JP2004246263A - Method of manufacturing dielectric multi-layer film filter element - Google Patents

Method of manufacturing dielectric multi-layer film filter element Download PDF

Info

Publication number
JP2004246263A
JP2004246263A JP2003038408A JP2003038408A JP2004246263A JP 2004246263 A JP2004246263 A JP 2004246263A JP 2003038408 A JP2003038408 A JP 2003038408A JP 2003038408 A JP2003038408 A JP 2003038408A JP 2004246263 A JP2004246263 A JP 2004246263A
Authority
JP
Japan
Prior art keywords
filter element
light
heating
wavelength
dielectric multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003038408A
Other languages
Japanese (ja)
Inventor
Toshisada Sekiguchi
利貞 関口
Yoshikiyo Noguchi
善清 野口
Kenji Nishiwaki
賢治 西脇
Hideyuki Hosoya
英行 細谷
Makiko Yokoyama
磨紀子 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2003038408A priority Critical patent/JP2004246263A/en
Publication of JP2004246263A publication Critical patent/JP2004246263A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a filter element capable of minimizing fluctuation of a center wavelength of transmission light in the filter element by a simple method, uniformalizing the optical characteristic in the filter element, and reducing an adjustment process or the like in incorporating this filter element into a small optical component. <P>SOLUTION: The filter element 7 is irradiated with a laser beam for heating, and a filter raw material is irradiated with a measuring beam and the wavelength of the transmission light through a dielectric thin film is measured by a photo-receiving unit for measurement 12. The heating light is pulse light of 50 ms or shorter for causing temperature distribution on the filter element 7, and is moved on the filter element 7. The wavelengths transmitting the filter element 7 are measured and the irradiation time and movement of the heating light are controlled, and the filter element is manufactured so that the wavelengths of the transmission light are distributed within the range of ±0.1nm on the whole element. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、バンドパスフィルタやチャンネルフィルタ,利得等化フィルタなどに用いられる誘電体多層膜フィルタ素子の製造方法に関する。
【0002】
【従来の技術】
図5は、誘電体多層膜フィルタ素子を用いたバンドパスフィルタなどの光部品の例を示すもので、図中符号24,25は、GRINレンズである。このGRINレンズはロッドレンズとも言われ、屈折率が半径方向に指数関数的に連続的に変化するものである。このGRINレンズ24,25は、2個1対で用いられ、その間には誘電体多層膜フィルタ素子26が設けられている。また、GRINレンズ24,25の他端には1対のガラスキャピラリ27,28が設けられている。ガラスキャピラリ27,28には、光を入射、透過あるいは反射するためのポートとなる光ファイバ29,30,31がそれぞれ挿入され、固定されている。
【0003】
そして、上記誘電体多層膜フィルタ素子(以下、フィルタ素子と略す。)26は、通常、直径10cm程度の大きさのガラス板または外径30cm、内径20cmの円環状のガラス板などの基板上に、TaやSiOなどの誘電体薄膜を交互に数十〜数百層、蒸着法やスパッタ法などにより堆積して得られたフィルタ素材を、数mm角の大きさに切断したチップ状として使用されている。
【0004】
このようにして作られたフィルタ素子の光学特性は、フィルタ基板の種類,蒸着された誘電体多層膜の膜の種類や膜厚,フィルタ素子の大きさ等の要因に依存する。このため、1個のフィルタ素子内で、中心部に比べ周辺部は透過光の中心波長が短くなる。図6は、平面寸法が1mm角のフィルタ素子の透過光の中心波長の分布の一例を示すもので、フィルタ素子の中心部と周辺部では、約1nmの変動がある。また、この変動はほぼ円状になっている。
