JP2004250321A - Inorganic porous thin film, laminate using it, and method of manufacturing inorganic porous thin film - Google Patents

Inorganic porous thin film, laminate using it, and method of manufacturing inorganic porous thin film Download PDF

Info

Publication number
JP2004250321A
JP2004250321A JP2003400379A JP2003400379A JP2004250321A JP 2004250321 A JP2004250321 A JP 2004250321A JP 2003400379 A JP2003400379 A JP 2003400379A JP 2003400379 A JP2003400379 A JP 2003400379A JP 2004250321 A JP2004250321 A JP 2004250321A
Authority
JP
Japan
Prior art keywords
thin film
inorganic porous
porous thin
inorganic
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003400379A
Other languages
Japanese (ja)
Other versions
JP4428035B2 (en
Inventor
Hidefumi Sasakura
英史 笹倉
Kikuo Okuyama
喜久夫 奥山
Yukio Yamaguchi
由岐夫 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2003400379A priority Critical patent/JP4428035B2/en
Publication of JP2004250321A publication Critical patent/JP2004250321A/en
Application granted granted Critical
Publication of JP4428035B2 publication Critical patent/JP4428035B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Surface Treatment Of Glass (AREA)
  • Silicon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inorganic porous thin film in which many pores with a specified shape are arranged in a single layer with a specified pattern; a laminate using it; and a method of manufacturing the inorganic thin film. <P>SOLUTION: The inorganic thin film 10 has many pores 5 with almost circular openings 1 and almost spherical inner surfaces 3, the pores 5 being arranged in a single layer along the plane of the thin film 10. The average diameter d1 of the openings 1 is 30-3,000 nm, and the average distance d2 between the centers of the neighboring openings 1 is 100-230% of the average diameter d1. The thickness d3 of the thin film is 30-100% of the average diameter d1. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、無機多孔性薄膜、それを用いた積層体、及び無機多孔性薄膜の製造方法に関する。   The present invention relates to an inorganic porous thin film, a laminate using the same, and a method for producing an inorganic porous thin film.

自己組織化は、ボトムアップ方式によるパターン形成方法の1つであり、ナノテクノロジーを用いた大量生産を実現するための有力な方法である。   Self-organization is one of the bottom-up pattern formation methods, and is a powerful method for realizing mass production using nanotechnology.

近年、有機/無機混合粒子系を用いて細孔を形成させる3次元構造体の研究が進められている。このような研究としては、コロイダルシリカ粒子(5nm)とポリスチレン粒子(100nm〜200nm)の混合水溶液を用いてスプレードライにより多孔性シリカ粒子を合成する研究(例えば、非特許文献1〜2参照)、シリカ等のナノ粒子とポリスチレン粒子との混合水溶液にガラス基板を垂直に入れ、毎分2mmの速度で引き上げる方法(垂直堆積法)により3次元周期構造の無機多孔性薄膜を作製する研究(例えば、非特許文献3〜5参照)が知られている。
Iskandar,F.; Mikrajuddin; Okuyama, K.; "In Situ Production of Spherical Silica Particles Containing Self-Organized Mesopores", Nano Lett.(Communication); 2001; 1(5); p.231-234. Iskandar, F.; Mikrajuddin; Okuyama, K.; "Controllability of Pore Size and Porosity on Self-Organized Porous Silica Particles"" Nano Lett. (Communication); 2002; 2(4); p.389-392 Z. Z. Gu, S. Kubo, A. Fujisima, O. Sato; "Infiltration of colloidal crystal with nanoparticles using capillary forces: a simple technique for the fabrication of films with an ordered porous structure" ; Appl. Phys. A ; 2002; 74; p.127-129 顧忠沢、佐藤治、藤嶋昭;酸化物逆オパール膜の作製、MATERIAL STAGE、2002年、Vol. 2, No.5 Orlin D. Velev and Eric W. Kaler; "Structured Porous Materialsvia Colloidal Crystal Templating: From Inorganic Oxides to Metals"; Adv. Mater; 2000, 12, No.7; p.531-534
In recent years, research on a three-dimensional structure in which pores are formed using an organic / inorganic mixed particle system has been advanced. As such research, research which synthesizes porous silica particles by spray drying using a mixed aqueous solution of colloidal silica particles (5 nm) and polystyrene particles (100 nm to 200 nm) (for example, see Non-Patent Documents 1 and 2), Research to produce an inorganic porous thin film with a three-dimensional periodic structure by vertically placing a glass substrate in a mixed aqueous solution of nanoparticles such as silica and polystyrene particles and pulling it up at a rate of 2 mm per minute (vertical deposition method) Non-Patent Documents 3 to 5) are known.
Iskandar, F .; Mikrajuddin; Okuyama, K .; "In Situ Production of Spherical Silica Particles Containing Self-Organized Mesopores", Nano Lett. (Communication); 2001; 1 (5); p.231-234. Iskandar, F .; Mikrajuddin; Okuyama, K .; "Controllability of Pore Size and Porosity on Self-Organized Porous Silica Particles""Nano Lett. (Communication); 2002; 2 (4); p.389-392 ZZ Gu, S. Kubo, A. Fujisima, O. Sato; "Infiltration of colloidal crystal with nanoparticles using capillary forces: a simple technique for the fabrication of films with an ordered porous structure"; Appl. Phys. A; 2002; 74 ; p.127-129 Kei Tadazawa, Osamu Sato, Akira Fujishima; Preparation of Oxide Reverse Opal Film, MATERIAL STAGE, 2002, Vol. 2, No. 5 Orlin D. Velev and Eric W. Kaler; "Structured Porous Materialsvia Colloidal Crystal Templating: From Inorganic Oxides to Metals"; Adv. Mater; 2000, 12, No.7; p.531-534

しかしながら、上記公報記載の垂直堆積法により無機多孔性薄膜を作製した場合、得られる無機多孔性薄膜は多数の孔が3次元周期構造で多層に配列したものとなり、所定形状の多数の孔が所定パターンで1層に配列したものは得られていなかった。   However, when an inorganic porous thin film is produced by the vertical deposition method described in the above publication, the resulting inorganic porous thin film has a large number of holes arranged in a multilayer structure with a three-dimensional periodic structure. A pattern arranged in one layer was not obtained.

そこで、本発明の目的は、所定形状の多数の孔が所定パターンで1層に配列した無機多孔性薄膜、それを用いた積層体、及び無機多孔性薄膜の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide an inorganic porous thin film in which a large number of holes having a predetermined shape are arranged in one layer in a predetermined pattern, a laminate using the same, and a method for producing the inorganic porous thin film.

本発明者らは、無機多孔性薄膜の製造における塗工工程において、所定粒子径の無機超微粒子及び有機微粒子を固形成分として含有し、かつ、全固形分濃度が所定範囲内であるゾル状の塗工液を用いることにより、所定形状の多数の孔が所定パターンで1層に配列した無機多孔性薄膜が得られることを見出し、本発明を完成させるに至った。   In the coating process in the production of the inorganic porous thin film, the inventors of the present invention include a sol-like form containing inorganic ultrafine particles and organic fine particles having a predetermined particle size as solid components and having a total solid content concentration within a predetermined range. By using the coating liquid, it has been found that an inorganic porous thin film in which a large number of holes having a predetermined shape are arranged in one layer in a predetermined pattern is obtained, and the present invention has been completed.

すなわち、本発明の無機多孔性薄膜は、開口部が略円形状であり内周面が略球面状の多数の孔を有する無機多孔性薄膜であって、上記孔が上記薄膜の平面方向に1層に配列し、上記開口部の平均直径が30〜3000nmであり、隣り合う上記開口部の中心間の平均距離が上記開口部の平均直径の100〜230%の長さであり、かつ、膜厚が上記開口部の平均直径の30〜100%の厚さであることを特徴とするものである。   That is, the inorganic porous thin film of the present invention is an inorganic porous thin film having a large number of holes having an opening having a substantially circular shape and an inner peripheral surface of a substantially spherical shape. Arranged in layers, the average diameter of the openings is 30 to 3000 nm, the average distance between the centers of the adjacent openings is 100 to 230% of the average diameter of the openings, and the film The thickness is 30 to 100% of the average diameter of the opening.

このような無機多孔性薄膜は、所定形状の多数の孔が所定パターンで1層に配列していることからフォトニッククリスタル、ガラス表面の低反射処理(例えば、低反射処理膜)及びカーボンナノチューブ・フィールドエミッタのテンプレート等として特に好適である。   Such an inorganic porous thin film has a large number of holes of a predetermined shape arranged in one layer in a predetermined pattern, so that a photonic crystal, a low reflection treatment (for example, a low reflection treatment film) on a glass surface, a carbon nanotube, It is particularly suitable as a field emitter template.

上記無機多孔性薄膜は、上記開口部が六方対称に配列(六方対称の網目状に配列)していること、及び/又は、上記孔の平均深さが上記膜厚の50〜100%の深さであることが好ましい。   In the inorganic porous thin film, the openings are arranged in a hexagonal symmetry (arranged in a hexagonal symmetrical network), and / or the average depth of the holes is 50 to 100% of the film thickness. It is preferable.

また、本発明の積層体は、基板と、該基板の少なくとも一方の面上に形成された上記本発明の無機多孔性薄膜とを備えることを特徴とするものである。   Moreover, the laminated body of this invention is equipped with a board | substrate and the inorganic porous thin film of the said this invention formed on the at least one surface of this board | substrate, It is characterized by the above-mentioned.

本発明はまた、平均粒子径3〜50nmの無機超微粒子と平均粒子径30〜3000nmの有機微粒子とが分散媒に分散されたゾル状の塗工液であって(但し、有機微粒子は無機超微粒子よりも大きな平均粒子径を有する。)、全固形分濃度が0.1〜20質量%であり、上記無機超微粒子100質量部に対する上記有機微粒子の含有量が20〜1000質量部である塗工液を基板上に供給し、供給された塗工液から上記分散媒の少なくとも一部を除去することにより(分散媒の全てを除去することが好ましい。)、上記基板上に、上記有機微粒子が一層に配列し当該有機微粒子間に上記無機超微粒子が配されたゲル状薄膜を形成させる塗工工程と、得られたゲル状薄膜を焼成することにより上記有機微粒子を除去し無機多孔性薄膜を得る焼成工程と、を含むことを特徴とする無機多孔性薄膜の製造方法を提供する。この製造方法により、上記本発明の無機多孔性薄膜を得ることが可能である。   The present invention is also a sol-like coating liquid in which inorganic ultrafine particles having an average particle diameter of 3 to 50 nm and organic fine particles having an average particle diameter of 30 to 3000 nm are dispersed in a dispersion medium (provided that the organic fine particles are inorganic ultrafine particles). Coating having an average particle size larger than that of the fine particles), a total solid content concentration of 0.1 to 20% by mass, and a content of the organic fine particles of 20 to 1000 parts by mass with respect to 100 parts by mass of the inorganic ultrafine particles. By supplying a working liquid onto the substrate and removing at least a part of the dispersion medium from the supplied coating liquid (preferably removing all of the dispersion medium), the organic fine particles are formed on the substrate. Coating step for forming a gel-like thin film in which the above-mentioned inorganic ultrafine particles are arranged between the organic fine particles and an inorganic porous thin film by removing the organic fine particles by firing the obtained gel-like thin film Get baked It provides a method of producing an inorganic porous film which comprises a step. By this production method, the inorganic porous thin film of the present invention can be obtained.

