JP2004249365A - Press die device for thin sheet and press forming method - Google Patents

Press die device for thin sheet and press forming method Download PDF

Info

Publication number
JP2004249365A
JP2004249365A JP2003325492A JP2003325492A JP2004249365A JP 2004249365 A JP2004249365 A JP 2004249365A JP 2003325492 A JP2003325492 A JP 2003325492A JP 2003325492 A JP2003325492 A JP 2003325492A JP 2004249365 A JP2004249365 A JP 2004249365A
Authority
JP
Japan
Prior art keywords
press
die
thin plate
wrinkle holding
punch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003325492A
Other languages
Japanese (ja)
Other versions
JP4629965B2 (en
Inventor
Noriyuki Suzuki
規之 鈴木
Takuya Kuwayama
卓也 桑山
Mitsuharu Yamagata
光晴 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003325492A priority Critical patent/JP4629965B2/en
Priority to PCT/JP2004/000917 priority patent/WO2004067200A1/en
Priority to KR1020057014011A priority patent/KR100666062B1/en
Publication of JP2004249365A publication Critical patent/JP2004249365A/en
Application granted granted Critical
Publication of JP4629965B2 publication Critical patent/JP4629965B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D24/00Special deep-drawing arrangements in, or in connection with, presses
    • B21D24/02Die-cushions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D24/00Special deep-drawing arrangements in, or in connection with, presses
    • B21D24/16Additional equipment in association with the tools, e.g. for shearing, for trimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses
    • B30B15/18Control arrangements for fluid-driven presses controlling the reciprocating motion of the ram
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses
    • B30B15/22Control arrangements for fluid-driven presses controlling the degree of pressure applied by the ram during the pressing stroke

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Control Of Presses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To impart proper frictional force regardless of variable elements such as lubricity, surface condition, etc., between a metallic die and a work, and to constantly provide superior formed products regardless of variance of material property or environmental change. <P>SOLUTION: This press die device for a sheet is characterized in that it is equipped with a punch 1, a die 2, a blank holder die 3, a frictional force measuring means 4 which is installed between the die 2 and the blank holder die 3, and a means 5 for adjusting a blank holding load. It is desirable that the blank holder die 3 is split into a plurality of pieces and that the frictional force measuring means 4 is provided for each of the split blank holder dies 3. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、薄板のプレス金型装置及びプレス成形方法に係わり、特にプレス加工時にしわ押さえ荷重の分布を調節できる金型装置及び成形方法に関する。   The present invention relates to a thin plate press mold apparatus and a press molding method, and more particularly to a mold apparatus and a molding method capable of adjusting the distribution of wrinkle holding load during press working.

しわ押さえ力を制御する成形方法には種々の発明が開示されており、例えば特許文献1には、プレス素材の形状や機械的性質、化学的性質、メッキなどの積層特性、油量等の表面状況などの物理量と、所定のプレス品質が得られる適正しわ押さえ荷重との関係を予め求めておき、その関係から実際の物理量に応じて適正しわ押さえ荷重を求め、その適正しわ押さえ荷重でプレス加工が行われるようにエアシリンダのエア圧を調圧する方法が開示されている。   Various inventions have been disclosed for molding methods for controlling the wrinkle holding force. For example, Patent Document 1 discloses the shape, mechanical properties, chemical properties, lamination characteristics such as plating, and the surface of oil amount, etc. of the press material. The relationship between the physical quantity such as the situation and the appropriate wrinkle holding load that obtains the predetermined press quality is obtained in advance, and the appropriate wrinkle holding load is obtained from the relationship according to the actual physical quantity, and pressing is performed with the appropriate wrinkle holding load. A method of adjusting the air pressure of the air cylinder so that the above is performed is disclosed.

また、特許文献2には絞り成形時のしわ押さえ力を、成形初期から中期では高くしてしわ発生と成長を抑える一方、成形後期では適正な値に減圧することで割れの発生と材料の過剰な流れ込みによるしわの残留を防ぐ方法が開示されている。更に、特許文献3には均圧化用の油圧シリンダを備えたダイクッション装置において、流量調節弁の開き制御により油圧シリンダ内の油圧を一時的に変化させてしわ押さえ荷重をコントロールする発明が開示されている。
特開平7−266100号公報 特開平9−38728号公報 特開平6−190464号公報
In Patent Document 2, the wrinkle holding force at the time of drawing molding is increased from the initial stage to the middle stage to suppress wrinkle generation and growth, while at the latter stage of molding, the pressure is reduced to an appropriate value to generate cracks and excess material. A method of preventing wrinkle residue due to inflow is disclosed. Further, Patent Document 3 discloses an invention for controlling a wrinkle holding load by temporarily changing a hydraulic pressure in a hydraulic cylinder by opening control of a flow rate control valve in a die cushion device including a hydraulic cylinder for equalizing pressure. Has been.
JP 7-266100 A JP-A-9-38728 JP-A-6-190464

特許文献1〜3等にしわ押さえ荷重を制御する発明は開示されていても、素材特性の変動、金型の摩耗、金型温度等々、多数の変動要因に対して、予め適正なしわ押さえ荷重を求める事は困難である。特に金型との潤滑特性は、常に変動しており、毎回上記特性を測定することは生産性を著しく低下させる。
ダイクッション装置等でしわ押さえ荷重を制御することは、プレス装置の大幅な改造が必要であり、また適正なしわ押さえ荷重を予め予測することが困難である。
本発明は、各種変動要因に対する適正なしわ押さえ荷重を予め求めることなく、その場でしわ押さえ荷重を求め、適正な荷重設定が可能なプレス金型装置及びそれを用いたプレス成形方法を提供することを目的とする。
Even if the invention for controlling the wrinkle holding load is disclosed in Patent Documents 1 to 3, etc., an appropriate wrinkle holding load in advance for a large number of fluctuation factors such as changes in material characteristics, mold wear, mold temperature, etc. It is difficult to seek. In particular, the lubrication characteristics with the mold are constantly fluctuating, and measuring the above characteristics every time significantly reduces productivity.
Controlling the wrinkle holding load with a die cushion device or the like requires a significant modification of the press device, and it is difficult to predict an appropriate wrinkle holding load in advance.
The present invention provides a press die apparatus capable of obtaining a wrinkle holding load on the spot and setting an appropriate load without obtaining an appropriate wrinkle holding load in advance for various fluctuation factors, and a press molding method using the same. For the purpose.

係る課題を解決するため、本発明の手段は、以下のとおりである。
(1)ポンチ、ダイス及びしわ押さえ金型と、前記ダイス及び前記しわ押さえ金型の間に取り付けられる摩擦力測定手段と、しわ押さえ荷重調節手段を有することを特徴とする薄板のプレス金型装置。
(2)ポンチ、ダイス及びしわ押さえ金型と、ダイス肩に取り付けられる摩擦力測定手段と、しわ押さえ荷重調節手段を有することを特徴とする薄板のプレス金型装置。
(3)しわ押さえ金型が複数に分割され、分割されたしわ押さえ金型毎に、摩擦力測定手段を有することを特徴とする(1)又は(2)記載の薄板のプレス金型装置。
(4)摩擦力測定手段がピエゾ素子又は歪ゲージであることを特徴とする(1)〜(3)の何れか1項に記載の薄板のプレス金型装置。
(5)摩擦力測定手段の代わりに測温手段を有することを特徴とする(1)〜(3)の何れか1項に記載の薄板のプレス金型装置。
(6)測温手段が熱電対であることを特徴とする(5)記載の薄板のプレス金型装置。
(7)ポンチ、ダイス及びしわ押さえ金型と、前記ポンチに取り付けられるプレス反力測定手段と、しわ押さえ荷重調節手段を有することを特徴とする薄板のプレス金型装置。
(8)しわ押さえ金型が複数に分割されていることを特徴とする(7)記載の薄板のプレス金型装置。
(9)分割されたしわ押さえ金型毎に独立制御可能なしわ押さえ荷重調整手段を有することを特徴とする(3)〜(6)又は(8)の何れか1項に記載の薄板のプレス金型装置。
(10)(1)〜(4)、又は(9)のいずれか1項に記載のプレス金型装置を用いた薄板のプレス成形方法であって、前記摩擦力測定手段によって測定された摩擦力が加工中所定範囲となるように、しわ押さえ荷重、ポンチ速度の少なくともいずれか1つを制御することを特徴とする薄板のプレス成形方法。
(11)(1)〜(4)、又は(9)のいずれか1項に記載のプレス金型装置を用いた薄板のプレス成形方法であって、前記摩擦力測定手段によって測定された摩擦力を用いて、前回の成形で測定した摩擦力としわ押さえ荷重及びポンチ速度の関係に基づいて、前記摩擦力が所定範囲となるようにしわ押さえ荷重、ポンチ速度の少なくともいずれか1つを制御することを特徴とする薄板のプレス成形方法。
(12)(5)、(6)又は(9)記載のプレス金型装置を用いた薄板のプレス成形方法であって、前記測温手段によって測定された温度が加工中所定範囲となるように、しわ押さえ荷重、ポンチ速度の少なくともいずれか1つを制御することを特徴とする薄板のプレス成形方法。
(13)(5)、(6)又は(9)記載のプレス金型装置を用いた薄板のプレス成形方法であって、前記測温手段によって測定された温度を用いて、前回の成形で測定した温度としわ押さえ荷重及びポンチ速度の関係に基づいて、前記温度が所定範囲となるようにしわ押さえ荷重、ポンチ速度の少なくともいずれか1つを制御することを特徴とする薄板のプレス成形方法。
(14)(7)又は(8)記載のプレス金型装置を用いた薄板のプレス成形方法であって、前記プレス反力測定手段によって測定されたプレス反力が加工中所定範囲となるように、しわ押さえ荷重、ポンチ速度の少なくともいずれか1つを制御することを特徴とする薄板のプレス成形方法。
(15)(7)又は(8)記載のプレス金型装置を用いた薄板のプレス成形方法であって、前記プレス反力測定手段によって測定されたプレス反力を用いて、前回の成形で測定したプレス反力としわ押さえ荷重及びポンチ速度の関係に基づいて、前記プレス反力が所定範囲となるようにしわ押さえ荷重、ポンチ速度の少なくともいずれか1つを制御することを特徴とする薄板のプレス成形方法。
In order to solve the problem, means of the present invention are as follows.
(1) Punch, die and wrinkle holding die, friction force measuring means attached between the die and the wrinkle holding die, and a wrinkle holding load adjusting means, and a thin plate pressing die device .
(2) A thin plate press die apparatus comprising a punch, a die and a wrinkle holding die, a frictional force measuring means attached to the die shoulder, and a wrinkle holding load adjusting means.
(3) The thin plate pressing die apparatus according to (1) or (2), wherein the wrinkle holding die is divided into a plurality of pieces, and each of the divided wrinkle holding die has a frictional force measuring means.
(4) The thin plate pressing die apparatus according to any one of (1) to (3), wherein the frictional force measuring means is a piezo element or a strain gauge.
(5) The thin plate pressing die apparatus according to any one of (1) to (3), wherein a temperature measuring unit is provided instead of the frictional force measuring unit.
(6) The thin plate pressing die apparatus according to (5), wherein the temperature measuring means is a thermocouple.
(7) A thin plate press mold apparatus comprising a punch, a die and a wrinkle pressing mold, a press reaction force measuring means attached to the punch, and a wrinkle pressing load adjusting means.
(8) The thin plate pressing die apparatus according to (7), wherein the wrinkle holding die is divided into a plurality of pieces.
(9) The thin plate press according to any one of (3) to (6) or (8), characterized in that it has a wrinkle pressing load adjusting means that can be independently controlled for each divided wrinkle pressing die. Mold equipment.
(10) A thin plate press forming method using the press die apparatus according to any one of (1) to (4) or (9), wherein the frictional force is measured by the frictional force measuring means. A thin plate press-molding method characterized by controlling at least one of a wrinkle holding load and a punch speed so that is within a predetermined range during processing.
(11) A press forming method of a thin plate using the press die apparatus according to any one of (1) to (4) or (9), wherein the frictional force is measured by the frictional force measuring means. Is used to control at least one of the wrinkle holding load and the punch speed so that the friction force falls within a predetermined range based on the relationship between the friction force measured in the previous molding and the wrinkle holding load and the punch speed. A thin plate press molding method.
(12) A thin plate press forming method using the press die apparatus according to (5), (6) or (9), wherein the temperature measured by the temperature measuring means falls within a predetermined range during processing. , A press forming method for a thin plate, wherein at least one of a wrinkle holding load and a punch speed is controlled.
(13) A press forming method of a thin plate using the press die apparatus according to (5), (6) or (9), wherein the temperature is measured by the previous molding using the temperature measured by the temperature measuring means. A thin plate press forming method, wherein at least one of the wrinkle holding load and the punch speed is controlled so that the temperature falls within a predetermined range based on the relationship between the temperature and the wrinkle holding load and the punch speed.
(14) A thin plate press forming method using the press die apparatus according to (7) or (8), wherein the press reaction force measured by the press reaction force measuring means falls within a predetermined range during processing. , A press forming method for a thin plate, wherein at least one of a wrinkle holding load and a punch speed is controlled.
(15) A thin plate press forming method using the press die apparatus according to (7) or (8), wherein the press reaction force measured by the press reaction force measuring means is used and measured in the previous molding. A thin plate characterized by controlling at least one of the wrinkle pressing load and the punch speed so that the press reaction force falls within a predetermined range based on the relationship between the pressed reaction force, the wrinkle pressing load and the punch speed. Press molding method.

