JP2004251382A - Rubber cushion for motor - Google Patents

Rubber cushion for motor Download PDF

Info

Publication number
JP2004251382A
JP2004251382A JP2003042709A JP2003042709A JP2004251382A JP 2004251382 A JP2004251382 A JP 2004251382A JP 2003042709 A JP2003042709 A JP 2003042709A JP 2003042709 A JP2003042709 A JP 2003042709A JP 2004251382 A JP2004251382 A JP 2004251382A
Authority
JP
Japan
Prior art keywords
rubber
motor
vibration
rigid plates
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003042709A
Other languages
Japanese (ja)
Other versions
JP4126234B2 (en
Inventor
Takeshi Oku
岳史 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2003042709A priority Critical patent/JP4126234B2/en
Publication of JP2004251382A publication Critical patent/JP2004251382A/en
Application granted granted Critical
Publication of JP4126234B2 publication Critical patent/JP4126234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Motor Or Generator Frames (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rubber cushion for developing sufficient performance of a motor by increasing a spring constant and torsional and twisting rigidity in the peripheral direction of rotation to reduce the deflection and chattering of a shaft while securing original vibration proofing performance. <P>SOLUTION: The rubber cushion 10 for the motor comprises elastic bodies 5 of rubber elastic materials held between a mounting plate 2 of the motor 1 and a mounting plate 4 on the side of a supporting member 3 and insertion holes 6 for a motor output shaft 1A formed in central portions thereof. Radial rigid plates 7 are arranged between both mounting plates 2, 4 at a plurality of places equally spaced around the central insertion holes 6 in the peripheral direction in the state of being alternately laminated on the elastic bodies 5 in the peripheral direction. The rigid plates 7A located every other one in the peripheral direction are fixed and jointed one mounting plate 2 and the remaining rigid plates 7B are fixed and jointed to the other mounting plate 4. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えばファクシミリや複写機等の用紙送りあるいはプリンタの印字ヘッド等に用いられるステッピングモータに代表されるように、各種OA機器に内蔵されているモータの回転駆動時の振動が機器フレームに伝達されること、および、その振動の固体伝播により騒音が発生されることを抑制するために用いられるモータ用防振ゴムに関するものである。
【0002】
【従来の技術】
この種のモータ用防振ゴムは、モータ取付板と機器フレームに連設の支持部材側への取付板とを互いに平行に対向させ、これら両取付板間にゴム状弾性材製の弾性体を挟着させている構成が基本であり、このような基本構成を有するモータ用防振ゴムにおいて、従来、ゴム状弾性材製弾性体を周方向に複数配置し、そのうちの全部または少なくとも一部を周方向の一方向に傾斜した弾性体から構成することにより、該防振ゴムのばね定数が周方向の一方向とそれの反対方向とで互いに異なるように設定されたものが知られている(例えば、特許文献1参照)。
また、互いに対向する取付板に径方向で内外に嵌合する筒部が形成され、これら内外の筒部間にゴム状弾性材製弾性体を挟着させて軸直角方向のばね定数を大きく設定したものも従来より知られている(例えば、特許文献2参照)。
【0003】
【特許文献1】
特開2001−95191公報{図1(A),(B)}
【特許文献2】
特開平7−177701号公報{図1(a),(b)}
【0004】
【発明が解決しようとする課題】
特許文献1に開示されている従来のモータ用防振ゴムは、当該防振ゴムのばね定数が周方向の一方向と反対方向とで互いに異なるように設定されていることから、例えば複写機のスキャナ部を往復運動させるための駆動源としてステッピングモータを用いる際、原稿の正確な読み取りのために振動の低減が強く望まれる往路ではばね定数を小さくしつつ、できるだけ早く元の位置に戻すことが望まれる復路ではばね定数(剛性)を大きくするといったように、往復運動路でそれぞれで、異なる要求のばね定数を共に満足させることを可能としたものである。
【0005】
また、特許文献2に開示されている従来のモータ用防振ゴムは、ゴム状弾性材製弾性体による軸方向のばね定数を十分に大きくして所定の防振性能を低下させることなく、軸直角方向(せん断方向)のばね定数(剛性)を大きくして、モータの変位を小さくしモータの位置決め精度の向上を可能としたものである。
【0006】
しかしながら、上記した従来のモータ用防振ゴムは、いずれも特定方向のばね定数(剛性)を大きくするための工夫が施されただけのものであって、モータの回転周方向のばね定数、つまり、ねじれ剛性、こじれ剛性については全く考慮されていない。特に、互いに平行な取付板間にゴム状弾性材製弾性体を挟着してなる防振ゴムにおいては、そのゴム状弾性材製弾性体の特性、すなわち、圧縮剛性に比してせん断剛性が非常に小さい特性であることから、せん断剛性に密接に関係する回転周方向のばね定数及びねじれ剛性、こじれ剛性も当然に小さく、したがって、モータの高速回転時に出力軸に強く加わるねじれ力、こじれ力によって出力軸に軸ぶれを起こしやすく、また、そのような軸ぶれに伴って防振ゴム全体がひびり振動しやすくなり、その結果、トルク出力の不足を招くなどモータ性能を十分に発揮させることができないという問題があった。
【0007】
本発明は上記実情に鑑みてなされたもので、本来の防振性能を確保しつつ、回転周方向のばね定数及びねじれ剛性、こじれ剛性を大きくして軸ぶれやびびりの発生を低減しモータ性能を十分に発揮させることができるモータ用防振ゴムを提供することを目的としている。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明に係るモータ用防振ゴムは、互いに平行に対向するモータの取付板と支持部材側への取付板との間にゴム状弾性材製の弾性体が挟着されているとともに、それら両取付板及び弾性体の中央部にはモータ出力軸の挿通孔が形成されているモータ用防振ゴムにおいて、上記挿通孔周りの複数箇所の両取付板間にはそれぞれ、剛体板が上記ゴム状弾性材製弾性体と周方向に交互に積層されるように放射状に配置され、これら複数枚の剛体板のうち、周方向で一つおきに位置する剛体板が一方の取付板側に、かつ、残りの剛体板が他方の取付板側に固定接合されていることを特徴とするものである。
【0009】
上記のごとき構成を有する本発明によれば、ゴム状弾性材製弾性体として軸方向(圧縮方向)のばね定数が小さいものを用い防振ゴム全体の圧縮剛性を小さくすることでモータ回転時の圧縮方向の固有振動をゴム状弾性材製弾性体で吸収緩和させて本来の防振性能を十分良好に確保しつつ、ゴム状弾性材製弾性体と放射状剛体板とが周方向で積層された積層ゴム構造になっているために、弾性体自身が有するせん断剛性とは関係なく防振ゴム全体としての回転周方向のばね定数及びねじれ剛性、こじれ剛性を大きくすることが可能であり、これによって、モータの高速回転時に出力軸に強く加わるねじれ力、こじれ力に十分に対抗させて出力軸の軸ぶれや、そのような軸ぶれに起因する防振ゴム全体のひびり振動の発生を著しく低減してモータ性能を十分に発揮させることができる。
【0010】
上記構成のモータ用防振ゴムにおいて、上記複数枚の放射状剛体板の一方及び他方の取付板側に固定接合される端辺とは反対側の非固定接合の自由端辺は、これに対向する他方及び一方の取付板に密接されていても、また、その自由端辺とこれに対向する他方及び一方の取付板との間に隙間を形成し、この隙間に上記ゴム状弾性材製弾性体の一部を介在させてもよい。そのうち、前者の場合は、剛体板の存在によってゴム状弾性材製弾性体が周方向で複数に完全分割された形態となり、回転周方向のばね定数及びねじれ剛性、こじれ剛性をより大きくすることが可能である一方、後者の場合は、前者のものに比べて圧縮剛性を小さくしつつも、回転周方向のばね定数及びねじれ剛性、こじれ剛性を大きくすることが可能であり、これら両構成は、モータの大きさ及び性能に応じて選択的に採用されることが望ましい。
【0011】
また、上記構成のモータ用防振ゴムにおいて、複数枚の放射状剛体板は、周方向に等間隔置きに配置されているのが望ましいが、周方向に不等間隔置きに配置されていてもよい。
【0012】
さらに、上記構成のモータ用防振ゴムにおいて、複数枚の放射状剛体板は、回転周方向のばね定数及びねじれ剛性、こじれ剛性の増大率を高めるために、ゴム状弾性材製弾性体の径方向厚みの全域を横断する状態に配置されていてもよいが、圧縮方向のばね定数、圧縮剛性と回転周方向のばね定数及びねじれ剛性、こじれ剛性との比を、モータの大きさ及び性能に応じて適切な値に調整可能であるように上記弾性体の径方向厚みの一部分にのみ配置された構成とすることが望ましい。
【0013】
【発明の実施の形態】
以下、本発明の実施例を図面にもとづいて説明する。
図1は本発明に係るモータ用防振ゴムの第1実施例を示す正面図、図2は図1のA−O−B線に沿う断面図、図3は図1のA−O−C線に沿う断面図であり、この第1実施例のモータ用防振ゴム10は、ステッピングモータ等の高速回転モータ1(図4参照)を締付け固定可能な取付フランジ部2fを有する鋼板など板金製の略菱形状の取付板2と機器フレームの構成メンバーである支持部材3(図4参照)側に締付け固定可能な取付フランジ部4fを有する鋼板など板金製の略菱形状の取付板4とを互いに平行に対向位置させ、これら両取付板2,4間にゴム状弾性材製の円形状弾性体5が加硫接着により一体に挟在されているとともに、それら両取付板2,4及び弾性体5の中央部には、モータ出力軸1Aが挿通される孔6が同軸上に貫通形成されている。
【0014】