この製造方法では、上記無機超微粒子がシリカからなるものであること、及び/又は、上記有機微粒子がポリマーからなるものであることが好ましい。   In this production method, the inorganic ultrafine particles are preferably made of silica, and / or the organic fine particles are preferably made of a polymer.

また、この製造方法においては、上記塗工工程において前記塗工液を供給する供給手段がスピンコーター、グラビアコーター又はダイコーターであることが好ましく、上記供給手段がスピンコーターであり、塗工時の最大回転数が1000〜8000rpmであること、又は、上記供給手段がグラビアコーター又はダイコーターであり、塗工時の膜形成速度が1〜1000m/sであることがより好ましい。   In this production method, the supply means for supplying the coating liquid in the coating step is preferably a spin coater, a gravure coater or a die coater, and the supply means is a spin coater, More preferably, the maximum rotational speed is 1000 to 8000 rpm, or the supply means is a gravure coater or a die coater, and the film formation speed during coating is 1 to 1000 m / s.

さらに、上記本発明の無機多孔性薄膜の製造方法においては、上記焼成工程において、上記有機微粒子の熱分解温度以上、上記無機超微粒子の融点又はガラス転移温度(無機超微粒子が融点及びガラス転移温度を示すときは低い方の温度)以下で、上記ゲル状薄膜を焼成することにより無機多孔性薄膜を得ることが好ましい。   Furthermore, in the method for producing an inorganic porous thin film of the present invention, in the baking step, the melting point or glass transition temperature of the inorganic ultrafine particles or higher (the inorganic ultrafine particles have a melting point and a glass transition temperature). It is preferable to obtain the inorganic porous thin film by firing the gel-like thin film at a lower temperature) or lower.

本発明によれば、所定形状の多数の孔が所定パターンで1層に配列した無機多孔性薄膜、それを用いた積層体を得ることが可能となり、また、その無機多孔性薄膜の製造方法を提供することが可能となる。また、このような無機多孔性薄膜は、フォトニッククリスタル、ガラス表面の低反射処理及びカーボンナノチューブ・フィールドエミッタのテンプレート等として、特に好適である。   According to the present invention, it is possible to obtain an inorganic porous thin film in which a large number of holes having a predetermined shape are arranged in a single layer in a predetermined pattern, and a laminate using the same, and a method for producing the inorganic porous thin film is provided. It becomes possible to provide. Such an inorganic porous thin film is particularly suitable as a photonic crystal, a low reflection treatment on the glass surface, and a template for a carbon nanotube field emitter.

以下、添付図面を参照しながら、本発明の実施の形態について詳細に説明する。なお、図面の説明において、同一又は相当要素には同一の符号を付し、重複する説明は省略する。また、図面における寸法は実際の寸法と必ずしも一致しない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same or equivalent elements will be denoted by the same reference numerals, and redundant description will be omitted. Moreover, the dimension in drawing does not necessarily correspond with an actual dimension.

(無機多孔性薄膜、それを用いた積層体)
図1は実施形態に係る「基板上に無機多孔性薄膜が形成された積層体」の斜視図、図2は図1におけるII−II線に沿った断面図である。
(Inorganic porous thin film, laminate using the same)
FIG. 1 is a perspective view of a “laminated body in which an inorganic porous thin film is formed on a substrate” according to the embodiment, and FIG. 2 is a cross-sectional view taken along line II-II in FIG.

先ず、無機多孔性薄膜10について説明する。図1及び図2に示す無機多孔性薄膜10は、基板20上に形成されたものである。無機多孔性薄膜10は、開口部1が略円形状であり内周面3が略球面状の多数の孔5を有する無機多孔性薄膜10であって、孔5が無機多孔性薄膜10の平面方向に1層に配列し、開口部1の平均直径d1が30〜3000nmであり、隣り合う開口部1の中心間の平均距離d2が開口部1の平均直径d1の100〜230%の長さであり、かつ、膜厚d3が開口部1の平均直径d1の30〜100%の厚さとなっている。   First, the inorganic porous thin film 10 will be described. The inorganic porous thin film 10 shown in FIGS. 1 and 2 is formed on a substrate 20. The inorganic porous thin film 10 is an inorganic porous thin film 10 having a large number of holes 5 in which the opening 1 has a substantially circular shape and the inner peripheral surface 3 has a substantially spherical shape, and the holes 5 are planes of the inorganic porous thin film 10. The average diameter d1 of the openings 1 is 30 to 3000 nm, and the average distance d2 between the centers of the adjacent openings 1 is 100 to 230% of the average diameter d1 of the openings 1. And the film thickness d3 is 30 to 100% of the average diameter d1 of the openings 1.

無機多孔性薄膜10は、後述する無機多孔性薄膜の製造方法により作製され得るが、その原料としては無機超微粒子が用いられる。このような無機超微粒子としては、金、銀、銅、鉄、アルミニウム、チタン及びニッケル等の金属;シリカ(二酸化ケイ素)、アルミナ(酸化アルミニウム)、チタニア(酸化チタン)、酸化鉄、酸化亜鉛、酸化ニッケル、酸化ニオブ及び酸化セリウム等の無機酸化物、又は、窒化ケイ素、窒化アルミ及び窒化チタン等の無機窒化物からなる無機超微粒子のうちの少なくとも1つであることが好ましい。このような材料からなる微粒子の中でも、無機酸化物からなる無機超微粒子であることが好ましく、シリカからなる無機超微粒子であることがより好ましい。   Although the inorganic porous thin film 10 can be produced by a method for producing an inorganic porous thin film, which will be described later, inorganic ultrafine particles are used as the raw material. Such inorganic ultrafine particles include metals such as gold, silver, copper, iron, aluminum, titanium and nickel; silica (silicon dioxide), alumina (aluminum oxide), titania (titanium oxide), iron oxide, zinc oxide, It is preferably at least one of inorganic oxides such as nickel oxide, niobium oxide and cerium oxide, or inorganic nitrides such as silicon nitride, aluminum nitride and titanium nitride. Among the fine particles made of such a material, inorganic ultra fine particles made of an inorganic oxide are preferable, and inorganic ultra fine particles made of silica are more preferable.

無機超微粒子の平均粒子径は3〜50nmがよく、3〜20nmがより好ましく、3〜15nmが更に好ましく、3〜10nmが特に好ましい。無機超微粒子の平均粒子径が3nm未満であると、無機超微粒子の作製が困難であることから無機多孔性薄膜の製造が困難となり、50nmを超えると上記形状の孔5の形成が困難であることから無機多孔性薄膜の製造が困難となる。   The average particle size of the inorganic ultrafine particles is preferably 3 to 50 nm, more preferably 3 to 20 nm, still more preferably 3 to 15 nm, and particularly preferably 3 to 10 nm. If the average particle size of the inorganic ultrafine particles is less than 3 nm, it is difficult to produce the inorganic ultrafine particles, so that it is difficult to produce the inorganic porous thin film, and if it exceeds 50 nm, it is difficult to form the pores 5 having the above shape. This makes it difficult to produce an inorganic porous thin film.

なお、無機超微粒子の平均粒子径は、透過型電子顕微鏡(TEM)法により求めることができる。また、無機多孔性薄膜10は、実質的に上述した原料及びそれらの構成成分である無機物からなるものが好ましいが、10%未満の有機物が含まれてもよい。   The average particle diameter of the inorganic ultrafine particles can be determined by a transmission electron microscope (TEM) method. In addition, the inorganic porous thin film 10 is preferably substantially composed of the above-described raw materials and inorganic materials that are constituents thereof, but may contain less than 10% organic material.

無機多孔性薄膜10における孔5の形状は、上述したように開口部1が略円形状であり内周面3が略球面状である。このような形状は、略球状の有機微粒子を無機多孔性薄膜の前駆体(本発明の無機多孔性薄膜の製造方法におけるゲル状薄膜)に所定間隔で分散させておいて、所定間隔で分散させた有機微粒子を焼成で除去することにより形成できる。なお、開口部1とは、図1に示すように無機多孔性薄膜10表面における孔5の略円形状の縁部である。   As described above, the shape of the hole 5 in the inorganic porous thin film 10 is such that the opening 1 is substantially circular and the inner peripheral surface 3 is substantially spherical. In such a shape, substantially spherical organic fine particles are dispersed at a predetermined interval in a precursor of an inorganic porous thin film (gel thin film in the method for producing an inorganic porous thin film of the present invention) at a predetermined interval. The organic fine particles can be formed by removing by baking. In addition, the opening part 1 is a substantially circular edge part of the hole 5 in the inorganic porous thin film 10 surface, as shown in FIG.

開口部1の平均直径d1は30〜3000nmであり、40〜1700nmであることが好ましく、100〜1000nmであることがより好ましい。平均直径d1は孔5の鋳型となる有機微粒子の平均粒子径に基本的に対応し、この有機微粒子が一列に配された状態で焼成を行うことから、所定の平均直径の孔5が1層に配列した無機多孔性薄膜を得ることができる(図2)。   The average diameter d1 of the opening 1 is 30 to 3000 nm, preferably 40 to 1700 nm, and more preferably 100 to 1000 nm. The average diameter d1 basically corresponds to the average particle diameter of the organic fine particles serving as a template for the holes 5 and firing is performed in a state where the organic fine particles are arranged in a line. It is possible to obtain an inorganic porous thin film arranged in the form (FIG. 2).

また、無機多孔性薄膜10は、隣り合う開口部1の中心間の平均距離d2が開口部1の平均直径d1の100〜230%の長さであり、100〜180%の長さであることがより好ましく、120〜160%の長さであることがさらに好ましい。平均距離d2が100%未満であると、孔とそれに隣接する孔とのそれぞれ隣接する部分がつながった状態となる。一方、平均距離d2が平均直径d1の230%を超える長さであると、開口部1の配列が不規則となる。   Moreover, as for the inorganic porous thin film 10, the average distance d2 between the centers of the adjacent openings 1 is 100 to 230% of the average diameter d1 of the openings 1, and is 100 to 180%. Is more preferable, and the length is further preferably 120 to 160%. When the average distance d2 is less than 100%, the adjacent portions of the hole and the adjacent hole are connected. On the other hand, if the average distance d2 is longer than 230% of the average diameter d1, the arrangement of the openings 1 becomes irregular.

ここで開口部1の中心とは、開口部1の輪郭が真円である場合はその中心をいう。また、開口部1の輪郭が真円から変形した形状である場合は、開口部1の中心とは、その形状の重心(開口部1と同じ輪郭の密度均一の板状体を想定したときにおける、当該板状体の重心)に相当する位置という。   Here, the center of the opening 1 means the center when the outline of the opening 1 is a perfect circle. Further, when the contour of the opening 1 is a shape deformed from a perfect circle, the center of the opening 1 is the center of gravity of the shape (when assuming a plate-like body having the same contour as the opening 1 and a uniform density) The position corresponding to the center of gravity of the plate-like body.