本発明により、金型と被加工物の間の潤滑性や表面性状などの変動要因によらず、適正な摩擦力を付与することができ、素材特性のばらつきや環境変化によらず、常に良好な成形品を得ることができる。   With the present invention, appropriate frictional force can be applied regardless of fluctuation factors such as lubricity and surface properties between the mold and the workpiece, and it is always good regardless of variations in material characteristics and environmental changes. Can be obtained.

以下に図面を用いて詳細を説明する。
前記(1)記載の金型装置を組み込んだ、プレス金型装置の断面図を図1に示す。しわ押さえ金型3の表面に摩擦力測定手段4を組み込んだ金型装置を取り付け、検出された摩擦力に応じて、しわ押さえ荷重調整手段5を介して、しわ押さえ力を制御する。図4は、図1のダイス2としわ押さえ金型3の片側の拡大図を示したものであり、摩擦力測定手段4を組み込んだ金型装置の断面図を示す。
Details will be described below with reference to the drawings.
FIG. 1 shows a cross-sectional view of a press mold apparatus incorporating the mold apparatus described in (1). A mold apparatus incorporating the friction force measuring means 4 is attached to the surface of the wrinkle pressing mold 3, and the wrinkle pressing force is controlled via the wrinkle pressing load adjusting means 5 in accordance with the detected friction force. FIG. 4 shows an enlarged view of one side of the die 2 and the wrinkle holding mold 3 in FIG. 1 and shows a cross-sectional view of a mold apparatus incorporating the frictional force measuring means 4.

ポンチ1の上昇に従い、周辺をしわ押さえ金型3とダイス2で挟まれた被加工物6は、周辺を摩擦力で引っ張られながらダイス2の空腔内に引き込まれ、ポンチ1に沿った形状に成形される。この際に、張力が過大であると材料が破断する場合があり、また過小であると、しわの発生や、下金型に沿った形状に成形できない、といった形状不良が発生するという問題がある。そのため、良好な製品形状を得るためには、適正なしわ押さえ荷重を設定する必要がある。一方、材料に作用する張力は、被加工物6とポンチ1及びダイス2との間の摩擦力に起因するものであり、面圧と摩擦力の関係、すなわち摩擦係数を変化させるために、潤滑油の特性や、ポンチ及びダイスの表面粗度を変えたり、ビードを付与することなどが、一般に行われる。しかしながら、摩擦係数は、温度や面圧、表面性状などの影響で刻々と変化するため、その都度しわ押さえ力を調整する必要がある。   As the punch 1 rises, the workpiece 6 sandwiched between the crease pressing die 3 and the die 2 is drawn into the cavity of the die 2 while being pulled by the frictional force, and the shape along the punch 1 is drawn. To be molded. At this time, if the tension is excessive, the material may be broken, and if it is excessively small, there is a problem that a shape defect such as generation of wrinkles or inability to form the shape along the lower mold occurs. . Therefore, in order to obtain a good product shape, it is necessary to set an appropriate wrinkle holding load. On the other hand, the tension acting on the material is caused by the frictional force between the workpiece 6 and the punch 1 and the die 2, and lubrication is performed to change the relationship between the surface pressure and the frictional force, that is, the friction coefficient. Generally, changing the characteristics of the oil, the surface roughness of the punch and the die, and applying beads are performed. However, since the friction coefficient changes every moment due to the influence of temperature, surface pressure, surface properties, etc., it is necessary to adjust the wrinkle holding force each time.

これに対して、図1に示すような構成で、加工物6としわ押さえ金型3及びダイス2の間の摩擦力を摩擦力測定手段4で直接測定し、摩擦力が所定の値になるよう、しわ押さえ荷重調整手段5を用いてしわ押さえ荷重力を調整すること、ポンチ速度を調整することの少なくとも何れか1つを制御することにより、摩擦係数の変動によらず常に適正な張力を材料に付与することが可能となる(前記(1)(10)(11)に記載の発明)。
前記(2)記載の金型装置を組み込んだ、プレス金型装置の断面図を図2に示す。この例では、ダイス2の肩に摩擦力測定手段4を組み込んだ金型装置を取り付け、検出された摩擦力に応じてしわ押さえ荷重調整手段5を介して、しわ押さえ力を制御する。図2では、ダイス肩だけでなく、しわ押さえ金型3の表面にも摩擦力測定手段4が組み込まれているが、ダイス肩のみに摩擦力測定手段4を設置しても良い。
また、図3に示すように、しわ押さえ金型3を複数に分割しておけば、分割したしわ押さえ金型毎の摩擦力を摩擦力測定手段4により測定することが可能となる(前記(3)に記載の発明)。
また、しわ押さえ荷重調整手段5を分割されたしわ押さえ金型毎に設置し、それぞれ独立して制御できるようにしておくことで、しわ押さえ力の分布も適切に調節することができる(前記(9)に記載の発明)。
On the other hand, with the configuration shown in FIG. 1, the frictional force between the workpiece 6 and the wrinkle holding die 3 and the die 2 is directly measured by the frictional force measuring means 4, and the frictional force becomes a predetermined value. By adjusting at least one of adjusting the wrinkle holding load force using the wrinkle holding load adjusting means 5 and adjusting the punch speed, an appropriate tension is always applied regardless of the fluctuation of the friction coefficient. It can be applied to the material (the invention described in (1), (10) and (11) above).
FIG. 2 shows a cross-sectional view of a press mold apparatus incorporating the mold apparatus described in (2). In this example, a die apparatus incorporating the friction force measuring means 4 is attached to the shoulder of the die 2 and the wrinkle pressing force is controlled via the wrinkle pressing load adjusting means 5 according to the detected friction force. In FIG. 2, the frictional force measuring means 4 is incorporated not only in the die shoulder but also in the surface of the wrinkle pressing mold 3, but the frictional force measuring means 4 may be installed only in the die shoulder.
Further, as shown in FIG. 3, if the wrinkle pressing mold 3 is divided into a plurality of parts, the frictional force for each of the divided wrinkle pressing molds can be measured by the frictional force measuring means 4 (the above ( Invention according to 3)).
Moreover, the distribution of the wrinkle holding force can be adjusted appropriately by installing the wrinkle holding load adjusting means 5 for each of the divided wrinkle holding molds so that it can be controlled independently (see (( The invention according to 9).

前記(3)記載のしわ押さえ金型を図3に示す。図のようにしわ押さえ金型は複数に分割され、分割されたしわ押さえ金型ごとに摩擦力測定手段4を有する。
次に、摩擦力を直接測定する原理について図4を用いて説明する。被加工物6が一対の金型、すなわちダイス2と平板7で把持され、平板7はしわ押さえ金型3と図中左右方向に、弾性変形できる状態で、例えばボルト等で締結されている。また平板7としわ押さえ金型3の間には、歪み測定素子4が挟み込まれている。この時、被加工物6が矢印の方向(図面左向き)に摺動すると、歪み測定素子4に、せん断歪みが発生し、ここで歪み測定素子4にピエゾ素子(圧電素子)または歪みゲージを用いれば、歪みを電圧として容易に取り出し、摩擦力を測定する事が可能である(前記(4)に記載の発明)。
図3では、しわ押さえ金型3の片面のみで摩擦力を測定する場合を示しているが、例えば被加工物6の表裏面および一対のダイス2及びしわ押さえ金型3の表面の性状が異なる場合には、被加工物6の上下面で摩擦力を測定することによりさらに測定精度を向上させることも可能である。平板7としては構造用炭素鋼、工具鋼等を使用することができる。
FIG. 3 shows the wrinkle holding die described in (3) above. As shown in the figure, the wrinkle holding die is divided into a plurality of pieces, and each of the divided wrinkle holding die has a friction force measuring means 4.
Next, the principle of directly measuring the frictional force will be described with reference to FIG. The workpiece 6 is gripped by a pair of dies, that is, a die 2 and a flat plate 7, and the flat plate 7 is fastened to the crease pressing die 3 in the left-right direction in the drawing, for example, with bolts or the like. Further, a strain measuring element 4 is sandwiched between the flat plate 7 and the wrinkle holding mold 3. At this time, when the workpiece 6 slides in the direction of the arrow (leftward in the drawing), a shear strain is generated in the strain measuring element 4, and a piezo element (piezoelectric element) or a strain gauge is used as the strain measuring element 4. For example, it is possible to easily extract the strain as a voltage and measure the frictional force (the invention described in (4) above).
FIG. 3 shows a case where the frictional force is measured only on one side of the wrinkle holding die 3. For example, the front and back surfaces of the workpiece 6, the pair of dies 2, and the surface properties of the wrinkle holding die 3 are different. In this case, the measurement accuracy can be further improved by measuring the frictional force on the upper and lower surfaces of the workpiece 6. As the flat plate 7, structural carbon steel, tool steel, or the like can be used.

