical elements, which are, for example, refractive lenses such as spherical or aspherical or hemispherical lenses, diffractive lenses such as Fresnel lenses, flat glass, and the like, which are appropriately selected according to the elements used and applications. Reference numeral 35 denotes an internal cavity hermetically sealed by the light emitting element 21 or the light receiving element 22 and the optical elements 32-34, and reference numeral 30 denotes a through hole. In FIG. 4D, reference numeral 42 denotes a bottom surface of the first groove 28, and reference numeral 43 denotes an internal electrode provided on the substrate 27.
[0054]
An example of a method for mounting the photoelectric conversion module for optical communication according to the present invention will be described.
[0055]
The second sealing material 40 is formed on the bottom surface of the second groove 29 of the substrate 27, and the optical elements 32 to 34 are positioned and fixed in the second groove 29. Next, the optical elements 32 to 34 are pressurized and heated. Then, the first sealing material 39 is poured from the first groove 28, and the second groove 29, the through hole 30, and the first groove 28 are filled with the first sealing material 39. The application amount of the first sealing material 39 is adjusted so as to be at least above the bottom surface 42 of the first groove 28. Next, a metal bump 41 is formed on the extraction electrode 38 of the light emitting element 21 or the light receiving element 22. Then, the light emitting element 21 or the light receiving element 22 is positioned and fixed in the first groove 28 of the substrate 27. Further, the sealing is completed by heating the substrate 27 while pressing the light emitting element 21 or the light receiving element 22. Through the above steps, the gap between the light emitting surface of the light emitting element 21 or the light receiving surface of the light receiving element 22 and the optical element 32-34 is completely filled with the first sealing material 39. The light receiving surface of the element 22 can be protected from dust and the like, and high reliability can be obtained.
[0056]
The above is an example of the mounting method. For example, the second sealing material 40 may be formed on the outer periphery of the optical elements 32 to 34, and the metal bump 41 may be formed on the inner electrode 43 on the bottom surface 42 of the first groove 28. It may be formed on top.
[0057]
The case where a resin material is used for the first sealing material 39 in the above mounting method will be described. The first sealing material 39 is a liquid or paste-like transparent thermosetting resin or the like. As a method for applying the first sealing material 39, a dispensing method capable of controlling the temperature, the application pressure, and the application time is advantageous. By controlling and applying by the dispensing method so that air bubbles do not enter the first sealing material 39, refraction of light inside the internal cavity 35 due to air bubbles can be prevented. And the coupling efficiency between the incident light from the optical waveguide and the light receiving element 22 can be increased. In this mounting method, since the heating step can be performed only once, it is possible to simplify the process, prevent thermal destruction of the light emitting element 21 and the light receiving element 22, and prevent destruction of the junction during the mounting step. Further, since high precision is not required for supplying the first sealing material 39, the process can be simplified. Other effects are the same as those of the second embodiment, and therefore, detailed description is omitted here.
[0058]
Another example of the mounting method according to the third embodiment will be described. The second sealing material 40 is formed on the bottom surface of the second groove 29 of the substrate 27, and the optical elements 32 to 34 are positioned and fixed in the second groove 29. Then, the optical elements 32 to 34 are pressurized and heated. Next, a metal bump 41 is formed on the extraction electrode 38 of the light emitting element 21 or the light receiving element 22. Next, the light emitting element 21 or the light receiving element 22 is positioned and fixed in the first groove 28 of the substrate 27, and is heated and pressurized, so that the light emitting element 21 or the light receiving element 22 and the substrate 27 are electrically connected. Then, the first sealing material 39 is poured from the gap between the first groove 28 and the light emitting element 21 or the light receiving element 22, and the second groove 29, the through hole 30 and the bottom surface 42 of the first groove 28 are sealed with the first sealing material. Fill with stop material 39. The first sealing material 39 is applied in such an amount that the light emitting surface of the light emitting element 21 to be mounted or the light receiving surface of the light receiving element 22 is sufficiently filled. Then, by heating the substrate 27, the first sealing material 39 is cured to complete the sealing.