【0005】
このようなフィルタ素子内での中心波長の分布は、図5に示したような光部品を小型化する上で(特願2001−104929号)、大きな障害となる。すなわち、このような小型の光部品を組み立てる際に、フィルタ素子26に対する光軸の位置調整が数十μmの精度で必要となり、さらに光軸に対して垂直方向のフィルタ素子26の位置の微細な調整も必要となり、工数が増え設備が複雑となる欠点がある。
【0006】
さらに、光部品の組立調整後にフィルタ素子26を固定する際に、筐体の熱膨張や接着剤の収縮、ハンダの表面張力などによってフィルタ素子26の位置がずれた場合に、透過光の中心波長が変動し、光部品としての機能を満たさなくなる。
【0007】
このような問題に対処する方法として、フィルタ素子を加熱炉内に収めて加熱して、透過光の中心波長分布を均一とするものがある。しかし、この方法は、個々のフィルタ素子毎に、加熱時間や加熱温度といった処理条件を検量線を予め作成しておいて決定する方法や過去の経験に基づいて決定する方法などで行われており、的確な処理条件を探すのが難しく、多数のフィルタ素子の処理には多くの時間を要した。
このようなフィルタ素子に関する先行技術文献としては、例えば以下に示すものがある。
【0008】
【特許文献1】
特開平10−115711号公報
【0009】
【発明が解決しようとする課題】
よって、本発明における課題は、簡便な方法によりフィルタ素子内での透過光の中心波長の変動を極力小さくし、フィルタ素子内での光学特性を均一とし、このフィルタ素子を小型の光部品に組み込む際の調整工程等を軽減できるフィルタ素子を得ることにある。
【0010】
【課題を解決するための手段】
かかる課題を解決するため、請求項1に記載した発明は、基板上に誘電体薄膜を多層に堆積してなるフィルタ基板を切断して作られたフィルタ素子に対して、加熱光を照射して加熱するとともに、測定光をフィルタ素材に照射し誘電体薄膜の透過光の波長を測定することを特徴とする誘電体多層膜フィルタ素子の製造方法である。
【0011】
請求項2に記載した発明は、加熱光と測定光を交互に照射することを特徴とする請求項1に記載の誘電体多層膜フィルタ素子の製造方法である。
請求項3に記載した発明は、加熱光が、光束の中心を通る断面での光強度分布が双峰状であり、この光を基板上に照射することを特徴とする請求項1または2に記載の誘電体多層膜フィルタ素子の製造方法である。
請求項4に記載した発明は、加熱光が、ガウス分布状の光強度分布を有するものであり、この光を基板上に移動しつつ照射することを特徴とする請求項1または2に記載の誘電体多層膜フィルタ素子の製造方法である。
【0012】
請求項5に記載した発明は、加熱光が、炭酸ガスレーザ光、YAGレーザ光またはチタンサファイヤレーザ光であることを特徴とする請求項1ないし4のいずれかに記載の誘電体多層膜フィルタ素子の製造方法である。
請求項6に記載した発明は、レーザ光が、50ms以下のパルス発振光であることを特徴とする請求項5に記載の誘電体多層膜フィルタ素子の製造方法である。
請求項7に記載した発明は、請求項1ないし6のいずれかに記載の製造方法で製造された、透過光波長が均一な誘電体多層膜フィルタ素子である。
請求項8に記載した発明は、透過光波長の分布が素子の実効領域で、±0.1nmの範囲内である請求項7記載の誘電体多層膜フィルタ素子である。
【0013】
【発明の実施の形態】
以下、本発明を詳しく説明する。
図1は、本発明の誘電体フィルタ素子の製造方法に用いられる装置の一例を示すものである。図中符号2は、加熱用光源を示す。この加熱用光源2には、例えば炭酸ガスレーザ装置、YAGレーザ装置、チタンサファイアレーザ装置などが用いられる。この加熱用光源2からの波長10.6μmの炭酸ガスレーザ光や波長1.06μmのYAGレーザ光、波長0.78μmのチタンサファイアレーザ光などの加熱光は、ビームコンバイナ5に入射される。この加熱光は、フィルタ素子の基板または誘電体多層膜に吸収されてこれを加熱する波長のものが用いられる。
【0014】
一方、図中符号1は、測定用光源を示す。この測定用光源1には、例えば端面発光ダイオードなどのフィルタ素子の基板または誘電体多層膜に吸収されない性質の光を発するものが用いられる。測定用光源1からの波長1.2〜1.6μmの測定光は、導波用光ファイバ3を経て、コリメータ4に送られ、ここで平行光とされたうえ、ビームコンバイナ5に入射される。測定光の光束は、加熱光の光束よりも小さく、通常は直径100〜400μmとされる。
ビームコンバイナ5においては、上記に加熱光と測定光とが同一光軸上に位置されるようになっている。ビームコンバイナ5を出た光は、集光レンズ6で集光されたうえ、被加工物であるフィルタ素子7に照射される。フィルタ素子7は、図示しない2次元微動テーブル上に載置され、2次元方向に移動自在となっている。
【0015】
フィルタ素子7を透過した光は、レンズ8を経て、ビームスプリッタ9に送られ、ここで加熱光と測定光に分離され、測定光はコリメータ10及び光ファイバ11を介して測定用受光器12に入射されるようになっている。受光された測定光は、スペクトルアナライザにてフィルタ素子7の透過光の波長が精密に0.01nmのオーダーまで測定される。ビームスプリッタ9で分離された加熱光は、外部に放散される。
【0016】
次に、この装置を用いるフィルタ素子の製造方法の例について説明する。
図2は、フィルタ素子7の透過光波長の測定点の分布の一例を示すものである。まず、フィルタ素子の中心である点13に測定光を照射し、フィルタ素子7の中心透過光波長を測定する。次に、フィルタ素子7もしくは測定光を移動し、フィルタ素子7の外縁部に近い点14,点15,点16及び点17のいずれかの位置に測定光を照射し、その位置の透過光波長を測定する。ついで、点18,点19,点20及び点21のいずれかの位置に測定光を照射し、その透過光波長を測定する。
以上の方法により、フィルタ素子内で3点以上の透過光波長を測定することで、フィルタ素子全体の透過光波長の分布が推定される。
【0017】
ついで、このようにして得られたフィルタ素子7全体の透過光波長の分布に基づいて、フィルタ素子7に加熱光を照射することになる。図3は、一辺の長さが2aのフィルタ素子7へ照射する加熱光の移動軌跡の一例を示すものである。
まず、フィルタ素子7もしくは加熱光の光束23を動かし、フィルタ素子の中心を円の中心とした半径0.8xaの円周上に加熱光を1周させる。次に、加熱光の出力をやや落として、フィルタ素子7の中心を円の中心とした半径0.5xaの円周上に加熱光を1周させる。
【0018】
こうして加熱されたフィルタ素子7において、図2に示すフィルタ素子7の中心の点13、フィルタ素子7の外縁部の点14ないし点17のいずれか、及び点18ないし点21のいずれかの位置の合計3点の透過光波長を再度測定する。3点の透過光の波長と要求する透過光波長との差が製品の要求値以下であれば、加熱処理を終了する。
【0019】
3点で測定された透過光波長と要求される透過光波長との差が製品の要求値より大きい時は、再度、フィルタ素子7もしくは加熱光の光束を動かし、フィルタ素子の中心を円の中心とした半径0.8xaの円周上、もしくは半径0.5xaの円周上を加熱光を1周させる。その後、図2に示すフィルタ素子7の中心の点13、フィルタ素子7の外縁部の点14ないし点17のいずれか、及び点18ないし点21のいずれかの部分の合計3点の透過光波長を再度測定する。3点で測定された透過光の波長と要求する波長との差が製品の要求値以下になるまで、加熱処理と透過光波長値の測定を繰り返す。
【0020】
また、本発明では、加熱光によるフィルタ素子7に対する加熱と、測定光による透過光波長の測定とを同時に行うようにしてもよい。これには、加熱用光源2からの加熱光と測定用光源1からの測定光とをビームコンバイナ5で重畳した光をフィルタ素子7に照射すればよい。
【0021】
次に、フィルタ素子を加熱する光について説明する。
フィルタ素子の加熱光は、波長10.6μmの炭酸ガスレーザ光や波長1.06μmのYAGレーザ光、また、0.78μmのチタンサファイアレーザ光などである。照射される加熱光は、熱の拡散によってフィルタ素材が均一に加熱されることを防ぐために、50ms以下、好ましくは20〜30msのパルス発振光である。加熱光の光束は、大きさが1〜2mm角のフィルタ素子では直径500〜1000μmで、実際に加熱効果のある部分は、直径100〜400μmである。また、大きさが1mm角以下のフィルタ素子ではフィルタ素子の大きさの1/2以下で、通常は直径100μmである。
【0022】
加熱光には、強度が10〜40kJ/cmのガウス型の強度分布を持つもの、もしくは、ガウス型強度分布の光の光束の中心部分をNDフィルタを使って光の強度を弱め、図4に示す光束の中心を通る断面での光強度分布が、双峰状であるものが用いられる。
ガウス型の強度分布を持つ加熱光は、フィルタ素子の加熱効果を高めるために、フィルタ素子上で光束を円状に移動させる。一方、光束の中心を通る断面での光強度分布が双峰状である加熱光では、光束の中心とフィルタ素子の中心を一致させると、光束の中心よりも強い光がフィルタ素子の中心位置の周辺部に照射される。よって、フィルタ素子の透過光波長を長くしたい周辺部分を加熱光の光束を移動させずに加熱できる。
【0023】
フィルタ素材から切り出された加熱処理前のフィルタ素子において、その素子内での透過光波長は、中央部と周辺部で約1nmの差を持ち、中心部よりも周辺部が短波長となっている。フィルタ素子の透過光波長測定と、加熱光のフィルタ素子の中心を円の中心とした円周上を移動させる照射を交互に行うことにより、加熱されたフィルタ素子は、その素子内における透過光波長が均一化される。
【0024】
すなわちフィルタ素子を加熱光により加熱すると、加熱された部分の透過光の中心波長が長波長側にシフトするため、フィルタ素子の主に周辺部に加熱光を照射することで、周辺部の中心波長が長波長に移動する。
この結果、中心波長を監視しつつ加熱量を調整することで、フィルタ素子の中央部と周辺部での透過光の中心波長の差を±0.1nmの範囲内におさえることが十分可能である。
【0025】
このようなフィルタ素子の製法では、上述のように透過光中心波長の変動幅が、ほぼ素子全域においてきわめて小さいものとなり、変動幅を±0.1nmの範囲内に抑えることができる。
また、この製法では、フィルタ素子を1つ1つ処理しなければならない。しかし、通常、厳密な透過光の波長特性が要求されるフィルタ素子においては、透過光波長の保証のために最低1回、加熱処理の前、後または組立中に、光学特性を測定しなければならない。本発明でも、測定のためにフィルタ素子をトレイに並べ替えることや、測定の際の光軸合わせ、フィルタ素子面の角度調整などの作業工数には従来のものとは大きな差はないが、フィルタ素子を所望の透過光波長に厳密に合わせることができ、後の光部品の組立工程において、光の入射角度や入射位置を調整することにより、フィルタ素子の光学特性を微調整する必要がなくなり、組立が容易となり製造コストが削減できる。
【0026】
次に、本発明の誘電体多層膜フィルタ素子について説明する。
本発明の誘電体多層膜フィルタ素子は、上述の製法によって製造されたものであって、透過光の中心波長の変動幅が素子全面において±0.1nm以下のものである。このため、本発明のフィルタ素子は、CWDM用バンドパスフィルタやDWDM用バンドパスフィルタなど極めて高い波長精度が要求される用途に使用しうるものとなる。
【0027】
【発明の効果】
以上説明したように、本発明の誘電体多層膜フィルタ素子の製法によれば、透過光の波長を検知しながら加熱することができるので、設定する特性値と極めて近い値での製造が可能である。また、フィルタ素子に細かな温度分布を生じさせて加熱することで、フィルタ素子の透過光の中心波長変動幅を±0.1nmの範囲内にすることができる。
このため、このフィルタ素子を光部品に組み込む時に、光軸に対するフィルタの位置調整を行う必要がなく、フィルタ素子を固定する際に、接着剤の収縮,ハンダの表面張力による移動,筐体の熱膨張などの影響に対しても、光学特性の変化は起こらない。
【図面の簡単な説明】
【図1】本発明の誘電体多層膜フィルタ素子の製造方法に用いられる装置の
一例を示す概略構成図である。
【図2】フィルタ素子の透過光波長測定点の一例を示す平面図である。
【図3】フィルタ素子上の加熱光移動軌跡の一例を示す平面図である。
【図4】照射する加熱光の中心を通る断面での光強度分布の一例を示す図である。
【図5】誘電体多層膜フィルタ素子を使用する光部品の一例を示す概略構成図である。
【図6】加熱処理加工を行う前の誘電体多層膜フィルタ素子の透過光波長分布を示す図である。
【符号の説明】
1・・・・測定用光源,2・・・・加熱用光源,5・・・・ビームコンバイナ,7・・・・誘電体多層膜フィルタ素子,9・・・・ビームスプリッタ,12・・・・測定用受光器,13〜21・・・・透過光波長測定点,23・・・・加熱用光束
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a dielectric multilayer filter element used for a bandpass filter, a channel filter, a gain equalizing filter, and the like.
[0002]
[Prior art]
FIG. 5 shows an example of an optical component such as a band-pass filter using a dielectric multilayer filter element. Reference numerals 24 and 25 in the figure denote GRIN lenses. This GRIN lens is also called a rod lens, and has a refractive index that continuously changes exponentially in the radial direction. The GRIN lenses 24 and 25 are used in pairs, and a dielectric multilayer filter element 26 is provided therebetween. Further, a pair of glass capillaries 27 and 28 are provided at the other ends of the GRIN lenses 24 and 25. Optical fibers 29, 30, 31 serving as ports for entering, transmitting, or reflecting light are inserted into glass capillaries 27, 28, respectively, and are fixed.
[0003]
The dielectric multilayer filter element (hereinafter, abbreviated as a filter element) 26 is usually placed on a substrate such as a glass plate having a diameter of about 10 cm or an annular glass plate having an outer diameter of 30 cm and an inner diameter of 20 cm. , A filter material obtained by alternately depositing several tens to several hundred layers of dielectric thin films such as Ta 2 O 5 and SiO 2 by a vapor deposition method, a sputtering method, or the like, and cutting the filter material into a size of several mm square. Used as a form.
[0004]
The optical characteristics of the filter element thus manufactured depend on factors such as the type of filter substrate, the type and thickness of the deposited dielectric multilayer film, and the size of the filter element. For this reason, in one filter element, the central wavelength of the transmitted light is shorter in the peripheral portion than in the central portion. FIG. 6 shows an example of the distribution of the center wavelength of the transmitted light of the filter element having a plane size of 1 mm square. The central part and the peripheral part of the filter element fluctuate by about 1 nm. This variation is substantially circular.
[0005]
Such a distribution of the center wavelength in the filter element is a major obstacle in miniaturizing the optical component as shown in FIG. 5 (Japanese Patent Application No. 2001-104929). That is, when assembling such a small optical component, it is necessary to adjust the position of the optical axis with respect to the filter element 26 with an accuracy of several tens of μm, and to further finely adjust the position of the filter element 26 in the direction perpendicular to the optical axis. Adjustment is also required, which has the disadvantage of increasing the number of steps and complicating the equipment.
[0006]
Further, when the filter element 26 is fixed after the optical components are assembled and adjusted, if the position of the filter element 26 is displaced due to thermal expansion of the housing, contraction of the adhesive, surface tension of solder, etc. Fluctuates and the function as an optical component is not satisfied.
[0007]
As a method for coping with such a problem, there is a method in which the filter element is placed in a heating furnace and heated to make the central wavelength distribution of transmitted light uniform. However, this method is performed by a method of determining a processing condition such as a heating time or a heating temperature for each individual filter element by creating a calibration curve in advance, or a method of determining based on past experience. However, it was difficult to find the proper processing conditions, and it took a lot of time to process a large number of filter elements.
Prior art documents relating to such a filter element include, for example, the following.
[0008]
[Patent Document 1]
JP 10-115711 A
[Problems to be solved by the invention]
Therefore, an object of the present invention is to minimize the fluctuation of the center wavelength of transmitted light in a filter element by a simple method, make the optical characteristics in the filter element uniform, and incorporate this filter element into a small optical component. It is an object of the present invention to obtain a filter element which can reduce the adjustment step and the like at the time.
[0010]
[Means for Solving the Problems]
In order to solve this problem, the invention described in claim 1 irradiates heating light to a filter element formed by cutting a filter substrate formed by depositing a dielectric thin film in multiple layers on the substrate. A method for manufacturing a dielectric multilayer filter element, comprising heating and irradiating measurement light to a filter material to measure the wavelength of light transmitted through a dielectric thin film.
[0011]
According to a second aspect of the present invention, there is provided the method for manufacturing a dielectric multilayer filter element according to the first aspect, wherein the heating light and the measurement light are alternately irradiated.
The invention according to claim 3 is characterized in that the heating light has a bimodal light intensity distribution in a cross section passing through the center of the light beam, and irradiates the substrate with the light. It is a manufacturing method of the dielectric multilayer filter element of the above description.
According to a fourth aspect of the present invention, the heating light has a Gaussian light intensity distribution, and the light is irradiated while moving on the substrate. 3 is a method for manufacturing a dielectric multilayer filter element.
[0012]
According to a fifth aspect of the present invention, the heating light is a carbon dioxide gas laser beam, a YAG laser beam or a titanium sapphire laser beam. It is a manufacturing method.
The invention according to claim 6 is the method for manufacturing a dielectric multilayer filter element according to claim 5, wherein the laser light is pulse oscillation light of 50 ms or less.
According to a seventh aspect of the present invention, there is provided a dielectric multilayer filter element having a uniform transmitted light wavelength manufactured by the manufacturing method according to any one of the first to sixth aspects.
The invention according to claim 8 is the dielectric multilayer filter element according to claim 7, wherein the distribution of the transmitted light wavelength is within the range of ± 0.1 nm in the effective area of the element.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
FIG. 1 shows an example of an apparatus used in the method for manufacturing a dielectric filter element of the present invention. Reference numeral 2 in the drawing denotes a heating light source. As the heating light source 2, for example, a carbon dioxide laser device, a YAG laser device, a titanium sapphire laser device, or the like is used. Heating light from the heating light source 2 such as a carbon dioxide gas laser beam having a wavelength of 10.6 μm, a YAG laser beam having a wavelength of 1.06 μm, and a titanium sapphire laser beam having a wavelength of 0.78 μm is incident on the beam combiner 5. The heating light having a wavelength that is absorbed by the substrate of the filter element or the dielectric multilayer film and heats it is used.
[0014]
On the other hand, reference numeral 1 in the drawing denotes a measurement light source. As the measurement light source 1, a light source that emits light having a property that is not absorbed by a substrate of a filter element such as an edge light emitting diode or a dielectric multilayer film is used. The measuring light having a wavelength of 1.2 to 1.6 μm from the measuring light source 1 is sent to the collimator 4 via the optical fiber for guiding 3, is converted into parallel light here, and is incident on the beam combiner 5. . The luminous flux of the measurement light is smaller than the luminous flux of the heating light, and usually has a diameter of 100 to 400 μm.
In the beam combiner 5, the heating light and the measurement light are positioned on the same optical axis. The light that has exited the beam combiner 5 is condensed by a condenser lens 6 and then applied to a filter element 7 that is a workpiece. The filter element 7 is mounted on a two-dimensional fine movement table (not shown) and is movable in two-dimensional directions.
[0015]
The light transmitted through the filter element 7 is sent to a beam splitter 9 via a lens 8, where it is separated into heating light and measurement light, and the measurement light is transmitted to a measurement light receiver 12 via a collimator 10 and an optical fiber 11. It is designed to be incident. The received measurement light is measured by a spectrum analyzer to a wavelength of light transmitted through the filter element 7 precisely to the order of 0.01 nm. The heating light split by the beam splitter 9 is radiated to the outside.
[0016]
Next, an example of a method for manufacturing a filter element using this apparatus will be described.
FIG. 2 shows an example of the distribution of the measurement points of the transmitted light wavelength of the filter element 7. First, the point 13 which is the center of the filter element is irradiated with measurement light, and the center transmitted light wavelength of the filter element 7 is measured. Next, the filter element 7 or the measurement light is moved, and any one of the points 14, 15, 15, 16 and 17 close to the outer edge of the filter element 7 is irradiated with the measurement light. Is measured. Then, any one of the points 18, 19, 20, and 21 is irradiated with the measuring light, and the transmitted light wavelength is measured.
By measuring the transmitted light wavelengths at three or more points in the filter element by the above method, the distribution of the transmitted light wavelength of the entire filter element is estimated.
[0017]
Then, heating light is irradiated to the filter element 7 based on the distribution of the transmitted light wavelength of the entire filter element 7 obtained in this manner. FIG. 3 shows an example of the movement locus of the heating light applied to the filter element 7 having a side length of 2a.
First, the filter element 7 or the luminous flux 23 of the heating light is moved so that the heating light makes one round on the circumference of a circle having a radius of 0.8xa with the center of the filter element as the center of the circle. Next, the output of the heating light is slightly reduced, and the heating light is caused to make one round on a circumference having a radius of 0.5xa with the center of the filter element 7 as the center of the circle.
[0018]
In the filter element 7 thus heated, the center point 13 of the filter element 7 shown in FIG. 2, any one of the points 14 to 17 on the outer edge of the filter element 7, and any one of the points 18 to 21 are located. The transmitted light wavelengths at three points in total are measured again. If the difference between the wavelength of the transmitted light at the three points and the required transmitted light wavelength is equal to or less than the required value of the product, the heating process is terminated.
[0019]
When the difference between the transmitted light wavelength measured at three points and the required transmitted light wavelength is larger than the required value of the product, the filter element 7 or the luminous flux of the heating light is moved again, and the center of the filter element is moved to the center of the circle. The heating light is caused to make one round on the circumference with a radius of 0.8xa or on the circumference with a radius of 0.5xa. Thereafter, a total of three transmitted light wavelengths of the point 13 at the center of the filter element 7 shown in FIG. 2, any one of the points 14 to 17 at the outer edge of the filter element 7, and any one of the points 18 to 21 are shown. Is measured again. The heat treatment and the measurement of the transmitted light wavelength value are repeated until the difference between the wavelength of the transmitted light measured at three points and the required wavelength is equal to or less than the required value of the product.
[0020]
In the present invention, the heating of the filter element 7 by the heating light and the measurement of the transmitted light wavelength by the measuring light may be performed simultaneously. This can be achieved by irradiating the filter element 7 with light in which the heating light from the heating light source 2 and the measurement light from the measurement light source 1 are superimposed by the beam combiner 5.
[0021]
Next, light for heating the filter element will be described.
The heating light for the filter element is a carbon dioxide gas laser beam having a wavelength of 10.6 μm, a YAG laser beam having a wavelength of 1.06 μm, or a titanium sapphire laser beam having a wavelength of 0.78 μm. The applied heating light is a pulse oscillation light of 50 ms or less, preferably 20 to 30 ms in order to prevent the filter material from being uniformly heated by diffusion of heat. The luminous flux of the heating light has a diameter of 500 to 1000 μm in a filter element having a size of 1 to 2 mm square, and a portion having an actual heating effect has a diameter of 100 to 400 μm. Further, in the case of a filter element having a size of 1 mm square or less, the size is equal to or less than 1/2 of the size of the filter element, and is usually 100 μm in diameter.
[0022]
The heating light has a Gaussian intensity distribution having an intensity of 10 to 40 kJ / cm 2 , or the central part of the light flux of the Gaussian intensity distribution is weakened by using an ND filter to reduce the intensity of the light. The light intensity distribution in the cross section passing through the center of the light beam shown in FIG.
The heating light having the Gaussian intensity distribution moves the light beam in a circular shape on the filter element in order to enhance the heating effect of the filter element. On the other hand, in the heating light in which the light intensity distribution in the cross section passing through the center of the light beam is bimodal, when the center of the light beam is matched with the center of the filter element, light stronger than the center of the light beam is located at the center position of the filter element. Irradiated to the periphery. Therefore, it is possible to heat the peripheral portion of the filter element where the wavelength of the transmitted light is desired to be longer without moving the luminous flux of the heating light.
[0023]
In the filter element before heat treatment cut out from the filter material, the transmitted light wavelength in the element has a difference of about 1 nm between the central part and the peripheral part, and the peripheral part has a shorter wavelength than the central part. . By alternately performing the measurement of the transmitted light wavelength of the filter element and the irradiation of the heating light moving on a circle with the center of the filter element as the center of the circle, the heated filter element obtains the transmitted light wavelength within the element. Is made uniform.
[0024]
In other words, when the filter element is heated by the heating light, the central wavelength of the transmitted light in the heated portion shifts to the longer wavelength side. Move to longer wavelengths.
As a result, by adjusting the heating amount while monitoring the center wavelength, it is possible to sufficiently keep the difference in the center wavelength of the transmitted light between the center and the periphery of the filter element within the range of ± 0.1 nm. .
[0025]
In such a filter element manufacturing method, as described above, the fluctuation width of the central wavelength of transmitted light is extremely small in almost the entire area, and the fluctuation width can be suppressed within a range of ± 0.1 nm.
Further, in this manufacturing method, the filter elements must be processed one by one. However, in the case of a filter element that requires strict transmitted light wavelength characteristics, the optical characteristics must be measured at least once before, after, or during assembling to assure the transmitted light wavelength. No. In the present invention as well, there is no significant difference in the number of work steps such as rearranging the filter elements on the tray for measurement, aligning the optical axis at the time of measurement, and adjusting the angle of the filter element surface. The element can be strictly adjusted to the desired transmitted light wavelength, and in the later optical component assembly process, by adjusting the incident angle and position of the light, there is no need to fine-tune the optical characteristics of the filter element, Assembly is facilitated and manufacturing costs can be reduced.
[0026]
Next, the dielectric multilayer filter element of the present invention will be described.
The dielectric multilayer filter element of the present invention is manufactured by the above-mentioned manufacturing method, and the fluctuation width of the central wavelength of transmitted light is ± 0.1 nm or less over the entire surface of the element. For this reason, the filter element of the present invention can be used for applications requiring extremely high wavelength accuracy, such as a bandpass filter for CWDM and a bandpass filter for DWDM.
[0027]
【The invention's effect】
As described above, according to the method for manufacturing a dielectric multilayer filter element of the present invention, since heating can be performed while detecting the wavelength of transmitted light, it is possible to manufacture the filter at a value very close to the set characteristic value. is there. In addition, by generating a fine temperature distribution in the filter element and heating the filter element, the center wavelength fluctuation width of the transmitted light of the filter element can be set within a range of ± 0.1 nm.
Therefore, it is not necessary to adjust the position of the filter with respect to the optical axis when incorporating the filter element into an optical component. When fixing the filter element, the adhesive shrinks, the solder moves due to surface tension, and the heat of the housing is reduced. The optical characteristics do not change even under the influence of expansion or the like.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an example of an apparatus used for a method for manufacturing a dielectric multilayer filter element of the present invention.
FIG. 2 is a plan view showing an example of a transmitted light wavelength measurement point of a filter element.
FIG. 3 is a plan view showing an example of a heating light movement locus on a filter element.
FIG. 4 is a diagram showing an example of a light intensity distribution in a cross section passing through the center of the heating light to be irradiated.
FIG. 5 is a schematic configuration diagram showing an example of an optical component using a dielectric multilayer filter element.
FIG. 6 is a diagram showing a transmitted light wavelength distribution of a dielectric multilayer filter element before a heat treatment process is performed.
[Explanation of symbols]
1 ... light source for measurement, 2 ... light source for heating, 5 ... beam combiner, 7 ... dielectric multilayer film filter element, 9 ... beam splitter, 12 ... .Measurement light receivers, 13 to 21... Transmitted light wavelength measurement points, 23.

Claims (8)

基板上に誘電体薄膜を多層に堆積してなるフィルタ基板を切断して作られたフィルタ素子に対して、加熱光を照射して加熱するとともに、測定光を照射し誘電体薄膜の透過光の波長を測定することを特徴とする誘電体多層膜フィルタ素子の製造方法。A filter element made by cutting a filter substrate made by depositing a multi-layer dielectric thin film on the substrate is heated by irradiating heating light and irradiating measurement light to irradiate the filter element with heating light. A method for producing a dielectric multilayer filter element, comprising measuring a wavelength. 加熱光と測定光を交互に照射することを特徴とする請求項1に記載の誘電体多層膜フィルタ素子の製造方法。The method for manufacturing a dielectric multilayer filter element according to claim 1, wherein the heating light and the measurement light are alternately irradiated. 加熱光が、光束の中心を通る断面での光強度分布が双峰状であり、この光を基板上に照射することを特徴とする請求項1または2に記載の誘電体多層膜フィルタ素子の製造方法。3. The dielectric multilayer filter element according to claim 1, wherein the heating light has a bimodal light intensity distribution in a cross section passing through the center of the light beam, and irradiates the light onto the substrate. Production method. 加熱光が、ガウス分布状の光強度分布を有するものであり、この光を基板上に移動しつつ照射することを特徴とする請求項1または2に記載の誘電体多層膜フィルタ素子の製造方法。3. The method for manufacturing a dielectric multilayer filter element according to claim 1, wherein the heating light has a Gaussian light intensity distribution, and the heating light is irradiated while moving on the substrate. . 加熱光が、炭酸ガスレーザ光、YAGレーザ光またはチタンサファイヤレーザ光であることを特徴とする請求項1ないし4のいずれかに記載の誘電体多層膜フィルタ素子の製造方法。5. The method according to claim 1, wherein the heating light is carbon dioxide gas laser light, YAG laser light or titanium sapphire laser light. レーザ光が、50ms以下のパルス発振光であることを特徴とする請求項5に記載の誘電体多層膜フィルタの製造方法。The method for manufacturing a dielectric multilayer filter according to claim 5, wherein the laser light is pulsed light of 50 ms or less. 請求項1ないし6のいずれかに記載の製造方法で製造された、透過光波長の分布が均一な誘電体多層膜フィルタ素子。A dielectric multilayer filter element having a uniform distribution of transmitted light wavelength, manufactured by the manufacturing method according to claim 1. 透過光波長の分布が素子の実効領域で、±0.1nmの範囲内である請求項7記載の誘電体多層膜フィルタ素子。8. The dielectric multilayer filter element according to claim 7, wherein a distribution of transmitted light wavelengths is within a range of ± 0.1 nm in an effective area of the element.
JP2003038408A 2003-02-17 2003-02-17 Method of manufacturing dielectric multi-layer film filter element Withdrawn JP2004246263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003038408A JP2004246263A (en) 2003-02-17 2003-02-17 Method of manufacturing dielectric multi-layer film filter element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038408A JP2004246263A (en) 2003-02-17 2003-02-17 Method of manufacturing dielectric multi-layer film filter element

Publications (1)

Publication Number Publication Date
JP2004246263A true JP2004246263A (en) 2004-09-02

Family

ID=33022948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038408A Withdrawn JP2004246263A (en) 2003-02-17 2003-02-17 Method of manufacturing dielectric multi-layer film filter element

Country Status (1)

Country Link
JP (1) JP2004246263A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240790A (en) * 2006-03-08 2007-09-20 Sumitomo Metal Mining Co Ltd Absorption type multilayered nd filter and manufacturing method therefor
JP2018156078A (en) * 2017-03-16 2018-10-04 ショット アクチエンゲゼルシャフトSchott AG Method for manufacturing optical filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240790A (en) * 2006-03-08 2007-09-20 Sumitomo Metal Mining Co Ltd Absorption type multilayered nd filter and manufacturing method therefor
JP2018156078A (en) * 2017-03-16 2018-10-04 ショット アクチエンゲゼルシャフトSchott AG Method for manufacturing optical filter
JP7239271B2 (en) 2017-03-16 2023-03-14 ショット アクチエンゲゼルシャフト Method for manufacturing an optical filter

Similar Documents

Publication Publication Date Title
US5357365A (en) Laser beam irradiating apparatus enabling uniform laser annealing
EP2167272B1 (en) Pyrometer for laser annealing system compatible with amorphous carbon optical absorber layer
US8059337B2 (en) Wave plate with birefringent regions and its manufacturing method
WO2014119114A1 (en) Laser machining device and laser machining method
WO2018110238A1 (en) Laser machining device and laser machining method
KR20200037904A (en) Laser processing apparatus
JP2004295066A (en) Method for manufacturing optical waveguide
JP2004246263A (en) Method of manufacturing dielectric multi-layer film filter element
CN108475895B (en) Power balancing device for laser and laser processing device
JP4247081B2 (en) Laser beam intensity monitoring method of laser annealing apparatus and laser annealing apparatus
EP3663031A1 (en) Laser processing apparatus
KR20160127461A (en) Laser apparatus and method of manufacturing the same
JP4225121B2 (en) Laser annealing method and apparatus
WO2021235195A1 (en) Laser processing apparatus
JP4316279B2 (en) Pulse laser processing equipment with processing monitor
JP2000033489A (en) Laser beam machine
KR102258055B1 (en) Temperature monitoring system of laser annealing equipment
JP2020204494A (en) Analytical device and analytical method
KR20190000664A (en) Melting signal detection system and wafer heat treatment apparatus including the same
JP4115883B2 (en) Optical waveguide component processing method, grating manufacturing method
JP2011507045A (en) Imaging mirror, method of manufacturing the same, and use thereof in a laser imaging system
JP2003279759A (en) Machining method of optical fiber and manufacturing method of optical waveguide component
CN114924406A (en) Micro reflector array processing method and system
JP4155109B2 (en) Laser beam evaluation method in laser process apparatus and laser beam adjustment method in laser process apparatus
JP2002299745A (en) Manufacturing method of optical module

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509