前記(5)又は(6)記載の測温手段を有するプレス金型装置について説明する。図5に測温手段10を有するプレス金型装置の断面図を示す。図5では、ダイス肩だけでなく、しわ押さえ金型3の表面にも測温手段10が組み込まれているが、しわ押さえ金型3の表面、ダイス2の肩の少なくとも何れか1ヶ所に測温手段を有する金型を取り付け、検出された温度に応じてしわ押さえ荷重調整手段5を介してしわ押さえ荷重を調整すること、ポンチ速度を調整することの少なくとも何れか1つを制御すれば、摩擦係数の変動によらず常に適正な張力を材料に付与することができるので、本発明の効果を得ることができる(前記(5)(12)(13)に記載の発明)。
測温手段として、熱電対を用いることが経済的に好ましい(前記(6)に記載の発明)。
測温手段について図7を用いて説明する。図7は図5のダイス2としわ押さえ金型3の片側を拡大したものである。測温手段10は平板7としわ押さえ金型3の間に挟みこまれている。プレス成形の際、平板7上の摩擦力が大きいところは加工発熱も大きく、また摩擦力が小さいところは加工発熱も小さい。つまり平板7上の温度が大きいところは摩擦力が大きく、材料の流入が妨げられるので、材料が破断する場合があり、また温度が小さいところは摩擦力が小さく、材料の流入を抑制することが出来ないので、しわの発生や形状不良といった問題が発生する。よって、測温手段10を用いて成形時の平板7上の温度を直接測定することで本発明の効果を得ることが出来る。
また、図6に示すように、しわ押さえ金型3を複数に分割しておけば、分割したしわ押さえ金型毎の温度を測温手段10により測定することが可能となる。また、しわ押さえ荷重調整手段5を分割されたしわ押さえ金型毎に設置し、それぞれに独立して制御できるようにしておくことで、しわ押さえ力の分布も適切に調節することができる(前記(9)に記載の発明)。
図5の構成は、図2の摩擦力測定手段4を測温手段10に置き換えたのと同じであり、摩擦力測定手段4と測温手段10は組み合わせて用いてもかまわない。
A press mold apparatus having the temperature measuring means described in (5) or (6) will be described. FIG. 5 shows a cross-sectional view of a press mold apparatus having the temperature measuring means 10. In FIG. 5, the temperature measuring means 10 is incorporated not only on the die shoulder but also on the surface of the wrinkle holding die 3, but it is measured on at least one of the surface of the wrinkle holding die 3 and the shoulder of the die 2. If a mold having a temperature means is attached and at least one of adjusting the wrinkle pressing load via the wrinkle pressing load adjusting means 5 and adjusting the punch speed according to the detected temperature is controlled, Since an appropriate tension can always be applied to the material regardless of the fluctuation of the friction coefficient, the effects of the present invention can be obtained (the inventions described in (5), (12) and (13) above).
It is economically preferable to use a thermocouple as the temperature measuring means (the invention described in (6) above).
The temperature measuring means will be described with reference to FIG. FIG. 7 is an enlarged view of one side of the die 2 and the wrinkle holding die 3 of FIG. The temperature measuring means 10 is sandwiched between the flat plate 7 and the wrinkle holding die 3. During press molding, the processing heat generation is large where the frictional force on the flat plate 7 is large, and the processing heat generation is small where the frictional force is small. That is, when the temperature on the flat plate 7 is high, the frictional force is large and the inflow of the material is hindered. Therefore, the material may be broken. Since this is not possible, problems such as wrinkles and poor shape occur. Therefore, the effect of the present invention can be obtained by directly measuring the temperature on the flat plate 7 during molding using the temperature measuring means 10.
Further, as shown in FIG. 6, if the wrinkle pressing mold 3 is divided into a plurality of parts, the temperature of each divided wrinkle pressing mold can be measured by the temperature measuring means 10. Moreover, the distribution of the wrinkle holding force can be adjusted appropriately by installing the wrinkle holding load adjusting means 5 for each of the divided wrinkle holding molds so that it can be controlled independently of each other (see above). Invention according to (9)).
The configuration in FIG. 5 is the same as that in which the frictional force measuring unit 4 in FIG. 2 is replaced with the temperature measuring unit 10, and the frictional force measuring unit 4 and the temperature measuring unit 10 may be used in combination.

前記(7)〜(9)記載のプレス反力測定手段を有するプレス金型装置について説明する。
図8に示すような構成で被加工物6を加工する際に、ポンチには前記した摩擦力と被加工物6の変形に要する力の合力、すなわちプレス反力が作用する。加工に際して、プレス反力が過大であると材料が破断する場合があり、また過小であるとしわの発生や、形状不良といった問題が発生する。よって、良好な製品形状を得るためには適正なプレス反力を設定する必要がある。しかしながら、前記した摩擦力は温度や表面形状によって時々刻々変化するものであるので、摩擦力を成分とするプレス反力も時々刻々変化する。これまでは、プレス反力を適切な値とするために、面圧と摩擦力の関係、すなわち摩擦係数を変化させるために、潤滑油の特性や、ポンチ及びダイスの表面粗度を変えたり、ビードを付与することなどが、一般に行われてきた。
A press mold apparatus having the press reaction force measuring means described in the above (7) to (9) will be described.
When processing the workpiece 6 with the configuration as shown in FIG. 8, the resultant force of the friction force and the force required for deformation of the workpiece 6, that is, the press reaction force acts on the punch. During processing, if the press reaction force is excessive, the material may break, and if it is excessive, problems such as generation of wrinkles and defective shape occur. Therefore, in order to obtain a good product shape, it is necessary to set an appropriate press reaction force. However, since the frictional force described above changes from time to time depending on the temperature and the surface shape, the press reaction force having the frictional force as a component also changes from time to time. Until now, in order to change the press reaction force to an appropriate value, the relationship between the surface pressure and the friction force, that is, the friction coefficient, the surface roughness of the punch and the die, Giving beads is generally performed.

これに対して、図8に示すように、ポンチに作用するプレス反力をプレス反力測定手段9で直接測定し、プレス反力が所定の値になるよう、しわ押さえ荷重調整手段5を用いてしわ押さえ力を調整すること、ポンチ速度を調整することにより、プレス反力の変動によらず常に適正な加工を行うことが出来る(前記(7)に記載の発明)。
また、この場合も、図3に示すようにしわ押さえ金型3を複数に分割し、かつしわ押さえ荷重調整手段5を分割されたしわ押さえ金型毎に設置してそれぞれ独立して制御できるようにしておくことで、しわ押さえ力の分布も適切に調節することができる(前記(8)(9)に記載の発明)。
図8では、プレス反力測定手段9だけでなく、しわ押さえ金型3の表面及びダイス2の肩にも摩擦力測定手段4が組み込まれているが、しわ押さえ金型3の表面又はダイス2肩の摩擦力測定手段4の何れか1種以上は、必要に応じプレス反力測定手段9と組み合わせて用いても良い。またこの摩擦力測定手段は測温手段におきかえて使用しても良い。
On the other hand, as shown in FIG. 8, the pressing reaction force acting on the punch is directly measured by the pressing reaction force measuring means 9, and the wrinkle pressing load adjusting means 5 is used so that the pressing reaction force becomes a predetermined value. By adjusting the wrinkle holding force and adjusting the punch speed, proper processing can always be performed regardless of fluctuations in the press reaction force (the invention described in (7) above).
Also in this case, as shown in FIG. 3, the wrinkle pressing mold 3 is divided into a plurality of pieces, and the wrinkle pressing load adjusting means 5 is installed for each divided wrinkle pressing mold and can be controlled independently. By doing so, the distribution of the wrinkle pressing force can also be adjusted appropriately (the inventions described in (8) and (9) above).
In FIG. 8, the frictional force measuring means 4 is incorporated not only in the press reaction force measuring means 9 but also on the surface of the wrinkle holding die 3 and the shoulder of the die 2, but the surface of the wrinkle holding die 3 or the die 2. Any one or more of the shoulder frictional force measuring means 4 may be used in combination with the press reaction force measuring means 9 as necessary. The frictional force measuring means may be used in place of the temperature measuring means.

図1又は図2に示した金型装置の制御方法のうち、前記(10)記載の制御方法、すなわち摩擦力測定手段4によって測定された摩擦力が加工中所定範囲となるように、しわ押さえ荷重またはポンチ速度の少なくともいずれか1つを加工中に制御する方法について、図9に示すフローチャートを用いて説明する。ここで下付き添え字iは成形中の制御回数を表す。
101:成形開始、このときi=1である。
102:ここではポンチのストロークをΔS[mm]だけ進めるという処理を行う。たとえばi=1のとき、S=0[mm]であるのでS=ΔS[mm]となる。ΔS[mm]については加工前に決めておく。
103:ここではストロークがS[mm]での摩擦力Fm[N]を測定するという処理を行う。
104:ここでは103で測定した摩擦力Fm[N]と摩擦力制御目標値Fc[N](加工前に予め設定しておく)の大小を比較する。
105:104で大小を比較した結果、Fm>Fcであれば図中105に式で示してあるように、測定値と目標値の摩擦力の差(Fm−Fc)に応じてしわ押さえ荷重BHFi+1[N]を小さくするか、ポンチストローク増分ΔSi+1[mm]を小さくする処理の少なくとも何れか1つを行う。
106:104で大小を比較した結果、Fm<Fcであれば図中106に式で示してあるように、測定値と目標値の摩擦力の差(Fm−Fc)に応じてしわ押さえ荷重BHFi+1[N]を大きくするか、ポンチストローク増分ΔSi+1[mm]を大きくする処理の少なくとも何れか1つを行う。
107:以上のようにして、1回の成形の中でフィードバック制御を行いながら加工を行い、ストロークS[mm]が加工終了時のストロークSmax[mm]以上となれば加工終了、それ以下であればループは102の前に戻る。このときiの値は1つ増える。
具体的なしわ押さえ荷重BHFi+1[N]またはポンチストローク増分ΔSi+1[mm]は比例定数α、β、γ、δを用いた図の関係式より算出する。このループをポンチストロークS[mm]が成形終了時のポンチストロークSend[mm]に達するまで繰り返す。
上記の制御を一定時間間隔Δt[sec]ごとに行えば、ポンチ速度Vp[mm/s]はΔS/隔Δtで求められるので、ポンチ速度はポンチストローク増分によって制御できる。
図10にこの制御方法を用いたときの、摩擦力実測値Fm[N]としわ押さえ荷重BHF[N]のポンチストローク履歴の例を示す。摩擦力実測値Fmと摩擦力制御目標値Fc[SI単位]の差に相当する値だけBHF制御目標値は変化し、それに合わせるようにBHF実測値が加工中に変化していくのがわかる。
Among the control methods of the mold apparatus shown in FIG. 1 or FIG. 2, the control method described in (10), that is, the wrinkle presser so that the frictional force measured by the frictional force measuring means 4 falls within a predetermined range during processing. A method for controlling at least one of the load and the punch speed during machining will be described with reference to a flowchart shown in FIG. Here, the subscript i represents the number of times of control during molding.
101: Start of molding, i = 1 at this time.
102: Here, the punch stroke is advanced by ΔS i [mm]. For example, when i = 1, since S 0 = 0 [mm], S 1 = ΔS 1 [mm]. ΔS 1 [mm] is determined before processing.
103: The process of measuring the frictional force Fm i [N] when the stroke is S i [mm] is performed here.
104: Here, the frictional force Fm i [N] measured in 103 is compared with the frictional force control target value Fc i [N] (preset before processing).
As a result of comparing the magnitudes at 105: 104, if Fm i > Fc i , according to the difference in the frictional force between the measured value and the target value (Fm i -Fc i ) as indicated by the formula 105 in the figure. At least one of the processes of reducing the wrinkle holding load BHF i + 1 [N] or reducing the punch stroke increment ΔS i + 1 [mm] is performed.
As a result of comparing the magnitudes at 106: 104, if Fm i <Fc i , according to the difference in the frictional force between the measured value and the target value (Fm i -Fc i ), as indicated by the equation 106 in the figure. At least one of the processes of increasing the wrinkle holding load BHF i + 1 [N] or increasing the punch stroke increment ΔS i + 1 [mm] is performed.
107: As described above, processing is performed while performing feedback control in one molding, and if the stroke S [mm] is equal to or greater than the stroke S max [mm] at the end of processing, the processing is completed, and below If so, the loop returns to 102. At this time, the value of i increases by one.
The specific wrinkle holding load BHF i + 1 [N] or punch stroke increment ΔS i + 1 [mm] is calculated from the relational expression in the figure using proportional constants α, β, γ, and δ. This loop is repeated until the punch stroke S i [mm] reaches the punch stroke S end [mm] at the end of molding.
If the above control is performed at regular time intervals Δt [sec], the punch speed Vp i [mm / s] is obtained by ΔS i / distance Δt, and therefore the punch speed can be controlled by the punch stroke increment.
FIG. 10 shows an example of the punch stroke history of the frictional force measured value Fm [N] and the wrinkle holding load BHF [N] when this control method is used. It can be seen that the BHF control target value changes by a value corresponding to the difference between the frictional force actual measurement value Fm and the frictional force control target value Fc [SI unit], and the BHF actual measurement value changes during machining to match it.