開口部1は、六方対称(hexagonal symmetry)に配列していることが好ましい。図3は、開口部1が六方対称に配列した無機多孔性薄膜10の模式図(図1の積層体の上面図に相当する。)である。図3に示すように、開口部が六方対称に配列しているとは、任意の1の開口部を選んだときに、その開口部を中心として6つの開口部が六角形(正六角形が好ましい)状に配列している状態(いわゆる、六角形周期構造)を意味する。   The openings 1 are preferably arranged in hexagonal symmetry. FIG. 3 is a schematic view of the inorganic porous thin film 10 in which the openings 1 are arranged in a hexagonal symmetry (corresponding to a top view of the laminate of FIG. 1). As shown in FIG. 3, when the openings are arranged in a hexagonal symmetry, when any one opening is selected, the six openings are hexagonal (preferably a regular hexagon is centered on the opening. ) State (so-called hexagonal periodic structure).

無機多孔性薄膜10は、膜厚d3が開口部1の平均直径d1の30〜100%の厚さであり、平均直径d1の50〜80%の厚さであることが好ましい。膜厚d3が平均直径d1の30%未満の厚さであると、孔としての役割を果たさなくなり、平均直径d1の100%を超える厚さであると、薄膜に大きな亀裂を生じる可能性がある。   The inorganic porous thin film 10 has a thickness d3 of 30 to 100% of the average diameter d1 of the openings 1 and preferably 50 to 80% of the average diameter d1. If the film thickness d3 is less than 30% of the average diameter d1, the film does not serve as a hole, and if it is more than 100% of the average diameter d1, there is a possibility that a large crack will occur in the thin film. .

無機多孔性薄膜10における孔の平均深さd4は、膜厚d3の50〜100%の深さであることが好ましく、膜厚d3の70〜100%の深さであることがより好ましい。孔の平均深さd4が膜厚d3の50%未満の深さであると薄膜に亀裂を生じる要因の一つとなる。   The average pore depth d4 in the inorganic porous thin film 10 is preferably 50 to 100% of the film thickness d3, and more preferably 70 to 100% of the film thickness d3. If the average depth d4 of the holes is less than 50% of the film thickness d3, it becomes one of the factors that cause cracks in the thin film.

図4は、孔の平均深さd4が膜厚d3の100%の深さ、すなわち孔の平均深さd4と膜厚d3が等しい場合(d3=d4)の積層体の断面図である。この場合、無機多孔性薄膜10における孔5は貫通孔となる。また、積層体100を無機多孔性薄膜10が形成されている方向から見た場合は、基板20の一部が露出した状態で見え得る。   FIG. 4 is a cross-sectional view of the laminate when the average hole depth d4 is 100% of the film thickness d3, that is, when the average hole depth d4 is equal to the film thickness d3 (d3 = d4). In this case, the holes 5 in the inorganic porous thin film 10 are through holes. Moreover, when the laminated body 100 is seen from the direction in which the inorganic porous thin film 10 is formed, it can be seen in a state where a part of the substrate 20 is exposed.

なお無機多孔性薄膜10は、基板20上に形成させた後に、基板20から分離又は剥離して、無機多孔性薄膜10単独で用いることができる。   In addition, after forming the inorganic porous thin film 10 on the board | substrate 20, it isolate | separates or peels from the board | substrate 20, and can use the inorganic porous thin film 10 alone.

次に、積層体について説明する。図1及び図2に示す、実施形態に係る積層体100は、基板20と、基板20の少なくとも一方の面上に形成された上記無機多孔性薄膜10とを備えることを特徴とするものである。   Next, a laminated body is demonstrated. A laminated body 100 according to the embodiment shown in FIGS. 1 and 2 includes a substrate 20 and the inorganic porous thin film 10 formed on at least one surface of the substrate 20. .

積層体100における基板20は、ガラス、石英、シリコン又はアルミ等からなる平板状の基板を用いることができる。このような基板の形状は特に限定されないが、円板状で直径が10〜90mmであり、厚さが0.2〜3.0mmの基板が好ましい。   As the substrate 20 in the stacked body 100, a flat substrate made of glass, quartz, silicon, aluminum, or the like can be used. The shape of such a substrate is not particularly limited, but a substrate having a disk shape and a diameter of 10 to 90 mm and a thickness of 0.2 to 3.0 mm is preferable.

以上述べた無機多孔性薄膜10及びそれを用いた積層体100は、フォトニッククリスタル、ガラス表面の低反射処理及びカーボンナノチューブ・フィールドエミッタのテンプレート等に特に好適である。   The inorganic porous thin film 10 and the laminate 100 using the inorganic porous thin film 10 described above are particularly suitable for photonic crystals, low reflection treatment of glass surfaces, carbon nanotube field emitter templates, and the like.

(無機多孔性薄膜の製造方法)
以下、無機多孔性薄膜の製造方法について説明する。
(Inorganic porous thin film manufacturing method)
Hereinafter, the manufacturing method of an inorganic porous thin film is demonstrated.

上述した無機多孔性薄膜及び積層体は、実施形態に係る以下の無機多孔性薄膜の製造方法により得ることができる。すなわち、全固形分濃度が0.1〜20質量%であり、かつ、平均粒子径3〜50nmの無機超微粒子100質量部に対して平均粒子径30〜3000nmの有機微粒子を20〜1000質量部含有するゾル状の塗工液を、基板上に塗工して乾燥せしめ、上記基板上の平面方向に1層に配列した上記有機微粒子と該有機微粒子の間に存在する無機超微粒子とを含むゲル状薄膜を得る塗工工程と、得られたゲル状薄膜を焼成することにより上記有機微粒子を除去し無機多孔性薄膜を得る焼成工程と、を含む方法により製造可能である。但し、有機微粒子は無機超微粒子よりも大きな平均粒子径を有するものとする必要がある。   The inorganic porous thin film and the laminate described above can be obtained by the following method for manufacturing an inorganic porous thin film according to the embodiment. That is, 20 to 1000 parts by mass of organic fine particles having an average particle size of 30 to 3000 nm with respect to 100 parts by mass of inorganic ultrafine particles having a total solid content concentration of 0.1 to 20% by mass and an average particle size of 3 to 50 nm. The sol-like coating liquid contained is applied onto a substrate and dried, and includes the organic fine particles arranged in a single layer in the plane direction on the substrate and the inorganic ultrafine particles present between the organic fine particles. It can be produced by a method including a coating step for obtaining a gel-like thin film and a firing step for removing the organic fine particles by firing the obtained gel-like thin film to obtain an inorganic porous thin film. However, the organic fine particles need to have a larger average particle size than the inorganic ultra fine particles.

先ず、この製造方法において用いるゾル状の塗工液について説明する。ゾル状の塗工液は、固形分として無機超微粒子及び有機微粒子を含有するものであり、ゾル状の塗工液において全固形分濃度は0.1〜20質量%であり、より好ましくは0.2〜10質量%であり、更に好ましくは0.5〜10質量%である。全固形分濃度が0.1質量%未満であると、濃度が低すぎるために無機多孔性薄膜の作製が困難となり、20質量%を超えると有機微粒子が多層に配列するため無機多孔性薄膜の作製が困難となる。   First, the sol-like coating liquid used in this production method will be described. The sol-like coating liquid contains inorganic ultrafine particles and organic fine particles as a solid content, and the total solid content concentration in the sol-shaped coating liquid is 0.1 to 20% by mass, more preferably 0. It is 2-10 mass%, More preferably, it is 0.5-10 mass%. If the total solid content concentration is less than 0.1% by mass, it is difficult to produce an inorganic porous thin film because the concentration is too low. If the total solid content concentration exceeds 20% by mass, organic fine particles are arranged in multiple layers. Production becomes difficult.

上記無機超微粒子としては、無機多孔性薄膜の説明で述べた無機超微粒子と同様のものを用いることができる。   As the inorganic ultrafine particles, those similar to the inorganic ultrafine particles described in the description of the inorganic porous thin film can be used.

上記有機微粒子としては、ポリスチレン、スチレン−ブタジエン共重合体、ポリビニルトルエン、スチレン−ジビニルベンゼン共重合体、ビニルトルエン−t−ブチルスチレン共重合体、ポリメタクリレート及びポリアクリレート等のポリマーからなるものが好ましく、ポリスチレン、スチレン−ブタジエン共重合体、又は、スチレン−ジビニルベンゼン共重合体からなるものがより好ましい。   The organic fine particles are preferably composed of polymers such as polystyrene, styrene-butadiene copolymer, polyvinyltoluene, styrene-divinylbenzene copolymer, vinyltoluene-t-butylstyrene copolymer, polymethacrylate and polyacrylate. More preferred are those made of polystyrene, styrene-butadiene copolymer, or styrene-divinylbenzene copolymer.

有機微粒子の平均粒子径は30〜3000nmである。有機微粒子の平均粒子径は40〜1700nmであることが好ましく、100〜1000nmであることがより好ましい。平均粒子径が30nm未満であると、粒子径が均一である粒子の作製が困難であるため、無機多孔性薄膜の作製が困難となる。一方、3000nmを越える場合も、粒子径が均一である粒子の作製が困難であるため、無機多孔性薄膜の作製が困難となる。なお、有機微粒子の平均粒子径は、透過型電子顕微鏡(TEM)法により求めることができる。   The average particle diameter of the organic fine particles is 30 to 3000 nm. The average particle diameter of the organic fine particles is preferably 40 to 1700 nm, and more preferably 100 to 1000 nm. When the average particle size is less than 30 nm, it is difficult to produce particles having a uniform particle size, and thus it is difficult to produce an inorganic porous thin film. On the other hand, when the thickness exceeds 3000 nm, it is difficult to produce particles having a uniform particle diameter, and thus it is difficult to produce an inorganic porous thin film. The average particle diameter of the organic fine particles can be determined by a transmission electron microscope (TEM) method.

上記塗工液は、無機超微粒子100質量部に対して上記有機微粒子を20〜1000質量部含有する。無機超微粒子100質量部に対する有機微粒子の含有量は25〜600質量部が好ましく、25〜400質量部がより好ましい。無機超微粒子100質量部に対する有機微粒子の含有量が20質量部未満であると、有機微粒子が所定パターンで配列せず本発明の無機多孔性薄膜の作製が困難となり、1000質量部を超えると、有機微粒子の間に十分な量の無機超微粒子が存在しなくなるため本発明の無機多孔性薄膜が困難となる。   The said coating liquid contains 20-1000 mass parts of said organic fine particles with respect to 100 mass parts of inorganic ultrafine particles. The content of the organic fine particles with respect to 100 parts by mass of the inorganic ultrafine particles is preferably 25 to 600 parts by mass, and more preferably 25 to 400 parts by mass. When the content of the organic fine particles with respect to 100 parts by mass of the inorganic ultrafine particles is less than 20 parts by mass, the organic fine particles are not arranged in a predetermined pattern, making it difficult to produce the inorganic porous thin film of the present invention. Since a sufficient amount of inorganic ultrafine particles do not exist between the organic fine particles, the inorganic porous thin film of the present invention becomes difficult.

また、上記塗工液に用いる分散媒としては、メタノール、エタノール、1−プロパノール、2−プロパノール及びブタノール等のアルコール類;エチレングリコール、ジエチレングリコール及びエチレングリコール−モノエチルエーテル等のエチレングリコール類;アセトン及びメチルエチルケトン等のケトン類;ジメチルホルムアミド等のアミド類又はそれらのうちの少なくとも1種類以上を混合した水溶液、水が挙げられる。これらの中でも、水が好ましく、精製水であることが最も好ましい。   Examples of the dispersion medium used in the coating liquid include alcohols such as methanol, ethanol, 1-propanol, 2-propanol and butanol; ethylene glycols such as ethylene glycol, diethylene glycol and ethylene glycol monoethyl ether; acetone and Examples include ketones such as methyl ethyl ketone; amides such as dimethylformamide or an aqueous solution in which at least one of them is mixed, and water. Among these, water is preferable, and purified water is most preferable.

更に、上記塗工液には、上記成分の他に界面活性剤などの溶液安定剤、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン及びメチルトリエトキシシラン等のアルコキシシラン類を含有させてもよい。   Furthermore, in addition to the above components, the coating solution may contain a solution stabilizer such as a surfactant, and alkoxysilanes such as tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, and methyltriethoxysilane. Good.

次に、無機多孔性薄膜の製造方法の各工程について図面を参照しつつ説明する。図5(a)〜(c)は実施形態に係る無機多孔性薄膜の製造方法の工程図である。図5(a)は有機微粒子22と無機超微粒子24とが分散媒26に分散されたゾル状の塗工液28が、基板20上に供給された状態を示す断面図である。図5(a)では、分散媒26中に存在する有機微粒子22が基板20上に一層に配されており、複数の無機超微粒子24が有機微粒子22間に存在している。   Next, each process of the manufacturing method of an inorganic porous thin film is demonstrated, referring drawings. 5A to 5C are process diagrams of the method for manufacturing an inorganic porous thin film according to the embodiment. FIG. 5A is a cross-sectional view showing a state where a sol-like coating liquid 28 in which organic fine particles 22 and inorganic ultrafine particles 24 are dispersed in a dispersion medium 26 is supplied onto the substrate 20. In FIG. 5A, the organic fine particles 22 present in the dispersion medium 26 are arranged on a single layer on the substrate 20, and a plurality of inorganic ultrafine particles 24 are present between the organic fine particles 22.

このような状態になるように基板20上に塗工液28を供給するための供給手段(塗工手段)としては、スピンコーター、グラビアコーター又はダイコーターが挙げられる。供給手段がスピンコーターである場合は、供給時(塗工時)の最大回転数が1000〜8000rpmであることが好ましく、1500〜8000rpmであることがより好ましく、2000〜8000rpmであることが更に好ましい。最大回転数が上記下限値未満であると、基板20上での塗工液28の広がりが不十分となりやすく、上記上限値を超えると、有機微粒子22が所定パターンで配列することが困難となる。   Examples of the supply means (coating means) for supplying the coating liquid 28 onto the substrate 20 so as to be in such a state include a spin coater, a gravure coater, and a die coater. When the supply means is a spin coater, the maximum rotational speed at the time of supply (coating) is preferably 1000 to 8000 rpm, more preferably 1500 to 8000 rpm, and further preferably 2000 to 8000 rpm. . If the maximum rotational speed is less than the above lower limit value, spreading of the coating liquid 28 on the substrate 20 tends to be insufficient, and if it exceeds the upper limit value, it becomes difficult to arrange the organic fine particles 22 in a predetermined pattern. .

また、供給手段がグラビアコーター又はダイコーターである場合は、供給時(塗工時)の膜形成速度が1〜1000mm/sであることが好ましく、5〜100mm/sであることがより好ましい。このような膜形成速度が前記下限値未満であると、塗工液の広がりが不十分となる傾向があり、他方、前記上限値を超えると、有機微粒子が所定パターンで配列することが困難となる。   Moreover, when a supply means is a gravure coater or a die coater, it is preferable that the film formation rate at the time of supply (at the time of coating) is 1-1000 mm / s, and it is more preferable that it is 5-100 mm / s. When such a film formation rate is less than the lower limit value, the spreading of the coating liquid tends to be insufficient. On the other hand, when the upper limit value is exceeded, it is difficult to arrange organic fine particles in a predetermined pattern. Become.

なお、基板としては、積層体の説明で述べた基板、すなわち、ガラス、石英、シリコン又はアルミ等からなる平板状の基板を用いることができる。   As the substrate, a substrate described in the description of the stacked body, that is, a flat substrate made of glass, quartz, silicon, aluminum, or the like can be used.

図5(b)は、基板20上に供給された塗工液28から分散媒26が除去された状態を示す断面図である。塗工液28からの分散媒26の除去は、公知の乾燥方法により実施するができ、供給手段としてスピンコーターを用いた場合は、塗工液を塗工後しばらくの間回転し続けることにより、分散媒26の除去が可能である。ここで、分散媒26は少なくともその一部が除去されればよいが、より均一な無機多孔性薄膜を得る観点からは、その全てを除去することが好ましい。   FIG. 5B is a cross-sectional view showing a state where the dispersion medium 26 is removed from the coating liquid 28 supplied onto the substrate 20. Removal of the dispersion medium 26 from the coating liquid 28 can be carried out by a known drying method. When a spin coater is used as the supply means, the coating liquid is continuously rotated for a while after coating, The dispersion medium 26 can be removed. Here, at least a part of the dispersion medium 26 may be removed, but it is preferable to remove all of the dispersion medium 26 from the viewpoint of obtaining a more uniform inorganic porous thin film.

分散媒26の除去の結果、図5(b)に示すように、有機微粒子22が一層に配列し有機微粒子22間に無機超微粒子24が配されたゲル状薄膜30が、基板20上に形成される。   As a result of the removal of the dispersion medium 26, a gel-like thin film 30 in which the organic fine particles 22 are arranged in one layer and the inorganic ultrafine particles 24 are arranged between the organic fine particles 22 is formed on the substrate 20 as shown in FIG. Is done.

このようにして形成されたゲル状薄膜30を焼成することにより、有機微粒子22を除去して無機多孔性薄膜を得ることができる。図5(c)は、ゲル状薄膜30を焼成して得られた無機多孔性薄膜10を基板20上に備える積層体100を示す断面図である。図5(c)に示す積層体100は、基板20上に、開口部1が略円形状であり内周面3が略球面状の多数の孔5を有する無機多孔性薄膜10を備えるものである。   By firing the gel-like thin film 30 thus formed, the organic fine particles 22 can be removed to obtain an inorganic porous thin film. FIG. 5C is a cross-sectional view showing a laminate 100 provided with the inorganic porous thin film 10 obtained by firing the gel thin film 30 on the substrate 20. A laminate 100 shown in FIG. 5 (c) includes an inorganic porous thin film 10 having a large number of holes 5 on a substrate 20, the opening 1 having a substantially circular shape and the inner peripheral surface 3 having a substantially spherical shape. is there.

焼成工程では、加熱により、有機微粒子22が熱分解して除去されるとともに、有機微粒子22間に存在する複数の無機微粒子24が焼結等により一体化して無機多孔性薄膜10が形成されると考えられる。この場合において、有機微粒子22が孔形成のための鋳型(テンプレート)として機能し、ゲル状薄膜30における有機微粒子22の配列状態や粒子サイズに対応して孔が形成されると推測される。   In the firing step, the organic fine particles 22 are thermally decomposed and removed by heating, and a plurality of inorganic fine particles 24 existing between the organic fine particles 22 are integrated by sintering or the like to form the inorganic porous thin film 10. Conceivable. In this case, it is presumed that the organic fine particles 22 function as a template for forming holes, and holes are formed corresponding to the arrangement state and particle size of the organic fine particles 22 in the gel thin film 30.

焼成工程における焼成温度(加熱温度)は、用いる基板の耐熱温度、用いる有機微粒子の熱分解(酸化熱分解等)温度、用いる無機超微粒子が焼結可能な温度等に基づいて適宜決定することができる。先ず、ゲル状薄膜を焼成して有機微粒子を除去する必要があることから、焼成温度の下限は有機微粒子の熱分解(酸化熱分解等)温度以上であることが好ましい。前述の好適な有機微粒子の成分を考慮すると、焼成温度の下限は350℃が好ましく、400℃がより好ましい。なお、有機微粒子の除去は基板上に形成されたゲル状薄膜の加熱により実施するため、基板としては焼成温度の下限以上の耐熱性を有するものを採用するとよい。この点からも、有機微粒子として前述の好適例を用い、基板として前述の例示材料(ガラス、石英、シリコン、アルミ等)を用いることが好ましい。   The firing temperature (heating temperature) in the firing step may be appropriately determined based on the heat-resistant temperature of the substrate to be used, the thermal decomposition (oxidation thermal decomposition, etc.) temperature of the organic fine particles to be used, the temperature at which the inorganic ultra fine particles to be used can be sintered, it can. First, since it is necessary to sinter the gel-like thin film to remove the organic fine particles, the lower limit of the calcination temperature is preferably equal to or higher than the thermal decomposition (oxidative thermal decomposition) temperature of the organic fine particles. Considering the above-mentioned components of suitable organic fine particles, the lower limit of the firing temperature is preferably 350 ° C., more preferably 400 ° C. In addition, since the removal of the organic fine particles is performed by heating the gel-like thin film formed on the substrate, a substrate having heat resistance equal to or higher than the lower limit of the firing temperature may be employed. Also from this point, it is preferable to use the above-described preferred examples as the organic fine particles and use the above-described exemplary materials (glass, quartz, silicon, aluminum, etc.) as the substrate.

一方、焼成温度の上限は、基板上で有機微粒子の熱分解を行うことから、基板の耐熱温度以下が好ましい。このような観点からは焼成温度の上限は、例えば、基板として石英を用いる場合は1500℃、ガラスを用いる場合は500℃、シリコンを用いる場合は700℃である。しかしながら、一層に配列した有機微粒子間に無機超微粒子が配されたゲル状薄膜について、有機微粒子を除去するとともに無機超微粒子を焼結等で一体化させて無機多孔性薄膜を得ることを考慮すると、焼成温度の上限は、無機超微粒子の融点又はガラス転移温度(無機超微粒子が融点及びガラス転移温度を示すときは低い方の温度)以下であることが好ましく、焼成温度の上限はこのような事情も勘案して決定するのがよい。   On the other hand, the upper limit of the firing temperature is preferably equal to or lower than the heat resistant temperature of the substrate because the organic fine particles are thermally decomposed on the substrate. From such a viewpoint, the upper limit of the firing temperature is, for example, 1500 ° C. when quartz is used as the substrate, 500 ° C. when glass is used, and 700 ° C. when silicon is used. However, in consideration of obtaining an inorganic porous thin film by removing the organic fine particles and integrating the inorganic ultra fine particles by sintering or the like for the gel thin film in which the inorganic fine particles are arranged between the organic fine particles arranged in one layer. The upper limit of the firing temperature is preferably equal to or lower than the melting point or glass transition temperature of the inorganic ultrafine particles (the lower temperature when the inorganic ultrafine particles exhibit the melting point and the glass transition temperature). It is better to decide in consideration of the circumstances.

したがって、焼成工程における焼成の温度範囲は、好適には350〜1500℃、更には400〜500℃となる。用いる基板ごとに好適例を示すならば、基板として石英を用いる場合には350〜1500℃(好適には350〜1000℃、更には400〜700℃)、基板としてガラスを用いる場合には350〜500℃(好適には350〜480℃、更には400〜450℃)、基板としてシリコンを用いる場合は350〜700℃(好適には350〜500℃、更には400〜500℃)である。焼成温度が上記下限値未満であると、有機微粒子の熱分解(酸化分解等)が不十分となり、孔の形成が困難となる傾向があり、他方、上記上限値を越えると、基板が軟化し無機多孔性薄膜の形成が困難となる傾向がある。   Therefore, the temperature range for firing in the firing step is preferably 350 to 1500 ° C, and more preferably 400 to 500 ° C. If a suitable example is shown for every board | substrate to be used, when using quartz as a board | substrate, 350-1500 degreeC (preferably 350-1000 degreeC, Furthermore, 400-700 degreeC), When using glass as a board | substrate, 350- The temperature is 500 ° C. (preferably 350 to 480 ° C., more preferably 400 to 450 ° C.), and 350 to 700 ° C. (preferably 350 to 500 ° C., more preferably 400 to 500 ° C.) when silicon is used as the substrate. If the firing temperature is less than the lower limit, thermal decomposition (oxidative decomposition, etc.) of the organic fine particles tends to be insufficient and pore formation tends to be difficult. On the other hand, if the upper limit is exceeded, the substrate softens. There exists a tendency for formation of an inorganic porous thin film to become difficult.

上記無機多孔性薄膜の製造方法は、従来技術である塗布速度が遅い垂直堆積法の実用性に欠ける点(塗布速度、生産性等)を改善することができ、短時間で大量に広い面積を有する無機多孔性薄膜を製造することを可能にする。   The inorganic porous thin film manufacturing method can improve the lack of practicality of the conventional vertical deposition method (coating speed, productivity, etc.), which has a low coating speed, and can provide a large area in a large amount in a short time. It makes it possible to produce an inorganic porous thin film.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例により何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited at all by the following examples.

(実施例1)
先ず、直径15mmΦ、厚さ0.27mmのソーダライム系ガラス基板(MATSUNAMI GLASS社製、型番:MATSUNAMI MICRO COVER GLASS)をクロム混酸溶液に浸し基板表面の汚れ等を除去した。この基板をクロム混酸溶液が完全に除去されるまで蒸留水で洗浄し、室温で乾燥させた。
(Example 1)
First, a soda-lime glass substrate having a diameter of 15 mmΦ and a thickness of 0.27 mm (manufactured by MATUNAMI GLASS, model number: MATUNAMI MICRO COVER GLASS) was immersed in a chrome mixed acid solution to remove stains on the substrate surface. The substrate was washed with distilled water until the chromium mixed acid solution was completely removed and dried at room temperature.

次に、固形分として粒子径5nmの無機超微粒子を0.125wt%、粒子径136nmの有機微粒子を0.5wt%含有している全固形分濃度が0.625wt%である塗工液を試料調製ポリ容器(型番:ニューディスカップ(PP製、20mL容))を用いて調製した。なお、無機超微粒子にはシリカ粒子(触媒化成社製、型番:SI−550)を用い、有機微粒子にはポリスチレンラテックス粒子を用いた。また、この塗工液は無機超微粒子100質量部に対して有機微粒子を400質量部含有するものであった。   Next, a sample of a coating liquid containing 0.125 wt% of inorganic ultrafine particles having a particle diameter of 5 nm and 0.5 wt% of organic fine particles having a particle diameter of 136 nm as a solid content and having a total solid content concentration of 0.625 wt% It was prepared using a prepared polycontainer (model number: Newdis Cup (PP, 20 mL)). Silica particles (manufactured by Catalyst Kasei Co., Ltd., model number: SI-550) were used as the inorganic ultrafine particles, and polystyrene latex particles were used as the organic fine particles. Moreover, this coating liquid contained 400 mass parts of organic fine particles with respect to 100 mass parts of inorganic ultrafine particles.

洗浄及び乾燥を行ったガラス基板をスピンコーター(アクティブ社製、型番:ACT−300D)に装着し、そのガラス基板上にオートピペット(エッペンドルフ社製、型番:エッペンドルフリファレンス4910、10〜100μL容)を用いて塗工液を100μL乗せた後、回転数2000rpmで5分間回転させた。この結果、塗工液をガラス基板上に均一に塗布し乾燥させることができ、ゲル状薄膜が形成した基板を得た。   A glass substrate that has been cleaned and dried is mounted on a spin coater (manufactured by Active, model number: ACT-300D), and an autopipette (manufactured by Eppendorf, model number: Eppendorf reference 4910, 10 to 100 μL) is placed on the glass substrate. The coating solution was put on 100 μL of the coating solution, and then rotated at 2000 rpm for 5 minutes. As a result, the coating liquid could be uniformly applied on a glass substrate and dried, and a substrate on which a gel-like thin film was formed was obtained.

その後、基板をマッフル炉に入れ400度で5分間焼成し、無機多孔性薄膜を作製した。焼成後の薄膜表面には、目視では焼成前と比較して大きな差異は認められなかった。   Thereafter, the substrate was placed in a muffle furnace and baked at 400 ° C. for 5 minutes to produce an inorganic porous thin film. On the surface of the thin film after firing, no significant difference was observed visually compared with that before firing.

この無機多孔性薄膜の構造を調べるために、高分解走査型電子顕微鏡(日本電子社製、型番:JSM−6340F)で観察すると共に、走査型電子顕微鏡(SEM)写真を得た。その結果、基板上に所定形状の多数の孔が所定パターンで1層に配列した無機多孔性薄膜が形成していることが確認された。   In order to investigate the structure of this inorganic porous thin film, a high-resolution scanning electron microscope (manufactured by JEOL Ltd., model number: JSM-6340F) was observed, and a scanning electron microscope (SEM) photograph was obtained. As a result, it was confirmed that an inorganic porous thin film in which a large number of holes having a predetermined shape were arranged in one layer in a predetermined pattern was formed on the substrate.

また、得られた無機多孔性薄膜の孔の配列を以下の基準:
◎ よく配列している
○ 部分的に配列している
× ほとんど配列していない
により評価し、表1に示した(以下、同様の基準で評価した)。さらに、得られた無機多孔性薄膜の開口部の平均直径(nm)、開口部の中心間の平均距離(nm)及び膜厚(nm)を表2に示した。
Moreover, the arrangement | sequence of the hole of the obtained inorganic porous thin film is based on the following criteria:
◎ Well arranged ○ Partially arranged × Evaluated by hardly arranging, and shown in Table 1 (hereinafter, evaluated based on the same criteria). Furthermore, Table 2 shows the average diameter (nm) of the openings of the obtained inorganic porous thin film, the average distance (nm) between the centers of the openings, and the film thickness (nm).

(実施例2)
先ず、シリカ粒子(以下、「シリカ」と略す)濃度、ポリスチレンラテックス(以下、「PSL」と略す)濃度、全固形分濃度、シリカ100質量部に対するPSL含有量及びPSL粒子径を表1に示す条件としたこと以外は、実施例1と同様にして塗工液を調製した。
(Example 2)
First, the silica particle (hereinafter abbreviated as “silica”) concentration, polystyrene latex (hereinafter abbreviated as “PSL”) concentration, total solid content, PSL content and PSL particle diameter with respect to 100 parts by mass of silica are shown in Table 1. A coating solution was prepared in the same manner as in Example 1 except that the conditions were satisfied.

次に、実施例1と同様に、ガラス基板をスピンコーターに装着し、そのガラス基板上にオートピペットを用いて塗工液を100μL乗せ、20秒間で回転数1000rpmとしその状態で30秒間回転させ、次いで20秒間で回転数2000rpmとしその状態で30秒間回転させ、更に20秒間で回転数3000rpmとしその状態で300秒間回転させた。この結果、塗工液をガラス基板上に均一に塗布し乾燥させることができ、ゲル状薄膜が形成した基板を得た。その後、基板をマッフル炉に入れ400度で5分間焼成し、無機多孔性薄膜を作製した。焼成後の薄膜表面には、可視光の波長と同程度の直径を有する開口部が規則正しく配列している時に観察される、遊色現象が観察された。   Next, in the same manner as in Example 1, a glass substrate was mounted on a spin coater, and 100 μL of the coating solution was placed on the glass substrate using an autopipette, and the rotation speed was 1000 rpm in 20 seconds. Then, the rotation speed was set to 2000 rpm for 20 seconds, and the rotation was continued for 30 seconds in that state, and the rotation speed was further 3000 rpm for 20 seconds, and the rotation was continued for 300 seconds in that state. As a result, the coating liquid could be uniformly applied on a glass substrate and dried, and a substrate on which a gel-like thin film was formed was obtained. Thereafter, the substrate was placed in a muffle furnace and baked at 400 ° C. for 5 minutes to produce an inorganic porous thin film. On the surface of the thin film after firing, a play-color phenomenon was observed, which was observed when openings having a diameter comparable to the wavelength of visible light were regularly arranged.

得られた無機多孔性薄膜を高分解走査型電子顕微鏡(実施例1と同様のもの)で観察すると共に、SEM写真を得た。その結果、基板上に所定形状の多数の孔が所定パターンで1層に配列した無機多孔性薄膜が形成していることが確認された。また、得られた無機多孔性薄膜の孔の配列を評価し表1に示した。なお、得られた無機多孔性薄膜の開口部の平均直径、開口部の中心間の平均距離及び膜厚を表2に示した。   The obtained inorganic porous thin film was observed with a high resolution scanning electron microscope (the same as in Example 1), and an SEM photograph was obtained. As a result, it was confirmed that an inorganic porous thin film in which a large number of holes having a predetermined shape were arranged in one layer in a predetermined pattern was formed on the substrate. In addition, the pore arrangement of the obtained inorganic porous thin film was evaluated and shown in Table 1. In addition, Table 2 shows the average diameter of the openings of the obtained inorganic porous thin film, the average distance between the centers of the openings, and the film thickness.

(実施例3)
先ず、シリカ濃度、PSL濃度、全固形分濃度、シリカ100質量部に対するPSL含有量及びPSL粒子径を表1に示す条件としたこと以外は、実施例1と同様にして塗工液を調製した。
(Example 3)
First, a coating solution was prepared in the same manner as in Example 1, except that the silica concentration, PSL concentration, total solid content concentration, PSL content with respect to 100 parts by mass of silica, and PSL particle diameter were set as shown in Table 1. .

次に、実施例2と同様にして無機多孔性薄膜を作製した。なお、実施例3においても、焼成後の薄膜表面には遊色現象が観察された。得られた無機多孔性薄膜を高分解走査型電子顕微鏡(実施例1と同様のもの)で観察すると共に、SEM写真を得た。その結果、基板上に所定形状の多数の孔が所定パターンで1層に配列した無機多孔性薄膜が形成していることが確認された。   Next, an inorganic porous thin film was produced in the same manner as in Example 2. In Example 3, a play-color phenomenon was observed on the surface of the fired thin film. The obtained inorganic porous thin film was observed with a high resolution scanning electron microscope (the same as in Example 1), and an SEM photograph was obtained. As a result, it was confirmed that an inorganic porous thin film in which a large number of holes having a predetermined shape were arranged in one layer in a predetermined pattern was formed on the substrate.