[0059]
The above is an example of the mounting method. For example, the second sealing material 40 may be formed on the outer peripheral portions of the optical elements 32 to 34, and the metal bump 41 may be formed on the inner electrode 43 on the bottom surface 42 of the first groove portion. May be formed.
[0060]
The case where a resin material is used for the first sealing material 39 in the above mounting method will be described. The first sealing material 39 is a liquid or paste-like transparent thermosetting resin or the like. Considering that the first sealing material 39 is poured from the gap between the first groove 28 and the light emitting element 21 or the light receiving element 22, it is advantageous to use a liquid thermosetting resin having a low viscosity and a low surface tension. . A dispensing method is advantageous as a method for supplying the first sealing material 39. Tilting the substrate 27 during resin supply is also effective in preventing air bubbles from entering the first sealing material 39.
[0061]
(Embodiment 4)
Hereinafter, the detailed configuration of the mounting part of the optical element and the light emitting element or the light receiving element of the photoelectric conversion module for optical communication according to the fourth embodiment of the present invention will be described with reference to FIG.
[0062]
5A and 5B are cross-sectional views of a light-emitting element mounting portion according to Embodiment 4 of the present invention, and FIG. 5C is a cross-sectional view of a light-receiving element mounting portion according to another embodiment of the present invention. FIG. 5D is a top view of the light emitting element or the light receiving element used in the fourth embodiment.
[0063]
5A to 5D, reference numeral 21 denotes a light emitting element; 36, an internal wiring pattern; 37, a through hole; 38, an extraction electrode provided on the light emitting surface of the light emitting element 21 or the light receiving surface of the light receiving element 22; Is a first sealing material, 40 is a second sealing material, 41 is a metal bump, 28 is a first groove formed on the main surface of the substrate 27, and 29 is a substrate 27 on which the first groove 28 is formed. 2 shows second groove portions formed on the main surface opposite to the main surface. In FIG. 5C, reference numeral 22 denotes a light receiving element. Reference numerals 32 to 34 denote optical elements, which are, for example, refractive lenses such as spherical or aspherical or hemispherical lenses, diffractive lenses such as Fresnel lenses, flat glass, and the like, which are appropriately selected according to the elements used and applications. Reference numeral 35 denotes an internal cavity hermetically sealed by the light emitting element 21 or the light receiving element 22 and the optical elements 32-34, and reference numeral 30 denotes a through hole. In FIG. 5D, reference numeral 42 denotes a bottom surface of the first groove 28, and reference numeral 43 denotes an internal electrode provided on the substrate 27.
[0064]
An example of a method for mounting the photoelectric conversion module for optical communication according to the present invention will be described.
[0065]
The second sealing material 40 is formed on the bottom surface of the second groove 29 of the substrate 27, and the optical elements 32 to 34 are positioned and fixed in the second groove 29. Next, the optical elements 32 to 34 are pressurized and heated. Then, a metal bump 41 is formed on the extraction electrode 38 of the light emitting element 21 or the light receiving element 22. Next, the light emitting element 21 or the light receiving element 22 is positioned and fixed in the first groove 28 of the substrate 27, and the substrate 27 is electrically connected to the light emitting element 21 or the light receiving element 22 by applying heat and pressure. Further, a first sealing material 39 is applied from above the light emitting element 21 or the light receiving element 22 mounted on the bottom surface 42 of the first groove 28 of the substrate 27. The application amount of the first sealing material 39 is controlled so as not to leak to the bottom surface 42 of the first groove 28. Next, the first sealing material 39 is cured by heating to complete the sealing. It is desirable to perform the steps from pressurizing and heating the optical elements 32 to 34 in a nitrogen-substituted atmosphere or vacuum.
[0066]
The above is an example of the mounting method. For example, the second sealing material 40 may be formed on the outer periphery of the optical elements 32 to 34, and the metal bump 41 may be formed inside the bottom surface 42 of the first groove 28 of the substrate 27. It may be formed on the electrode 43. The order in which the optical elements 32 to 34 and the light emitting element 21 or the light receiving element 22 are mounted may be changed.