次に、図1に示した金型装置の制御方法の一つである前記(11)の発明について図11に示すフローチャートを用いて説明する。ここで下付き添え字jはプレス加工工程における成形回数を表す。
201:成形1回目、j=1
202:j回目成形時の時間t[sec]における摩擦力の履歴Fm (t)[N]を測定する。
203:j回目成形時の時間t[sec]を任意に分割し、既定の摩擦力下限値をFcl(t)[N]としたとき、それぞれの微小時間t[sec]において、Fm(t)>Fcl(t)であれば、(j+1)回目成形時のその微小時間tの範囲のBHFj+1(t)[N]またはポンチ速度Vpj+1(t)[mm/s]について図中に式で示してあるように、測定値と既定下限値の摩擦力の差(Fm(t)−Fcl(t))に応じてしわ押さえ荷重BHFj+1を小さくするか、ポンチ速度Vpj+1(t)を遅くする処理の少なくともいずれか1つを行う。
204:既定の摩擦力上限値をFcu(t)[N]としたとき、それぞれの微小時間t[sec]において、Fm(t)<Fcu(t)であれば、(j+1)回目成形時のその微小時間tの範囲のBHFj+1(t)[N]またはポンチ速度Vpj+1(t)について図中に式で示してあるように、測定値と既定上限値の摩擦力の差(Fm(t)−Fcu(t))に応じてしわ押さえ荷重BHFj+1[N]を大きくするか、ポンチ速度Vpj+1(t)[mm/s]を速くする処理の少なくともいずれか1つを行う。
205:以上のように、j回目成形時の成形条件を元に(j+1)回目成形時の成形条件を予め設定し、jが全成形回数jmaxであれば成形終了。でなければ202の前に戻る。
具体的なしわ押さえ荷重BHFj+1(t)[N]またはポンチ速度Vpj+1(t)[mm/s]の値は、比例定数α、β、γ、δを用いた図の関係式より算出する。このようにして得られたしわ押さえ荷重BHFj+1(t)[N]またはポンチ速度Vpj+1(t)[mm/s]を用いてj+1回目の成形を行う。この制御を成形回数jが最大成形回数jmaxに達するまで繰り返す。
図12にこの制御方法を用いたときの、摩擦力実測値Fm[N]としわ押さえ力BHF[N]の時間履歴の例を示す。摩擦力上限値Fcu(t)[N]より摩擦力Fm(t)[N]が大きい、または摩擦力下限値Fcl(t)[N]より摩擦力Fm(t)[N]が小さいt[sec]の範囲で、BHF制御目標値をBHFからBHFj+1に変化させ、その変化させたBHF制御目標値BHFj+1を用いてj+1回目の加工を行う。
Next, the invention (11), which is one of the control methods of the mold apparatus shown in FIG. 1, will be described with reference to the flowchart shown in FIG. Here, the subscript j represents the number of moldings in the press working process.
201: First molding, j = 1
202: The frictional force history Fm j (t) [N] at the time t [sec] at the j-th molding is measured.
203: When the time t [sec] at the time of the j-th molding is arbitrarily divided and the predetermined frictional force lower limit value is Fcl (t) [N], Fm j (t )> Fcl j (t), BHF j + 1 (t) [N] or punch velocity Vp j + 1 (t) [mm / s] in the range of the minute time t at the time of (j + 1) -th molding As shown in the equation, the wrinkle pressing load BHF j + 1 is reduced according to the difference between the measured value and the frictional force between the predetermined lower limit value (Fm j (t) −Fcl j (t)) or the punch speed Vp j + 1 ( At least one of the processes for delaying t) is performed.
204: When the predetermined upper limit of frictional force is Fcu (t) [N], if Fm j (t) <Fcu j (t) at each minute time t [sec], (j + 1) th molding As shown in the figure for the BHF j + 1 (t) [N] or punch velocity Vp j + 1 (t) in the minute time t range of time, the difference between the measured value and the frictional force (Fm j (t) -Fcu j (t)) at least one of the processes of increasing the wrinkle holding load BHF j + 1 [N] or increasing the punch speed Vp j + 1 (t) [mm / s]. Do.
205: As described above, the molding conditions for the (j + 1) -th molding are set in advance based on the molding conditions for the j-th molding, and if j is the total number of moldings jmax , the molding ends. Otherwise, return to 202.
The specific wrinkle holding load BHF j + 1 (t) [N] or the punch speed Vp j + 1 (t) [mm / s] is calculated from the relational expression in the figure using proportional constants α, β, γ, and δ. . Using the wrinkle pressing load BHF j + 1 (t) [N] or the punch speed Vp j + 1 (t) [mm / s] obtained in this way, the ( j + 1 ) th molding is performed. This control is repeated until the number of moldings j reaches the maximum number of moldings jmax .
FIG. 12 shows an example of a time history of the frictional force actual measurement value Fm [N] and the wrinkle pressing force BHF [N] when this control method is used. Frictional force upper limit value Fcu j (t) [N] than the frictional force Fm j (t) [N] is large, or friction force limit value Fcl j (t) [N] than the frictional force Fm j (t) [N] In the range of t [sec] where is small, the BHF control target value is changed from BHF j to BHF j + 1, and the j + 1th machining is performed using the changed BHF control target value BHF j + 1 .

図5に示した金型装置の制御方法のうち、前記(12)記載の制御方法、すなわち測温手段によって測定された温度が加工中所定範囲となるように、しわ押さえ荷重またはポンチ速度の少なくともいずれか1つを加工中に制御する方法について、図13に示すフローチャートを用いて説明する。ここで下付き添え字iは成形中の制御回数を表す。
301:成形開始、このときi=1である。
302:ここではポンチのストロークをΔS[mm]だけ進めるという処理を行う。たとえばi=1のとき、S=0であるのでS=ΔS[mm]となる。ΔS[mm]については加工前に決めておく。
303:ここではストロークがS[mm]での温度Tm[℃]を測定するという処理を行う。
304:ここでは3で測定した温度Tm[℃]と温度制御目標値Tc[℃](加工前に予め設定しておく)の大小を比較する。
305:304で大小を比較した結果、Tm>Tcであれば図中305に式で示してあるように、測定値と目標値の温度の差(Tm−Tc)に応じてしわ押さえ荷重BHFj+1[N]を小さくするか、ポンチストローク増分ΔSi+1[mm]を小さくする処理の少なくともいずれか1つを行う。
306:304で大小を比較した結果、Tm<Tcであれば図中306に式で示してあるように、測定値と目標値の温度の差(Tm−Tc)に応じてしわ押さえ荷重BHFj+1[N]を大きくするか、ポンチストローク増分ΔSi+1[mm]を大きくする処理の少なくともいずれか1つを行う。
307:以上のようにして、1回の成形の中でフィードバック制御を行いながら加工を行い、ストロークS[mm]が加工終了時のストロークSmax[mm]以上となれば加工終了、それ以下であればループは302の前に戻る。このときiの値は1つ増える。
具体的なしわ押さえ荷重BHFi+1[N]またはポンチストローク増分ΔSi+1[mm]は比例定数α、β、γ、δを用いた図の関係式より算出する。このループをポンチストロークS[mm]が成形終了時のポンチストロークSend[mm]に達するまで繰り返す。
上記の制御を一定時間間隔Δt[sec]ごとに行えば、ポンチ速度Vp[mm/s]はΔS/Δtで求められるので、ポンチ速度はポンチストローク増分によって制御できる。
Among the control methods for the mold apparatus shown in FIG. 5, the control method described in (12) above, that is, at least the wrinkle pressing load or the punch speed so that the temperature measured by the temperature measuring means falls within a predetermined range during processing. A method for controlling any one of them during machining will be described with reference to the flowchart shown in FIG. Here, the subscript i represents the number of times of control during molding.
301: Start of molding, i = 1 at this time.
302: Here, the punch stroke is advanced by ΔS i [mm]. For example, when i = 1, since S 0 = 0, S 1 = ΔS 1 [mm]. ΔS 1 [mm] is determined before processing.
303: Here, the process of measuring the temperature Tm i [° C.] when the stroke is S i [mm] is performed.
304: Here, the magnitude of the temperature Tm i [° C.] measured in 3 is compared with the temperature control target value Tc i [° C.] (preset before processing).
As a result of comparing the magnitudes at 305: 304, if Tm i > Tc i , wrinkles according to the temperature difference (Tm i −Tc i ) between the measured value and the target value as indicated by the equation in 305 in the figure. At least one of processing of reducing the pressing load BHF j + 1 [N] or decreasing the punch stroke increment ΔS i + 1 [mm] is performed.
As a result of comparing the magnitudes at 306: 304, if Tm i <Tc i , wrinkles are formed according to the temperature difference (Tm i −Tc i ) between the measured value and the target value, as indicated by the equation in 306 in the figure. At least one of the processing of increasing the pressing load BHF j + 1 [N] or increasing the punch stroke increment ΔS i + 1 [mm] is performed.
307: As described above, processing is performed while performing feedback control in one molding, and if the stroke S [mm] is equal to or greater than the stroke S max [mm] at the end of the processing, the processing is completed, and less If so, the loop returns to before 302. At this time, the value of i increases by one.
The specific wrinkle holding load BHF i + 1 [N] or punch stroke increment ΔS i + 1 [mm] is calculated from the relational expression in the figure using proportional constants α, β, γ, and δ. This loop is repeated until the punch stroke S i [mm] reaches the punch stroke S end [mm] at the end of molding.
If the above control is performed at regular time intervals Δt [sec], the punch speed Vp i [mm / s] is obtained by ΔS i / Δt, and therefore the punch speed can be controlled by the punch stroke increment.