また、得られた無機多孔性薄膜の孔の配列を評価し表1に示した。さらに、得られた無機多孔性薄膜の開口部の平均直径、開口部の中心間の平均距離及び膜厚を表2に示した。   In addition, the pore arrangement of the obtained inorganic porous thin film was evaluated and shown in Table 1. Furthermore, Table 2 shows the average diameter of the openings of the obtained inorganic porous thin film, the average distance between the centers of the openings, and the film thickness.

(実施例4)
先ず、シリカ濃度、PSL濃度、全固形分濃度、シリカ100質量部に対するPSL含有量及びPSL粒子径を表1に示す条件としたこと以外は、実施例1と同様にして塗工液を調製した。
(Example 4)
First, a coating solution was prepared in the same manner as in Example 1, except that the silica concentration, PSL concentration, total solid content concentration, PSL content with respect to 100 parts by mass of silica, and PSL particle diameter were set as shown in Table 1. .

次に、実施例2と同様にして無機多孔性薄膜を作製した。なお、実施例4においても、焼成後の薄膜表面には遊色現象が観察された。得られた無機多孔性薄膜を高分解走査型電子顕微鏡(実施例1と同様のもの)で観察すると共に、図6に示すSEM写真を得た。その結果、基板上に所定形状の多数の孔が所定パターンで1層に配列した無機多孔性薄膜が形成していることが確認された。なお、図6は実施例4の無機多孔性薄膜の一部を示すSEM写真(倍率5000倍)である。   Next, an inorganic porous thin film was produced in the same manner as in Example 2. Also in Example 4, a play-color phenomenon was observed on the surface of the thin film after firing. The obtained inorganic porous thin film was observed with a high resolution scanning electron microscope (the same as in Example 1), and the SEM photograph shown in FIG. 6 was obtained. As a result, it was confirmed that an inorganic porous thin film in which a large number of holes having a predetermined shape were arranged in one layer in a predetermined pattern was formed on the substrate. FIG. 6 is a SEM photograph (5000 times magnification) showing a part of the inorganic porous thin film of Example 4.

また、得られた無機多孔性薄膜の孔の配列を評価し表1に示した。さらに、得られた無機多孔性薄膜の開口部の平均直径、開口部の中心間の平均距離及び膜厚を表2に示した。   In addition, the pore arrangement of the obtained inorganic porous thin film was evaluated and shown in Table 1. Furthermore, Table 2 shows the average diameter of the openings of the obtained inorganic porous thin film, the average distance between the centers of the openings, and the film thickness.

(実施例5)
先ず、シリカ濃度、PSL濃度、全固形分濃度、シリカ100質量部に対するPSL含有量及びPSL粒子径を表1に示す条件としたこと以外は、実施例1と同様にして塗工液を調製した。
(Example 5)
First, a coating solution was prepared in the same manner as in Example 1, except that the silica concentration, PSL concentration, total solid content concentration, PSL content with respect to 100 parts by mass of silica, and PSL particle diameter were set as shown in Table 1. .

次に、実施例1と同様にして無機多孔性薄膜を作製した。得られた無機多孔性薄膜を高分解走査型電子顕微鏡(実施例1と同様のもの)で観察すると共に、図7に示すSEM写真を得た。その結果、基板上に所定形状の多数の孔が所定パターンで1層に配列した無機多孔性薄膜が形成していることが確認された。なお、図7は実施例5の無機多孔性薄膜の一部を示すSEM写真(倍率20000倍)である。   Next, an inorganic porous thin film was produced in the same manner as in Example 1. The obtained inorganic porous thin film was observed with a high-resolution scanning electron microscope (the same as in Example 1), and the SEM photograph shown in FIG. 7 was obtained. As a result, it was confirmed that an inorganic porous thin film in which a large number of holes having a predetermined shape were arranged in one layer in a predetermined pattern was formed on the substrate. FIG. 7 is an SEM photograph (magnification 20000 times) showing a part of the inorganic porous thin film of Example 5.

また、得られた無機多孔性薄膜の孔の配列を評価し表1に示した。さらに、得られた無機多孔性薄膜の開口部の平均直径、開口部の中心間の平均距離及び膜厚を表2に示した。   In addition, the pore arrangement of the obtained inorganic porous thin film was evaluated and shown in Table 1. Furthermore, Table 2 shows the average diameter of the openings of the obtained inorganic porous thin film, the average distance between the centers of the openings, and the film thickness.

(実施例6)
先ず、シリカ濃度、PSL濃度、全固形分濃度、シリカ100質量部に対するPSL含有量及びPSL粒子径を表1の条件としたこと以外は、実施例1と同様にして塗工液を調製した。
(Example 6)
First, a coating solution was prepared in the same manner as in Example 1 except that the silica concentration, the PSL concentration, the total solid content concentration, the PSL content with respect to 100 parts by mass of silica, and the PSL particle diameter were the conditions shown in Table 1.

次に、塗工の際の回転数を8000rpmとしたこと以外は、実施例1と同様にして無機多孔性薄膜を作製した。得られた無機多孔性薄膜を高分解走査型電子顕微鏡(実施例1と同様のもの)で観察すると共に、SEM写真を得た。その結果、基板上に所定形状の多数の孔が所定パターンで1層に配列した無機多孔性薄膜が形成していることが確認された。   Next, an inorganic porous thin film was produced in the same manner as in Example 1 except that the number of revolutions during coating was 8000 rpm. The obtained inorganic porous thin film was observed with a high resolution scanning electron microscope (the same as in Example 1), and an SEM photograph was obtained. As a result, it was confirmed that an inorganic porous thin film in which a large number of holes having a predetermined shape were arranged in one layer in a predetermined pattern was formed on the substrate.

また、得られた無機多孔性薄膜の孔の配列を評価し表1に示した。さらに、得られた無機多孔性薄膜の開口部の平均直径、開口部の中心間の平均距離及び膜厚を表2に示した。   In addition, the pore arrangement of the obtained inorganic porous thin film was evaluated and shown in Table 1. Furthermore, Table 2 shows the average diameter of the openings of the obtained inorganic porous thin film, the average distance between the centers of the openings, and the film thickness.

(実施例7)
先ず、シリカ濃度、PSL濃度、全固形分濃度、シリカ100質量部に対するPSL含有量及びPSL粒子径を表1に示す条件とし、無機超微粒子として、粒子径27nmのシリカ粒子(触媒化成社製、型番:LNA−2000)を用いたこと以外は、実施例1と同様にして塗工液を調製した。
(Example 7)
First, the silica concentration, the PSL concentration, the total solid content concentration, the PSL content with respect to 100 parts by mass of silica and the PSL particle diameter are the conditions shown in Table 1, and as inorganic ultrafine particles, silica particles having a particle diameter of 27 nm (manufactured by Catalyst Kasei Co., Ltd., A coating solution was prepared in the same manner as in Example 1 except that model number: LNA-2000) was used.

次に、実施例1と同様にして無機多孔性薄膜を作製した。得られた無機多孔性薄膜を高分解走査型電子顕微鏡(実施例1と同様のもの)で観察すると共に、図8に示すSEM写真を得た。その結果、基板上に所定形状の多数の孔が所定パターンで1層に配列した無機多孔性薄膜が形成していることが確認された。なお、図8は実施例7の無機多孔性薄膜の一部を示すSEM写真(倍率20000倍)である。   Next, an inorganic porous thin film was produced in the same manner as in Example 1. The obtained inorganic porous thin film was observed with a high resolution scanning electron microscope (the same as in Example 1), and the SEM photograph shown in FIG. 8 was obtained. As a result, it was confirmed that an inorganic porous thin film in which a large number of holes having a predetermined shape were arranged in one layer in a predetermined pattern was formed on the substrate. FIG. 8 is an SEM photograph (magnification 20000 times) showing a part of the inorganic porous thin film of Example 7.

また、得られた無機多孔性薄膜の孔の配列を評価し表1に示した。さらに、得られた無機多孔性薄膜の開口部の平均直径、開口部の中心間の平均距離及び膜厚を表2に示した。   In addition, the pore arrangement of the obtained inorganic porous thin film was evaluated and shown in Table 1. Furthermore, Table 2 shows the average diameter of the openings of the obtained inorganic porous thin film, the average distance between the centers of the openings, and the film thickness.

(実施例8)
先ず、シリカ濃度、PSL濃度、全固形分濃度、シリカ100質量部に対するPSL含有量及びPSL粒子径を表1に示す条件とし、無機超微粒子として、粒子径45nmのシリカ粒子(触媒化成社製、型番:SI−45P)を用いたこと以外は、実施例1と同様にして塗工液を調製した。
(Example 8)
First, the silica concentration, the PSL concentration, the total solid content concentration, the PSL content with respect to 100 parts by mass of silica and the PSL particle diameter are the conditions shown in Table 1, and silica particles having a particle diameter of 45 nm (manufactured by Catalyst Kasei Co., Ltd. A coating solution was prepared in the same manner as in Example 1 except that Model No. SI-45P) was used.

次に、実施例1と同様にして無機多孔性薄膜を作製した。得られた無機多孔性薄膜を高分解走査型電子顕微鏡(実施例1と同様のもの)で観察すると共に、図9に示すSEM写真を得た。その結果、基板上に所定形状の多数の孔が所定パターンで1層に配列した無機多孔性薄膜が形成していることが確認された。なお、図9は実施例8の無機多孔性薄膜の一部を示すSEM写真(倍率20000倍)である。   Next, an inorganic porous thin film was produced in the same manner as in Example 1. The obtained inorganic porous thin film was observed with a high resolution scanning electron microscope (the same as in Example 1), and the SEM photograph shown in FIG. 9 was obtained. As a result, it was confirmed that an inorganic porous thin film in which a large number of holes having a predetermined shape were arranged in one layer in a predetermined pattern was formed on the substrate. FIG. 9 is an SEM photograph (magnification 20000 times) showing a part of the inorganic porous thin film of Example 8.

また、得られた無機多孔性薄膜の孔の配列を評価し表1に示した。さらに、得られた無機多孔性薄膜の開口部の平均直径、開口部の中心間の平均距離及び膜厚を表2に示した。   In addition, the pore arrangement of the obtained inorganic porous thin film was evaluated and shown in Table 1. Furthermore, Table 2 shows the average diameter of the openings of the obtained inorganic porous thin film, the average distance between the centers of the openings, and the film thickness.

(比較例1)
先ず、シリカ濃度、PSL濃度、全固形分濃度、シリカ100質量部に対するPSL含有量及びPSL粒子径を表1に示す条件としたこと以外は、実施例1と同様にして塗工液を調製した。
(Comparative Example 1)
First, a coating solution was prepared in the same manner as in Example 1, except that the silica concentration, PSL concentration, total solid content concentration, PSL content with respect to 100 parts by mass of silica, and PSL particle diameter were set as shown in Table 1. .

次に、塗工の際の回転数を3000rpmとしたこと以外は、実施例1と同様にして無機多孔性薄膜を作製した。得られた無機多孔性薄膜を高分解走査型電子顕微鏡(実施例1と同様のもの)で観察すると共に、図10に示すSEM写真を得た。その結果、基板上に孔が不規則に点在している無機多孔性薄膜が形成していることが確認された。なお、図10は比較例1の無機多孔性薄膜の一部を示すSEM写真(倍率20000倍)である。   Next, an inorganic porous thin film was produced in the same manner as in Example 1 except that the number of rotations during coating was 3000 rpm. The obtained inorganic porous thin film was observed with a high-resolution scanning electron microscope (the same as in Example 1), and an SEM photograph shown in FIG. 10 was obtained. As a result, it was confirmed that an inorganic porous thin film having pores scattered irregularly on the substrate was formed. FIG. 10 is an SEM photograph (magnification 20000 times) showing a part of the inorganic porous thin film of Comparative Example 1.

また、得られた無機多孔性薄膜の孔の配列を評価し表1に示した。さらに、得られた無機多孔性薄膜の開口部の平均直径、開口部の中心間の平均距離及び膜厚を表2に示した。   In addition, the pore arrangement of the obtained inorganic porous thin film was evaluated and shown in Table 1. Furthermore, Table 2 shows the average diameter of the openings of the obtained inorganic porous thin film, the average distance between the centers of the openings, and the film thickness.

(比較例2)
先ず、シリカ濃度、PSL濃度、全固形分濃度、シリカ100質量部に対するPSL含有量及びPSL粒子径を表1に示す条件としたこと以外は、実施例1と同様にして塗工液を調製した。
(Comparative Example 2)
First, a coating solution was prepared in the same manner as in Example 1, except that the silica concentration, PSL concentration, total solid content concentration, PSL content with respect to 100 parts by mass of silica, and PSL particle diameter were set as shown in Table 1. .

次に、実施例1と同様にして無機多孔性薄膜を作製した。得られた無機多孔性薄膜を高分解走査型電子顕微鏡(実施例1と同様のもの)で観察すると共に、SEM写真を得た。その結果、基板上に孔が不規則に存在し膜が局所的に破れているような無機多孔性薄膜が形成していることが確認された。   Next, an inorganic porous thin film was produced in the same manner as in Example 1. The obtained inorganic porous thin film was observed with a high resolution scanning electron microscope (the same as in Example 1), and an SEM photograph was obtained. As a result, it was confirmed that an inorganic porous thin film in which pores exist irregularly on the substrate and the film was locally broken was formed.

また、得られた無機多孔性薄膜の孔の配列を評価し表1に示した。さらに、得られた無機多孔性薄膜の開口部の平均直径、開口部の中心間の平均距離及び膜厚を表2に示した。   In addition, the pore arrangement of the obtained inorganic porous thin film was evaluated and shown in Table 1. Furthermore, Table 2 shows the average diameter of the openings of the obtained inorganic porous thin film, the average distance between the centers of the openings, and the film thickness.

(比較例3)
先ず、シリカ濃度、PSL濃度、全固形分濃度、シリカ100質量部に対するPSL含有量及びPSL粒子径を表1に示す条件とし、無機超微粒子として、粒子径74nmのシリカ粒子(触媒化成社製、型番:SI−80P)を用いたこと以外は、実施例1と同様にして塗工液を調製した。
(Comparative Example 3)
First, the silica concentration, PSL concentration, total solid concentration, PSL content with respect to 100 parts by mass of silica and the PSL particle diameter are the conditions shown in Table 1, and silica particles having a particle diameter of 74 nm (manufactured by Catalyst Kasei Co., Ltd. A coating solution was prepared in the same manner as in Example 1 except that Model No. SI-80P) was used.

次に、実施例1と同様にして無機多孔性薄膜を作製した。得られた無機多孔性薄膜を高分解走査型電子顕微鏡(実施例1と同様のもの)で観察すると共に、図11に示すSEM写真を得た。その結果、無機多孔性薄膜に「開口部が略円形状であり内周面が略球面状の孔」が形成されていない箇所が多く存在し、孔の配列の均一性にも劣ることが確認された。なお、図11は比較例3の無機多孔性薄膜の一部を示すSEM写真(倍率20000倍)である。   Next, an inorganic porous thin film was produced in the same manner as in Example 1. The obtained inorganic porous thin film was observed with a high resolution scanning electron microscope (the same as in Example 1), and the SEM photograph shown in FIG. 11 was obtained. As a result, it was confirmed that the inorganic porous thin film does not have many holes where the “opening has a substantially circular shape and the inner peripheral surface has a substantially spherical shape”, and the uniformity of the hole arrangement is poor. It was done. FIG. 11 is an SEM photograph (magnification 20000 times) showing a part of the inorganic porous thin film of Comparative Example 3.

また、得られた無機多孔性薄膜の孔の配列を評価し表1に示した。なお、無機多孔性薄膜において「開口部が略円形状であり内周面が略球面状の孔」が形成されていない箇所が多く存在し、孔の配列の均一性にも劣っていたため、開口部の平均直径、開口部の中心間の平均距離及び膜厚の測定は行わなかった。   In addition, the pore arrangement of the obtained inorganic porous thin film was evaluated and shown in Table 1. In addition, in the inorganic porous thin film, there are many places where the “opening has a substantially circular shape and the inner peripheral surface has a substantially spherical shape”, and the uniformity of the hole arrangement is inferior. The average diameter of the part, the average distance between the centers of the openings, and the film thickness were not measured.

Figure 2004250321
Figure 2004250321

1:JSR社製、型番:STADEX SC−014−S
2:JSR社製、型番:STADEX SC−046−S
3:JSR社製、型番:STADEX SC−051−S
4:JSR社製、型番:STADEX SC−061−S
5:JSR社製、型番:IMMUTEX G2110
1: JSR, model number: STADEX SC-014-S
2: Made by JSR, model number: STADEX SC-046-S
3: Made by JSR, model number: STADEX SC-051-S
4: Made by JSR, model number: STADEX SC-061-S
5: manufactured by JSR, model number: IMMUTEX G2110

Figure 2004250321
Figure 2004250321

表1及び表2に示した結果からわかるように、本発明の無機多孔性薄膜の製造方法の条件を満たす塗工液を用いて作製された実施例1〜8の無機多孔性薄膜は、基板全体に広い面積で所定形状の多数の孔が所定パターンで1層に配列した薄膜が形成し、本発明の無機多孔性薄膜が得られたことが確認された。一方、本発明の無機多孔性薄膜の製造方法における条件を満たさない塗工液を用いて作製された比較例1及び2の無機多孔性薄膜は、孔が不規則に点在したものであった。また、無機超微粒子の粒子径が50nmを超えるため本発明の無機多孔性薄膜の製造方法における条件を満たさない塗工液を用いた比較例3においては、均一な無機多孔性薄膜が形成されなかった。   As can be seen from the results shown in Tables 1 and 2, the inorganic porous thin films of Examples 1 to 8 produced using the coating liquid that satisfies the conditions of the method for producing the inorganic porous thin film of the present invention are the substrates. It was confirmed that an inorganic porous thin film of the present invention was obtained by forming a thin film having a large area and a large number of holes having a predetermined shape arranged in a single layer in a predetermined pattern. On the other hand, the inorganic porous thin films of Comparative Examples 1 and 2 produced using a coating solution that does not satisfy the conditions in the method for producing an inorganic porous thin film of the present invention were irregularly interspersed with pores. . Moreover, since the particle diameter of the inorganic ultrafine particles exceeds 50 nm, a uniform inorganic porous thin film is not formed in Comparative Example 3 using the coating liquid that does not satisfy the conditions in the method for producing the inorganic porous thin film of the present invention. It was.

実施形態に係る積層体の斜視図である。It is a perspective view of the layered product concerning an embodiment. 図1の積層体のII−II線に沿った断面図である。It is sectional drawing along the II-II line of the laminated body of FIG. 開口部が六方対称に配列した無機多孔性薄膜の模式図である。It is a schematic diagram of an inorganic porous thin film in which openings are arranged in hexagonal symmetry. 他の実施形態に係る積層体の断面図である。It is sectional drawing of the laminated body which concerns on other embodiment. 実施形態に係る無機多孔性薄膜の製造方法の工程図であり、(a)は塗工液が基板上に供給された状態を示す断面図、(b)は基板上に供給された塗工液から分散媒が除去された状態を示す断面図、(c)は焼成して得られた積層体を示す断面図である。It is process drawing of the manufacturing method of the inorganic porous thin film which concerns on embodiment, (a) is sectional drawing which shows the state with which the coating liquid was supplied on the board | substrate, (b) is the coating liquid supplied on the board | substrate. Sectional drawing which shows the state from which the dispersion medium was removed from, (c) is sectional drawing which shows the laminated body obtained by baking. 実施例4の無機多孔性薄膜の一部を示すSEM写真(倍率5000倍)である。4 is a SEM photograph (a magnification of 5000 times) showing a part of the inorganic porous thin film of Example 4. 実施例5の無機多孔性薄膜の一部を示すSEM写真(倍率20000倍)である。6 is a SEM photograph (magnification 20000 times) showing a part of the inorganic porous thin film of Example 5. 実施例7の無機多孔性薄膜の一部を示すSEM写真(倍率20000倍)である。4 is a SEM photograph (magnification 20000 times) showing a part of the inorganic porous thin film of Example 7. 実施例8の無機多孔性薄膜の一部を示すSEM写真(倍率20000倍)である。10 is a SEM photograph (magnification 20000 times) showing a part of the inorganic porous thin film of Example 8. 比較例1の無機多孔性薄膜の一部を示すSEM写真(倍率20000倍)である。3 is a SEM photograph (magnification 20000 times) showing a part of the inorganic porous thin film of Comparative Example 1. 比較例3の無機多孔性薄膜の一部を示すSEM写真(倍率20000倍)である。4 is a SEM photograph (magnification 20000 times) showing a part of the inorganic porous thin film of Comparative Example 3.

符号の説明Explanation of symbols

1・・・開口部、3・・・内周面、5・・・孔、10・・・無機多孔性薄膜、20・・・基板、22・・・有機微粒子、24・・・無機超微粒子、26・・・分散媒、28・・・塗工液、30・・・ゲル状薄膜、100・・・積層体、d1・・・開口部の平均直径、d2・・・開口部の中心間の平均距離、d3・・・膜厚、d4・・・孔の平均深さ。   DESCRIPTION OF SYMBOLS 1 ... Opening part, 3 ... Inner peripheral surface, 5 ... Hole, 10 ... Inorganic porous thin film, 20 ... Substrate, 22 ... Organic fine particle, 24 ... Inorganic ultrafine particle , 26 ... dispersion medium, 28 ... coating solution, 30 ... gel-like thin film, 100 ... laminate, d1 ... average diameter of openings, d2 ... between the centers of openings Mean distance, d3... Film thickness, d4... Mean depth of holes.