[0067]
The case where the resin material of the first sealing material 39 is used in the above mounting method will be described below.
[0068]
As the first sealing material 39, a liquid or paste-like thermosetting resin or photo-setting resin is used. When a photo-curable resin is used, the first sealing material 39 is cured by irradiating the first sealing material 39 with UV to complete the sealing. When a photocurable resin is used as the first sealing material 39, the number of heating steps can be reduced, so that the light-emitting element 21 and the light-receiving element 22 can be prevented from being thermally damaged. Further, by mixing and dispersing fine particles such as alumina and aluminum nitride having high thermal conductivity in the first sealing material 39, heat generated by the light emitting element 21 can be transmitted to the substrate 27 or dissipated into the atmosphere. 21 can be improved, and high reliability can be obtained. As a method for applying the first sealing material 39, a dropping method or a dispensing method is advantageous. By using the dropping method, equipment cost can be reduced. In this mounting method, high precision is not required for the supply of the first sealing material 39, so that the process can be simplified.
[0069]
(Embodiment 5)
Hereinafter, the detailed configuration of the mounting portion of the optical element and the light emitting element or the light receiving element of the photoelectric conversion module for optical communication according to the fifth embodiment of the present invention will be described with reference to FIG.
[0070]
6 (a) and 6 (b) are cross-sectional views of a light-emitting element mounting portion according to Embodiment 5 of the present invention, FIG. 6 (c) is a cross-sectional view of another light-receiving element mounting portion of the present invention, and FIG. (D) is a top view of the light emitting element or the light receiving element used in Embodiment 5.
[0071]
6A to 6D, 21 is a light receiving element, 36 is an internal wiring pattern, 37 is a through hole, 38 is an extraction electrode provided on the light emitting surface of the light emitting element 21 or the light receiving surface of the light receiving element 22, 44 Is an anisotropic conductive sheet, 40 is a second sealing material, 41 is a metal bump, 28 is a first groove formed on the main surface of the substrate 27, and 29 is a substrate formed with the first groove 28. The figure shows the second groove portions formed on the main surface opposite to the main surface. In FIG. 6C, reference numeral 22 denotes a light receiving element. Reference numerals 32 to 34 denote optical elements, which are, for example, refractive lenses such as spherical or aspherical or hemispherical lenses, diffractive lenses such as Fresnel lenses, flat glass, and the like, which are appropriately selected according to the elements used and applications. Reference numeral 35 denotes an internal cavity hermetically sealed by the light emitting element 21 or the light receiving element 22 and the optical elements 32 to 34, and 30 denotes a through hole.
[0072]
In FIG. 6D, reference numeral 42 denotes a bottom surface of the first groove 28, and reference numeral 43 denotes an internal electrode provided on the substrate 27.
[0073]
Hereinafter, an example of a mounting method according to the present embodiment will be described.
[0074]
An anisotropic conductive sheet 44 is formed on the internal electrode 43 on the bottom surface 42 of the first groove 28 of the substrate 27. Next, a metal bump 41 is formed on the extraction electrode 38 of the light emitting element 21 or the light receiving element 22. Then, the light emitting element 21 or the light receiving element 22 is positioned and fixed in the first groove 28 of the substrate 27. Next, the light emitting element 21 and the light receiving element 22 are pressurized and heated, and the electrical connection and sealing of the light emitting element 21 and the light receiving element 22 and the substrate 27 are simultaneously performed. Further, a second sealing material 40 is formed on the bottom surface of the second groove 29, and the optical elements 32 to 34 are positioned and fixed in the second groove 29.
[0075]
Next, the optical elements 32 to 34 are pressed and heated to complete the sealing. It is desirable that the light emitting element 21 or the light receiving element 22 be fixed in a nitrogen-substituted atmosphere or in a vacuum.
[0076]
The above is an example of the mounting method. For example, the anisotropic conductive sheet 44 may be formed on the extraction electrode 38 of the light emitting element 21 or the light receiving element 22, and the second sealing material 40 may be formed of the optical elements 32 to 34. May be formed on the outer periphery. In addition, the metal bump 41 may be formed on the internal electrode 43 on the bottom surface 42 of the first groove of the substrate 27, and the order of mounting the optical elements 32 to 34 and the light emitting element 21 or the light receiving element 22 may be changed. .
[0077]
In the fifth embodiment, an anisotropic conductive sheet 44 is used for hermetic sealing between the light emitting element 21 or the light receiving element 22 and the substrate 27. The anisotropic conductive sheet 44 is obtained by dispersing conductive particles in a resin sheet. However, since the density of the conductive particles is low, the sheet itself has no conductivity. As the material of the conductive particles, use is made of Ni alone, Cu alone, Ni plated with gold, resin plated with gold as a nucleus, silver particles coated with an insulating resin, or the like. The anisotropic conductive sheet 44 is previously processed into a shape to be attached. When the substrate 27 and the light-emitting element 21 or the light-receiving element 22 are heated and pressurized, the conductive particles are sandwiched between the electrodes, and the substrate 27 and the light-emitting element 21 or the light-receiving element 22 can be electrically connected. It can be cured and hermetically sealed.
[0078]
In the fifth embodiment, since the sheet-like anisotropic conductive sheet 44 is used, the workability is excellent and the process can be simplified. There is also a method of using a paste-like anisotropic conductive paste instead of the anisotropic conductive sheet 44. In this case, the paste is supplied onto the substrate 27 or the extraction electrode 38 of the light emitting element 21 or the light receiving element 22 by a screen printing method, a dispensing method, or a stamping method. The other steps are the same as in the case where the sheet-like anisotropic conductive paste 44 is used. By using a paste-like anisotropic conductive paste, material costs can be reduced. The other effects are the same as those of the third embodiment of the present invention, and the detailed description is omitted here.
[0079]
【The invention's effect】
As described above, the present invention provides a light emitting element or a light receiving element in which an anode electrode and a cathode electrode are provided on the same surface, a photoelectric conversion circuit including a semiconductor element for controlling the light emitting element or the light receiving element, and a passive component. Optical components such as at least one lens body, an optical stop, a window, and the like used for optical coupling, the light emitting element or the light receiving element, a photoelectric conversion circuit, and a substrate on which the optical element is mounted. The first groove formed on one surface of the substrate is opposed to the second groove formed on the other surface, and penetrates between the bottom surfaces of the first groove and the second groove. A photoelectric communication opto-electrical converter that hermetically seals a light emitting element or a light receiving element mounted in the first groove and a surface of an optical element mounted in the second groove so as to face each other. Module A le, to form a light emitting device module or the light receiving element module by utilizing the thickness of the substrate, miniaturization and height reduction can be achieved.
[Brief description of the drawings]
FIG. 1A is a perspective view of a photoelectric conversion module for optical communication according to the present invention.
(B) to (e) are cross-sectional perspective views of a main part of the photoelectric conversion module for optical communication of the present invention.
FIG. 2A is a perspective view of another photoelectric conversion module for optical communication according to the present invention.
(B) to (e) Cross-sectional perspective views of main parts of another photoelectric conversion module for optical communication according to the present invention.
FIGS. 3A and 3B are cross-sectional views of a mounting portion of the light emitting device of the present invention.
(C) Sectional view of the mounting part of the light receiving element of the present invention.
(D) Top view of light emitting element or light receiving element used in Embodiment 2
FIGS. 4A and 4B are cross-sectional views of a mounting portion of the light emitting device of the present invention.
(C) Sectional view of the mounting part of the light receiving element of the present invention.
(D) Top view of light emitting element or light receiving element used in Embodiment 3
5A and 5B are cross-sectional views of a mounting portion of the light emitting device of the present invention.
(C) Sectional view of the mounting part of the light receiving element of the present invention.
(D) Top view of light emitting element or light receiving element used in Embodiment 4
FIGS. 6A and 6B are cross-sectional views of a mounting portion of the light emitting device of the present invention.
(C) Sectional view of the mounting part of the light receiving element of the present invention.
(D) Top view of light emitting element or light receiving element used in Embodiment 5
FIG. 7A is a perspective view of a conventional photoelectric conversion module for optical communication.
(B) Perspective view of conventional light emitting element module or light receiving element module
(C) Cross-sectional view of a conventional light emitting element module or light receiving element module
[Explanation of symbols]
21 Light-emitting element
22 Light receiving element
23 passive components
24 LSI
25 External extraction electrode
26 electrodes
27 Substrate
28 First groove
29 Second groove
30 through hole
31 Wiring pattern or through hole
32-34 optical element
35 internal cavity
36 Wiring pattern
37 Through Hole
38 Extraction electrode
39 First sealing material
40 Second sealing material
41 Metal bump
42 Bottom surface of first groove
43 internal electrode
44 Anisotropic conductive sheet

Claims (12)

アノード電極とカソード電極とを同じ面に設けた発光素子または受光素子と、この発光素子または受光素子を制御する半導体素子および受動部品からなる光電気変換回路と、光学的な結合に用いる少なくとも1つのレンズ体、光学的絞り、窓等の光学部品と、前記発光素子または受光素子と光電気変換回路および光学素子を実装する基板とからなる光通信用光電気変換モジュールにおいて、前記基板の一方の面に形成する第一の溝部と、もう一方の面に形成する第二の溝部とを対向させ、かつ第一の溝部と第二の溝部の底面の間を貫通するように貫通孔を設け、前記第一の溝部に実装する発光素子または受光素子の面と第二の溝部に実装する光学素子の面と対向するようにして気密封止する光通信用光電気変換モジュール。A light-emitting element or a light-receiving element having an anode electrode and a cathode electrode provided on the same surface, a photoelectric conversion circuit including a semiconductor element and a passive component for controlling the light-emitting element or the light-receiving element, and at least one element used for optical coupling. In a photoelectric conversion module for optical communication including an optical component such as a lens body, an optical diaphragm, and a window, and a substrate on which the light emitting element or the light receiving element, a photoelectric conversion circuit, and an optical element are mounted, one surface of the substrate The first groove to be formed, the second groove formed on the other surface is opposed, and a through hole is provided so as to penetrate between the bottom surface of the first groove and the second groove, An opto-electrical conversion module for optical communication, which is hermetically sealed such that a surface of a light emitting element or a light receiving element mounted in a first groove and a surface of an optical element mounted in a second groove are opposed to each other. 基板上の光電気変換回路と同じ面に発光素子または受光素子を実装し、かつ前記光電気変換回路を基板の長手方向の所定範囲の端部に実装しないようにした請求項1に記載の光通信用光電気変換モジュール。2. The light according to claim 1, wherein a light-emitting element or a light-receiving element is mounted on the same surface as the photoelectric conversion circuit on the substrate, and the photoelectric conversion circuit is not mounted on an end of a predetermined range in a longitudinal direction of the substrate. Photoelectric conversion module for communication. 基板上の光電気変換回路と異なる面に発光素子または受光素子を実装するようにした請求項1に記載の光通信用光電気変換モジュール。The photoelectric conversion module for optical communication according to claim 1, wherein a light emitting element or a light receiving element is mounted on a surface of the substrate different from the photoelectric conversion circuit. 第二の溝部の大きさを第一の溝部の大きさより大きくした請求項1に記載の光通信用光電気変換モジュール。The photoelectric conversion module for optical communication according to claim 1, wherein the size of the second groove is larger than the size of the first groove. 第一の溝部の大きさが発光素子または受光素子とほぼ等しく第二の溝の大きさが光学部品とほぼ等しくかつ第一の溝と第二の溝の中心が同じとする請求項1に記載の光通信用光電気変換モジュール。2. The device according to claim 1, wherein the size of the first groove is substantially equal to the size of the light emitting element or the light receiving element, the size of the second groove is substantially equal to the size of the optical component, and the centers of the first groove and the second groove are the same. Photoelectric conversion module for optical communication. 第一の溝部の底面に電極を設け、この電極と発光素子または受光素子のアノード電極とカソード電極とを金バンプまたははんだバンプにより電気的に接続をした請求項1に記載の光通信用光電気変換モジュール。2. The photoelectric communication device according to claim 1, wherein an electrode is provided on a bottom surface of the first groove, and the electrode is electrically connected to an anode electrode and a cathode electrode of the light emitting element or the light receiving element by gold bumps or solder bumps. Conversion module. 第一の溝部と第二の溝部および貫通孔を真空または窒素雰囲気となるように気密封止する請求項1に記載の光通信用光電気変換モジュール。The photoelectric conversion module for optical communication according to claim 1, wherein the first groove, the second groove, and the through-hole are hermetically sealed so as to be in a vacuum or nitrogen atmosphere. 発光素子または受光素子を第一の溝部の蓋として用いて気密封止する請求項1に記載の光通信用光電気変換モジュール。The photoelectric conversion module for optical communication according to claim 1, wherein the light-emitting element or the light-receiving element is used as a lid of the first groove and hermetically sealed. 光学素子を第二の溝部の蓋として用いて気密封止する請求項1に記載の光通信用光電気変換モジュール。The optical-electrical conversion module for optical communication according to claim 1, wherein the optical element is hermetically sealed by using the optical element as a lid of the second groove. 発光素子または受光素子と第一の溝部の底面との間に異方性導電シートを配して電気的接続と気密封止をするようにした請求項1に記載の光通信用光電気変換モジュール。2. The photoelectric conversion module for optical communication according to claim 1, wherein an anisotropic conductive sheet is arranged between the light emitting element or the light receiving element and the bottom surface of the first groove to provide electrical connection and airtight sealing. . 光学素子、発光素子、受光素子の少なくとも1つに樹脂、低融点ガラスまたははんだを用いて気密封止する請求項1に記載の光通信用光電気変換モジュール。The photoelectric conversion module for optical communication according to claim 1, wherein at least one of the optical element, the light emitting element, and the light receiving element is hermetically sealed using resin, low melting point glass, or solder. 基板にセラミック積層基板またはポリイミド積層基板を用いた請求項1に記載の光通信用光電気変換モジュール。The photoelectric conversion module for optical communication according to claim 1, wherein a ceramic laminated substrate or a polyimide laminated substrate is used as the substrate.
JP2003041101A 2003-02-19 2003-02-19 Photoelectric module for optical communication Expired - Fee Related JP4195979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003041101A JP4195979B2 (en) 2003-02-19 2003-02-19 Photoelectric module for optical communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003041101A JP4195979B2 (en) 2003-02-19 2003-02-19 Photoelectric module for optical communication

Publications (2)

Publication Number Publication Date
JP2004253534A true JP2004253534A (en) 2004-09-09
JP4195979B2 JP4195979B2 (en) 2008-12-17

Family

ID=33024784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003041101A Expired - Fee Related JP4195979B2 (en) 2003-02-19 2003-02-19 Photoelectric module for optical communication

Country Status (1)

Country Link
JP (1) JP4195979B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324409A (en) * 2005-05-18 2006-11-30 Sharp Corp Semiconductor laser device and optical pickup device therewith
JP2008192479A (en) * 2007-02-06 2008-08-21 Seiko Epson Corp Light source device, illuminating device, monitoring device, and image display device
WO2009148134A1 (en) * 2008-06-04 2009-12-10 旭化成エレクトロニクス株式会社 Quantum‑type ir sensor and quantum-type ir gas concentration meter using same
WO2011111399A1 (en) * 2010-03-11 2011-09-15 パナソニック株式会社 Light emitting module, light source device, liquid crystal display device, and method for manufacturing light emitting module
US10068883B2 (en) 2015-08-03 2018-09-04 Kabushiki Kaisha Toshiba Optical coupling device
CN116722007A (en) * 2023-08-10 2023-09-08 青岛泰睿思微电子有限公司 Optical packaging structure based on mixed heterogeneous substrate material

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324409A (en) * 2005-05-18 2006-11-30 Sharp Corp Semiconductor laser device and optical pickup device therewith
JP2008192479A (en) * 2007-02-06 2008-08-21 Seiko Epson Corp Light source device, illuminating device, monitoring device, and image display device
JP4715761B2 (en) * 2007-02-06 2011-07-06 セイコーエプソン株式会社 Light source device, illumination device, monitor device, and image display device
WO2009148134A1 (en) * 2008-06-04 2009-12-10 旭化成エレクトロニクス株式会社 Quantum‑type ir sensor and quantum-type ir gas concentration meter using same
JP5266321B2 (en) * 2008-06-04 2013-08-21 旭化成エレクトロニクス株式会社 Quantum type infrared sensor and quantum type infrared gas concentration meter using the same
US8803092B2 (en) 2008-06-04 2014-08-12 Asahi Kasei Microdevices Corporation Quantum infrared sensor and quantum infrared gas concentration meter using the same
WO2011111399A1 (en) * 2010-03-11 2011-09-15 パナソニック株式会社 Light emitting module, light source device, liquid crystal display device, and method for manufacturing light emitting module
JP4932064B2 (en) * 2010-03-11 2012-05-16 パナソニック株式会社 Light emitting module, light source device, liquid crystal display device, and method for manufacturing light emitting module
US9261246B2 (en) 2010-03-11 2016-02-16 Panasonic Intellectual Property Management Co., Ltd. Light-emitting module, light source device, liquid crystal display device, and method of manufacturing light-emitting module
US10068883B2 (en) 2015-08-03 2018-09-04 Kabushiki Kaisha Toshiba Optical coupling device
CN116722007A (en) * 2023-08-10 2023-09-08 青岛泰睿思微电子有限公司 Optical packaging structure based on mixed heterogeneous substrate material
CN116722007B (en) * 2023-08-10 2023-12-08 青岛泰睿思微电子有限公司 Optical packaging structure based on mixed heterogeneous substrate material

Also Published As

Publication number Publication date
JP4195979B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
US9786820B2 (en) Opto-electronic module and method for manufacturing the same
JP5086521B2 (en) Optical receiver package
CN100358151C (en) Optical component and manufacture method of the same
US6786654B2 (en) Encapsulated optical fiber end-coupled device
US7255496B2 (en) Package for housing an optoelectronic assembly
US7160039B2 (en) Compact optical sub-assembly with integrated flexible circuit
US8194162B2 (en) Imaging device
JP5384819B2 (en) Opto-electric hybrid package, opto-electric hybrid module
US20080285911A1 (en) Optical/electrical hybrid substrate
JPH08327843A (en) Optical waveguide module and its manufacture
JP2004031508A (en) Optoelectric composite module and light inputting/outputting device with its module as configuring element
JP2005257879A (en) Optical module, method of manufacturing thereof, protecting member and protecting member with electric wiring
US7039083B2 (en) High speed optical transmission assembly
JP2011081071A (en) Optical module
US20050127281A1 (en) Method and apparatus for manufacturing a transistor-outline (TO) can having a ceramic header
JP2003163382A (en) Package for photodetector or light emitting element
JP4643891B2 (en) Positioning method for parallel optical system connection device
JP2004253638A (en) Optical component and method for manufacturing same
JP4764669B2 (en) Optical package, optical package with optical element, and optical waveguide module
JP3505160B2 (en) Method for manufacturing optical mounting board
JP4195979B2 (en) Photoelectric module for optical communication
US20070114553A1 (en) Optical module and method of manufacturing the same
US7255494B2 (en) Low-profile package for housing an optoelectronic assembly
JP2004288713A (en) Method of manufacturing optical element mounting device
JPH0846224A (en) Optoelectric assembly,its preparation and its application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080908

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees