JP2004251490A - Refrigeration cycle - Google Patents

Refrigeration cycle Download PDF

Info

Publication number
JP2004251490A
JP2004251490A JP2003039936A JP2003039936A JP2004251490A JP 2004251490 A JP2004251490 A JP 2004251490A JP 2003039936 A JP2003039936 A JP 2003039936A JP 2003039936 A JP2003039936 A JP 2003039936A JP 2004251490 A JP2004251490 A JP 2004251490A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
hole
liquid
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003039936A
Other languages
Japanese (ja)
Inventor
Tetsushige Shinoda
哲滋 信田
Kaoru Tsuzuki
薫 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003039936A priority Critical patent/JP2004251490A/en
Publication of JP2004251490A publication Critical patent/JP2004251490A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0444Condensers with an integrated receiver where the flow of refrigerant through the condenser receiver is split into two or more flows, each flow following a different path through the condenser receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0446Condensers with an integrated receiver characterised by the refrigerant tubes connecting the header of the condenser to the receiver; Inlet or outlet connections to receiver

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem of structuring a vapor-liquid separator 2 with a perforated pipe 14 which results in complicated stress distribution and arises necessity to reduce a wall thickness because in the case that the wall thickness of the perforated pipe 14 is increased as a measure against it, cost and weight increase and deterioration of brazing property due to increase of heat content are concerned, and periphery of a mixed refrigerant inlet hole 12c and a gas refrigerant outlet hole 13a where stress is concentrated if the pipe wall is made thin is to be damaged while being used in a long period of time. <P>SOLUTION: This refrigeration cycle is structured by brazing a reinforcing member 16 in an approximately pipe shape to inside a vapor-liquid separating chamber 11, reinforcing the periphery of the mixed refrigerant inlet hole 12c and the gas refrigerant outlet hole 13a to mitigate the stress on the periphery of the mixed refrigerant inlet hole 12c and the gas refrigerant outlet hole 13a. Thus, even in the case that the wall thickness of the perforated pipe 14 for structuring the vapor-liquid separating chamber 11 is made thin, fault of damaging the periphery of the mixed refrigerant inlet hole 12c and the gas refrigerant outlet hole 13a while being used in the long period of time is prevented. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍サイクルに関するものであり、特に冷凍サイクルの高圧側において冷媒の気液分離を行う気液分離器に関する。
【0002】
【従来の技術】
従来の気液分離器の構造を図9に示す。この図9に示されるように、従来の気液分離器は、押し出し成形品よりなるパイプJ1 の両側を蓋部材J2 で塞ぎ、パイプJ1 の側面に入口パイプ(凝縮冷媒供給パイプJ3 )と、出口パイプ(凝縮冷媒排出パイプ)J4 とを接合したものであった(特許文献無し)。
【0003】
【発明が解決しようとする課題】
ここで、気液分離器には高圧冷媒が供給される。このため、凝縮冷媒供給パイプJ3 と凝縮冷媒排出パイプJ4 が接合される冷媒入口穴J5 と冷媒出口穴J6 の周辺には、高圧冷媒による応力集中が発生する。
しかし、従来の気液分離器は、上述したように押し出し成形されたパイプによって構成されていたために壁厚が均一であるため、冷媒入口穴J5 と冷媒出口穴J6 の周辺に発生する応力集中によって、冷媒入口穴J5 と冷媒出口穴J6 の周辺の機械的強度が他の部位に比較して低下してしまう。
【0004】
例えば、特願2001−117278の特許出願のように、気液分離器を冷媒凝縮器の一部の機能として用い、気液分離器に溜まる液冷媒量をコンプレッサ(冷媒圧縮機)の過熱度により調整し、それにより冷凍サイクル内の循環冷媒流量を調整するような場合は、気液分離器の上部の容積を十分に生かせないため、気液分離器の体格を大きくする必要が生じる。
一方、特願2001−117278の特許出願の気液分離器は、冷媒の気液分離を行う気液分離室の他に、外部から供給される冷媒を気液分離室へ導くための供給用サブ通路と、気液分離室内の冷媒を外部へ導くための排出用サブ通路を備える多穴管で構成される。
【0005】
このように、気液分離器を多穴管で構成すると、高圧冷媒による圧力分布が複雑となり(図4参照)、その対策のために多穴管の肉厚を厚くする要求がある。しかし、肉厚を厚くすると、コスト増加、重量増加、熱容量の増加によるろう付け性の悪化が懸念される。このため、逆に肉厚を薄くすると、応力が集中する冷媒入口穴と冷媒出口穴の周辺が、長期に亘って使用するうちに破損する可能性がある。このように、肉厚を厚くも薄くも出来ないため、実際的に車両へ搭載することが困難になっていた。
【0006】
【発明の目的】
本発明は、上記の事情に鑑みてなされたものであり、その目的は、冷媒入口穴と冷媒出口穴の周辺の機械的な強度を高めた気液分離器を搭載した冷凍サイクルの提供にある。
【0007】
【課題を解決するための手段】
〔請求項1の手段〕
請求項1の手段を採用する冷凍サイクルは、高圧冷媒によって応力集中の発生する冷媒入口穴と冷媒出口穴の周辺に補強部材を設けた。これによって、冷媒入口穴と冷媒出口穴の周辺の機械的強度が高まる。この結果、長期に亘って使用しても、冷媒入口穴と冷媒出口穴の周辺が破損しない。
また、応力が集中する冷媒入口穴と冷媒出口穴の周辺のみを補強部材で補強する構造であるため、応力が集中しない他の部位の厚みを薄くできる。この結果、応力が集中する冷媒入口穴と冷媒出口穴の機械的な強度を高めることによる気液分離器の重量増加を抑えることができるとともに、無駄な厚みを抑えて製造コストを下げることができる。
【0008】
〔請求項2、3の手段〕
請求項2、3の手段を採用する冷凍サイクルは、特願2001−117278の特許出願のように、気液分離器を冷媒凝縮器の一部の機能として用い、気液分離器に溜まる液冷媒量を冷媒圧縮機の過熱度により調整し、それにより冷凍サイクル内の循環冷媒流量を調整するものであるため、気液分離器の上部の容積を十分に生かせない。このため、気液分離器の体格を大きくする必要が生じる。
また、請求項2、3の手段を採用する冷凍サイクルは、特願2001−117278の特許出願のように、気液分離器は、冷媒の気液分離を行う気液分離室の他に、外部から供給される冷媒を気液分離室へ導くための供給用サブ通路と、気液分離室内の冷媒を外部へ導くための排出用サブ通路を備える多穴管で構成される。
【0009】
このように、気液分離器を多穴管で構成する場合、肉厚を薄くすると、応力が集中する混合冷媒入口穴(冷媒入口穴)とガス冷媒出口穴(冷媒出口穴)の周辺が、長期に亘って使用するうちに破損する可能性がある。
そこで、請求項2、3の手段を採用し、応力集中によって破損し易い部位である混合冷媒入口穴(冷媒入口穴)とガス冷媒出口穴(冷媒出口穴)の周辺に補強部材を設けることによって、混合冷媒入口穴(冷媒入口穴)とガス冷媒出口穴(冷媒出口穴)の周辺の機械的強度が高まる。
この結果、気液分離器を構成する多穴管の肉厚を薄くしても、混合冷媒入口穴(冷媒入口穴)とガス冷媒出口穴(冷媒出口穴)の周辺は長期に亘って使用されても破損しない。即ち、気液分離器を構成する多穴管の肉厚を薄くできるため、コストの低減、重量の低減、熱容量の低減によってろう付け性を向上させることができる。
【0010】
〔請求項4の手段〕
請求項4の手段を採用する冷凍サイクルの補強部材は、冷媒入口穴および冷媒出口穴の周辺に接合して設けられたものである。
このように補強部材を気液分離器に接合する構造を採用することにより、既存の気液分離器において、冷媒入口穴と冷媒出口穴の周辺の機械的な強度を容易に高めることができる。
あるいは、押し出し成形によって設けたパイプ(気液分離器の容器)に補強部材を設けることができるため、冷媒入口穴と冷媒出口穴の周辺の機械的な強度の高い気液分離器の製造コストを下げることができる。
また、機械的な強度を高めるために押し出し成形されるパイプ(気液分離器の容器)を厚くした場合、気液分離器の重量が重くなってしまうが、請求項4の手段を採用し、機械的な強度の弱い冷媒入口穴と冷媒出口穴の周辺に補強部材を接合することにより、応力が集中しない他の部位の厚みを薄くでき、重量増加を抑えることができる。
【0011】
〔請求項5の手段〕
請求項5の手段を採用する冷凍サイクルの補強部材は、冷媒入口穴および冷媒出口穴の周辺の厚みを他の厚みに比較して厚くしたものである。
このように設けることにより、補強部材を別体で製造する工程と、補強部材を気液分離器に接合する工数を減らすことができる。
【0012】
【発明の実施の形態】
本発明の実施の形態を、第1〜第5実施例を用いて説明する。
[第1実施例]
第1実施例を図1〜図4を参照して説明する。
【0013】
(冷凍サイクルの説明)
冷凍サイクルは、冷媒圧縮機(コンプレッサ:図示しない)、冷媒凝縮器(コンデンサ)1、気液分離器2、減圧装置(図示しない)、冷媒蒸発器(エバポレータ:図示しない)を備える。
冷媒圧縮機は、電磁クラッチ(図示しない)を介して車両エンジン(図示しない)によりベルト駆動され、冷媒蒸発器を通過したガス冷媒を吸入して圧縮し、高温高圧のガス冷媒を吐出する。
【0014】
冷媒凝縮器1は、冷媒圧縮機から吐出された高温高圧のガス冷媒を外気と熱交換して液化凝縮する。なお、冷媒凝縮器1は、車両走行による走行風を受けて冷却される部位、具体的には車両エンジンルーム内の最前部に配置され、走行風および凝縮器用冷却ファン(図示しない)の送風空気により冷却される。なお、冷媒凝縮器1の詳細は後述する。
【0015】
気液分離器2は、冷媒凝縮器1で液化凝縮された液冷媒を気液分離するものである。なお、本実施例の気液分離器2は、冷媒凝縮器1の一部の機能として用いるものであり、気液分離器2に溜められる液冷媒量を冷媒圧縮機の過熱度により調整し、それにより冷凍サイクル内の循環冷媒流量を調整するものである。なお、気液分離器2の詳細は後述する。
【0016】
減圧装置は、冷媒凝縮器1で液化凝縮された高温高圧の液冷媒を断熱膨張し、低温低圧の霧状冷媒(気液2相冷媒)にする。
冷媒蒸発器は、室内空調ユニットのクーラユニット(図示しない)内に配置されるものであり、減圧装置で断熱膨張された低温低圧の霧状の冷媒を、室内空調ユニット内を流れる空気と熱交換する。冷媒蒸発器内を流れる霧状の冷媒は、車室内に吹き出される空気に温められて蒸発して低温低圧のガス冷媒となる。そして、冷媒蒸発器で蒸発したガス冷媒はその後冷媒圧縮機に吸入される。一方、クーラユニット内で冷媒蒸発器に熱交換される空気は、低温低圧の霧状冷媒から気化熱が奪われることで冷風となり、その後ヒータユニット(図示しない)で温度調整された後に車室内へ吹き出される。
そして、冷凍サイクルは、上記のサイクルを繰り返す。
【0017】
(冷媒凝縮器1の説明)
本実施例における冷媒凝縮器1の構成を図2を参照して説明する。
冷媒凝縮器1は、多数の偏平なチューブ3をコルゲートフィン4を介して積層してなる熱交換部(コア)5と、熱交換部5の図中右側に配置されて各チューブ3の右側端部が連通する右側ヘッダタンク6と、熱交換部5の左側に配置されて各チューブ3の左側端部が連通する左側ヘッダタンク(図示しない)と、冷媒入口コネクタ7と、冷媒出口コネクタ(図示しない)とから構成されている。
【0018】
本実施例の熱交換部5は、図2中の矢印に示すように、上側から4つの層(第1〜第4層のチューブ群5a〜5d)に分けられている。
右側ヘッダタンク6内には、第1層のチューブ群5aを区画する第1セパレータ6aと、第2層のチューブ群5bを区画する第2セパレータ6bとが配置されており、この第2セパレータ6bの下側の右側ヘッダタンク6内は、第3層のチューブ群5cを通過した冷媒が、第4層のチューブ群5dにターンするための通路になっている。
【0019】
一方、左側ヘッダタンク内には、第4層のチューブ群5dを区画する第3セパレータ(図示しない)が配置されており、この第3セパレータの上側の左側ヘッダタンク内は、第1層のチューブ群5aを通過した冷媒が、第2、第3層のチューブ群5b、5cにターンするための通路になっている。
【0020】
冷媒入口コネクタ7は、冷媒圧縮機の吐出側配管(図示しない)が接続される接続手段であり、冷媒圧縮機が吐出した高温高圧のガス冷媒を、第1セパレータ6aの上側の右側ヘッダタンク6内に導くやや大径の第1コネクタ穴7aと、気液分離器2内(具体的には、後述する供給用サブ通路12内)に導くやや小径の第2コネクタ穴7bとが設けられている。
冷媒出口コネクタ(図示しない)は、減圧装置に接続される高圧冷媒配管(図示しない)が接続される接続手段であり、第4層のチューブ群5dを通過した液冷媒を排出する液媒排出穴(図示しない)が設けられている。
【0021】
(気液分離器2の説明)
本実施例における気液分離器2の構成を図2の他に、図3を参照して説明する。
気液分離器2は、上下方向に延びる細長のタンク形状を呈し、右側ヘッダタンク6に沿って一体に接合されるものであり、冷媒凝縮器1とともに気液分離器2はすべてアルミニウム材で構成され、ろう付けにより一体構造に組み付けられるものである。
【0022】
気液分離器2は、冷媒の気液分離と液冷媒の貯蔵を行う気液分離室11の他に、供給用サブ通路12、排出用サブ通路13を備える。
気液分離室11は、冷媒圧縮機から吐出された吐出冷媒の一部(即ち、第2コネクタ穴7bによって供給される冷媒)、および冷媒凝縮器1で凝縮した冷媒の一部(即ち、第2層のチューブ群5bを通過した冷媒)が流入し、流入した冷媒を気液分離させるとともに、液冷媒の一部を蓄える縦長の容器部である。
【0023】
供給用サブ通路12は、気液分離室11と平行するように上下方向に延びて設けられ、冷媒圧縮機から吐出された吐出冷媒の一部(即ち、第2コネクタ穴7bによって供給される冷媒)、および冷媒凝縮器1で凝縮した冷媒の一部(即ち、第2層のチューブ群5bを通過した冷媒)を気液分離室11に送る縦長の通路である。
排出用サブ通路13は、気液分離室11および供給用サブ通路12と平行するように上下方向に延びて設けられ、気液分離器2内から流出される冷媒を冷媒凝縮器1へ送る縦長の通路である。
【0024】
ここで、気液分離器2は、気液分離室11を形成する大径穴14a、供給用サブ通路12を形成する第1小径穴14b、および排出用サブ通路13を形成する第2小径穴14cからなる3つの穴が押し出しによって形成された多穴管14と、大径穴14a、第1、第2小径穴14b、14cの各両端を塞ぐ蓋部材15a、15b、15cとによって構成される。
【0025】
供給用サブ通路12には、第1サブ通路供給穴12a、第2サブ通路供給穴12bおよび混合冷媒入口穴12cが形成されている。
第1サブ通路供給穴12aは、第2コネクタ穴7bに連通するものであり、冷媒圧縮機の吐出冷媒の一部(即ち、第2コネクタ穴7bによって供給される冷媒)を供給用サブ通路12内に供給する穴である。
第2サブ通路供給穴12bは、右側ヘッダタンク6の第1セパレータ6aと第2セパレータ6bの間の室内の冷媒、即ち第2層のチューブ群5bを通過した冷媒を、供給用サブ通路12内に供給する穴であり、第1セパレータ6aと第2セパレータ6bの間の右側ヘッダタンク6には、第2サブ通路供給穴12bに連通する凝縮冷媒排出穴(図示しない)が形成されている。
混合冷媒入口穴12cは、第1、第2サブ通路供給穴12a、12bから供給用サブ通路12内に供給された冷媒を気液分離室11内へ供給する穴である。
【0026】
一方、排出用サブ通路13には、ガス冷媒出口穴13a、液冷媒出口穴13bおよびサブ通路出口穴13cが形成されている。
ガス冷媒出口穴13aは、気液分離室11で気液分離されたガス冷媒を排出用サブ通路13に導く穴であり、気液分離室11の上部と連通するように設けられている。
液冷媒出口穴13bは、気液分離室11で気液分離された液冷媒を排出用サブ通路13に導く穴であり、気液分離室11の下部と連通するように設けられている。
サブ通路出口穴13cは、ガス冷媒出口穴13aおよび液冷媒出口穴13bから供給された冷媒を冷媒凝縮器1の途中(即ち、第2セパレータ6bの下側の右側ヘッダタンク6内)へ供給する穴であり、第2セパレータ6bの下側の右側ヘッダタンク6には、サブ通路出口穴13cに連通する凝縮冷媒供給穴(図示しない)が形成されている。
【0027】
気液分離器2の冷媒の流れを説明する。
冷媒圧縮機の吐出した冷媒の一部(即ち、第2コネクタ穴7bによって供給される冷媒)が第1サブ通路供給穴12aを介して供給用サブ通路12に供給されるとともに、冷媒凝縮器1の通過途中の冷媒の一部(即ち、第2層のチューブ群5bを通過した冷媒)が第2サブ通路供給穴12bを介して供給用サブ通路12内に供給される。
供給用サブ通路12内に供給された冷媒は、混合冷媒入口穴12cから気液分離室11内に供給される(図3中、B面参照)。
【0028】
気液分離室11内で気液分離されたガス冷媒は、ガス冷媒出口穴13aを介して排出用サブ通路13内に供給される(図3中、A面参照)。一方、気液分離室11内で気液分離された液冷媒は、液冷媒出口穴13bを介して排出用サブ通路13内に供給される(図3中、C面参照)。
排出用サブ通路13内に導かれたガス冷媒と液冷媒は、サブ通路出口穴13cを介して第2セパレータ6bの下側の右側ヘッダタンク6内へ導かれた後(図3中、C面参照)、第4層のチューブ群5dに供給される。
【0029】
[第1実施例の特徴]
気液分離室11の内部は、その底面から混合冷媒入口穴12cまで安定して液冷媒を溜めることができる。しかし、混合冷媒入口穴12c以上では、混合冷媒入口穴12cから流入する冷媒によって液面が乱れるため、混合冷媒入口穴12cの上の空間を液冷媒を溜める容積として活用することができない。
冷凍サイクルの変動や、冷媒の洩れ保証等から決まる液冷媒を溜める量(即ち、必要冷媒保有量)や、冷媒凝縮器1のコア高さは変わらないため、必要冷媒保有量を確保するために、気液分離室11の径を大きくする必要がある。
【0030】
一方、本実施例のような多穴管14は、図4に示すように応力分布が複雑となり、その対策のために肉厚を厚くする要求がある。しかし、肉厚を厚くすると、コスト増加、重量増加、熱容量の増加によるろう付け性の悪化が懸念される。このため、逆に肉厚を薄くする要求があるが、機械的強度が他の部位に比較して低い混合冷媒入口穴12c(冷媒入口穴に相当する)と、ガス冷媒出口穴13a(冷媒出口穴に相当する)の周辺に応力集中し、長期に亘って使用するうちに破損する可能性がある。このように、これまでは、多穴管14の肉厚を厚くも薄くも出来ないため、実際的に車両へ搭載することが困難になっていた。
【0031】
そこで、図1に示すように、混合冷媒入口穴12cとガス冷媒出口穴13aの周辺に補強部材16を設け、混合冷媒入口穴12cとガス冷媒出口穴13aの周辺にかかる応力を緩和するように設けた。
この実施例の補強部材16は、混合冷媒入口穴12cに連通する入口連通穴16aと、ガス冷媒出口穴13aに連通する出口連通穴16bとが形成された筒状体であり、混合冷媒入口穴12cと入口連通穴16aが連通するとともに、ガス冷媒出口穴13aと出口連通穴16bが連通する状態で、気液分離室11内にろう付けされるものである。
ここで、本実施例の補強部材16は、気液分離室11の上端を閉塞する蓋部材15aと一体に設けられたものである。具体的には、1枚のアルミ板を所定形状に切断し、絞り加工技術によって、蓋部材15aと補強部材16とを一体に形成したものである。
【0032】
[第1実施例の効果]
本実施例の冷凍サイクルは、高圧冷媒によって応力集中の発生する混合冷媒入口穴12cとガス冷媒出口穴13aの周辺に略パイプ状の補強部材16をろう付けした。これによって、混合冷媒入口穴12cとガス冷媒出口穴13aの周辺の機械的強度が高まる。この結果、長期に亘って使用しても、混合冷媒入口穴12cとガス冷媒出口穴13aの周辺が破損する不具合がない。
即ち、応力が集中する混合冷媒入口穴12cとガス冷媒出口穴13aの周辺のみを補強部材16で補強する構造であるため、応力が集中しない他の部位の厚みを薄くできる。この結果、気液分離器2を構成する多穴管14の肉厚を薄くしても、混合冷媒入口穴12cとガス冷媒出口穴13aの周辺は長期に亘って使用されても破損しない。このように、気液分離器2を構成する多穴管14の肉厚を薄くできるため、コストの低減、重量の低減、熱容量の低減によるろう付け性の向上を図ることができる。
【0033】
[第2実施例]
第2実施例を図5を参照して説明する。なお、以下の実施例において、第1実施例と同一符号は同一機能物を示すものである。
この実施例の気液分離器2は、冷媒凝縮器1で液化凝縮された高温高圧の液冷媒を気液分離して、液冷媒のみを減圧装置に供給するいわゆるレシーバであり、冷媒凝縮器1から液化凝縮された高温高圧の液冷媒が供給される冷媒入口穴21(凝縮冷媒供給パイプ22が接合する穴)と、内部で気液分離した液冷媒のみを減圧装置に向けて排出する冷媒出口穴23(凝縮冷媒排出パイプ24が接合する穴)とを備える。
【0034】
このような気液分離器2も、第1実施例と同様、冷媒入口穴21と冷媒出口穴23の周辺は、他の部位に比較して機械的強度が低く、冷媒入口穴21と冷媒出口穴23の周辺に応力が集中する。
そこで、この実施例でも、図5に示すように、冷媒入口穴21と冷媒出口穴23の周辺に補強部材16を設け、冷媒入口穴21と冷媒出口穴23の周辺にかかる応力を緩和するように設けた。
【0035】
この実施例の補強部材16は、冷媒入口穴21に連通する入口連通穴16aと、冷媒出口穴23に連通する出口連通穴16bとが形成された略パイプ状であり、冷媒入口穴21と入口連通穴16aが連通するとともに、冷媒出口穴23と出口連通穴16bが連通する状態で、気液分離器2内にろう付けされるものである。
【0036】
[第3実施例]
第3実施例を図6を参照して説明する。
この実施例の補強部材16は、図6に示すように、入口連通穴16aの上下、出口連通穴16bの上下に、ろう付け時にろう材がまわる溝16cを形成したものである。このような溝16cを設けることにより、入口連通穴16aの周辺、および出口連通穴16bの周辺のろう付けが確実となり、補強の信頼度を高めることができる。
【0037】
[第4実施例]
第4実施例を図7を参照して説明する。
上記第1〜第3実施例では、補強部材16を略パイプ状に設けた例を示したが、図7に示すように、入口連通穴16aおよび出口連通穴16bの周囲だけに接合される補強部材16としても良い。
【0038】
[第5実施例]
第5実施例を図8を参照して説明する。
上記第1〜第4実施例では、補強部材16を別部材で設けて、気液分離器2に接合する例を示したが、図8に示すように、冷媒入口穴21と冷媒出口穴23の周辺の厚みを他の厚みに比較して厚くすることによって補強部材16を形成しても良い。
【図面の簡単な説明】
【図1】気液分離器の要部分解斜視図である(第1実施例)。
【図2】気液分離器が接合された冷媒凝縮器の概略斜視図である(第1実施例)。
【図3】気液分離器の斜視図と、そのA面、B面、C面の断面図である(第1実施例)。
【図4】応力集中の様子を示す説明図である(第1実施例)。
【図5】気液分離器(レシーバ)の斜視図である(第2実施例)。
【図6】補強部材の斜視図である(第3実施例)。
【図7】補強部材の斜視図である(第4実施例)。
【図8】補強部材が形成された部分を示す気液分離器の断面図である(第5実施例)。
【図9】気液分離器(レシーバ)の斜視図である(従来例)。
【符号の説明】
1 冷媒凝縮器
2 気液分離器
6 右側ヘッダタンク
11 気液分離室
12 供給用サブ通路
12a 第1サブ通路供給穴
12b 第2サブ通路供給穴
12c 混合冷媒入口穴(冷媒入口穴)
13 排出用サブ通路
13a ガス冷媒出口穴(冷媒出口穴)
13b 液冷媒出口穴
13c サブ通路出口穴
14 多穴管
14a 大径穴
14b 第1小径穴
14c 第2小径穴
15a 蓋部材
15b 蓋部材
15c 蓋部材
16 補強部材
21 冷媒入口穴
23 冷媒出口穴
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigeration cycle, and more particularly, to a gas-liquid separator that performs gas-liquid separation of a refrigerant on a high pressure side of the refrigeration cycle.
[0002]
[Prior art]
FIG. 9 shows the structure of a conventional gas-liquid separator. As shown in FIG. 9, in the conventional gas-liquid separator, both sides of a pipe J1 made of an extruded product are closed with lid members J2, and an inlet pipe (condensed refrigerant supply pipe J3) and an outlet are provided on the side of the pipe J1. Pipe (condensed refrigerant discharge pipe) J4 (No patent document).
[0003]
[Problems to be solved by the invention]
Here, a high-pressure refrigerant is supplied to the gas-liquid separator. For this reason, stress concentration due to the high-pressure refrigerant occurs around the refrigerant inlet hole J5 and the refrigerant outlet hole J6 where the condensed refrigerant supply pipe J3 and the condensed refrigerant discharge pipe J4 are joined.
However, since the conventional gas-liquid separator has a uniform wall thickness because it is constituted by the extruded pipe as described above, stress is generated around the refrigerant inlet hole J5 and the refrigerant outlet hole J6 due to stress concentration. In addition, the mechanical strength around the refrigerant inlet hole J5 and the refrigerant outlet hole J6 is reduced as compared with other parts.
[0004]
For example, as in the patent application of Japanese Patent Application No. 2001-117278, a gas-liquid separator is used as a part of the function of a refrigerant condenser, and the amount of liquid refrigerant accumulated in the gas-liquid separator is determined by the degree of superheat of a compressor (refrigerant compressor). In the case of adjusting and thereby adjusting the flow rate of the circulating refrigerant in the refrigeration cycle, it is necessary to enlarge the size of the gas-liquid separator because the upper volume of the gas-liquid separator cannot be sufficiently utilized.
On the other hand, the gas-liquid separator of the patent application of Japanese Patent Application No. 2001-117278 is a gas-liquid separation chamber for performing gas-liquid separation of a refrigerant, and a supply sub for guiding a refrigerant supplied from the outside to the gas-liquid separation chamber. The multi-hole pipe includes a passage and a discharge sub-passage for guiding the refrigerant in the gas-liquid separation chamber to the outside.
[0005]
As described above, when the gas-liquid separator is constituted by a multi-hole pipe, the pressure distribution by the high-pressure refrigerant becomes complicated (see FIG. 4), and it is required to increase the thickness of the multi-hole pipe in order to cope with the problem. However, when the thickness is increased, there is a concern that the brazing property is deteriorated due to an increase in cost, an increase in weight, and an increase in heat capacity. Therefore, if the thickness is reduced, the area around the refrigerant inlet hole and the refrigerant outlet hole where stress is concentrated may be damaged during long-term use. As described above, since the thickness cannot be increased or decreased, it has been difficult to actually mount it on a vehicle.
[0006]
[Object of the invention]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a refrigeration cycle equipped with a gas-liquid separator having enhanced mechanical strength around a refrigerant inlet hole and a refrigerant outlet hole. .
[0007]
[Means for Solving the Problems]
[Means of claim 1]
In a refrigeration cycle employing the means of claim 1, a reinforcing member is provided around a refrigerant inlet hole and a refrigerant outlet hole where stress concentration occurs due to high-pressure refrigerant. Thereby, the mechanical strength around the refrigerant inlet hole and the refrigerant outlet hole is increased. As a result, even when used for a long time, the periphery of the refrigerant inlet hole and the refrigerant outlet hole is not damaged.
Further, since the structure is such that only the periphery of the refrigerant inlet hole and the refrigerant outlet hole where the stress is concentrated is reinforced by the reinforcing member, the thickness of other portions where the stress is not concentrated can be reduced. As a result, it is possible to suppress an increase in the weight of the gas-liquid separator due to an increase in the mechanical strength of the refrigerant inlet hole and the refrigerant outlet hole where stress is concentrated, and it is possible to suppress a useless thickness and reduce a manufacturing cost. .
[0008]
[Means of Claims 2 and 3]
A refrigeration cycle adopting the means of claims 2 and 3 uses a gas-liquid separator as a part of the function of a refrigerant condenser as in the patent application of Japanese Patent Application No. 2001-117278, and stores the liquid refrigerant in the gas-liquid separator. Since the amount is adjusted by the degree of superheat of the refrigerant compressor and thereby the flow rate of the circulating refrigerant in the refrigeration cycle is adjusted, the volume of the upper part of the gas-liquid separator cannot be sufficiently utilized. For this reason, it is necessary to increase the size of the gas-liquid separator.
In a refrigeration cycle employing the means of claims 2 and 3, a gas-liquid separator is provided in addition to a gas-liquid separation chamber for gas-liquid separation of a refrigerant, as disclosed in Japanese Patent Application No. 2001-117278. And a multi-hole pipe having a supply sub-passage for guiding the refrigerant supplied from the gas-liquid separation chamber to the gas-liquid separation chamber and a discharge sub-passage for guiding the refrigerant in the gas-liquid separation chamber to the outside.
[0009]
As described above, when the gas-liquid separator is formed of a multi-hole tube, if the wall thickness is reduced, the periphery of the mixed refrigerant inlet hole (refrigerant inlet hole) and the gas refrigerant outlet hole (refrigerant outlet hole) where stress is concentrated, It can be damaged during long-term use.
Therefore, by adopting the means of claims 2 and 3, a reinforcing member is provided around the mixed refrigerant inlet hole (refrigerant inlet hole) and the gas refrigerant outlet hole (refrigerant outlet hole), which are parts that are easily damaged by stress concentration. In addition, the mechanical strength around the mixed refrigerant inlet hole (refrigerant inlet hole) and the gas refrigerant outlet hole (refrigerant outlet hole) increases.
As a result, even when the thickness of the multi-hole tube constituting the gas-liquid separator is reduced, the periphery of the mixed refrigerant inlet hole (refrigerant inlet hole) and the gas refrigerant outlet hole (refrigerant outlet hole) are used for a long time. Even if not damaged. That is, since the thickness of the multi-hole tube constituting the gas-liquid separator can be reduced, the brazing property can be improved by reducing the cost, the weight, and the heat capacity.
[0010]
[Means of Claim 4]
The reinforcing member of the refrigeration cycle employing the means of claim 4 is provided so as to be joined around the refrigerant inlet hole and the refrigerant outlet hole.
By employing the structure in which the reinforcing member is joined to the gas-liquid separator, the mechanical strength around the refrigerant inlet hole and the refrigerant outlet hole in the existing gas-liquid separator can be easily increased.
Alternatively, since a reinforcing member can be provided in a pipe (container of a gas-liquid separator) provided by extrusion molding, the manufacturing cost of the gas-liquid separator having high mechanical strength around the refrigerant inlet hole and the refrigerant outlet hole can be reduced. Can be lowered.
Further, if the extruded pipe (container of the gas-liquid separator) is made thicker to increase the mechanical strength, the weight of the gas-liquid separator becomes heavy. By joining the reinforcing member around the refrigerant inlet hole and the refrigerant outlet hole having low mechanical strength, it is possible to reduce the thickness of other portions where stress is not concentrated, and to suppress an increase in weight.
[0011]
[Means of claim 5]
The reinforcing member of the refrigeration cycle employing the means of claim 5 is configured such that the thickness around the refrigerant inlet hole and the refrigerant outlet hole is thicker than other thicknesses.
With such provision, it is possible to reduce the number of steps for manufacturing the reinforcing member separately and the number of steps for joining the reinforcing member to the gas-liquid separator.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described with reference to first to fifth embodiments.
[First embodiment]
A first embodiment will be described with reference to FIGS.
[0013]
(Explanation of refrigeration cycle)
The refrigeration cycle includes a refrigerant compressor (compressor: not shown), a refrigerant condenser (condenser) 1, a gas-liquid separator 2, a pressure reducing device (not shown), and a refrigerant evaporator (evaporator: not shown).
The refrigerant compressor is belt-driven by a vehicle engine (not shown) via an electromagnetic clutch (not shown), sucks and compresses the gas refrigerant that has passed through the refrigerant evaporator, and discharges a high-temperature and high-pressure gas refrigerant.
[0014]
The refrigerant condenser 1 liquefies and condenses the high-temperature and high-pressure gas refrigerant discharged from the refrigerant compressor by exchanging heat with the outside air. The refrigerant condenser 1 is disposed at a position to be cooled by receiving the traveling wind generated by the vehicle, specifically, at the forefront in the vehicle engine room, and supplies the traveling wind and air blown by a condenser cooling fan (not shown). Cooled by. The details of the refrigerant condenser 1 will be described later.
[0015]
The gas-liquid separator 2 separates the liquid refrigerant liquefied and condensed in the refrigerant condenser 1 into gas and liquid. Note that the gas-liquid separator 2 of the present embodiment is used as a part of the function of the refrigerant condenser 1, and the amount of liquid refrigerant stored in the gas-liquid separator 2 is adjusted by the degree of superheat of the refrigerant compressor. Thereby, the flow rate of the circulating refrigerant in the refrigeration cycle is adjusted. The details of the gas-liquid separator 2 will be described later.
[0016]
The decompression device adiabatically expands the high-temperature and high-pressure liquid refrigerant liquefied and condensed in the refrigerant condenser 1 to convert it into a low-temperature and low-pressure mist-like refrigerant (gas-liquid two-phase refrigerant).
The refrigerant evaporator is disposed in a cooler unit (not shown) of the indoor air-conditioning unit, and exchanges heat between the low-temperature and low-pressure mist-like refrigerant adiabatically expanded by the pressure reducing device with air flowing in the indoor air-conditioning unit. I do. The mist-like refrigerant flowing in the refrigerant evaporator is heated by the air blown into the vehicle interior and evaporates to become a low-temperature low-pressure gas refrigerant. Then, the gas refrigerant evaporated by the refrigerant evaporator is then sucked into the refrigerant compressor. On the other hand, the air exchanged with the refrigerant evaporator in the cooler unit becomes cold air by removing heat of vaporization from the low-temperature and low-pressure atomized refrigerant, and then enters the vehicle cabin after the temperature is adjusted by a heater unit (not shown). Be blown out.
Then, the refrigeration cycle repeats the above cycle.
[0017]
(Description of refrigerant condenser 1)
The configuration of the refrigerant condenser 1 in the present embodiment will be described with reference to FIG.
The refrigerant condenser 1 includes a heat exchange unit (core) 5 formed by stacking a number of flat tubes 3 via corrugated fins 4, and a right end of each tube 3 which is disposed on the right side of the heat exchange unit 5 in the drawing. Header tank 6 (not shown) disposed on the left side of the heat exchange section 5 and communicating with the left end of each tube 3, a refrigerant inlet connector 7 and a refrigerant outlet connector (illustrated). No).
[0018]
The heat exchange section 5 of the present embodiment is divided into four layers (first to fourth layer tube groups 5a to 5d) from the upper side as shown by arrows in FIG.
In the right header tank 6, a first separator 6a that partitions the first layer tube group 5a and a second separator 6b that partitions the second layer tube group 5b are arranged. The inside of the lower right header tank 6 is a passage through which the refrigerant that has passed through the tube group 5c of the third layer turns to the tube group 5d of the fourth layer.
[0019]
On the other hand, a third separator (not shown) that partitions the fourth-layer tube group 5d is disposed in the left header tank, and a first-layer tube is disposed inside the left header tank above the third separator. The refrigerant that has passed through the group 5a forms a passage for turning into the tube groups 5b and 5c of the second and third layers.
[0020]
The refrigerant inlet connector 7 is a connection unit to which a discharge-side pipe (not shown) of the refrigerant compressor is connected, and the high-temperature and high-pressure gas refrigerant discharged from the refrigerant compressor is supplied to the right header tank 6 above the first separator 6a. A first connector hole 7a having a relatively large diameter and a second connector hole 7b having a relatively small diameter leading into the gas-liquid separator 2 (specifically, into a supply sub-passage 12 described later). I have.
The refrigerant outlet connector (not shown) is a connection means to which a high-pressure refrigerant pipe (not shown) connected to the decompression device is connected, and a liquid medium discharge hole for discharging the liquid refrigerant passing through the tube group 5d of the fourth layer. (Not shown) is provided.
[0021]
(Description of gas-liquid separator 2)
The configuration of the gas-liquid separator 2 in this embodiment will be described with reference to FIG. 3 in addition to FIG.
The gas-liquid separator 2 has an elongated tank shape extending in the up-down direction and is integrally joined along the right header tank 6, and the gas-liquid separator 2 together with the refrigerant condenser 1 is entirely made of aluminum. It is assembled into an integral structure by brazing.
[0022]
The gas-liquid separator 2 includes a supply sub-passage 12 and a discharge sub-passage 13 in addition to the gas-liquid separation chamber 11 for performing gas-liquid separation of the refrigerant and storage of the liquid refrigerant.
The gas-liquid separation chamber 11 includes a part of the refrigerant discharged from the refrigerant compressor (that is, the refrigerant supplied by the second connector hole 7b) and a part of the refrigerant condensed in the refrigerant condenser 1 (that is, the second refrigerant). This is a vertically long container portion into which the refrigerant that has passed through the two-layer tube group 5b flows, separates the flowed refrigerant into gas and liquid, and stores a part of the liquid refrigerant.
[0023]
The supply sub-passage 12 is provided to extend in the up-down direction so as to be parallel to the gas-liquid separation chamber 11, and a part of the refrigerant discharged from the refrigerant compressor (that is, the refrigerant supplied through the second connector hole 7b). ) And a part of the refrigerant condensed in the refrigerant condenser 1 (that is, the refrigerant that has passed through the tube group 5b of the second layer) is a vertically long passage that sends the gas-liquid separation chamber 11.
The discharge sub-passage 13 is provided so as to extend in the vertical direction so as to be parallel to the gas-liquid separation chamber 11 and the supply sub-passage 12, and is a vertically long tube that sends the refrigerant flowing out of the gas-liquid separator 2 to the refrigerant condenser 1. It is a passage.
[0024]
Here, the gas-liquid separator 2 includes a large-diameter hole 14 a forming the gas-liquid separation chamber 11, a first small-diameter hole 14 b forming the supply sub-passage 12, and a second small-diameter hole forming the discharge sub-passage 13. The multi-hole tube 14 is formed by extruding three holes 14c, and the lid members 15a, 15b, and 15c cover both ends of the large-diameter hole 14a and the first and second small-diameter holes 14b and 14c. .
[0025]
The supply sub-passage 12 has a first sub-passage supply hole 12a, a second sub-passage supply hole 12b, and a mixed refrigerant inlet hole 12c.
The first sub passage supply hole 12a communicates with the second connector hole 7b, and supplies a part of the refrigerant discharged from the refrigerant compressor (that is, the refrigerant supplied by the second connector hole 7b) to the supply sub passage 12a. It is a hole to supply inside.
The second sub-passage supply hole 12b is used to supply the refrigerant in the room between the first separator 6a and the second separator 6b of the right header tank 6, that is, the refrigerant that has passed through the second layer tube group 5b, into the supply sub-passage 12. In the right header tank 6 between the first separator 6a and the second separator 6b, a condensed refrigerant discharge hole (not shown) communicating with the second sub-passage supply hole 12b is formed.
The mixed refrigerant inlet hole 12c is a hole that supplies the refrigerant supplied from the first and second sub-passage supply holes 12a and 12b into the supply sub-passage 12 into the gas-liquid separation chamber 11.
[0026]
On the other hand, a gas refrigerant outlet hole 13a, a liquid refrigerant outlet hole 13b, and a sub passage outlet hole 13c are formed in the discharge sub-passage 13.
The gas refrigerant outlet hole 13 a is a hole that guides the gas refrigerant that has been gas-liquid separated in the gas-liquid separation chamber 11 to the discharge sub-passage 13, and is provided to communicate with the upper part of the gas-liquid separation chamber 11.
The liquid refrigerant outlet hole 13 b is a hole that guides the liquid refrigerant that has been gas-liquid separated in the gas-liquid separation chamber 11 to the discharge sub-passage 13, and is provided to communicate with the lower part of the gas-liquid separation chamber 11.
The sub passage outlet hole 13c supplies the refrigerant supplied from the gas refrigerant outlet hole 13a and the liquid refrigerant outlet hole 13b to the middle of the refrigerant condenser 1 (that is, into the right header tank 6 below the second separator 6b). In the right header tank 6 below the second separator 6b, a condensed refrigerant supply hole (not shown) communicating with the sub passage outlet hole 13c is formed.
[0027]
The flow of the refrigerant in the gas-liquid separator 2 will be described.
A part of the refrigerant discharged from the refrigerant compressor (that is, the refrigerant supplied by the second connector hole 7b) is supplied to the supply sub-passage 12 through the first sub-passage supply hole 12a, and the refrigerant condenser 1 (I.e., the refrigerant that has passed through the tube group 5b of the second layer) is supplied into the supply sub-passage 12 through the second sub-passage supply hole 12b.
The refrigerant supplied into the supply sub-passage 12 is supplied into the gas-liquid separation chamber 11 from the mixed refrigerant inlet hole 12c (see plane B in FIG. 3).
[0028]
The gas refrigerant that has been gas-liquid separated in the gas-liquid separation chamber 11 is supplied into the discharge sub-passage 13 through the gas refrigerant outlet hole 13a (see plane A in FIG. 3). On the other hand, the liquid refrigerant that has been gas-liquid separated in the gas-liquid separation chamber 11 is supplied into the discharge sub-passage 13 through the liquid refrigerant outlet hole 13b (see plane C in FIG. 3).
The gas refrigerant and the liquid refrigerant guided into the discharge sub passage 13 are guided into the right header tank 6 below the second separator 6b through the sub passage outlet hole 13c (C plane in FIG. 3). ), And is supplied to the tube group 5d of the fourth layer.
[0029]
[Features of the first embodiment]
The inside of the gas-liquid separation chamber 11 can stably store the liquid refrigerant from the bottom surface to the mixed refrigerant inlet hole 12c. However, above the mixed refrigerant inlet hole 12c, since the liquid level is disturbed by the refrigerant flowing from the mixed refrigerant inlet hole 12c, the space above the mixed refrigerant inlet hole 12c cannot be used as a volume for storing the liquid refrigerant.
In order to secure the required refrigerant holding amount, the amount of the liquid refrigerant that is determined by the fluctuation of the refrigeration cycle and the refrigerant leakage guarantee (ie, the required refrigerant holding amount) and the core height of the refrigerant condenser 1 do not change. In addition, it is necessary to increase the diameter of the gas-liquid separation chamber 11.
[0030]
On the other hand, in the multi-hole tube 14 as in this embodiment, the stress distribution becomes complicated as shown in FIG. 4, and it is necessary to increase the wall thickness in order to take measures against it. However, when the thickness is increased, there is a concern that the brazing property is deteriorated due to an increase in cost, an increase in weight, and an increase in heat capacity. For this reason, on the contrary, there is a demand to reduce the wall thickness, but the mixed refrigerant inlet hole 12c (corresponding to the refrigerant inlet hole) and the gas refrigerant outlet hole 13a (the refrigerant outlet hole) whose mechanical strength is lower than other parts. (Corresponding to a hole), and may be damaged during long-term use. As described above, since the thickness of the multi-hole tube 14 cannot be increased or decreased, it has been difficult to actually mount the multi-hole tube 14 on a vehicle.
[0031]
Therefore, as shown in FIG. 1, a reinforcing member 16 is provided around the mixed refrigerant inlet hole 12c and the gas refrigerant outlet hole 13a so as to reduce the stress applied around the mixed refrigerant inlet hole 12c and the gas refrigerant outlet hole 13a. Provided.
The reinforcing member 16 of this embodiment is a cylindrical body having an inlet communication hole 16a communicating with the mixed refrigerant inlet hole 12c and an outlet communication hole 16b communicating with the gas refrigerant outlet hole 13a. It is brazed into the gas-liquid separation chamber 11 in a state where the communication passage 12c communicates with the inlet communication hole 16a and the gas refrigerant outlet hole 13a communicates with the outlet communication hole 16b.
Here, the reinforcing member 16 of the present embodiment is provided integrally with the lid member 15 a that closes the upper end of the gas-liquid separation chamber 11. Specifically, one aluminum plate is cut into a predetermined shape, and the lid member 15a and the reinforcing member 16 are integrally formed by a drawing technique.
[0032]
[Effect of First Embodiment]
In the refrigeration cycle of this embodiment, a substantially pipe-shaped reinforcing member 16 is brazed around the mixed refrigerant inlet hole 12c and the gas refrigerant outlet hole 13a where stress concentration occurs due to high-pressure refrigerant. This increases the mechanical strength around the mixed refrigerant inlet hole 12c and the gas refrigerant outlet hole 13a. As a result, even when used for a long time, there is no problem that the periphery of the mixed refrigerant inlet hole 12c and the gas refrigerant outlet hole 13a is damaged.
That is, since the structure is such that only the periphery of the mixed refrigerant inlet hole 12c and the gas refrigerant outlet hole 13a where stress is concentrated is reinforced by the reinforcing member 16, the thickness of other parts where stress is not concentrated can be reduced. As a result, even if the thickness of the multi-hole tube 14 constituting the gas-liquid separator 2 is reduced, the periphery of the mixed refrigerant inlet hole 12c and the gas refrigerant outlet hole 13a will not be damaged even if used for a long period of time. As described above, since the thickness of the multi-hole tube 14 constituting the gas-liquid separator 2 can be reduced, the cost, the weight, and the brazing property can be improved by reducing the heat capacity.
[0033]
[Second embodiment]
A second embodiment will be described with reference to FIG. In the following embodiments, the same reference numerals as those in the first embodiment denote the same functions.
The gas-liquid separator 2 of this embodiment is a so-called receiver that separates the high-temperature and high-pressure liquid refrigerant liquefied and condensed in the refrigerant condenser 1 and supplies only the liquid refrigerant to the decompression device. Inlet hole 21 (hole to which the condensed refrigerant supply pipe 22 is joined) through which the high-temperature and high-pressure liquid refrigerant liquefied and condensed from is supplied, and a refrigerant outlet that discharges only the liquid refrigerant that has been gas-liquid separated inside to the pressure reducing device. And a hole 23 (a hole to which the condensed refrigerant discharge pipe 24 is joined).
[0034]
As in the first embodiment, such a gas-liquid separator 2 also has a lower mechanical strength around the refrigerant inlet hole 21 and the refrigerant outlet hole 23 than other parts, Stress concentrates around the hole 23.
Therefore, also in this embodiment, as shown in FIG. 5, the reinforcing member 16 is provided around the refrigerant inlet hole 21 and the refrigerant outlet hole 23 so as to reduce the stress applied around the refrigerant inlet hole 21 and the refrigerant outlet hole 23. Provided.
[0035]
The reinforcing member 16 of this embodiment has a substantially pipe shape in which an inlet communication hole 16a communicating with the refrigerant inlet hole 21 and an outlet communication hole 16b communicating with the refrigerant outlet hole 23 are formed. It is brazed into the gas-liquid separator 2 in a state where the communication hole 16a communicates and the refrigerant outlet hole 23 communicates with the outlet communication hole 16b.
[0036]
[Third embodiment]
A third embodiment will be described with reference to FIG.
As shown in FIG. 6, the reinforcing member 16 of this embodiment is formed with grooves 16c around which the brazing material flows during brazing, above and below the inlet communication hole 16a and above and below the outlet communication hole 16b. By providing such a groove 16c, brazing around the inlet communication hole 16a and around the outlet communication hole 16b becomes reliable, and the reliability of reinforcement can be increased.
[0037]
[Fourth embodiment]
A fourth embodiment will be described with reference to FIG.
In the above-mentioned first to third embodiments, the example in which the reinforcing member 16 is provided in a substantially pipe shape is shown. However, as shown in FIG. 7, the reinforcing member 16 is joined only around the inlet communication hole 16a and the outlet communication hole 16b. The member 16 may be used.
[0038]
[Fifth embodiment]
A fifth embodiment will be described with reference to FIG.
In the first to fourth embodiments, the reinforcing member 16 is provided as a separate member and joined to the gas-liquid separator 2. However, as shown in FIG. 8, the refrigerant inlet hole 21 and the refrigerant outlet hole 23 are provided. The reinforcing member 16 may be formed by increasing the thickness of the periphery of the member as compared with other thicknesses.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of a main part of a gas-liquid separator (first embodiment).
FIG. 2 is a schematic perspective view of a refrigerant condenser to which a gas-liquid separator is joined (first embodiment).
FIG. 3 is a perspective view of a gas-liquid separator and cross-sectional views of A, B, and C planes (first embodiment).
FIG. 4 is an explanatory view showing a state of stress concentration (first embodiment).
FIG. 5 is a perspective view of a gas-liquid separator (receiver) (second embodiment).
FIG. 6 is a perspective view of a reinforcing member (third embodiment).
FIG. 7 is a perspective view of a reinforcing member (fourth embodiment).
FIG. 8 is a cross-sectional view of a gas-liquid separator showing a portion where a reinforcing member is formed (fifth embodiment).
FIG. 9 is a perspective view of a gas-liquid separator (receiver) (conventional example).
[Explanation of symbols]
Reference Signs List 1 refrigerant condenser 2 gas-liquid separator 6 right header tank 11 gas-liquid separation chamber 12 supply sub passage 12a first sub passage supply hole 12b second sub passage supply hole 12c mixed refrigerant inlet hole (refrigerant inlet hole)
13 Sub-passage for discharge 13a Gas refrigerant outlet hole (refrigerant outlet hole)
13b Liquid refrigerant outlet hole 13c Sub passage outlet hole 14 Multi-hole tube 14a Large diameter hole 14b First small diameter hole 14c Second small diameter hole 15a Cover member 15b Cover member 15c Cover member 16 Reinforcement member 21 Refrigerant inlet hole 23 Refrigerant outlet hole

Claims (5)

冷媒凝縮器で液化凝縮された冷媒を気液分離して液冷媒を蓄える気液分離器を備える冷凍サイクルにおいて、
前記気液分離器の冷媒入口穴と冷媒出口穴の周辺に補強部材を設けたことを特徴とする冷凍サイクル。
In a refrigeration cycle including a gas-liquid separator that stores the liquid refrigerant by gas-liquid separation of the refrigerant liquefied and condensed in the refrigerant condenser,
A refrigeration cycle, wherein a reinforcing member is provided around a refrigerant inlet hole and a refrigerant outlet hole of the gas-liquid separator.
請求項1に記載の冷凍サイクルにおいて、
前記気液分離器は、冷媒圧縮機の吐出冷媒を冷却して凝縮させる前記冷媒凝縮器のヘッダタンクに沿って設けられ、
前記冷媒圧縮機から吐出された吐出冷媒の一部、および前記冷媒凝縮器で凝縮した冷媒の一部が流入し、流入した冷媒を気液分離させて液冷媒を溜める気液分離室と、
前記気液分離室と平行して設けられ、前記冷媒圧縮機から吐出された吐出冷媒の一部、および前記冷媒凝縮器で凝縮した冷媒の一部を前記気液分離室に送る供給用サブ通路と、
前記気液分離室および前記供給用サブ通路と平行して設けられ、前記気液分離器内から流出される冷媒を前記冷媒凝縮器へ送る排出用サブ通路とを備え、
前記補強部材は、前記気液分離室と前記供給用サブ通路とを連通する前記冷媒入口穴の周辺と、前記気液分離器と前記排出用サブ通路とを連通する前記冷媒出口穴の周辺とに設けられたことを特徴とする冷凍サイクル。
The refrigeration cycle according to claim 1,
The gas-liquid separator is provided along a header tank of the refrigerant condenser that cools and condenses the refrigerant discharged from the refrigerant compressor,
Part of the refrigerant discharged from the refrigerant compressor, and part of the refrigerant condensed in the refrigerant condenser flows in, a gas-liquid separation chamber that stores the liquid refrigerant by gas-liquid separation of the flowing refrigerant,
A supply sub-passage that is provided in parallel with the gas-liquid separation chamber and sends a part of the refrigerant discharged from the refrigerant compressor and a part of the refrigerant condensed in the refrigerant condenser to the gas-liquid separation chamber. When,
A discharge sub-passage that is provided in parallel with the gas-liquid separation chamber and the supply sub-passage, and sends a refrigerant flowing out of the gas-liquid separator to the refrigerant condenser,
The reinforcing member has a periphery of the refrigerant inlet hole communicating the gas-liquid separation chamber and the supply sub-passage, and a periphery of the refrigerant outlet hole communicating the gas-liquid separator and the discharge sub-passage. A refrigeration cycle provided in a refrigeration cycle.
請求項2に記載の冷凍サイクルにおいて、
(a)前記気液分離器は、前記気液分離室を形成する大径穴、前記供給用サブ通路を形成する第1小径穴、および前記排出用サブ通路を形成する第2小径穴からなる3つの穴を備える多穴管と、
前記大径穴、前記第1、第2小径穴の各両端を塞ぐ蓋部材とによって構成されるものであり、
(b)前記供給用サブ通路には、前記冷媒圧縮機の吐出冷媒の一部が供給される第1サブ通路供給穴と、前記冷媒凝縮器の通過途中の冷媒の一部が供給される第2サブ通路供給穴と、前記第1、第2サブ通路供給穴から供給された冷媒を前記気液分離室内へ供給する混合冷媒入口穴とが設けられ、
(c)前記排出用サブ通路には、前記気液分離室で気液分離されたガス冷媒が供給されるガス冷媒出口穴と、前記気液分離室で気液分離された液冷媒が供給される液冷媒出口穴と、前記ガス冷媒出口穴および前記液冷媒出口穴から供給された冷媒を前記冷媒凝縮器の途中へ供給するサブ通路出口穴とが設けられ、
(d)前記補強部材は、前記混合冷媒入口穴の周辺と、前記ガス冷媒出口穴の周辺とに設けられたことを特徴とする冷凍サイクル。
The refrigeration cycle according to claim 2,
(A) The gas-liquid separator includes a large-diameter hole forming the gas-liquid separation chamber, a first small-diameter hole forming the supply sub-passage, and a second small-diameter hole forming the discharge sub-passage. A multi-hole tube with three holes,
The large diameter hole, a lid member that closes each end of the first and second small diameter holes,
(B) a first sub-passage supply hole through which a part of the refrigerant discharged from the refrigerant compressor is supplied to the supply sub-passage; and a first sub-passage supply hole through which a part of the refrigerant passing through the refrigerant condenser is supplied. A 2 sub passage supply hole, and a mixed refrigerant inlet hole for supplying the refrigerant supplied from the first and second sub passage supply holes into the gas-liquid separation chamber,
(C) a gas refrigerant outlet hole to which the gas refrigerant gas-liquid separated in the gas-liquid separation chamber is supplied, and a liquid refrigerant gas-liquid separated in the gas-liquid separation chamber to the discharge sub-passage. Liquid refrigerant outlet hole, a sub-passage outlet hole for supplying the refrigerant supplied from the gas refrigerant outlet hole and the liquid refrigerant outlet hole to the middle of the refrigerant condenser is provided.
(D) The refrigeration cycle, wherein the reinforcing member is provided around the mixed refrigerant inlet hole and around the gas refrigerant outlet hole.
請求項1〜請求項3のいずれかに記載の冷凍サイクルにおいて、
前記補強部材は、前記冷媒入口穴と前記冷媒出口穴の周辺に接合して設けられたことを特徴とする冷凍サイクル。
In the refrigeration cycle according to any one of claims 1 to 3,
The refrigeration cycle, wherein the reinforcing member is provided so as to be joined around the coolant inlet hole and the coolant outlet hole.
請求項1または請求項2に記載の冷凍サイクルにおいて、
前記補強部材は、前記冷媒入口穴と前記冷媒出口穴の周辺の厚みを他の厚みに比較して厚くすることによって設けられたことを特徴とする冷凍サイクル。
In the refrigeration cycle according to claim 1 or claim 2,
The refrigeration cycle is characterized in that the reinforcing member is provided by increasing the thickness around the refrigerant inlet hole and the refrigerant outlet hole as compared with other thicknesses.
JP2003039936A 2003-02-18 2003-02-18 Refrigeration cycle Pending JP2004251490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003039936A JP2004251490A (en) 2003-02-18 2003-02-18 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003039936A JP2004251490A (en) 2003-02-18 2003-02-18 Refrigeration cycle

Publications (1)

Publication Number Publication Date
JP2004251490A true JP2004251490A (en) 2004-09-09

Family

ID=33023968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003039936A Pending JP2004251490A (en) 2003-02-18 2003-02-18 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JP2004251490A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231992A (en) * 2010-04-28 2011-11-17 Daikin Industries Ltd Accumulator
KR101344517B1 (en) * 2011-02-10 2014-01-15 한라비스테온공조 주식회사 Condenser
CN114484947A (en) * 2021-12-23 2022-05-13 西安交通大学 Rectifier tube and gas-liquid distribution device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231992A (en) * 2010-04-28 2011-11-17 Daikin Industries Ltd Accumulator
KR101344517B1 (en) * 2011-02-10 2014-01-15 한라비스테온공조 주식회사 Condenser
CN114484947A (en) * 2021-12-23 2022-05-13 西安交通大学 Rectifier tube and gas-liquid distribution device
CN114484947B (en) * 2021-12-23 2022-12-13 西安交通大学 Rectifier tube and gas-liquid distribution device

Similar Documents

Publication Publication Date Title
US10753686B2 (en) Condenser for vehicle
CN102788452B (en) Condenser for vehicle and the air conditioning system for vehicle
US9140473B2 (en) Condenser for vehicle
US8099978B2 (en) Evaporator unit
US8789389B2 (en) Intermediate heat exchanger
US9109821B2 (en) Condenser for vehicle
US20130146257A1 (en) Condenser for vehicle
JPH11304293A (en) Refrigerant condenser
JP6722242B2 (en) Condenser
JPH109713A (en) Refrigerant condensing device and refrigerant condenser
WO2016113825A1 (en) Refrigerant evaporator
US20130145789A1 (en) Condenser for vehicle
JPH10325645A (en) Refrigerant evaporator
JP5509942B2 (en) Ejector unit, heat exchanger unit, and refrigerant short circuit detection method for ejector unit
JP2004353936A (en) Heat exchanger and liquid receiver-integrated condenser
KR102653244B1 (en) Condenser
JP2008138895A (en) Evaporator unit
US20030062152A1 (en) Radiator for supercritical vapor compression type refrigerating cycle
JP2010014353A (en) Evaporator unit for ejector refrigeration cycle
US20180281553A1 (en) Cold storage heat exchanger
JP2001174103A (en) Refrigerant condenser
JP5540816B2 (en) Evaporator unit
JP2004190956A (en) Condenser
JP2004251490A (en) Refrigeration cycle
KR100654178B1 (en) Method for making a decision receiver dryer&#39;s volume and condenser and receiver dryer having the volume by it in one united body