上記のような基本構成を有するモータ用防振ゴム10において、上記中央挿通孔6周りの複数箇所、具体的には、45°の中心角度で周方向に等間隔置きの8箇所の両取付板2,4間には、それぞれ断面長方形状の剛体板7…が上記ゴム状弾性材製弾性体5と周方向に交互に積層されるように放射状に、かつ、上記弾性体5の径方向厚みtの全域を横断する状態に配置されている。
【0015】
上記8枚の剛体板7…のうち、周方向で一つおきに位置する4枚の剛体板7A…は端辺で一方の取付板2側に固定接合され、かつ、残り4枚の剛体板7Bは端辺で他方の取付板4側に固定接合されているとともに、一方の取付板2側に固定接合された4枚の剛体板7Aの非接合固定の自由端辺7aとこれに対向する他方の取付板4との間、及び、他方の取付板4側に固定接合された4枚の剛体板7Bの非接合固定の自由端辺7bとこれに対向する一方の取付板2との間にはそれぞれ隙間が形成されており、これら隙間には上記ゴム状弾性材製弾性体5に一体に連らなる状態で薄肉の弾性体部分5aが介在されている。
【0016】
このような第1実施例のモータ用防振ゴム10は、図4に示すように、一方の取付板2のフランジ部2fにねじ8をねじ込むことによりモータ出力軸1Aが挿通孔6内に挿通される状態でモータ1を取付板2に締付け固定する一方、他方の取付板4のフランジ部4f側から支持部材3にねじ9をねじ込むことにより取付板4を支持部材3に締付け固定して用いられる。このような取付け状態でのモータ1の回転時における軸方向(圧縮方向)の固有振動はゴム状弾性材製弾性体5で吸収緩和されて防振ゴム本来の防振性能が十分に発揮され、支持部材3の振動、さらにその振動の固体伝播に伴う騒音の発生が抑制される。
【0017】
また、このとき、ゴム状弾性材製弾性体5と両取付板2,4に固定接合された放射状剛体板7A,7Bとが周方向に交互に積層された積層ゴム構造が採用されているために、弾性体5自身が有するせん断剛性とは関係なく、防振ゴム10全体としての回転周方向のばね定数及びねじれ剛性、こじれ剛性を大きくすることが可能であり、これによって、モータ1の高速回転時に出力軸1Aに強く加わるねじれ力、こじれ力に十分に対抗させて出力軸の軸ぶれや、そのような軸ぶれに起因する防振ゴム10全体のひびり振動の発生を著しく低減して図10の▲1▼に示すように、僅かな角変位でトルク出力が急激に立ち上がるといった具合に、モータ性能を十分に発揮させることができる。
【0018】
なお、上記第1実施例では、4枚の剛体板7Aの非接合固定の自由端辺7aとこれに対向する他方の取付板4との間、及び、他方の取付板4側に固定接合された4枚の剛体板7Bの非接合固定の自由端辺7bとこれに対向する一方の取付板2との間に形成される隙間にゴム状弾性材製弾性体5に一体に連らなる状態の薄肉弾性体部分5aが介在されており、この薄肉弾性体部分5aの厚みをモータ1の大きさや性能に応じて適宜に加減することで、圧縮剛性を小さくして本来の防振性能を良好に確保しつつ、回転周方向のばね定数及びねじれ剛性、こじれ剛性を大きくして軸ぶれ等の低減によるモータ性能の向上を図ることができるようにしているが、これに限定されることなく、各剛性板7A,7Bの非接合固定の自由端辺7a,7bをこれに対向する取付板4,2に密接させることでゴム状弾性材製弾性体5を周方向で8つに完全分割した形態としてもよく、この場合は、回転周方向のばね定数及びねじれ剛性、こじれ剛性をより大きくして軸ぶれ等の防止効果を高めてモータ性能を一層向上することができる。
【0019】
図5は本発明に係るモータ用防振ゴムの第2実施例を示す正面図、図6は図5のA−O−C線に沿う断面図、図7は図5のB−O−D線に沿う断面図であり、この第2実施例のモータ用防振ゴム10は、上記中央挿通孔6周りに45°の中心角度毎で周方向に等間隔置きの8箇所の両取付板2,4間に、それぞれ断面長方形状の剛体板7…が上記ゴム状弾性材製弾性体5の径方向厚みtのほぼ半分の径外側部分5Bのみを横断する状態で放射状に配置されており、これら放射状剛体板7…の配置によってゴム状弾性材製弾性体5が、中央挿通孔6周りで円環状形の内側弾性体部5Aと、円周方向で8つに分割されて周方向で各剛性板7…と交互に積層される部分円弧形の外側弾性体部5Bとに区分されている。
【0020】
上記8枚の剛体板7…のうち、周方向で一つおきに位置する4枚の剛体板7A…は端辺で一方の取付板4側に固定接合され、かつ、残り4枚の剛体板7Bは端辺で他方の取付板2側に固定接合されているとともに、一方の取付板4側に固定接合された4枚の剛体板7Aの非接合固定の自由端辺7a及び他方の取付板2側に固定接合された4枚の剛体板7Bの非接合固定の自由端辺7bにはそれぞれ外側弾性体部5Bに連なる薄肉弾性体部分5bと内側弾性体部5Aの一部分が接着され、かつ、ゴム状弾性材製弾性体5の厚み方向両面全域とそれらに対向する両取付板4,2との間には微小な隙間11,12が形成されており、その他の構成は第1実施例のものと同様であるため、該当部分に同一の符号を付してそれらの説明を省略する。
【0021】
なお、上記第2実施例のモータ用防振ゴム10においては、内側弾性体部5Aの厚み方向両面全域とそれらに対向する両取付板4,2との間にそれぞれ微小な隙間11,12が形成されているが、図8及び図9に示す第3実施例のように、内側弾性体部5Aの全面を取付板2、4に接着して、これら内側弾性体5Aの厚み方向の一面側にのみ隙間11を形成したものであってもよい。
【0022】
上記した第2、第3実施例のモータ用防振ゴム10のいずれにおいても、第1実施例のモータ用防振ゴム10に比べて圧縮剛性をより小さくして防振ゴム本来の防振性能を一層優れたものとしつつ、弾性体5自身が有するせん断剛性とは関係なく、防振ゴム10全体としての回転周方向のばね定数及びねじれ剛性、こじれ剛性を大きくしてモータ1の高速回転時における出力軸1Aの軸ぶれや、そのような軸ぶれに起因する防振ゴム10全体のひびり振動の発生を低減することができる。特に、この第2、第3実施例のモータ用防振ゴム10の場合は、回転周方向のばね定数の線形領域を広範囲にとることが可能で、図10の▲2▼に示すように、角変位に対するトルク出力の立ち上がりを調整してモータ1の全回転領域でそのモータ性能を常に十分に発揮させることができる。
【0023】
なお、上記各実施例では、放射状剛体板7…を周方向に等間隔置きに配置したもので説明したが、それら放射状剛体板7…を周方向に不等間隔置きに配置したものであってもよい。
【0024】
また、本発明は、軽量小型のステッピングモータ用防振ゴムとして有効であるが、それに限定されるものでない。
【0025】
【発明の効果】
以上のように、本発明によれば、互いに平行に対向する取付板間に、ゴム状弾性材製弾性体と放射状剛体板とが周方向に交互に積層された積層構造の弾性体を介在することにより、弾性体としては軸方向(圧縮方向)のばね定数が小さいものを用いて防振ゴム全体の圧縮剛性を小さくしモータ回転時の圧縮方向の固有振動をゴム状弾性材製弾性体で吸収緩和させるという本来の防振性能を十分良好に確保しつつ、弾性体自身のせん断剛性とは関係なく、防振ゴム全体としての回転周方向のばね定数及びねじれ剛性、こじれ剛性を大きくすることができ、したがって、モータの高速回転時に出力軸に強く加わるねじれ力、こじれ力に十分に対抗させて出力軸の軸ぶれや、そのような軸ぶれに起因する防振ゴム全体のひびり振動の発生を著しく低減してモータ性能を常に十分に発揮させることができるという効果を奏する。
【0026】
特に、請求項3または請求項3及び請求項7のような構成を採用することによって、圧縮剛性を小さくして本来の防振性能を高めつつも、回転周方向のばね定数及びねじれ剛性、こじれ剛性を大きくしたり、あるいは、回転周方向のばね定数及びねじれ剛性、こじれ剛性と圧縮剛性との比をモータの大きさ及び性能に応じて適切な値に調整したりすることが可能で、モータの大きさ及び性能にかかわらず常に最大のモータ性能を発揮させることができる。
【図面の簡単な説明】
【図1】本発明に係るモータ用防振ゴムの第1実施例を示す正面図である。
【図2】図1のA−O−B線に沿う断面図である。
【図3】図1のA−O−C線に沿う断面図である。
【図4】同上第1実施例のモータ用防振ゴムを用いてモータを支持部材に取付けた状態を示す断面図である。
【図5】本発明に係るモータ用防振ゴムの第2実施例を示す正面図である。
【図6】図5のA−O−C線に沿う断面図である。
【図7】図5のB−O−D線に沿う断面図である。
【図8】本発明に係るモータ用防振ゴムの第3実施例で、図5のA−O−C線に相当する箇所に沿う断面図である。
【図9】同上第3実施例で、図5のB−O−D線に相当する箇所に沿う断面図である。
【図10】本発明に係る第1実施例及び第2,第3実施例の角変位に対するトルク出力の立ち上がり特性図である。
【符号の説明】
1 モータ
1A モータ出力軸
2,4 取付板
3 支持部材
5 ゴム状弾性材製弾性体
5a 薄肉弾性体部分
6 中央挿通孔
7,7A,7B 放射状剛体板
7a,7b 自由端辺
10 モータ用防振ゴム
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is directed to transmitting a vibration generated during rotation driving of a motor built in various OA devices to a device frame, as represented by a stepping motor used for a paper feed of a facsimile or a copying machine or a print head of a printer. The present invention relates to an anti-vibration rubber for a motor, which is used for suppressing noise generation due to solid-state propagation of the vibration.
[0002]
[Prior art]
This type of motor anti-vibration rubber is configured such that a motor mounting plate and a mounting plate on a support member side continuous to an equipment frame are opposed to each other in parallel with each other, and an elastic body made of a rubber-like elastic material is interposed between the mounting plates. The structure of being sandwiched is fundamental, and in a vibration-proof rubber for a motor having such a basic structure, conventionally, a plurality of elastic bodies made of rubber-like elastic material are arranged in the circumferential direction, and all or at least a part of them is arranged. It is known that the elastic constant of the vibration isolating rubber is set to be different from each other in one direction in the circumferential direction and in the direction opposite thereto by being formed of an elastic body inclined in one direction in the circumferential direction ( For example, see Patent Document 1).
Further, cylindrical portions are formed in the mounting plates opposed to each other so as to fit inward and outward in the radial direction, and an elastic body made of a rubber-like elastic material is sandwiched between the inner and outer cylindrical portions to set a large spring constant in a direction perpendicular to the axis. This is also conventionally known (for example, see Patent Document 2).
[0003]
[Patent Document 1]
JP-A-2001-95191 {FIGS. 1A and 1B}
[Patent Document 2]
JP-A-7-177701 {FIGS. 1 (a) and 1 (b)}
[0004]
[Problems to be solved by the invention]
In the conventional vibration damping rubber for a motor disclosed in Patent Document 1, since the spring constant of the vibration damping rubber is set to be different from each other in one direction in the circumferential direction and in the opposite direction, for example, in a copying machine, When using a stepping motor as a drive source for reciprocating the scanner unit, it is possible to return to the original position as soon as possible while reducing the spring constant on the outward path where reduction of vibration is strongly desired for accurate reading of the original. It is possible to satisfy both different required spring constants in each reciprocating path, such as increasing the spring constant (rigidity) in the desired return path.
[0005]
Further, the conventional anti-vibration rubber for a motor disclosed in Patent Literature 2 has a structure in which an elastic body made of a rubber-like elastic material has a sufficiently large spring constant in an axial direction to reduce a predetermined anti-vibration performance. The spring constant (rigidity) in the perpendicular direction (shear direction) is increased to reduce the displacement of the motor and to improve the positioning accuracy of the motor.
[0006]
However, the conventional anti-vibration rubbers for motors described above are merely devised to increase the spring constant (rigidity) in a specific direction. No consideration is given to torsional rigidity or twist rigidity. In particular, in the case of a vibration-proof rubber in which an elastic body made of a rubber-like elastic material is sandwiched between mounting plates parallel to each other, the characteristics of the elastic body made of the rubber-like elastic material, that is, the shear rigidity is smaller than the compression rigidity. Due to its extremely small characteristics, the spring constant, torsional rigidity, and torsional rigidity in the circumferential direction, which are closely related to the shear rigidity, are naturally small, and therefore, the torsional and torsional forces strongly applied to the output shaft when the motor rotates at high speed. The output shaft is liable to run out of the shaft, and the vibration is likely to cause the entire vibration-isolating rubber to crack and vibrate as a result of such shaft runout. There was a problem that can not be.
[0007]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and while increasing the spring constant, torsional rigidity, and torsional rigidity in the rotational circumferential direction while reducing the occurrence of shaft shake and chatter while maintaining the original vibration isolation performance, the motor performance has been reduced. It is an object of the present invention to provide a vibration damping rubber for a motor that can sufficiently exhibit the above.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the vibration isolating rubber for a motor according to the present invention has an elastic body made of a rubber-like elastic material interposed between a mounting plate of a motor and a mounting plate on a support member side facing each other in parallel. The mounting plate and the elastic body are provided with a through hole for the motor output shaft at the center of the elastic body. Rigid plates are arranged radially so that the elastic members made of the rubber-like elastic material are alternately laminated in the circumferential direction, and among these plural rigid plates, the rigid plates located every other in the circumferential direction are arranged. It is characterized in that one rigid plate is fixedly joined to the other rigid plate on the other rigid plate side.
[0009]
According to the present invention having the above-described configuration, an elastic body made of a rubber-like elastic material having a small spring constant in the axial direction (compression direction) is used, and the compression rigidity of the entire vibration-isolating rubber is reduced, so that the elastic body at the time of motor rotation The elastic body made of rubber-like elastic material and the radial rigid plate are laminated in the circumferential direction while the natural vibration in the compression direction is absorbed and relaxed by the elastic body made of rubber-like elastic material, and the original vibration-proof performance is sufficiently secured. Due to the laminated rubber structure, it is possible to increase the spring constant, the torsional rigidity, and the torsional rigidity in the rotational circumferential direction of the vibration isolating rubber as a whole regardless of the shear rigidity of the elastic body itself. In addition, the output shaft is fully opposed to the torsional and twisting forces that are strongly applied to the output shaft during high-speed rotation of the motor, thereby significantly reducing the occurrence of shaft vibration of the output shaft and the occurrence of cracks in the vibration-isolating rubber due to such shaft vibration. Then mo It is possible to sufficiently exhibit the performance.
[0010]
In the anti-vibration rubber for a motor having the above configuration, the free end of the non-fixed joint opposite to the end fixedly joined to one of the plurality of radial rigid plates and the other mounting plate is opposed thereto. Even if it is in close contact with the other and one of the mounting plates, a gap is formed between the free end side and the other and one of the mounting plates opposed thereto, and the rubber-like elastic material May be interposed. Among them, in the former case, the elastic body made of rubber-like elastic material is completely divided into a plurality in the circumferential direction due to the presence of the rigid body plate, and the spring constant, the torsional rigidity, and the torsional rigidity in the rotational circumferential direction can be further increased. On the other hand, in the case of the latter, it is possible to increase the spring constant and the torsional rigidity in the rotational circumferential direction and the torsional rigidity while reducing the compression rigidity as compared with the former, and both of these configurations are: It is desirable that the motor be selectively adopted according to the size and performance of the motor.
[0011]
Further, in the motor vibration isolating rubber having the above configuration, the plurality of radial rigid plates are desirably arranged at regular intervals in the circumferential direction, but may be arranged at irregular intervals in the circumferential direction. .
[0012]
Further, in the vibration isolating rubber for a motor having the above-described configuration, the plurality of radial rigid plates are provided in the radial direction of the elastic member made of a rubber-like elastic material in order to increase the rate of increase in the spring constant and the torsional rigidity and the torsional rigidity in the rotational circumferential direction. Although it may be arranged so as to traverse the entire thickness, the ratio of the spring constant in the compression direction, the compression rigidity to the spring constant in the circumferential direction of rotation and the torsional rigidity, the torsional rigidity depends on the size and performance of the motor. It is preferable that the elastic member is arranged only on a part of the radial thickness of the elastic member so that the elastic member can be adjusted to an appropriate value.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a front view showing a first embodiment of a vibration damping rubber for a motor according to the present invention, FIG. 2 is a cross-sectional view taken along line AOB of FIG. 1, and FIG. 3 is AOC of FIG. FIG. 4 is a cross-sectional view taken along a line. The motor vibration isolating rubber 10 of the first embodiment is made of a sheet metal such as a steel plate having a mounting flange portion 2f capable of tightening and fixing a high-speed rotation motor 1 (see FIG. 4) such as a stepping motor. And a substantially rhombus-shaped mounting plate 4 made of sheet metal such as a steel plate having a mounting flange portion 4f that can be fastened and fixed to a support member 3 (see FIG. 4) which is a constituent member of the device frame. A circular elastic body 5 made of a rubber-like elastic material is integrally sandwiched between the two mounting plates 2 and 4 by vulcanization bonding. A hole 6 through which the motor output shaft 1A is inserted coaxially passes through the center of the body 5. It is formed.
[0014]
In the rubber anti-vibration rubber 10 for a motor having the basic configuration as described above, a plurality of mounting plates around the center insertion hole 6, specifically, eight mounting plates at equal intervals in the circumferential direction at a central angle of 45 °. Between the 2 and 4, the rigid plates 7 each having a rectangular cross section are radially arranged so as to be alternately laminated with the elastic members 5 made of rubber-like elastic material in the circumferential direction. It is arranged so as to cross the entire area of t.
[0015]
Out of the eight rigid plates 7, four rigid plates 7A, which are located every other in the circumferential direction, are fixedly joined to one of the mounting plates 2 at the end sides, and the remaining four rigid plates are provided. An end 7B is fixedly joined to the other mounting plate 4 side at the end side, and faces the non-joined fixed free end side 7a of the four rigid plates 7A fixedly joined to the one mounting plate 2 side. Between the other mounting plate 4 and between the non-bonded and fixed free ends 7b of the four rigid plates 7B fixedly bonded to the other mounting plate 4 side and one of the mounting plates 2 opposed thereto. Are provided with gaps, and thin elastic portions 5a are interposed in these gaps so as to be integrally connected to the elastic body 5 made of rubber-like elastic material.
[0016]
4, the motor output shaft 1A is inserted into the insertion hole 6 by screwing the screw 8 into the flange portion 2f of the one mounting plate 2, as shown in FIG. In this state, the motor 1 is fastened and fixed to the mounting plate 2, while the screw 9 is screwed into the supporting member 3 from the flange portion 4f side of the other mounting plate 4 to tighten and fix the mounting plate 4 to the supporting member 3. Can be The natural vibration in the axial direction (compression direction) during rotation of the motor 1 in such a mounted state is absorbed and reduced by the elastic body 5 made of rubber-like elastic material, and the original vibration-proof performance of the vibration-proof rubber is sufficiently exhibited. The vibration of the support member 3 and the generation of noise due to the solid propagation of the vibration are suppressed.
[0017]
Further, at this time, a laminated rubber structure in which the rubber-like elastic material 5 and the radial rigid plates 7A and 7B fixedly joined to the mounting plates 2 and 4 are alternately laminated in the circumferential direction is adopted. In addition, irrespective of the shear rigidity of the elastic body 5 itself, it is possible to increase the spring constant, torsional rigidity, and torsional rigidity of the vibration isolating rubber 10 as a whole in the rotational circumferential direction. By sufficiently opposing torsional and torsional forces strongly applied to the output shaft 1A during rotation, it is possible to significantly reduce the occurrence of shaft vibration of the output shaft and the occurrence of cracking vibration of the vibration isolating rubber 10 due to such shaft vibration. As shown by (1) in FIG. 10, the motor performance can be sufficiently exhibited, for example, when the torque output sharply rises with a slight angular displacement.
[0018]
In the first embodiment, the rigid plate 7A is fixedly joined to the non-joined free end 7a of the four rigid plates 7A and the other mounting plate 4 facing the same and to the other mounting plate 4 side. A state in which the four rigid plates 7B are integrally connected to the elastic body 5 made of a rubber-like elastic material in a gap formed between the non-joined free end side 7b of the four rigid plates 7B and one of the mounting plates 2 opposed thereto. The thin elastic body portion 5a is interposed, and the thickness of the thin elastic body portion 5a is appropriately adjusted according to the size and performance of the motor 1, so that the compression rigidity is reduced and the original vibration damping performance is improved. , While increasing the spring constant, torsional rigidity, and torsional rigidity in the rotational circumferential direction to improve motor performance by reducing shaft shake and the like, but is not limited thereto. The free ends 7a, 7b of the rigid plates 7A, 7B which are not joined and fixed The elastic body 5 made of a rubber-like elastic material may be completely divided into eight in the circumferential direction by being in close contact with the mounting plates 4 and 2 which face each other. In this case, the spring constant and the torsional rigidity in the rotating circumferential direction, Motor performance can be further improved by increasing the torsional rigidity to increase the effect of preventing shaft shake and the like.
[0019]
FIG. 5 is a front view showing a second embodiment of the vibration isolating rubber for a motor according to the present invention, FIG. 6 is a sectional view taken along the line AOC of FIG. 5, and FIG. FIG. 9 is a cross-sectional view taken along a line. The motor anti-vibration rubber 10 of the second embodiment includes eight mounting plates 2 at equal intervals in the circumferential direction at 45 ° center angles around the central insertion hole 6. , 4 are arranged radially in such a manner that the rigid plates 7 each having a rectangular cross section traverse only a radially outer portion 5B substantially half the radial thickness t of the elastic body 5 made of rubber-like elastic material. Due to the arrangement of the radial rigid plates 7, the elastic body 5 made of rubber-like elastic material is divided into an annular inner elastic body portion 5A around the center insertion hole 6 and eight in the circumferential direction, and each is divided in the circumferential direction. The rigid plate 7 is divided into a partially circular arc-shaped outer elastic body portion 5B which is alternately laminated.
[0020]
Of the eight rigid plates 7, four rigid plates 7A, which are located every other in the circumferential direction, are fixedly joined to one of the mounting plates 4 at the end sides, and the remaining four rigid plates are provided. 7B is a non-joined free end 7a of the four rigid plates 7A fixedly joined to the other mounting plate 4 side at the end side and fixedly joined to the one mounting plate 4 side, and the other mounting plate. A part of the thin elastic part 5b and a part of the inner elastic part 5A connected to the outer elastic part 5B are respectively adhered to the non-joined free ends 7b of the four rigid plates 7B fixedly joined to the two sides, and Small gaps 11 and 12 are formed between the entire area of both sides in the thickness direction of the elastic body 5 made of rubber-like elastic material and the two mounting plates 4 and 2 facing them, and the other configuration is the first embodiment. Therefore, the corresponding portions are denoted by the same reference numerals and description thereof is omitted.
[0021]
In the rubber anti-vibration rubber 10 for the motor according to the second embodiment, minute gaps 11 and 12 are formed between the entire area in the thickness direction of the inner elastic body portion 5A and the two mounting plates 4 and 2 opposed thereto. However, as in the third embodiment shown in FIGS. 8 and 9, the entire surface of the inner elastic body portion 5A is adhered to the mounting plates 2 and 4, and one side of the inner elastic body 5A in the thickness direction. Only the gap 11 may be formed.
[0022]
In each of the above-described rubber anti-vibration rubbers 10 of the second and third embodiments, the compression stiffness is made smaller than that of the rubber anti-vibration rubber 10 of the first embodiment, thereby realizing the original vibration-isolating performance of the rubber anti-vibration rubber. Irrespective of the shear stiffness of the elastic body 5 itself, while increasing the spring constant, torsional stiffness, and torsional stiffness of the vibration isolating rubber 10 as a whole, and increasing the torsional stiffness at the time of high-speed rotation of the motor 1. In this case, it is possible to reduce the occurrence of the shaft vibration of the output shaft 1A and the occurrence of the crack vibration of the entire vibration-isolating rubber 10 due to such shaft vibration. In particular, in the case of the anti-vibration rubber 10 for motors of the second and third embodiments, the linear region of the spring constant in the rotational circumferential direction can be set in a wide range, and as shown in (2) of FIG. By adjusting the rise of the torque output with respect to the angular displacement, the motor performance can always be sufficiently exhibited in the entire rotation range of the motor 1.
[0023]
In the above embodiments, the radial rigid plates 7 are arranged at regular intervals in the circumferential direction. However, the radial rigid plates 7 are arranged at irregular intervals in the circumferential direction. Is also good.
[0024]
In addition, the present invention is effective as a light and small anti-vibration rubber for a stepping motor, but is not limited thereto.
[0025]
【The invention's effect】
As described above, according to the present invention, an elastic body having a laminated structure in which elastic bodies made of a rubber-like elastic material and radial rigid boards are alternately laminated in the circumferential direction is interposed between mounting plates that are parallel to each other. By using an elastic body having a small spring constant in the axial direction (compression direction), the compression rigidity of the whole vibration-isolating rubber is reduced, and the natural vibration in the compression direction when the motor rotates is made of rubber-like elastic material. Enhance the spring constant, torsional rigidity, and torsional rigidity in the circumferential direction of the vibration isolating rubber as a whole, irrespective of the shear rigidity of the elastic body itself, while ensuring the original vibration isolating performance of absorbing and relaxing sufficiently. Therefore, the torsional force and the torsional force that are strongly applied to the output shaft during high-speed rotation of the motor can be sufficiently counteracted to reduce the shaft vibration of the output shaft and the vibration of the entire vibration-isolating rubber caused by such shaft vibration. Significantly low outbreak And there is an effect that it is possible to always sufficiently exhibit the motor performance.
[0026]
In particular, by adopting the configuration as claimed in claim 3 or claim 3 and claim 7, the compression stiffness is reduced and the original vibration isolating performance is improved, but the spring constant and the torsional stiffness in the rotational circumferential direction, the twist It is possible to increase the rigidity, or to adjust the spring constant and torsional rigidity in the circumferential direction of rotation and the ratio between the torsional rigidity and the compressive rigidity to appropriate values according to the size and performance of the motor. Regardless of the size and performance of the motor, the maximum motor performance can always be exhibited.
[Brief description of the drawings]
FIG. 1 is a front view showing a first embodiment of a vibration damping rubber for a motor according to the present invention.
FIG. 2 is a sectional view taken along line AOB of FIG.
FIG. 3 is a sectional view taken along line AOC of FIG. 1;
FIG. 4 is a cross-sectional view showing a state in which the motor is mounted on a support member using the motor vibration isolating rubber of the first embodiment.
FIG. 5 is a front view showing a second embodiment of a vibration damping rubber for a motor according to the present invention.
FIG. 6 is a sectional view taken along the line AOC in FIG. 5;
FIG. 7 is a sectional view taken along the line BOD of FIG. 5;
FIG. 8 is a cross-sectional view of a third embodiment of the vibration-isolating rubber for a motor according to the present invention, taken along a portion corresponding to the line AOC in FIG.
FIG. 9 is a cross-sectional view of the third embodiment, taken along a line corresponding to line BOD in FIG. 5;
FIG. 10 is a graph showing a rise characteristic of a torque output with respect to an angular displacement in the first embodiment and the second and third embodiments according to the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 motor 1A motor output shafts 2, 4 mounting plate 3 support member 5 elastic body 5a made of rubber-like elastic material 5a thin elastic body portion 6 central insertion holes 7, 7A, 7B radial rigid plates 7a, 7b free end side 10 anti-vibration for motor Rubber

Claims (7)

互いに平行に対向するモータの取付板と支持部材側への取付板との間にゴム状弾性材製の弾性体が挟着されているとともに、それら両取付板及び弾性体の中央部にはモータ出力軸の挿通孔が形成されているモータ用防振ゴムにおいて、
上記挿通孔周りの複数箇所の両取付板間にはそれぞれ、剛体板が上記ゴム状弾性材製弾性体と周方向に交互に積層されるように放射状に配置され、これら複数枚の剛体板のうち、周方向で一つおきに位置する剛体板が一方の取付板側に、かつ、残りの剛体板が他方の取付板側に固定接合されていることを特徴とするモータ用防振ゴム。
An elastic body made of rubber-like elastic material is sandwiched between a mounting plate of the motor and a mounting plate on the support member side opposed to each other in parallel with each other. In the vibration isolating rubber for a motor in which the insertion hole of the output shaft is formed,
Rigid plates are radially arranged between the mounting plates at a plurality of locations around the insertion hole so that the rigid plates are alternately stacked in the circumferential direction with the elastic body made of rubber-like elastic material. An anti-vibration rubber for a motor, wherein rigid plates located every other in the circumferential direction are fixedly joined to one mounting plate side, and the remaining rigid plates are fixedly joined to the other mounting plate side.
上記複数枚の放射状剛体板の一方及び他方の取付板側に固定接合される端辺とは反対側の非固定接合の自由端辺は、これに対向する他方及び一方の取付板に密接されている請求項1に記載のモータ用防振ゴム。The free end of the non-fixed joint opposite to the end fixedly joined to one and the other attachment plates of the plurality of radial rigid plates is closely contacted with the other and one attachment plate opposed thereto. The anti-vibration rubber for a motor according to claim 1. 上記複数枚の放射状剛体板の一方及び他方の取付板側に固定接合される端辺とは反対側の非固定接合の自由端辺とこれに対向する他方及び一方の取付板との間には隙間が形成され、この隙間に上記ゴム状弾性材製弾性体の一部が介在されている請求項1に記載のモータ用防振ゴム。Between the free end of the non-fixed joint opposite to the end fixedly joined to one and the other attachment plates of the plurality of radial rigid plates and the other and one attachment plate facing the same. 2. The vibration damping rubber for a motor according to claim 1, wherein a gap is formed, and a part of the elastic body made of the rubber-like elastic material is interposed in the gap. 上記複数枚の放射状剛体板が、周方向に等間隔置きに配置されている請求項1ないし3のいずれかに記載のモータ用防振ゴム。The anti-vibration rubber for a motor according to any one of claims 1 to 3, wherein the plurality of radial rigid plates are arranged at regular intervals in a circumferential direction. 上記複数枚の放射状剛体板が、周方向に不等間隔置きに配置されている請求項1ないし3のいずれかに記載のモータ用防振ゴム。The rubber vibration insulator according to any one of claims 1 to 3, wherein the plurality of radial rigid plates are arranged at irregular intervals in a circumferential direction. 上記複数枚の放射状剛体板が、上記弾性体の径方向厚みの全域を横断する状態に配置されている請求項1ないし5のいずれかに記載のモータ用防振ゴム。6. The anti-vibration rubber for a motor according to claim 1, wherein the plurality of radial rigid plates are arranged so as to traverse the entire radial thickness of the elastic body. 上記複数枚の放射状剛体板が、上記弾性体の径方向厚みの一部分にのみ配置されている請求項1ないし5のいずれかに記載のモータ用防振ゴム。The rubber vibration insulator according to any one of claims 1 to 5, wherein the plurality of radial rigid plates are disposed only in a part of a radial thickness of the elastic body.
JP2003042709A 2003-02-20 2003-02-20 Anti-vibration rubber for motors Expired - Fee Related JP4126234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003042709A JP4126234B2 (en) 2003-02-20 2003-02-20 Anti-vibration rubber for motors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003042709A JP4126234B2 (en) 2003-02-20 2003-02-20 Anti-vibration rubber for motors

Publications (2)

Publication Number Publication Date
JP2004251382A true JP2004251382A (en) 2004-09-09
JP4126234B2 JP4126234B2 (en) 2008-07-30

Family

ID=33025916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003042709A Expired - Fee Related JP4126234B2 (en) 2003-02-20 2003-02-20 Anti-vibration rubber for motors

Country Status (1)

Country Link
JP (1) JP4126234B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100395944C (en) * 2006-02-28 2008-06-18 江苏常发实业集团有限公司 Universal shock reducing pad of digital generator set
KR101418126B1 (en) 2008-03-12 2014-07-09 엘지전자 주식회사 Vibration-proof structure for motor
CN107240979A (en) * 2017-05-24 2017-10-10 河南师范大学 A kind of motor shock-absorbing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100395944C (en) * 2006-02-28 2008-06-18 江苏常发实业集团有限公司 Universal shock reducing pad of digital generator set
KR101418126B1 (en) 2008-03-12 2014-07-09 엘지전자 주식회사 Vibration-proof structure for motor
CN107240979A (en) * 2017-05-24 2017-10-10 河南师范大学 A kind of motor shock-absorbing device

Also Published As

Publication number Publication date
JP4126234B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
EP2610522B1 (en) Torque rod and engine mount system using same
KR100848017B1 (en) Forced-air-cooled engine with cooling air guide cover
JP4126234B2 (en) Anti-vibration rubber for motors
JP2004254439A (en) Vibration insulating rubber for motor
JP2011226479A (en) Pulley, torsional vibration damper and crankshaft of internal combustion engine
JP2004316782A (en) Rubber vibration isolator for motor
JPH08326842A (en) Motor mount
JP2004320902A (en) Damping rubber for motor
JP3710670B2 (en) Vibration reduction device for rotating electrical machines
JP4993091B2 (en) Anti-vibration mount
JP6502124B2 (en) Crankshaft mirror cutter
JPH08223837A (en) Rotor of rotating machine provided with cylindrical permanent magnet
JP2007210386A (en) Motor for electric power steering
JPH0717243Y2 (en) Anti-vibration mounting structure for motor
JP2005061566A (en) Vibrationproofing mount
JP7183225B2 (en) Vibration type driving device and imaging device
JP3051827B2 (en) Stator fixing structure of brushless DC motor
JP2000320614A (en) Power transmission
CN111527318A (en) Coupling joint
JPH1014162A (en) Vibration control structure for motor
US20230340950A1 (en) Damper System and Acoustic Bushing for a Vehicle
JP2002325469A (en) Ultrasonic motor
JPH039918Y2 (en)
JPH0732070Y2 (en) Printer
JP2004092974A (en) Air cleaning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051216

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080407

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080415

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20080512

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110516

LAPS Cancellation because of no payment of annual fees