図5に示した金型装置の制御方法について、前記(13)記載の制御方法について図14に示すフローチャートを用いて説明する。ここで下付き添え字jはプレス加工工程における成形回数を表す。
401:成形1回目、j=1
402:j回目成形時の時間t[sec]における温度の履歴Tm(t)[℃]を測定する。
403:j回目成形時の時間t[sec]を任意に分割し、既定の温度下限値をTcl(t)[℃]としたとき、それぞれの微小時間t[sec]において、Tm(t)>Tcl(t)であれば、(j+1)回目成形時のその微小時間tの範囲のBHFj+1(t)[N]またはポンチ速度Vpj+1(t)[N]について図中に式で示してあるように、測定値と既定下限値の温度の差(Tm(t)−Tcl(t))に応じてしわ押さえ荷重BHFj+1を小さくするか、ポンチ速度Vpj+1(t)を遅くする処理の少なくともいずれか1つを行う。
404:既定の温度上限値をTcu(t)としたとき、それぞれの微小時間t[sec]において、Tm(t)<Tcu(t)であれば、(j+1)回目成形時のその微小時間tの範囲のBHFj+1(t)[N]またはポンチ速度Vpj+1(t)[mm/s]について図中に式で示してあるように、測定値と既定上限値の温度の差(Tm(t)−Tcu(t))に応じてしわ押さえ荷重BHFj+1[N]を大きくするか、ポンチ速度Vpj+1(t)[mm/s]を速くする処理の少なくともいずれか1つを行う。
405:以上のように、j回目成形時の成形条件を元に(j+1)回目成形時の成形条件を予め設定し、jが全成形回数jmaxであれば成形終了。でなければ402の前に戻る。
具体的なしわ押さえ荷重BHFj+1(t)[N]またはポンチ速度Vpj+1(t)[mm/s]の値は、比例定数α、β、γ、δを用いた図の関係式より算出する。前回の成形で予め測定した温度Tm(t)[℃]が温度上限値Tcu(t)[℃]より大きい、または温度Tm(t)[℃]が温度下限値Tcl(t)[℃]より小さいt[sec]の範囲でBHF制御目標値をBHF(t)[N]からBHFj+1(t)[N]、またポンチ速度制御目標値をVp(t)[mm/s]からVpj+1(t)[mm/s]に変化させ、その変化させたBHF制御目標値BHFj+1(t)[N]、またポンチ速度制御目標値Vpj+1(t)[mm/s]を用いてj+1回目の成形を行う。
この制御を成形回数jが最大成形回数jmaxに達するまで繰り返す。
As for the control method of the mold apparatus shown in FIG. 5, the control method described in (13) will be described with reference to the flowchart shown in FIG. Here, the subscript j represents the number of moldings in the press working process.
401: First molding, j = 1
402: A temperature history Tm j (t) [° C.] at a time t [sec] at the j-th molding is measured.
403: Time t [sec] at the time of j-th molding is arbitrarily divided, and Tm j (t) at each minute time t [sec] when a predetermined temperature lower limit value is Tcl (t) [° C.] If> Tcl j (t), BHF j + 1 (t) [N] or punch speed Vp j + 1 (t) [N] in the range of the minute time t at the time of (j + 1) -th molding is shown by an expression in the figure. As shown, the wrinkle holding load BHF j + 1 is decreased or the punch speed Vp j + 1 (t) is decreased according to the difference between the measured value and the predetermined lower limit temperature (Tm j (t) −Tcl j (t)). At least one of the processes to be performed is performed.
404: When the predetermined upper temperature limit value is Tcu (t), if Tm j (t) <Tcu j (t) at each minute time t [sec], the minute value at the time of (j + 1) -th molding As shown in the figure for BHF j + 1 (t) [N] or punch velocity Vp j + 1 (t) [mm / s] in the range of time t, the difference in temperature between the measured value and the predetermined upper limit value (Tm j (t) −Tcu j (t)), at least one of the processes of increasing the wrinkle holding load BHF j + 1 [N] or increasing the punch speed Vp j + 1 (t) [mm / s]. Do.
405: As described above, the molding conditions for the (j + 1) -th molding are set in advance based on the molding conditions for the j-th molding. If j is the total number of moldings j max , the molding ends. Otherwise, return to the front of 402.
The specific wrinkle holding load BHF j + 1 (t) [N] or the punch speed Vp j + 1 (t) [mm / s] is calculated from the relational expression in the figure using proportional constants α, β, γ, and δ. . The temperature Tm j (t) [° C.] measured in advance in the previous molding is higher than the temperature upper limit value Tcu j (t) [° C.], or the temperature Tm j (t) [° C.] is the temperature lower limit value Tcl j (t). The BHF control target value is changed from BHF j (t) [N] to BHF j + 1 (t) [N] and the punch speed control target value is set to Vp j (t) [mm / s] to Vp j + 1 (t) [mm / s], the changed BHF control target value BHF j + 1 (t) [N], and the punch speed control target value Vp j + 1 (t) [mm / s] Is used for the (j + 1) th molding.
This control is repeated until the number of moldings j reaches the maximum number of moldings jmax .

次に、図9に示した金型装置の制御方法の1つである前記(14)記載の制御方法、すなわちプレス反力測定手段によって測定されたプレス反力が加工中所定範囲となるように、しわ押さえ荷重またはポンチ速度の少なくともいずれか1つを加工中に制御する方法について、図15に示すフローチャートを用いて説明する。ここで下付き添え字iは成形中の制御回数を表す。
501:成形開始、このときi=1である。
502:ここではポンチのストロークをΔS[mm]だけ進めるという処理を行う。たとえばi=1のとき、S=0[mm]であるのでS=ΔS[mm]となる。ΔS[mm]については加工前に決めておく。
503:ここではストロークがS[mm]でのポンチ反力Pm[N]を測定するという処理を行う。
504:ここでは503で測定したポンチ反力Pm[N]とポンチ反力制御目標値Pc[N](加工前に予め設定しておく)の大小を比較する。
505:504で大小を比較した結果、Pm>Pc[N]であれば図中505に式で示してあるように、測定値と目標値のプレス反力の差(Pm−Pc)に応じてしわ押さえ荷重BHFj+1[N]を小さくするか、ポンチストローク増分ΔSi+1[mm]を小さくする処理の少なくともいずれか1つを行う。
506:505で大小を比較した結果、Pm>Pc[N]であれば図中506に式で示してあるように、測定値と目標値のプレス反力の差(Pm−Pc)に応じてしわ押さえ荷重BHFj+1[N]を大きくするか、ポンチストローク増分ΔSi+1[mm]を大きくする処理の少なくともいずれか1つを行う。
507:以上のようにして、1回の成形の中でフィードバック制御を行いながら加工を行い、ストロークSが加工終了時のストロークSmax[mm]以上となれば加工終了、それ以下であればループは502の前に戻る。このときiの値は1つ増える。
具体的なしわ押さえ荷重BHFi+1[N]またはポンチストローク増分ΔSi+1[mm]は比例定数α、β、γ、δを用いた図の関係式より算出する。このループをポンチストロークS[mm]が成形終了時のポンチストロークSend[mm]に達するまで繰り返す。
上記の制御を一定時間間隔Δt[sec]ごとに行えば、ポンチ速度Vp[mm/s]はΔS/Δtで求められるので、ポンチ速度はポンチストローク増分によって制御できる。
Next, the control method according to (14), which is one of the control methods of the mold apparatus shown in FIG. 9, that is, the press reaction force measured by the press reaction force measuring means is within a predetermined range during processing. A method of controlling at least one of the wrinkle holding load and the punch speed during machining will be described with reference to the flowchart shown in FIG. Here, the subscript i represents the number of times of control during molding.
501: Molding started, i = 1 at this time.
502: Here, the punch stroke is advanced by ΔS i [mm]. For example, when i = 1, since S 0 = 0 [mm], S 1 = ΔS 1 [mm]. ΔS 1 [mm] is determined before processing.
503: Here, the punch reaction force Pm i [N] at the stroke S i [mm] is measured.
504: Here, the magnitudes of the punch reaction force Pm i [N] measured in 503 and the punch reaction force control target value Pc i [N] (preset before processing) are compared.
As a result of comparing the magnitudes at 505: 504, if Pm i > Pc i [N], the difference in the press reaction force between the measured value and the target value (Pm i −Pc i ) as indicated by the formula 505 in the figure. ) To reduce the wrinkle pressing load BHF j + 1 [N] or at least one of the processes to reduce the punch stroke increment ΔS i + 1 [mm].
When Pm i > Pc i [N] as a result of comparing the magnitudes at 506: 505, the difference between the press reaction force of the measured value and the target value (Pm i −Pc i ) as indicated by the equation 506 in the figure. ) To increase the wrinkle holding load BHF j + 1 [N] or increase the punch stroke increment ΔS i + 1 [mm].
507: As described above, processing is performed while performing feedback control in one molding, and if the stroke S is equal to or greater than the stroke S max [mm] at the end of processing, the processing is completed, and if it is less, the loop is performed. Returns to before 502. At this time, the value of i increases by one.
The specific wrinkle holding load BHF i + 1 [N] or punch stroke increment ΔS i + 1 [mm] is calculated from the relational expression in the figure using proportional constants α, β, γ, and δ. This loop is repeated until the punch stroke S i [mm] reaches the punch stroke S end [mm] at the end of molding.
If the above control is performed at regular time intervals Δt [sec], the punch speed Vp i [mm / s] is obtained by ΔS i / Δt, and therefore the punch speed can be controlled by the punch stroke increment.

図9に示した金型装置の制御方法の一つである前記(15)の発明について、図16に示すフローチャートを用いて説明する。ここで下付き添え字jはプレス加工工程における成形回数を表す。
601:成形1回目、j=1
602:j回目成形時の時間t[sec]におけるポンチ反力の履歴Pm(t)を測定する。
603:j回目成形時の時間t[sec]を任意に分割し、既定のプレス反力の下限値をPcl(t)[N]としたとき、それぞれの微小時間t[sec]において、Pm(t)>Pcl(t)であれば、(j+1)回目成形時のその微小時間tの範囲のBHFj+1(t)[N]またはポンチ速度Vpj+1(t)[mm/s]について図中に式で示してあるように、測定値と既定下限値のプレス反力の差(Pm(t)−Pcl(t))に応じてしわ押さえ荷重BHFj+1[N]を小さくするか、ポンチ速度Vpj+1(t)[mm/s]を遅くする処理の少なくとも何れか一つを行う。
604:既定のプレス反力の上限値をPcu(t)[N]としたとき、それぞれの微小時間t[sec]において、Pm(t)<Pcu(t)であれば、(j+1)回目成形時のその微小時間tの範囲のBHFj+1(t)[N]またはポンチ速度Vpj+1(t)[mm/s]について図中に式で示してあるように、測定値と既定上限値の温度の差(Tm(t)−Tcu(t))に応じてしわ押さえ荷重BHFj+1[N]を大きくするか、ポンチ速度Vpj+1(t)を速くする処理の少なくとも何れか一つを行う。
605:以上のように、j回目成形時の成形条件を元に(j+1)回目成形時の成形条件を予め設定し、jが全成形回数jmaxであれば成形終了。でなければ602の前に戻る。
具体的なしわ押さえ荷重BHFj+1(t)[N]またはポンチ速度Vpj+1(t)[mm/s]の値は、比例定数α、β、γ、δを用いた図の関係式より算出する。前回の成形で予め測定したプレス反力Pm(t)[N]がプレス反力上限値Pcu(t)[℃]より大きい、またはプレス反力Pm(t)[N]がプレス反力下限値Pcl(t)[N]より小さいt[sec]の範囲でBHF制御目標値をBHF(t)[N]からBHFj+1(t)[N]、またポンチ速度制御目標値をVp(t)[mm/s]からVpj+1(t)[mm/s]に変化させ、その変化させたBHF制御目標値BHFj+1(t)[N]、またポンチ速度制御目標値Vpj+1(t)[mm/s]を用いてj+1回目の成形を行う。この制御を成形回数jが最大成形回数jmaxに達するまで繰り返す。
The invention (15), which is one of the control methods for the mold apparatus shown in FIG. 9, will be described with reference to the flowchart shown in FIG. Here, the subscript j represents the number of moldings in the press working process.
601: First molding, j = 1
602: Punch reaction force history Pm j (t) at time t [sec] at the j-th molding is measured.
603: When the time t [sec] at the j-th molding is arbitrarily divided and the lower limit value of the predetermined press reaction force is Pcl (t) [N], Pm j at each minute time t [sec] If (t)> Pcl j (t), the figure shows BHF j + 1 (t) [N] or punch velocity Vp j + 1 (t) [mm / s] in the range of the minute time t at the time of (j + 1) -th molding. As shown in the equation, the wrinkle holding load BHF j + 1 [N] is reduced according to the difference (Pm j (t) −Pcl (t)) between the measured reaction value and the predetermined lower limit press reaction force, At least one of the processes for reducing the punch speed Vp j + 1 (t) [mm / s] is performed.
604: When the upper limit value of the predetermined press reaction force is Pcu (t) [N], if Pm j (t) <Pcu j (t) at each minute time t [sec], (j + 1) As shown by the formula in the figure for BHF j + 1 (t) [N] or punch velocity Vp j + 1 (t) [mm / s] in the minute time t range at the time of the second molding, the measured value and the predetermined upper limit value At least one of the processes of increasing the wrinkle holding load BHF j + 1 [N] or increasing the punch speed Vp j + 1 (t) according to the temperature difference (Tm j (t) −Tcu (t)) Do.
605: As described above, the molding conditions for the (j + 1) -th molding are set in advance based on the molding conditions for the j-th molding, and if j is the total number of moldings jmax , the molding ends. Otherwise, return to 602.
The specific wrinkle holding load BHF j + 1 (t) [N] or the punch speed Vp j + 1 (t) [mm / s] is calculated from the relational expression in the figure using proportional constants α, β, γ, and δ. . The press reaction force Pm j (t) [N] measured in advance in the previous molding is larger than the press reaction force upper limit Pcu j (t) [° C.], or the press reaction force Pm j (t) [N] is the press reaction force. The BHF control target value is changed from BHF j (t) [N] to BHF j + 1 (t) [N], and the punch speed control target value is set within a range of t [sec] smaller than the force lower limit value Pcl j (t) [N]. Vp j (t) [mm / s] is changed to Vp j + 1 (t) [mm / s], the changed BHF control target value BHF j + 1 (t) [N], and the punch speed control target value Vp j + 1 (T) Perform the (j + 1) th molding using [mm / s]. This control is repeated until the number of moldings j reaches the maximum number of moldings jmax .