Claims (11)

開口部が略円形状であり内周面が略球面状の多数の孔を有する無機多孔性薄膜であって、
前記孔が前記薄膜の平面方向に1層に配列し、前記開口部の平均直径が30〜3000nmであり、隣り合う前記開口部の中心間の平均距離が前記開口部の平均直径の100〜230%の長さであり、かつ、膜厚が前記開口部の平均直径の30〜100%の厚さであることを特徴とする無機多孔性薄膜。
An inorganic porous thin film having a large number of pores having a substantially circular opening and a substantially spherical inner peripheral surface,
The holes are arranged in one layer in the plane direction of the thin film, the average diameter of the openings is 30 to 3000 nm, and the average distance between the centers of the adjacent openings is 100 to 230 of the average diameter of the openings. %, And the film thickness is 30 to 100% of the average diameter of the openings.
前記開口部が六方対称に配列していることを特徴とする請求項1記載の無機多孔性薄膜。   2. The inorganic porous thin film according to claim 1, wherein the openings are arranged in a hexagonal symmetry. 前記孔の平均深さが前記膜厚の50〜100%の深さであることを特徴とする請求項1又は2記載の無機多孔性薄膜。   The inorganic porous thin film according to claim 1 or 2, wherein the average depth of the holes is 50 to 100% of the film thickness. 基板と、該基板の少なくとも一方の面上に形成された請求項1〜3のいずれか一項に記載の無機多孔性薄膜とを備えることを特徴とする積層体。   A laminate comprising: a substrate; and the inorganic porous thin film according to any one of claims 1 to 3 formed on at least one surface of the substrate. 平均粒子径3〜50nmの無機超微粒子と平均粒子径30〜3000nmの有機微粒子とが分散媒に分散されたゾル状の塗工液であって(但し、有機微粒子は無機超微粒子よりも大きな平均粒子径を有する。)、全固形分濃度が0.1〜20質量%であり、前記無機超微粒子100質量部に対する前記有機微粒子の含有量が20〜1000質量部である塗工液を基板上に供給し、供給された塗工液から前記分散媒の少なくとも一部を除去することにより、前記基板上に、前記有機微粒子が一層に配列し当該有機微粒子間に前記無機超微粒子が配されたゲル状薄膜を形成させる塗工工程と、
得られたゲル状薄膜を焼成することにより前記有機微粒子を除去し無機多孔性薄膜を得る焼成工程と、
を含むことを特徴とする無機多孔性薄膜の製造方法。
A sol-like coating liquid in which inorganic ultrafine particles having an average particle diameter of 3 to 50 nm and organic fine particles having an average particle diameter of 30 to 3000 nm are dispersed in a dispersion medium (provided that organic fine particles have a larger average than inorganic ultrafine particles) And a coating liquid having a total solid content concentration of 0.1 to 20% by mass and a content of the organic fine particles of 20 to 1000 parts by mass with respect to 100 parts by mass of the inorganic ultrafine particles. By removing at least a part of the dispersion medium from the supplied coating liquid, the organic fine particles are arranged in a single layer on the substrate, and the inorganic ultrafine particles are arranged between the organic fine particles. A coating process for forming a gel-like thin film;
A baking step of removing the organic fine particles by baking the obtained gel-like thin film to obtain an inorganic porous thin film;
The manufacturing method of the inorganic porous thin film characterized by including.
前記無機超微粒子がシリカからなるものであることを特徴とする請求項5記載の無機多孔性薄膜の製造方法。   6. The method for producing an inorganic porous thin film according to claim 5, wherein the inorganic ultrafine particles are made of silica. 前記有機微粒子がポリマーからなるものであることを特徴とする請求項5又は6記載の無機多孔性薄膜の製造方法。   7. The method for producing an inorganic porous thin film according to claim 5, wherein the organic fine particles are made of a polymer. 前記塗工工程において前記塗工液を供給する供給手段が、スピンコーター、グラビアコーター又はダイコーターであることを特徴とする請求項5〜7のいずれか一項に記載の無機多孔性薄膜の製造方法。   The inorganic porous thin film production according to any one of claims 5 to 7, wherein the supply means for supplying the coating liquid in the coating step is a spin coater, a gravure coater or a die coater. Method. 前記供給手段がスピンコーターであり、塗工時の最大回転数が1000〜8000rpmであることを特徴とする請求項8記載の無機多孔性薄膜の製造方法。   9. The method for producing an inorganic porous thin film according to claim 8, wherein the supply means is a spin coater, and the maximum rotation speed during coating is 1000 to 8000 rpm. 前記供給手段がグラビアコーター又はダイコーターであり、塗工時の膜形成速度が1〜1000mm/sであることを特徴とする請求項8記載の無機多孔性薄膜の製造方法。   9. The method for producing an inorganic porous thin film according to claim 8, wherein the supplying means is a gravure coater or a die coater, and a film forming speed during coating is 1-1000 mm / s. 前記焼成工程において、前記有機微粒子の熱分解温度以上、前記無機超微粒子の融点又はガラス転移温度(無機超微粒子が融点及びガラス転移温度を示すときは低い方の温度)以下で、前記ゲル状薄膜を焼成することを特徴とする請求項5〜10のいずれか一項に記載の無機多孔性薄膜の製造方法。   In the firing step, the gel-like thin film at a temperature equal to or higher than the thermal decomposition temperature of the organic fine particles and not higher than the melting point or glass transition temperature of the inorganic ultrafine particles (the lower temperature when the inorganic ultrafine particles exhibit the melting point and glass transition temperature). The method for producing an inorganic porous thin film according to claim 5, wherein the inorganic porous thin film is fired.
JP2003400379A 2003-01-31 2003-11-28 INORGANIC POROUS THIN FILM, LAMINATE USING SAME, AND METHOD FOR PRODUCING INORGANIC POROUS THIN FILM Expired - Fee Related JP4428035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003400379A JP4428035B2 (en) 2003-01-31 2003-11-28 INORGANIC POROUS THIN FILM, LAMINATE USING SAME, AND METHOD FOR PRODUCING INORGANIC POROUS THIN FILM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003024877 2003-01-31
JP2003400379A JP4428035B2 (en) 2003-01-31 2003-11-28 INORGANIC POROUS THIN FILM, LAMINATE USING SAME, AND METHOD FOR PRODUCING INORGANIC POROUS THIN FILM

Publications (2)

Publication Number Publication Date
JP2004250321A true JP2004250321A (en) 2004-09-09
JP4428035B2 JP4428035B2 (en) 2010-03-10

Family

ID=33032306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003400379A Expired - Fee Related JP4428035B2 (en) 2003-01-31 2003-11-28 INORGANIC POROUS THIN FILM, LAMINATE USING SAME, AND METHOD FOR PRODUCING INORGANIC POROUS THIN FILM

Country Status (1)

Country Link
JP (1) JP4428035B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006256947A (en) * 2005-02-17 2006-09-28 Hokkaido Univ Porous composite metal oxide, its manufacturing method and its utilization
JP2012224509A (en) * 2011-04-20 2012-11-15 Mitsui Chemicals Inc Method for producing porous body of metal oxide
JP2012530028A (en) * 2009-07-10 2012-11-29 コリア・ユニバーシティ・リサーチ・アンド・ビジネス・ファウンデーション Self-cleaning surface
CN104002530A (en) * 2014-05-08 2014-08-27 河南科技大学 Photonic crystal anti-ultraviolet adhesive film for glass window
JP2015018230A (en) * 2013-06-13 2015-01-29 旭化成株式会社 Precursor for forming optical coating, optical coating, and method of producing optical coating
CN104860546A (en) * 2014-02-26 2015-08-26 上海西源节能材料有限公司 Wide-spectrum omnidirectional photovoltaic glass antireflection film and its preparation method and use
CN110391382A (en) * 2018-04-20 2019-10-29 三星电子株式会社 Composite diaphragm, preparation method and the lithium secondary battery including it

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006256947A (en) * 2005-02-17 2006-09-28 Hokkaido Univ Porous composite metal oxide, its manufacturing method and its utilization
JP2012530028A (en) * 2009-07-10 2012-11-29 コリア・ユニバーシティ・リサーチ・アンド・ビジネス・ファウンデーション Self-cleaning surface
JP2012224509A (en) * 2011-04-20 2012-11-15 Mitsui Chemicals Inc Method for producing porous body of metal oxide
JP2015018230A (en) * 2013-06-13 2015-01-29 旭化成株式会社 Precursor for forming optical coating, optical coating, and method of producing optical coating
CN104860546A (en) * 2014-02-26 2015-08-26 上海西源节能材料有限公司 Wide-spectrum omnidirectional photovoltaic glass antireflection film and its preparation method and use
CN104860546B (en) * 2014-02-26 2018-03-13 上海西源节能材料有限公司 Wide range omnidirectional photovoltaic glass antireflective coating and its preparation method and application
CN104002530A (en) * 2014-05-08 2014-08-27 河南科技大学 Photonic crystal anti-ultraviolet adhesive film for glass window
CN110391382A (en) * 2018-04-20 2019-10-29 三星电子株式会社 Composite diaphragm, preparation method and the lithium secondary battery including it
CN110391382B (en) * 2018-04-20 2024-03-12 三星电子株式会社 Composite separator, method of preparing the same, and lithium secondary battery including the same

Also Published As

Publication number Publication date
JP4428035B2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
WO2012102343A1 (en) Silicon melt contacting member and process for production thereof, and process for production of crystalline silicon
JP5182648B2 (en) Method for producing porous aluminum sintered body
JP2004508728A5 (en)
Dong et al. Near-zero-shrinkage Al2O3 ceramic foams with coral-like and hollow-sphere structures via selective laser sintering and reaction bonding
JP4428035B2 (en) INORGANIC POROUS THIN FILM, LAMINATE USING SAME, AND METHOD FOR PRODUCING INORGANIC POROUS THIN FILM
JP2011504867A5 (en)
CN107032328B (en) Preparation method of self-supporting reduced graphene oxide film
CN112692956B (en) Slurry direct-writing forming method of honeycomb-shaped diamond tool
CN108484182A (en) Magnesium oxide-based ceramic foam filter of a kind of magnesia crystal whisker fabricated in situ magnesium aluminate spinel enhancing and preparation method thereof
Ono et al. Nanopatterning of silicon with use of self-organized porous alumina and colloidal crystals as mask
JP2016183390A (en) Metallic porous body
CN107835796A (en) Porous ceramic structure
JP7145763B2 (en) Crucible for silicon ingot growth with patterned protrusion structure layer
TW201250069A (en) Crucible for melting polysilicon and method of manufacturing the same
JP2005162506A (en) Manufacturing method of inorganic porous thin film
CN107207330A (en) The method of glassware of the production with shape
JP2018090488A (en) Method for joining ceramic member and aluminum member, and joined body
CN105190838B (en) The operation substrate and semiconductor composite base plate of semiconductor composite base plate
CN206214907U (en) Filtering material and the filter element using the filtering material
TW201425267A (en) Porous ceramic heat sink fin and preparation method thereof
JP6168518B2 (en) Crucible for metal deposition
JP2009149474A (en) Molding die and method for manufacturing the die
JP2017141146A (en) Sinter method and manufacturing method of sintered article
JP2013151399A (en) Glass-ceramic composite material
JP6355096B2 (en) Liquid repellent composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091207

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees