JP2004252233A - Paper sheet thickness detecting mechanism of electrophotographic device - Google Patents

Paper sheet thickness detecting mechanism of electrophotographic device Download PDF

Info

Publication number
JP2004252233A
JP2004252233A JP2003043446A JP2003043446A JP2004252233A JP 2004252233 A JP2004252233 A JP 2004252233A JP 2003043446 A JP2003043446 A JP 2003043446A JP 2003043446 A JP2003043446 A JP 2003043446A JP 2004252233 A JP2004252233 A JP 2004252233A
Authority
JP
Japan
Prior art keywords
paper sheet
thickness
sheet thickness
paper
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003043446A
Other languages
Japanese (ja)
Inventor
Noritaka Masuda
徳貴 増田
Yoshihiko Sano
嘉彦 佐野
Yoshimitsu Ikeda
喜充 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Printing Systems Ltd
Original Assignee
Hitachi Printing Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Printing Solutions Inc filed Critical Hitachi Printing Solutions Inc
Priority to JP2003043446A priority Critical patent/JP2004252233A/en
Publication of JP2004252233A publication Critical patent/JP2004252233A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser beam printer which enables a paper sheet thickness detecting means to detect an accurate paper sheet thickness without requiring absolute precision and is low in running cost by prolonging the life of a position measuring sensor by shortening an LED light emission time per form as a laser beam printer equipped with the paper thickness detecting means of measuring the thickness of a paper sheet and an image forming means of forming an image on the paper sheet by changing image formation conditions according to the detection result of the paper sheet thickness detecting means. <P>SOLUTION: An electrophotographic device, which is equipped with the paper sheet thickness detecting means of detecting the thickness of the paper sheet and the image forming means of forming an image on the paper sheet by changing image formation conditions according to the detection result of the paper sheet thickness detecting means, is provided with a recording means of holding a data table showing the relation between the output of the paper sheet thickness detecting means and the paper sheet thickness, thereby detecting the paper sheet thickness by using the output of the paper sheet thickness detecting means and the data table. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はレーザビームプリンタ、複写機などの電子写真装置に関し、特に、用紙厚検出機構に関するものである。
【0002】
【従来の技術】
レーザプリンタ等の電子写真装置は、帯電器にて帯電させた回転する感光体ドラムに、露光光学部より電気的に表現された画像データに応じて変調したレーザ光を照射して走査させることにより、感光体ドラム上に静電潜像を形成させる。
そして、現像機にて感光体ドラム上の静電潜像にトナーを付着させて現像を行い、次いで転写器にて感光体ドラム上のトナーを用紙上に転写させ、最後に定着機にて用紙に転写されたトナーへ熱及び圧力を加えることによりトナーを用紙に定着させ、紙への印刷を実現している。しかしながら、印刷に使用する用紙の種類によってその厚さが異なり、その差が印刷品質に影響する。よって、狙った印刷品質を得るために、用紙の厚さに応じて転写条件、定着条件等の画像形成条件を制御している。
【0003】
用紙厚情報を得るための方法として、ユーザが用紙厚情報を手入力する方法があるが、使用される用紙の種類は非常に多いため、ユーザがそれぞれの用紙厚を正確に把握することは困難であった。また、ユーザのデータ誤入力を完全に防ぐ手立てがなく、入力作業自体がユーザの負担ともなることから、これら問題を解決するため、装置内の用紙搬送経路に設けた用紙厚検出手段による用紙厚の自動検出方法が考案されている。
【0004】
図4は前記用紙厚検出手段の一例を示すものである。図4において、可動ローラ28はY方向にのみ移動可能である。また、可動ローラ28はバネ等による適度な力で固定ローラ27へ押し付けられている。固定ローラ27と可動ローラ28との間に用紙29を挿入すると、可動ローラ28が用紙29の厚み分、−Y方向へ移動する。位置測定センサ31は主にLED21と位置検出素子23(以下PSDという。)から成る。以下、位置測定センサ31の動作原理を説明する。
測定時にはLED制御信号S3をONし、LED21を発光させる。LED21より発せられた光は投光レンズ24を介し、可動ローラ28に照射され、そこで、反射光30が発生する。反射光30は受光レンズ25を介し、PSD23上に集約する。可動ローラ28が移動すると、PSD23上に集約する光の位置も変化する。このときPSD23は反射光30が当たる位置に応じて二つの出力xとxのバランスを変化させる。演算処理部22にてx/(x+x)を演算して得られる出力xは可動ローラ28の位置yと一次関数の関係(y=ax+ba、b:定数)となることから、可動ローラ28の位置を測定することが出来る。
【0005】
ここで測定される可動ローラ28の位置は、位置測定センサ31を原点とした位置である。位置測定センサ31、固定ローラ27、可動ローラ28の位置関係及び、固定ローラ27、可動ローラ28の径を厳密に管理しなければ、用紙挿入時の可動ローラ位置yから正確な用紙29の厚みを検出することはできない。
そこで、固定ローラ27と可動ローラ28間に用紙29が無い状態での可動ローラ28の位置yと、用紙29挿入時の可動ローラ28の位置yを位置測定センサ31にて測定し、|y−y|を用紙厚みとすることで、位置測定センサ31、固定ローラ27、可動ローラ28の位置関係及び、固定ローラ27、可動ローラ28の径誤差に関わり無く、用紙29の厚みを検出することを可能としている。また、連続印刷を行う場合は1枚目の用紙が固定ローラ27、可動ローラ28間を通過する前の可動ローラ28の位置データを流用することで、2枚目以降の用紙厚も正確に検出することができる(例えば、特許文献1参照。)。
【特許文献1】
特開平9−34310号公報 (第6−8頁、図7)
【0006】
【発明が解決しようとする課題】
位置測定センサの寿命に大きく関わる要因は一般的にLED光の強度である。
LED光はその累積発光時間に反して減衰して行く。LED光の減衰が進むと、被測定物からの反射光が弱くなり、PSD出力が安定しなくなることから、位置測定精度が悪化する。よって、位置測定センサの長寿命化のみを考慮すれば、可動ローラの位置測定回数は少ない方が有利である。
【0007】
しかしながら、従来の方式では正確な用紙厚を検出するために、用紙が1枚通過する度に固定ローラ位置yとy1を測定している。つまり、1回の可動ローラ位置測定に必要なLED発光時間をtとすれば、間欠印刷を行った場合など、用紙1枚当たりLED発光時間は最大2tとなっていることとなる。よって、用紙1枚当たりのLED発光時間を短縮すれば、位置測定センサの寿命延長が可能となる。
【0008】
本発明の目的は、用紙厚検出手段に対して絶対精度を要求せずに、正確な用紙厚を検出可能とし、尚且つ用紙1枚当たりのLED発光時間の短縮による位置測定センサの寿命延長で、より低ランニングコストのレーザビームプリンタを提供することである。
【0009】
【課題を解決する為の手段】
上記の目的は、用紙の厚みを測定する用紙厚検出手段と、該用紙厚検出手段の測定結果に応じて画像形成条件を変更し前記用紙に画像を形成する画像形成手段とを具備する電子写真装置において、前記用紙厚検出手段の出力と用紙厚の関係を示すデータテーブルを保持する記録手段を具備し、前記用紙厚検出手段の出力と前記データテーブルから、用紙厚を検出することで達成される。
【0010】
【発明の実施形態】
本発明の実施例であるレーザビームプリンタの概略構成図を図1に示す。図1において、ピックローラ8にてピックされた用紙9は用紙搬送路10へ送り込まれ、やがて用紙検出センサ11、固定ローラ12−可動ローラ13間を通過する。固定ローラ12−可動ローラ13間を用紙9が通過する際には、後述する用紙厚検出動作により用紙9の用紙厚を求める。求められた用紙厚に応じて、転写条件、定着条件等の画像形成条件を決定する。
【0011】
また、用紙9の用紙厚を検出するタイミングとほぼ同時に、帯電器2にて帯電させた回転する感光体ドラム1上には、露光光学部3にて電気的に表現された画像データに応じて変調させたレーザ光4を走査させて静電潜像を形成させ、現像機5にて静電潜像にトナーを付着させて画像の現像を行う。
【0012】
次いで、搬送されて来た用紙9が転写器6を通過するときには、用紙9に感光体ドラム1上に付着していたトナーを転写する。最後に、用紙9が定着機7を通過するときには、熱及び圧力を加え、トナーを用紙9に融着させる。
【0013】
図2を用いて前記用紙厚検出動作について説明する。用紙厚検出動作は用紙ピック後開始する。用紙検出センサ11に用紙9が到達したことを確認する(S101)。用紙9先端が固定ローラ12−可動ローラ13間に確実に到達するまでの規定時間経過を待つ(S102)。LED制御信号S1をONにすることによりLED17を発光させる(S103)。プリンタ制御部15が可動ローラ13の位置情報である位置測定センサ出力信号S2を取り込む(S104)。LED制御信号S1をOFFし、LEDの発光を停止する(S105)。固定ローラ12、可動ローラ13の偏芯、振動等による誤差を吸収するため、固定ローラ12及び可動ローラ13が1回転以上する間、S103〜S105の工程を規定回数回繰り返し(S106)、得られた規定数の位置測定センサ出力信号S2から平均値を算出し(S107)、不揮発性メモリ16に記憶してある後述する用紙厚換算用データテーブルを用いて、用紙9の厚さを求める(S108)。
【0014】
前記用紙厚換算用データテーブルついて説明する。用紙厚換算用データテーブルとは位置測定センサ出力S2から用紙厚を求めるために用いる、位置測定センサ出力S2がなり得る全ての値(位置測定センサ出力S2はプリンタ制御部に取込まれる際にA/D変換されるため、“位置測定センサ出力信号S2がなり得る全ての値”はA/D変換の変換レート刻みとなる。)と用紙厚値との対応を示す表である。用紙厚換算用データテーブルは出荷前調整時及び、位置検出センサ14交換時に作成し、記録手段である不揮発性メモリ16へ記録し保持しておく。図3に用紙厚換算用データテーブルの生成シーケンスを示す。まず、オペレータパネル等の操作部より、取付けた位置測定センサ14固有の出力傾き(a)を入力する(S201)。位置測定センサ出力xと測定物の位置yとには一次関数の関係(y=ax+b)があることを前述したが、位置測定センサの出力傾き(a)とは関係式:y=ax+bの“a”のことを指す。また、目的の用紙厚検出精度を満たす程度に、位置測定センサ14の個体差による“a”値の変動範囲が小さい場合は、“a”値を固定とし、工程S201を省くことが可能である。
【0015】
次ぎに固定ローラ12を回転させる(S202)。可動ローラ13は駆動力を持たないが、固定ローラと接触しているため、共に回転する。そして、LED制御信号S1をONにすることによりLED17を発光させる(S203)。プリンタ制御部15が可動ローラ13の位置情報である位置測定センサ出力信号S2を取り込む(S204)。LED制御信号S1をOFFし、LED17の発光を停止する(S205)。S203〜S205の工程を規定回数回繰り返し(S206)、固定ローラ12を停止する(S207)。得られた規定数の位置測定センサ出力信号S2から平均値を算出する(S208)。算出した平均値での用紙厚T=0とし、位置測定センサ出力信号S2の変化量ΔS2に対し、用紙厚Tの変化量ΔT=a・ΔS2となる用紙厚換算用データテーブルを作成し、不揮発性メモリ16に記録する(S209)。
【0016】
上記実施例の用紙厚検出法を用いれば、用紙が固定ローラ12−可動ローラ13間を通過している間のみ、可動ローラ13の位置を測定する。よって、用紙不通過と通過中の可動ローラ13の位置をセットで測定していた従来方式と比較して、実施例の用紙1枚当たりのLED17発光時間は最大で半分(従来方式の間欠印刷時との比較)となり、位置測定センサ14の寿命延長が期待できる。
【0017】
また、位置測定センサ14、固定ローラ12、可動ローラ13の取付け位置及び、固定ローラ12、可動ローラ13の径に絶対精度を求めることなく、正確な用紙厚を検出することも可能である。
【0018】
【発明の効果】
本発明によれば、用紙厚検出手段の出力と用紙厚の関係を表すデータテーブルを用いることで、用紙が用紙厚検出手段の検出部にある状態での用紙厚検出手段出力のみで、用紙厚検出手段に絶対精度を求めることなく正確な用紙厚を検出することが可能であり、また、用紙1枚当たりのLED発光時間を短縮することで位置検出センサの寿命を延長し、より低ランニングコストであるレーザビームプリンタを提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施例であるレーザビームプリンタの概略構成図。
【図2】本発明の実施例における用紙厚検出シーケンス。
【図3】本発明の実施例における用紙厚算出データテーブル生成シーケンス。
【図4】用紙厚検出手段の構成図。
【符号の説明】
1 感光体ドラム
2 帯電器
3 露光光学部
4 レーザ光
5 現像機
6 転写器
7 定着機
8 ピックローラ
9、29 用紙
10 用紙搬送路
11 用紙検出センサ
12、27 固定ローラ
13、28 可動ローラ
14、31 位置測定センサ
15 プリンタ制御部
16 不揮発性メモリ
17、21 LED
18、23 位置検出素子(PSD)
19 PSD出力演算処理部
20 LED駆動回路
22 演算処理部
24 投光レンズ
25 受光レンズ
26 投光軸
S1、S3 LED制御信号
S2、x 位置測定センサ出力信号
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrophotographic apparatus such as a laser beam printer and a copying machine, and more particularly, to a paper thickness detecting mechanism.
[0002]
[Prior art]
2. Description of the Related Art An electrophotographic apparatus such as a laser printer scans a rotating photosensitive drum charged by a charger by irradiating a laser beam modulated in accordance with image data electrically expressed by an exposure optical unit to scan. Then, an electrostatic latent image is formed on the photosensitive drum.
Then, the toner is adhered to the electrostatic latent image on the photoconductor drum by a developing machine to perform development, and then the toner on the photoconductor drum is transferred onto the paper by a transfer device. By applying heat and pressure to the toner transferred to the paper, the toner is fixed on the paper, and printing on the paper is realized. However, the thickness varies depending on the type of paper used for printing, and the difference affects print quality. Therefore, in order to obtain a target print quality, image forming conditions such as transfer conditions and fixing conditions are controlled in accordance with the thickness of the sheet.
[0003]
As a method for obtaining the paper thickness information, there is a method in which the user manually inputs the paper thickness information. However, since there are so many types of papers used, it is difficult for the user to accurately grasp each paper thickness. Met. Further, there is no way to completely prevent the user from erroneously inputting data, and the input operation itself is a burden on the user. To solve these problems, the paper thickness detected by the paper thickness detecting means provided in the paper transport path in the apparatus is also considered. An automatic detection method has been devised.
[0004]
FIG. 4 shows an example of the sheet thickness detecting means. In FIG. 4, the movable roller 28 can move only in the Y direction. Further, the movable roller 28 is pressed against the fixed roller 27 by an appropriate force such as a spring. When the paper 29 is inserted between the fixed roller 27 and the movable roller 28, the movable roller 28 moves in the −Y direction by the thickness of the paper 29. The position measuring sensor 31 mainly includes the LED 21 and the position detecting element 23 (hereinafter, referred to as PSD). Hereinafter, the operation principle of the position measurement sensor 31 will be described.
At the time of measurement, the LED control signal S3 is turned on, and the LED 21 emits light. The light emitted from the LED 21 is applied to the movable roller 28 via the light projecting lens 24, where reflected light 30 is generated. The reflected light 30 is collected on the PSD 23 via the light receiving lens 25. When the movable roller 28 moves, the position of the light collected on the PSD 23 also changes. At this time PSD23 alters the balance of the two output x a and x b, depending on the position where the reflected light 30 hits. Since the output x obtained by calculating x a / (x a + x b ) in the arithmetic processing unit 22 is a relationship between the position y of the movable roller 28 and a linear function (y = ax + ba, b: constant), The position of the roller 28 can be measured.
[0005]
The position of the movable roller 28 measured here is a position with the position measurement sensor 31 as the origin. Position measurement sensor 31, the thickness of the fixed roller 27, the positional relationship and the movable roller 28, fixing roller 27, unless strictly controlled diameter of the movable roller 28, the movable roller position y 1 from the exact paper 29 during paper insertion Cannot be detected.
Accordingly, the position y 0 of the movable roller 28 in a state paper 29 is not in between the fixed roller 27 and the movable roller 28 to measure the position y 1 of the sheet 29 during insertion of the movable roller 28 by the position measuring sensor 31, | By setting y 1 −y 0 | as the sheet thickness, the thickness of the sheet 29 can be reduced regardless of the positional relationship between the position measurement sensor 31, the fixed roller 27, and the movable roller 28, and the diameter error of the fixed roller 27 and the movable roller 28. It is possible to detect. When performing continuous printing, the position data of the movable roller 28 before the first sheet passes between the fixed roller 27 and the movable roller 28 is used to accurately detect the thickness of the second and subsequent sheets. (For example, see Patent Document 1).
[Patent Document 1]
JP-A-9-34310 (page 6-8, FIG. 7)
[0006]
[Problems to be solved by the invention]
A factor that greatly affects the life of the position measurement sensor is generally the intensity of the LED light.
The LED light attenuates against the accumulated light emission time. As the LED light attenuates, the reflected light from the object to be measured becomes weaker, and the PSD output becomes unstable, so that the position measurement accuracy deteriorates. Therefore, considering only the extension of the life of the position measurement sensor, it is advantageous that the number of times of position measurement of the movable roller is small.
[0007]
However, since the conventional method of detecting an accurate paper thickness, paper is measured fixed roller position y 0 and y1 whenever passing one. That is, assuming that the LED emission time required for one movable roller position measurement is t, the LED emission time per sheet is a maximum of 2t, such as when intermittent printing is performed. Therefore, if the LED emission time per sheet is reduced, the life of the position measurement sensor can be extended.
[0008]
An object of the present invention is to make it possible to accurately detect the paper thickness without requiring absolute accuracy for the paper thickness detection means, and to extend the life of the position measurement sensor by shortening the LED light emission time per sheet. And to provide a laser beam printer with lower running cost.
[0009]
[Means for solving the problem]
An object of the present invention is to provide an electrophotographic apparatus comprising: a sheet thickness detecting unit configured to measure a thickness of a sheet; and an image forming unit configured to change an image forming condition according to a measurement result of the sheet thickness detecting unit and form an image on the sheet. The apparatus is provided with recording means for holding a data table indicating the relationship between the output of the paper thickness detection means and the paper thickness, and is achieved by detecting the paper thickness from the output of the paper thickness detection means and the data table. You.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic configuration diagram of a laser beam printer according to an embodiment of the present invention. In FIG. 1, a sheet 9 picked up by a pick roller 8 is sent to a sheet transport path 10, and then passes between a sheet detection sensor 11 and a fixed roller 12 -a movable roller 13. When the sheet 9 passes between the fixed roller 12 and the movable roller 13, the sheet thickness of the sheet 9 is obtained by a sheet thickness detection operation described later. Image forming conditions such as transfer conditions and fixing conditions are determined according to the obtained sheet thickness.
[0011]
Almost simultaneously with the detection of the sheet thickness of the sheet 9, the rotating photosensitive drum 1 charged by the charger 2 is placed on the rotating photosensitive drum 1 in accordance with image data electrically expressed by the exposure optical unit 3. The modulated laser light 4 is scanned to form an electrostatic latent image, and the developing device 5 applies toner to the electrostatic latent image to develop the image.
[0012]
Next, when the conveyed sheet 9 passes through the transfer unit 6, the toner adhered on the photosensitive drum 1 is transferred to the sheet 9. Finally, when the paper 9 passes through the fixing device 7, heat and pressure are applied to fuse the toner to the paper 9.
[0013]
The sheet thickness detecting operation will be described with reference to FIG. The paper thickness detection operation starts after the paper pick. It is confirmed that the paper 9 has reached the paper detection sensor 11 (S101). It waits for a specified time to elapse until the leading end of the paper 9 reaches the gap between the fixed roller 12 and the movable roller 13 (S102). The LED 17 emits light by turning on the LED control signal S1 (S103). The printer control unit 15 takes in the position measurement sensor output signal S2 which is the position information of the movable roller 13 (S104). The LED control signal S1 is turned off to stop the light emission of the LED (S105). In order to absorb errors due to eccentricity, vibration, and the like of the fixed roller 12 and the movable roller 13, the steps S103 to S105 are repeated a specified number of times while the fixed roller 12 and the movable roller 13 make one or more rotations (S106). An average value is calculated from the specified number of position measurement sensor output signals S2 (S107), and the thickness of the paper 9 is determined using a paper thickness conversion data table described later stored in the nonvolatile memory 16 (S108). ).
[0014]
The paper thickness conversion data table will be described. The sheet thickness conversion data table is used to determine the sheet thickness from the position measurement sensor output S2, and all possible values of the position measurement sensor output S2 (when the position measurement sensor output S2 is taken into the printer control unit, A This is a table showing the correspondence between "all possible values of the position measurement sensor output signal S2 because of the A / D conversion" and the sheet thickness value. The sheet thickness conversion data table is created at the time of adjustment before shipment and at the time of replacement of the position detection sensor 14, and is recorded and held in the non-volatile memory 16 as recording means. FIG. 3 shows a generation sequence of the paper thickness conversion data table. First, an output inclination (a) specific to the mounted position measurement sensor 14 is input from an operation unit such as an operator panel (S201). As described above, there is a linear function relationship (y = ax + b) between the position measurement sensor output x and the position y of the measured object. However, the output slope (a) of the position measurement sensor is represented by the relational expression: y = ax + b a ". When the variation range of the “a” value due to the individual difference of the position measurement sensor 14 is small enough to satisfy the target paper thickness detection accuracy, the “a” value can be fixed and the step S201 can be omitted. .
[0015]
Next, the fixed roller 12 is rotated (S202). The movable roller 13 has no driving force, but rotates together because it is in contact with the fixed roller. Then, the LED 17 emits light by turning on the LED control signal S1 (S203). The printer control unit 15 takes in the position measurement sensor output signal S2 which is the position information of the movable roller 13 (S204). The LED control signal S1 is turned off, and the light emission of the LED 17 is stopped (S205). The steps of S203 to S205 are repeated a specified number of times (S206), and the fixed roller 12 is stopped (S207). An average value is calculated from the obtained specified number of position measurement sensor output signals S2 (S208). Assuming that the calculated average value of the sheet thickness T = 0, a sheet thickness conversion data table in which the change amount ΔT = a · ΔS2 of the sheet thickness T with respect to the change amount ΔS2 of the position measurement sensor output signal S2 is created. Is recorded in the memory 16 (S209).
[0016]
If the sheet thickness detection method of the above embodiment is used, the position of the movable roller 13 is measured only while the sheet passes between the fixed roller 12 and the movable roller 13. Therefore, as compared with the conventional method in which the position of the movable roller 13 during the sheet non-passage and the passage is measured as a set, the LED 17 emission time per sheet of the embodiment is at most half (the time during the intermittent printing in the conventional method). ), And the life of the position measurement sensor 14 can be extended.
[0017]
Further, it is also possible to detect an accurate sheet thickness without obtaining absolute accuracy for the mounting position of the position measurement sensor 14, the fixed roller 12, the movable roller 13, and the diameter of the fixed roller 12, the movable roller 13.
[0018]
【The invention's effect】
According to the present invention, by using a data table indicating the relationship between the output of the sheet thickness detecting means and the sheet thickness, the sheet thickness can be determined only by the output of the sheet thickness detecting means when the sheet is in the detecting section of the sheet thickness detecting means. It is possible to accurately detect the paper thickness without requiring absolute accuracy in the detection means, and to extend the life of the position detection sensor by shortening the LED emission time per sheet, thereby lowering running costs. It is possible to provide a laser beam printer.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a laser beam printer according to an embodiment of the present invention.
FIG. 2 is a sheet thickness detection sequence according to the embodiment of the present invention.
FIG. 3 is a sheet thickness calculation data table generation sequence according to the embodiment of the present invention.
FIG. 4 is a configuration diagram of a sheet thickness detection unit.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 photosensitive drum 2 charger 3 exposure optics 4 laser light 5 developing device 6 transfer device 7 fixing device 8 pick roller 9, 29 paper 10 paper transport path 11 paper detection sensor 12, 27 fixed roller 13, 28 movable roller 14, 31 Position measuring sensor 15 Printer control unit 16 Non-volatile memory 17, 21 LED
18, 23 Position detection element (PSD)
19 PSD output operation processing unit 20 LED drive circuit 22 operation processing unit 24 Projection lens 25 Light reception lens 26 Projection axes S1, S3 LED control signal S2, x Position measurement sensor output signal

Claims (2)

用紙の厚みを検出する用紙厚検出手段と、該用紙厚検出手段の検出結果に応じて画像形成条件を変更し前記用紙に画像を形成する画像形成手段とを具備する電子写真装置において、前記用紙厚検出手段の出力と用紙厚の関係を示すデータテーブルを保持する記録手段を具備し、前記用紙厚検出手段の出力と前記データテーブルから、用紙厚を検出することを特徴とする電子写真装置の用紙厚検出機構。An electrophotographic apparatus comprising: a sheet thickness detecting unit configured to detect a thickness of a sheet; and an image forming unit configured to change an image forming condition according to a detection result of the sheet thickness detecting unit and form an image on the sheet. An electrophotographic apparatus, comprising: recording means for holding a data table indicating the relationship between the output of the thickness detecting means and the paper thickness, and detecting the paper thickness from the output of the paper thickness detecting means and the data table. Paper thickness detection mechanism. 前記データテーブルは、前記用紙が検出可能な位置に無い状態での前記用紙厚検出手段の出力を厚み0としその他概知である条件と合わせて算出し、算出した前記データテーブルを前記記録手段に記録することを特長とする請求項1に記載の電子写真装置の用紙厚検出機構。In the data table, the output of the sheet thickness detecting means in a state where the sheet is not at a detectable position is set to a thickness of 0 and calculated in accordance with other generally known conditions, and the calculated data table is stored in the recording means. The paper thickness detecting mechanism of an electrophotographic apparatus according to claim 1, wherein the recording is performed.
JP2003043446A 2003-02-21 2003-02-21 Paper sheet thickness detecting mechanism of electrophotographic device Pending JP2004252233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003043446A JP2004252233A (en) 2003-02-21 2003-02-21 Paper sheet thickness detecting mechanism of electrophotographic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003043446A JP2004252233A (en) 2003-02-21 2003-02-21 Paper sheet thickness detecting mechanism of electrophotographic device

Publications (1)

Publication Number Publication Date
JP2004252233A true JP2004252233A (en) 2004-09-09

Family

ID=33026424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003043446A Pending JP2004252233A (en) 2003-02-21 2003-02-21 Paper sheet thickness detecting mechanism of electrophotographic device

Country Status (1)

Country Link
JP (1) JP2004252233A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220845A (en) * 2005-02-09 2006-08-24 Ricoh Co Ltd Image forming apparatus and image forming method
US8794626B2 (en) 2012-02-07 2014-08-05 Ricoh Company, Ltd. Sheet thickness detecting device, feeding device, and image forming apparatus
JP2015108611A (en) * 2013-08-29 2015-06-11 株式会社リコー Sensor device and image formation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220845A (en) * 2005-02-09 2006-08-24 Ricoh Co Ltd Image forming apparatus and image forming method
JP4689292B2 (en) * 2005-02-09 2011-05-25 株式会社リコー Image forming apparatus and image forming method
US8794626B2 (en) 2012-02-07 2014-08-05 Ricoh Company, Ltd. Sheet thickness detecting device, feeding device, and image forming apparatus
JP2015108611A (en) * 2013-08-29 2015-06-11 株式会社リコー Sensor device and image formation device

Similar Documents

Publication Publication Date Title
US20100080603A1 (en) Method of Forming Registration Mark and Image Forming Apparatus
JP2009265369A (en) Image forming apparatus, process cartridge, remaining toner quantity detector, and remaining toner quantity detection means
KR102006840B1 (en) Imaging forming apparatus and control method for the same
US20100166444A1 (en) Image forming apparatus and image forming method
JPH0736230A (en) Image density control method
JP2004252233A (en) Paper sheet thickness detecting mechanism of electrophotographic device
JP2016180790A (en) Image forming apparatus
US10532584B2 (en) Laser scanning device, image forming apparatus, reflection surface identification method
JP2006084565A (en) Color image forming apparatus
JP2008268385A (en) Image forming apparatus
US8614727B2 (en) Image forming apparatus for controlling exposure intensity of a photosensitive member
US10108007B2 (en) Laser scanning device, image forming apparatus and reflection surface identification method for identifying reflection surface of rotary polygon mirror
JP2012088553A (en) Image forming apparatus
JP2007248483A (en) Position adjustment method and device for sensor-mounted substrate and image forming apparatus
JP2006208622A (en) Image forming apparatus
JP6156072B2 (en) Image forming apparatus
JP6012227B2 (en) Image forming apparatus
JP2009128704A (en) Image forming device
JP2019209567A (en) Information processing device and image formation device
JP4449145B2 (en) Inspection device for light emitting element array
JP4626272B2 (en) Image forming apparatus
JP2007183439A (en) Image forming device
JP2000284549A (en) Image forming device
JP2004025579A (en) Imaging device
JP6057614B2 (en) Image forming apparatus and control method thereof