また、ポンチ1はしわ押さえ金型3と同様に分割構造とし、分割したポンチ毎に油圧シリンダで加圧しても良いが、金型装置が複雑になり設備も高価になるため、ポンチ1は一体化し通常の外側シリンダで均一圧下し、ポンチ1表面に前述した方法で締結(固定)かつ分割されたしわ押さえ金型3内に図17に示すように油圧室8を内蔵し、個別に圧力を調整することにより、安価に分割されたしわ押さえ金型毎のしわ押さえ荷重の制御が可能となる。   Further, the punch 1 may have a divided structure as in the case of the wrinkle holding mold 3 and may be pressurized by a hydraulic cylinder for each divided punch. However, since the mold apparatus becomes complicated and the equipment becomes expensive, the punch 1 is integrated. The pressure chamber is uniformly reduced by a normal outer cylinder, and is clamped (fixed) to the surface of the punch 1 by the method described above, and the hydraulic chamber 8 is built in the wrinkle presser mold 3 as shown in FIG. By adjusting, it is possible to control the wrinkle holding load for each of the wrinkle holding molds divided at low cost.

上述の発明を元に、本発明例として図1に示す金型装置を試作し、薄鋼板を用いたプレス成形を行った。摩擦力測定手段4としてピエゾ素子を使用し、平板7は表面焼き入れしたS45Cを使用した。表1に用いた鋼板の特性を示す。いずれも板厚1:2mmの合金化溶融亜鉛メッキ鋼板で、合金化度を変えた2種類の鋼板を用いた。   Based on the above-mentioned invention, the mold apparatus shown in FIG. 1 was made as an example of the present invention, and press forming using a thin steel plate was performed. A piezo element was used as the frictional force measuring means 4 and the flat plate 7 was made of surface-quenched S45C. Table 1 shows the characteristics of the steel sheet used. Each was an alloyed hot-dip galvanized steel sheet with a thickness of 1: 2 mm, and two kinds of steel sheets with different degrees of alloying were used.

Figure 2004249365
Figure 2004249365

成形試験は、50mm×50mmの角筒深絞り成形を連続して行い、その際の成形荷重と成形品の破断およびしわ発生の有無を調査した。100mm×100mmの四角形素板から、図2のように周囲を8分割したしわ押さえ金型を用いて成形実験を行った。表2に、連続100回成形した試験結果を示す。
比較例として、しわ押さえ荷重調整手段のない金型装置を使用し、しわ押さえ圧を一定にした場合の結果を表3に示す。
In the forming test, 50 mm × 50 mm square tube deep drawing was continuously performed, and the forming load at that time and the presence or absence of wrinkling of the formed product were investigated. From a 100 mm × 100 mm square base plate, a molding experiment was performed using a wrinkle pressing die whose periphery was divided into eight as shown in FIG. Table 2 shows the test results of 100 consecutive moldings.
As a comparative example, Table 3 shows the results when a mold apparatus without wrinkle pressing load adjusting means is used and the wrinkle pressing pressure is made constant.

Figure 2004249365
Figure 2004249365

Figure 2004249365
Figure 2004249365

全ての分割金型に対して摩擦力が一定(0:25[kN/金型])になるよう成形した本発明例1では、しわ押さえ荷重を20[kN]一定(摩擦係数を0:1と仮定した場合、摩擦力合計が2[kN])とした比較例1及びしわ押さえ荷重を40[kN]一定(摩擦係数を0:1と仮定した場合、摩擦力合計が4[kN])とした比較例2と比べ、成形荷重の変動が非常に少なく、概ね良好な成形が得られた。ただし合金化度の低い素材Bは、成形回数が増大するに従い、金型へ亜鉛の凝着が発生し、摩擦が不均一になり、角部に軽微なしわが見られた。そのため、材料の流入の大きい平行部の摩擦力を0:2[kN/金型]に下げ、一方角部の摩擦力を0:3[kN/金型]に上げた設定で成形実験を行った本発明例2では、いずれの材料でも成形回数によらず良好な成形結果が得られた。   In Example 1 of the present invention formed so that the frictional force is constant (0:25 [kN / die]) for all the divided molds, the wrinkle pressing load is constant 20 [kN] (the friction coefficient is 0: 1). Assuming that the total frictional force is 2 [kN]), the comparative example 1 and the wrinkle holding load are constant 40 [kN] (when the friction coefficient is assumed to be 0: 1, the total frictional force is 4 [kN]). Compared with Comparative Example 2, the molding load fluctuated very little, and generally good molding was obtained. However, in the material B having a low alloying degree, as the number of moldings increased, zinc adhered to the mold, the friction became non-uniform, and slight wrinkles were observed at the corners. Therefore, the molding experiment was performed with the frictional force of the parallel part where the material flowed in greatly decreased to 0: 2 [kN / die] and the frictional force of the corner part increased to 0: 3 [kN / die]. In Inventive Example 2, good molding results were obtained regardless of the number of moldings for any material.

上述の発明を元に、本発明例として図5に示す金型装置を試作し、薄鋼板を用いたプレス成形を行った。測温手段10として熱電対を使用し、平板7は表面焼き入れしたS45Cを使用した。実験に用いた鋼板は実施例1で使用したものと同じである。   Based on the above-mentioned invention, a mold apparatus shown in FIG. 5 was made as an example of the present invention, and press forming using a thin steel plate was performed. A thermocouple was used as the temperature measuring means 10, and the flat plate 7 was S45C that had been surface-hardened. The steel plate used in the experiment is the same as that used in Example 1.

成形試験は、50mm×50mmの角筒深絞り成形を連続して行い、その際の成形荷重と成形品の破断およびしわ発生の有無を調査した。100mm×100mmの四角形素板から、図6のように周囲を8分割したしわ押さえ金型を用いて成形実験を行った。表4に、連続100回成形した試験結果を示す。比較例としては、実施例1のそれと同じである。   In the forming test, 50 mm × 50 mm square tube deep drawing was continuously performed, and the forming load at that time and the presence or absence of wrinkling of the formed product were investigated. A molding experiment was performed from a 100 mm × 100 mm square base plate using a wrinkle pressing die whose periphery was divided into eight as shown in FIG. Table 4 shows the test results of 100 consecutive moldings. The comparative example is the same as that of Example 1.

Figure 2004249365
Figure 2004249365

全ての分割金型に対して温度が一定(180[℃])になるよう成形した本発明例3では、しわ押さえ荷重を20[kN]一定(摩擦係数を0:1と仮定した場合、摩擦力合計が2[kN])とした比較例1及びしわ押さえ荷重を40[kN]一定(摩擦係数を0:1と仮定した場合、摩擦力合計が4[kN])とした比較例2と比べ、成形荷重の変動が非常に少なく、概ね良好な成形が得られた。ただし合金化度の低い素材Bは、成形回数が増大するに従い、金型へ亜鉛の凝着が発生し、温度が不均一になり、角部に軽微なしわが見られた。そのため、材料の流入の大きい平行部の温度を150[℃]に下げ、一方角部の摩擦力を200[℃]に上げた設定で成形実験を行った本発明例4では、いずれの材料でも成形回数によらず良好な成形結果が得られた。   In Example 3 of the present invention formed so that the temperature is constant (180 [° C.]) for all the divided molds, the wrinkle holding load is constant 20 [kN] (if the friction coefficient is assumed to be 0: 1, the friction is Comparative Example 1 in which the total force is 2 [kN]) and Comparative Example 2 in which the wrinkle holding load is constant at 40 [kN] (when the friction coefficient is assumed to be 0: 1, the total frictional force is 4 [kN]) In comparison, the molding load fluctuated very little, and generally good molding was obtained. However, with the material B having a low alloying degree, as the number of moldings increased, zinc adhered to the mold, the temperature became uneven, and slight wrinkles were observed at the corners. For this reason, in Example 4 of the present invention in which the molding experiment was performed with the temperature of the parallel portion where the inflow of material was large lowered to 150 [° C.] and the frictional force of the corner portion increased to 200 [° C.], any material was used. Good molding results were obtained regardless of the number of moldings.

上述の発明を元に、本発明例として図8に示す金型装置を試作し、薄鋼板を用いたプレス成形を行った。プレス反力測定手段9として歪ゲージを使用し、平板7は表面焼き入れしたS45Cを使用した。実験に用いた鋼板は実施例1で使用したものと同じである。   Based on the above-mentioned invention, a mold apparatus shown in FIG. 8 was prototyped as an example of the present invention, and press forming using a thin steel plate was performed. A strain gauge was used as the press reaction force measuring means 9, and the flat plate 7 was S45C which had been surface-hardened. The steel plate used in the experiment is the same as that used in Example 1.

成形試験は、50mm×50mmの角筒深絞り成形を連続して行い、その際の成形荷重と成形品の破断およびしわ発生の有無を調査した。100mm×100mmの四角形素板から、図3のように周囲を8分割したしわ押さえ金型を用いて成形実験を行った。表5に、連続100回成形した試験結果を示す。比較例としては、実施例1のそれと同じである。   In the forming test, 50 mm × 50 mm square tube deep drawing was continuously performed, and the forming load at that time and the presence or absence of wrinkling of the formed product were investigated. From a 100 mm × 100 mm square base plate, a molding experiment was performed using a wrinkle presser mold whose periphery was divided into eight as shown in FIG. Table 5 shows the test results of 100 consecutive moldings. The comparative example is the same as that of Example 1.

Figure 2004249365
Figure 2004249365

プレス反力が一定(65[kN])となるようにしわ押さえ力を制御して成形した本発明例5では、しわ押さえ荷重を20[kN]一定(摩擦係数を0:1と仮定した場合、摩擦力合計が2[kN])とした比較例1及びしわ押さえ荷重を40[kN]一定(摩擦係数を0:1と仮定した場合、摩擦力合計が4[kN])とした比較例2と比べ、成形荷重の変動が非常に少なく、概ね良好な成形が得られた。ただし合金化度の低い素材Bは、成形回数が増大するに従い、金型へ亜鉛の凝着が発生し、プレス反力が不均一になり、角部に軽微なしわが見られた。そのため、材料の流入の大きい加工初期のプレス反力を20kNに下げ、一方加工後期のプレス反力を70kNに上げた設定で成形実験を行った本発明例6では、いずれの材料でも成形回数によらず良好な成形結果が得られた。   In Example 5 of the present invention formed by controlling the wrinkle pressing force so that the press reaction force is constant (65 [kN]), the wrinkle pressing load is constant at 20 [kN] (when the friction coefficient is assumed to be 0: 1). Comparative Example 1 in which the total frictional force is 2 [kN]) and Comparative Example in which the wrinkle holding load is constant at 40 [kN] (when the friction coefficient is assumed to be 0: 1, the total frictional force is 4 [kN]) Compared with 2, molding load fluctuation was very small, and generally good molding was obtained. However, with the material B having a low alloying degree, as the number of moldings increased, zinc adhered to the mold, the press reaction force became uneven, and slight wrinkles were observed at the corners. Therefore, in Example 6 of the present invention in which the molding experiment was performed with the setting of the press reaction force at the initial stage of machining with a large inflow of material lowered to 20 kN, while the press reaction force at the latter stage of machining was increased to 70 kN, the number of moldings was increased for any material. Regardless, good molding results were obtained.

しわ押さえ金型3の表面に摩擦力測定手段4を有するプレス金型装置の断面図を示す。A sectional view of a press mold apparatus having a frictional force measuring means 4 on the surface of the wrinkle pressing mold 3 is shown. しわ押さえ金型3の表面及びダイス肩に摩擦力測定手段4を有するプレス金型装置の断面図を示す。Sectional drawing of the press die apparatus which has the frictional force measurement means 4 on the surface of a wrinkle pressing die 3, and a die shoulder is shown. 複数に分割したしわ押さえ金型と摩擦力測定手段の平面図を示す。The top view of the wrinkle pressing die divided | segmented into plurality and the frictional force measuring means is shown. 図1のダイス2としわ押さえ金型3の片側の拡大断面図を示す。FIG. 2 shows an enlarged cross-sectional view of one side of the die 2 and the wrinkle holding mold 3 in FIG. 1. しわ押さえ金型3の表面及びダイス肩に測温手段10を有するプレス金型装置の断面図を示す。Sectional drawing of the press die apparatus which has the temperature measuring means 10 on the surface of the wrinkle pressing die 3, and a die shoulder is shown. 複数に分割したしわ押さえ金型と測温手段の平面図を示す。The top view of the wrinkle pressing die divided | segmented into plurality and the temperature measuring means is shown. 図5のダイス2としわ押さえ金型3の片側の拡大断面図を示す。FIG. 6 shows an enlarged cross-sectional view of one side of the die 2 and the crease holding die 3 in FIG. 5. しわ押さえ金型3の表面及びダイス肩に摩擦力測定手段4を有し、またポンチ1にプレス反力測定手段9を有するプレス金型装置の断面図を示す。A sectional view of a press die apparatus having a frictional force measuring means 4 on the surface of the wrinkle pressing mold 3 and a die shoulder and a press reaction force measuring means 9 on the punch 1 is shown. 摩擦力を制御する本発明例のフローチャートを示す。The flowchart of the example of this invention which controls a frictional force is shown. 図9のフローチャートに示す制御方法を適応した場合のしわ押さえ荷重又は摩擦力とストロークの関係を示す。FIG. 10 shows the relationship between the wrinkle pressing load or friction force and the stroke when the control method shown in the flowchart of FIG. 9 is applied. 摩擦力を制御する別の本発明例のフローチャートを示す。6 shows a flowchart of another example of the present invention for controlling the frictional force. 図11のフローチャートに示す制御方法を適応した場合のしわ押さえ荷重または摩擦力の時間履歴を示す。The time history of a wrinkle pressing load or a friction force when the control method shown in the flowchart of FIG. 11 is applied is shown. 温度を制御する本発明例のフローチャートを示す。The flowchart of the example of this invention which controls temperature is shown. 温度を制御する別の本発明例のフローチャートを示す。6 shows a flowchart of another example of the present invention for controlling temperature. プレス反力を制御する本発明例のフローチャートを示す。The flowchart of the example of the present invention which controls press reaction force is shown. プレス反力を制御する別の本発明例のフローチャートを示す。The flowchart of another example of the present invention which controls press reaction force is shown. 油圧室を内蔵したしわ押さえ荷重調整手段の拡大断面図を示す。The expanded sectional view of the wrinkle pressing load adjusting means incorporating a hydraulic chamber is shown.

符号の説明Explanation of symbols

1 ポンチ 2 ダイス
3 しわ押さえ金型 4 摩擦力測定手段(歪み測定素子)
5 しわ押さえ荷重調整手段 6 被加工物(薄板)
7 平板 8 油圧室
9 プレス反力測定手段 10 測温手段
DESCRIPTION OF SYMBOLS 1 Punch 2 Dies 3 Wrinkle pressing die 4 Friction force measuring means (strain measuring element)
5 Wrinkle holding load adjustment means 6 Workpiece (thin plate)
7 Flat plate 8 Hydraulic chamber 9 Press reaction force measuring means 10 Temperature measuring means

Claims (15)

ポンチ、ダイス及びしわ押さえ金型と、前記ダイス及び前記しわ押さえ金型の間に取り付けられる摩擦力測定手段と、しわ押さえ荷重調節手段を有することを特徴とする薄板のプレス金型装置。   A thin plate die apparatus comprising a punch, a die and a wrinkle holding mold, a frictional force measuring means attached between the die and the wrinkle holding mold, and a wrinkle holding load adjusting means. ポンチ、ダイス及びしわ押さえ金型と、ダイス肩に取り付けられる摩擦力測定手段と、しわ押さえ荷重調節手段を有することを特徴とする薄板のプレス金型装置。   A thin plate press die apparatus comprising a punch, die and wrinkle holding die, a frictional force measuring means attached to the die shoulder, and a wrinkle holding load adjusting means. しわ押さえ金型が複数に分割され、分割されたしわ押さえ金型毎に、摩擦力測定手段を有することを特徴とする請求項1又は2記載の薄板のプレス金型装置。   The thin plate pressing die apparatus according to claim 1 or 2, wherein the wrinkle holding die is divided into a plurality of pieces, and each of the divided wrinkle holding die has a frictional force measuring means. 摩擦力測定手段がピエゾ素子又は歪ゲージであることを特徴とする請求項1〜3の何れか1項に記載の薄板のプレス金型装置。   The thin plate pressing die apparatus according to any one of claims 1 to 3, wherein the frictional force measuring means is a piezo element or a strain gauge. 摩擦力測定手段の代わりに測温手段を有することを特徴とする請求項1〜3の何れか1項に記載の薄板のプレス金型装置。   The thin plate press die apparatus according to any one of claims 1 to 3, further comprising a temperature measuring means instead of the frictional force measuring means. 測温手段が熱電対であることを特徴とする請求項5記載の薄板のプレス金型装置。   6. The thin plate pressing die apparatus according to claim 5, wherein the temperature measuring means is a thermocouple. ポンチ、ダイス及びしわ押さえ金型と、前記ポンチに取り付けられるプレス反力測定手段と、しわ押さえ荷重調節手段を有することを特徴とする薄板のプレス金型装置。   A thin plate press die apparatus comprising a punch, a die and a wrinkle holding die, a press reaction force measuring means attached to the punch, and a wrinkle holding load adjusting means. しわ押さえ金型が複数に分割されていることを特徴とする請求項7記載の薄板のプレス金型装置。   The thin plate pressing die apparatus according to claim 7, wherein the wrinkle holding die is divided into a plurality of pieces. 分割されたしわ押さえ金型毎に独立制御可能なしわ押さえ荷重調整手段を有することを特徴とする請求項3〜6又は8の何れか1項に記載の薄板のプレス金型装置。   The thin plate pressing die apparatus according to any one of claims 3 to 6 or 8, further comprising a wrinkle pressing load adjusting means that can be independently controlled for each of the divided wrinkle pressing dies. 請求項1〜4、又は9のいずれか1項に記載のプレス金型装置を用いた薄板のプレス成形方法であって、前記摩擦力測定手段によって測定された摩擦力が加工中所定範囲となるように、しわ押さえ荷重、ポンチ速度の少なくともいずれか1つを制御することを特徴とする薄板のプレス成形方法。   A thin plate press molding method using the press die device according to any one of claims 1 to 4, or 9, wherein the frictional force measured by the frictional force measuring means falls within a predetermined range during processing. Thus, the thin plate press forming method characterized by controlling at least one of the wrinkle holding load and the punch speed. 請求項1〜4、又は9のいずれか1項に記載のプレス金型装置を用いた薄板のプレス成形方法であって、前記摩擦力測定手段によって測定された摩擦力を用いて、前回の成形で測定した摩擦力としわ押さえ荷重及びポンチ速度の関係に基づいて、前記摩擦力が所定範囲となるようにしわ押さえ荷重、ポンチ速度の少なくともいずれか1つを制御することを特徴とする薄板のプレス成形方法。   A thin plate press molding method using the press die device according to any one of claims 1 to 4, or 9, wherein the previous molding is performed using the frictional force measured by the frictional force measuring means. The thin plate is characterized in that at least one of the wrinkle holding load and the punch speed is controlled so that the friction force falls within a predetermined range based on the relationship between the friction force measured in Step 1 and the wrinkle holding load and the punch speed. Press molding method. 請求項5、6又は9記載のプレス金型装置を用いた薄板のプレス成形方法であって、前記測温手段によって測定された温度が加工中所定範囲となるように、しわ押さえ荷重、ポンチ速度の少なくともいずれか1つを制御することを特徴とする薄板のプレス成形方法。   A thin plate press forming method using the press die apparatus according to claim 5, 6 or 9, wherein the wrinkle holding load and the punch speed are adjusted so that the temperature measured by the temperature measuring means falls within a predetermined range during processing. A method for press forming a thin plate, wherein at least one of the above is controlled. 請求項5、6又は9記載のプレス金型装置を用いた薄板のプレス成形方法であって、前記測温手段によって測定された温度を用いて、前回の成形で測定した温度としわ押さえ荷重及びポンチ速度の関係に基づいて、前記温度が所定範囲となるようにしわ押さえ荷重、ポンチ速度の少なくともいずれか1つを制御することを特徴とする薄板のプレス成形方法。   A thin plate press molding method using the press die device according to claim 5, 6 or 9, wherein the temperature measured by the temperature measurement means, the temperature measured in the previous molding, the wrinkle holding load, and A thin plate press forming method, wherein at least one of a wrinkle holding load and a punch speed is controlled so that the temperature falls within a predetermined range based on a relationship between punch speeds. 請求項7又は8記載のプレス金型装置を用いた薄板のプレス成形方法であって、前記プレス反力測定手段によって測定されたプレス反力が加工中所定範囲となるように、しわ押さえ荷重、ポンチ速度の少なくともいずれか1つを制御することを特徴とする薄板のプレス成形方法。   A thin plate press forming method using the press die apparatus according to claim 7 or 8, wherein the press reaction force measured by the press reaction force measuring means is within a predetermined range during processing, A method for press-forming a thin plate, wherein at least one of punch speeds is controlled. 前記請求項7又は8記載のプレス金型装置を用いた薄板のプレス成形方法であって、前記プレス反力測定手段によって測定されたプレス反力を用いて、前回の成形で測定したプレス反力としわ押さえ荷重及びポンチ速度の関係に基づいて、前記プレス反力が所定範囲となるようにしわ押さえ荷重、ポンチ速度の少なくともいずれか1つを制御することを特徴とする薄板のプレス成形方法。   A press forming method of a thin plate using the press die apparatus according to claim 7 or 8, wherein the press reaction force measured in the previous molding is measured using the press reaction force measured by the press reaction force measuring means. A thin plate press forming method, wherein at least one of a wrinkle holding load and a punch speed is controlled based on a relationship between a wrinkle holding load and a punch speed so that the press reaction force falls within a predetermined range.
JP2003325492A 2003-01-31 2003-09-18 Thin plate press die apparatus and press molding method Expired - Fee Related JP4629965B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003325492A JP4629965B2 (en) 2003-01-31 2003-09-18 Thin plate press die apparatus and press molding method
PCT/JP2004/000917 WO2004067200A1 (en) 2003-01-31 2004-01-30 Press die apparatus for thin plate and press forming method
KR1020057014011A KR100666062B1 (en) 2003-01-31 2004-01-30 Press die apparatus for thin plate and press forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003023216 2003-01-31
JP2003325492A JP4629965B2 (en) 2003-01-31 2003-09-18 Thin plate press die apparatus and press molding method

Publications (2)

Publication Number Publication Date
JP2004249365A true JP2004249365A (en) 2004-09-09
JP4629965B2 JP4629965B2 (en) 2011-02-09

Family

ID=32828918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003325492A Expired - Fee Related JP4629965B2 (en) 2003-01-31 2003-09-18 Thin plate press die apparatus and press molding method

Country Status (3)

Country Link
JP (1) JP4629965B2 (en)
KR (1) KR100666062B1 (en)
WO (1) WO2004067200A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005044481A1 (en) * 2003-11-11 2005-05-19 Nippon Steel Corporation Press forming device, press forming method, computer program, and recording medium
WO2007080983A1 (en) * 2006-01-13 2007-07-19 Nippon Steel Corporation Press molding equipment having means for measuring quantity of strain and press molding method
KR100811937B1 (en) 2006-06-30 2008-03-10 현대자동차주식회사 Forming Limit Diagram Tester
JP2008149349A (en) * 2006-12-18 2008-07-03 Nippon Steel Corp Die for blanking press of sheet and blanking method
JP2008188634A (en) * 2007-02-05 2008-08-21 Nippon Steel Corp Press forming die device and press forming method
WO2008140122A1 (en) 2007-05-09 2008-11-20 Nippon Steel Corporation Thin plate press molding device and thin plate press molding method
JP2009274138A (en) * 2009-08-26 2009-11-26 Nippon Steel Corp Press formation system, press formation method and computer program
WO2010041662A1 (en) 2008-10-07 2010-04-15 新日本製鐵株式会社 Metallic press-formed piece crack determining method, apparatus, program and recording medium
US8091395B2 (en) 2004-09-10 2012-01-10 Nippon Steel Corporation System, method, software arrangement and computer-accessible medium for press-forming of materials
JP2014039959A (en) * 2013-12-06 2014-03-06 Nippon Steel & Sumitomo Metal Manufacturing method and manufacturing device for drawn product made of galvannealed steel sheet
WO2018168311A1 (en) * 2017-03-17 2018-09-20 株式会社ヒロテック Drawing device
JP2019052935A (en) * 2017-09-14 2019-04-04 ユニバーサル製缶株式会社 Pressure measuring sensor and pressure measurement method
JP2020169937A (en) * 2019-04-05 2020-10-15 株式会社トヨタプロダクションエンジニアリング Wear amount detecting device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101209466B (en) * 2006-12-31 2011-05-25 比亚迪股份有限公司 Flanging method suitable for bending pipe fitting molding and cavity die suitable for the method
KR101299306B1 (en) * 2011-10-28 2013-08-26 현대제철 주식회사 Magnetic forming device
WO2015008495A1 (en) * 2013-07-19 2015-01-22 Jfeスチール株式会社 Press molding method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266923A (en) * 1988-04-16 1989-10-24 Kenichi Manabe Adaptive control deep drawing method
JPH06304800A (en) * 1993-02-25 1994-11-01 Toyota Motor Corp Diagnostic method for abnormality of press machine
JPH08150427A (en) * 1994-11-28 1996-06-11 Res Dev Corp Of Japan Drawing method for square cylinder
JP2002086219A (en) * 2000-09-12 2002-03-26 Toyota Motor Corp Method and apparatus for controlling blank holder pressure and press forming machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05161925A (en) * 1991-12-13 1993-06-29 Sumitomo Metal Ind Ltd Press forming
JP2722936B2 (en) * 1992-04-07 1998-03-09 トヨタ自動車株式会社 Automatic change device for wrinkle holding load of press machine
JP2722937B2 (en) * 1992-04-07 1998-03-09 トヨタ自動車株式会社 Wrinkle press load measuring device for press machine
JPH07266100A (en) * 1994-03-31 1995-10-17 Toyota Motor Corp Method and device for setting pressing condition
JP2812201B2 (en) * 1994-07-15 1998-10-22 トヨタ自動車株式会社 Press equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01266923A (en) * 1988-04-16 1989-10-24 Kenichi Manabe Adaptive control deep drawing method
JPH06304800A (en) * 1993-02-25 1994-11-01 Toyota Motor Corp Diagnostic method for abnormality of press machine
JPH08150427A (en) * 1994-11-28 1996-06-11 Res Dev Corp Of Japan Drawing method for square cylinder
JP2002086219A (en) * 2000-09-12 2002-03-26 Toyota Motor Corp Method and apparatus for controlling blank holder pressure and press forming machine

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100826333B1 (en) * 2003-11-11 2008-05-02 신닛뽄세이테쯔 카부시키카이샤 Press forming device, press forming method, and recording medium storing computer program
WO2005044481A1 (en) * 2003-11-11 2005-05-19 Nippon Steel Corporation Press forming device, press forming method, computer program, and recording medium
US8965554B2 (en) 2003-11-11 2015-02-24 Nippon Steel & Sumitomo Metal Coporation Press-forming device, press-forming method, computer program/software arrangement and storage medium
US8020418B2 (en) 2003-11-11 2011-09-20 Nippon Steel Corporation Press-forming device, press-forming method, computer program/software arrangement and storage medium
US8091395B2 (en) 2004-09-10 2012-01-10 Nippon Steel Corporation System, method, software arrangement and computer-accessible medium for press-forming of materials
WO2007080983A1 (en) * 2006-01-13 2007-07-19 Nippon Steel Corporation Press molding equipment having means for measuring quantity of strain and press molding method
JP5014155B2 (en) * 2006-01-13 2012-08-29 新日本製鐵株式会社 Press molding apparatus and press molding method having strain amount measuring means
US8234897B2 (en) 2006-01-13 2012-08-07 Nippon Steel Corporation Press-forming device and press-forming method
KR101097005B1 (en) * 2006-01-13 2011-12-20 아르셀러 프랑스 Press molding equipment having means for measuring quantity of strain and press molding method
KR100811937B1 (en) 2006-06-30 2008-03-10 현대자동차주식회사 Forming Limit Diagram Tester
JP2008149349A (en) * 2006-12-18 2008-07-03 Nippon Steel Corp Die for blanking press of sheet and blanking method
JP2008188634A (en) * 2007-02-05 2008-08-21 Nippon Steel Corp Press forming die device and press forming method
WO2008140122A1 (en) 2007-05-09 2008-11-20 Nippon Steel Corporation Thin plate press molding device and thin plate press molding method
JPWO2008140122A1 (en) * 2007-05-09 2010-08-05 新日本製鐵株式会社 Thin plate press forming apparatus and press forming method
JP5170089B2 (en) * 2007-05-09 2013-03-27 新日鐵住金株式会社 Thin plate press forming apparatus and press forming method
US8584496B2 (en) 2007-05-09 2013-11-19 Nippon Steel & Sumitomo Metal Corporation Device for press-forming a thin sheet and press-forming method
WO2010041662A1 (en) 2008-10-07 2010-04-15 新日本製鐵株式会社 Metallic press-formed piece crack determining method, apparatus, program and recording medium
US8464591B2 (en) 2008-10-07 2013-06-18 Nippon Steel & Sumitomo Metal Corporation Method and apparatus for judging fracture of metal stamped product, program and computer-readable recording medium
JP2009274138A (en) * 2009-08-26 2009-11-26 Nippon Steel Corp Press formation system, press formation method and computer program
JP2014039959A (en) * 2013-12-06 2014-03-06 Nippon Steel & Sumitomo Metal Manufacturing method and manufacturing device for drawn product made of galvannealed steel sheet
WO2018168311A1 (en) * 2017-03-17 2018-09-20 株式会社ヒロテック Drawing device
JP2019052935A (en) * 2017-09-14 2019-04-04 ユニバーサル製缶株式会社 Pressure measuring sensor and pressure measurement method
JP2020169937A (en) * 2019-04-05 2020-10-15 株式会社トヨタプロダクションエンジニアリング Wear amount detecting device
JP7263087B2 (en) 2019-04-05 2023-04-24 株式会社トヨタプロダクションエンジニアリング Abrasion detector

Also Published As

Publication number Publication date
WO2004067200A1 (en) 2004-08-12
KR20050094894A (en) 2005-09-28
KR100666062B1 (en) 2007-01-10
JP4629965B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
JP4629965B2 (en) Thin plate press die apparatus and press molding method
CA2545224A1 (en) Press-forming device, press-forming method, computer program product and storage medium
EP1980339B1 (en) Press molding equipment having means for measuring quantity of strain
Tian et al. Investigation on tribological behavior of advanced high strength steels: influence of hot stamping process parameters
Chumrum et al. Experimental investigation of energy and punch wear in piercing of advanced high-strength steel sheet
JPS6156744A (en) Method and device for adjusting holding force applied to work by hold-down plate for molding press
Irthiea et al. Evaluation of micro deep drawing technique using soft die-simulation and experiments
Wang et al. Determination of optimal blank holder force trajectories for segmented binders of step rectangle box using PID closed-loop FEM simulation
US8296110B2 (en) Forming condition determination method and forming condition determination system
Siegert et al. Tendencies in presses and dies for sheet metal forming processes
JPH0270400A (en) Method and device for reducing punching stress of stamper with fixing contact tool
Irthiea Experimental and numerical evaluation of micro flexible deep drawing technique using floating ring
JP6874848B2 (en) Cold press molding equipment and cold press molding method
Brabie et al. Minimization of sheet thickness variation and other defects of mini drawn parts using a blank holder plate made from concentric rings
Wang et al. Plastic deformation of workpiece during unloading in plate compression
JP4231426B2 (en) Metal material molding simulation method
CN111420999A (en) Method for controlling temperature difference between upper surface and lower surface of finish rolling intermediate billet
CN100496792C (en) Press die apparatus for thin plate and press forming method
Xu et al. Drawbeads in sheet metal stamping-a review
Abass Supporting plate edge radius and internal hole diameter relation effect on the springback in incremental forming, part B
JP2005125355A (en) Method and device for pressing sheet using material inflow control
JP2006289498A (en) Press machine
JPH0929358A (en) Precise shape controlling press die
Böhm et al. Study on Scrap Reduction in Cold Forging During Ramp-Up Phases Through Actuator Control
Mehrara et al. Analysis of the elastic and plastic roll bending of sheet metal on a rubber pad

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4629965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees