JP2004245982A - Imaging lens device and electronic equipment equipped with the same - Google Patents
Imaging lens device and electronic equipment equipped with the same Download PDFInfo
- Publication number
- JP2004245982A JP2004245982A JP2003034475A JP2003034475A JP2004245982A JP 2004245982 A JP2004245982 A JP 2004245982A JP 2003034475 A JP2003034475 A JP 2003034475A JP 2003034475 A JP2003034475 A JP 2003034475A JP 2004245982 A JP2004245982 A JP 2004245982A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- lens group
- optical power
- zoom lens
- lens system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Lenses (AREA)
- Studio Devices (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、撮像レンズ装置に関するものであり、特に被写体の映像を光学系により光学的に取り込んで撮像素子により電気的な信号として出力する撮像レンズ装置{例えば、デジタルカメラ;ビデオカメラ;デジタルビデオユニット,パーソナルコンピュータ,モバイルコンピュータ,携帯電話,携帯通信端末,携帯情報端末(PDA:Personal Digital Assistant)等に内蔵又は外付けされるカメラの主たる構成要素}、なかでも小型のズームレンズ系を備えた撮像レンズ装置に関するものである。また、そのような撮像レンズ装置を備えた電子機器に関する。
【0002】
【従来の技術】
近年、パーソナルコンピュータ等の普及に伴い、手軽に画像情報をデジタル機器に取り込むことができるデジタルスチルカメラやデジタルビデオカメラ等(以下デジタルカメラと呼称する)が個人ユーザレベルで普及しつつある。このようなデジタルカメラは、今後も画像情報の入力機器として益々普及することが予想される。その結果、画質を劣化させずに変倍が可能なズームレンズ系を搭載したコンパクトな撮像レンズ装置が切望されており、コンパクトな撮像レンズ装置も開発されてきている。
【0003】
そして、撮像レンズ装置の小型化、画像処理能力の向上により、携帯電話やPDA等の電子機器にも撮像レンズ装置が搭載されるようになっている。
【0004】
このような撮像レンズ装置を、さらに小型化するために、ズームレンズ系を光路の途中で折り曲げ、光路長を変化させずにコンパクト化を図る提案が成されている。このような例として、特許文献1〜4に記載のズームレンズ系がある。
【0005】
特許文献1〜3に記載のズームレンズ系はいずれも最も物体側に負のメニスカスレンズが配置され、そのレンズの像面側に配置されたプリズムまたは反射ミラーによって光路が折り曲げられている。
【0006】
特許文献4に記載のズームレンズ系は、3つのレンズ群よりなり、最も物体側に、物体側の面が凹面である光路折り曲げ用のプリズムを配置している。
【0007】
【特許文献1】特開平9−138347号公報
【特許文献2】特開平11−196303号公報
【特許文献3】特開2000−131610号公報
【特許文献4】特願2002−232965号
【発明が解決しようとする課題】
しかしながら、特許文献1〜3記載の各ズームレンズ系は、第1レンズ群がレンズと反射部材とで構成されているため、コンパクト化が充分ではない。また、撮像レンズ装置を搭載する電子機器を薄型化するためには、撮像レンズ装置の入射光軸方向に薄型化する必要がある。撮像レンズ装置の入射光軸方向の寸法は、実質的に、入射面と光路折り曲げ反射面との距離で決まる。しかし、特許文献1〜3記載のズームレンズ系では、最も物体側にレンズを備えているため充分な薄型化は達成できていない。
【0008】
一方、特許文献4記載のズームレンズ系は、第1レンズ群がプリズムのみで構成されているため薄型化の要求は満たされているが、30万画素程度の撮像素子に対応したズームレンズ系であり、より高精細な画像(例えば100万画素以上)が要求される場合には充分な性能を持っているとは言い難い。
【0009】
本発明は、このような状況に鑑みてなされたものであって、その目的は、ズーム比3倍程度のズームレンズ系を備え、超小型のデジタルカメラやPDAに搭載するの充分な小型化が達成され、100万画素相当以上の解像力を備えた高性能な撮像レンズ装置を提供することにある。また、そのような撮像レンズ装置を備えた電子機器、例えばデジタルカメラ、PDAを提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明の撮像レンズ装置は、複数の群からなり各群の間隔を変化させることにより変倍を行うズームレンズ系と、前記ズームレンズ系により形成された光学像を電気的な信号に変換する撮像素子と、を備えた撮像レンズ装置であって、前記ズームレンズ系は、物体側から順に、全体として負の光学的パワーを持つ光路折り曲げ用プリズムを有し、変倍において位置固定で負の光学的パワーをもつ第1レンズ群と、変倍において移動する負の光学的パワーをもつ第2レンズ群と、変倍において移動する正の光学的パワーをもつ第3レンズ群と、正の光学的パワーを持つ第4レンズ群と、から構成され、前記第1レンズ群は、最も物体側に前記光路折り曲げ用プリズムを有し前記光路折り曲げ用プリズムの最も物体側の面は凹面であり、以下の条件式(1)を満足する。
−0.23 < P1/Pw < −0.05 (1)
ただし、
P1:第1レンズ群の光学的パワー、
Pw:ズームレンズ系の広角端での光学的パワー、
である。
【0011】
また、本発明の別の局面である電子機器は、上記特徴を有する撮像レンズ装置を備えている。
【0012】
【発明の実施の形態】
以下、本発明を実施した撮像レンズ装置を、図面を参照しつつ説明する。被写体の映像を光学的に取り込んで電気的な信号として出力する撮像レンズ装置は、被写体の静止画撮影や動画撮影に用いられるカメラ{例えば、デジタルカメラ;ビデオカメラ;デジタルビデオユニット、パーソナルコンピュータ、モバイルコンピュータ、携帯電話、PDA等の電子機器に内蔵又は外付けされるカメラ}の主たる構成要素である。
【0013】
図14は、本発明に係るデジタルスチルカメラの概略外観図であり、図14(a)は、デジタルスチルカメラの正面図、図14(b)は、デジタルスチルカメラの背面図である。デジタルスチルカメラ1は、前面に撮像レンズ装置6の入射側レンズが、上面にレリーズボタン3が、背面には、液晶モニター(LCD)4および操作ボタン5が配置されている。
【0014】
図1は、本発明に係るデジタルスチルカメラの内部構成の概略を模式的に示す図であり、図1(a)はデジタルスチルカメラの正面図、図1(b)は撮像レンズ装置の側面図に対応する内部構成を模式的に示している。物体(被写体)は図1(a)においては紙面手前側、図1(b)においては紙面左側に位置する。図1において、デジタルスチルカメラの外形線は筐体2を表している。撮像レンズ装置6は、物体側から順に、物体の光学像を形成するズームレンズ系(TL)と、光学的ローパスフィルタ等に相当する平行平面板(LPF)と、ズームレンズ系(TL)により形成された光学像を電気的な信号に変換する撮像素子(SR)と、を有している。
【0015】
撮像素子(SR)としては、例えば複数の画素から成るCCDやCMOS(Complementary Metal Oxide Semiconductor)センサー等の固体撮像素子が用いられ、ズームレンズ系(TL)により形成された光学像が電気的な信号に変換される。またズームレンズ系(TL)で形成されるべき光学像は、撮像素子(SR)の画素ピッチにより決定される所定の遮断周波数特性を有する光学的ローパスフィルタ(LPF)を通過することにより、電気的な信号に変換される際に発生するいわゆる折り返しノイズが最小化されるように、空間周波数特性が調整される。
【0016】
撮像素子(SR)で生成された信号は、信号処理部7によって、サンプリング、所定のアナログ画像処理、A/D変換、デジタル画像処理や画像圧縮処理等が施されてデジタル映像信号としてメモリ8(半導体メモリ,光ディスク等)に記録されたり、場合によってはケーブルを介したり赤外線信号に変換されたりして他の機器に伝送される。コントローラ10は、マイクロコンピュータからなり、撮影機能、画像再生機能を集中的に制御する。また、ズーミングおよびフォーカシングのために、アクチュエータ11に指令を送り、レンズ群の移動を制御する。液晶モニター4は、撮像素子(SR)によって変換された画像信号を画像として表示する、あるいはメモリ8に記録された画像信号を画像として表示するものである。操作部9は、レリーズボタン3、操作ボタン5等の各種ボタン、ダイヤルを包括するものであり、ユーザーによって操作入力される情報は操作部9を介して、コントローラ10に伝達される。
【0017】
次にズームレンズ系(TL)について図1を使用して説明する。ズームレンズ系(TL)は、物体側より、負の光学的パワーを持つ面と裏面反射で光路を折り曲げる反射面(REF)とを含む全体として負の光学的パワーを有するプリズム(PR)を備えた第1レンズ群(Gr1)と、負の光学的パワーを持つ第2レンズ群(Gr2)と、正の光学パワーを持つ第3レンズ群(Gr3)と、正の光学的パワーを持つ第4レンズ群(Gr4)とから構成されている。
【0018】
入射光軸(最も物体側のレンズ面の光軸)である第1の光軸(AX1)はプリズム(PR)の反射面(REF)によって略90°折り曲げられる。第2〜第4レンズ群は、反射面(REF)によって折り曲げられた後の第2の光軸(AX2)上に配置されている。第2レンズ群(Gr2)および第3レンズ群(Gr3)は、変倍時に第2の光軸(AX2)上を移動する。
【0019】
デジタルスチルカメラ1は、上記説明の撮像レンズ装置6によって、薄型化とコンパクト化が可能となる。入射光軸が略90°折り曲げられることにより、デジタルカメラの奥行き方向に薄型化できる。なお、デジタルスチルカメラ1は、撮像レンズ装置6としては、以下に示す第1〜第4の実施の形態を構成するズームレンズ系のいずれかを搭載している。
【0020】
図2〜図5は、上記撮像レンズ装置の、第1〜第4の実施の形態を構成するズームレンズ系にそれぞれ対応するレンズ構成図であり、広角端[W]でのレンズ配置を光学断面で示している。各レンズ構成図中の矢印mj(j=1,2,...)は、広角端[W]から望遠端[T]へのズーミングにおける第j群(Grj)等の移動をそれぞれ模式的に示している。また、各レンズ構成図中、ri(i=1,2,3,...)が付された面は物体側から数えてi番目の面であり、riに*印が付された面は非球面である。di(i=1,2,3,...)が付された軸上面間隔は、物体側から数えてi番目の軸上面間隔のうち、ズーミングにおいて変化する可変間隔である。なお、図2〜図5のそれぞれのレンズ構成図は、便宜上、光軸が折り曲げられておらず、一直線上にレンズが配置されている。したがって、折り曲げのためのプリズム(PR)の形状は図示されていない。
【0021】
一方、図6〜図9は、第1〜第4の実施の形態を構成するズームレンズ系にそれぞれ対応する光路図である。各光路図には、軸上光(像高Y’=0)と撮像素子の短辺断面の光路、すなわち、図6、図7ではY’=±1.56mm、図8ではY’=±1.2mm、図9ではY’=±1.32mmに対応する光路が示されている。
【0022】
各実施形態のズームレンズ系はいずれも、物体側から順に、負の光学的パワーを有する面と光路を略90°折り曲げるための内部反射面(REF)とを有するプリズム(PR)からなる第1レンズ群(Gr1)と、負の光学的パワーを有する第2レンズ群(Gr2)と、正の光学的パワーを有する第3レンズ群(Gr3)と、正の光学的パワーを有する第4レンズ群(Gr4)と、を有する。広角端[W]から望遠端[T]への変倍時に、第3レンズ群(Gr3)は広角端[W]での位置よりも常に物体側に位置するように移動し、第2レンズ群(Gr2)は第3レンズ群の移動に伴う像点移動を補正するように移動し、各レンズ群の間隔を変えることにより変倍を行う構成となっている。
【0023】
また、いずれの撮像レンズ装置も、絞り(SP)は第3レンズ群の最も物体側のレンズ面(r8)に配置されている。図1に示すように、レンズ面(r8)を鏡胴に固定するためのレンズ押さえ部材(例えばリングワッシャ)の内径が絞り(SP)の機能を果たしている。なお、絞り(SP)は、このような形態に限らず、また他の部材によって構成されてもよい。また、可変絞りであってもよい。
【0024】
そして、固体撮像素子(例えばCCD)を備えたカメラ(例えばデジタルスチルカメラ)に用いられるズームレンズ系として、その像面側には光学的ローパスフィルタ等に相当するガラス製の平行平面板(LPF)が配置されている。いずれの実施の形態においても、第1レンズ群(Gr1)は、光軸を折り曲げるためのプリズム(PR)のみで構成されている。また、第2レンズ群(Gr2)と第3レンズ群(Gr3)には正レンズと負レンズがそれぞれ一枚づつ用いられている。第4レンズ群(Gr4)は一枚のレンズエレメントで構成されている。各実施の形態のレンズ構成をさらに詳しく以下に説明する。
【0025】
《第1の実施の形態(図2および図6、負負正正)》第1の実施の形態のズームレンズ系は負・負・正・正の4群ズームレンズであり、各レンズ群は物体側から順に以下のように構成されている。第1レンズ群(Gr1)は、物体側が非球面形状の凹面と光軸を略90°折り曲げるための反射面(REF)と平面とからなるプリズム(PR)、のみで構成されている。第2レンズ群(Gr2)は、両面に非球面を有する両凹レンズと両凸の正レンズとで構成されており、第1の光軸(AX1)がプリズムで折り曲げられた後の第2の光軸(AX2)上に配置される。第3レンズ群(Gr3)は、両面に非球面を有する両凸の正レンズと、像面側に非球面を有し像面側に凹の負メニスカスレンズとで構成されている。第4レンズ群(Gr4)は、両面に非球面を有し像面側に凸の正メニスカスレンズのみで構成されている。
【0026】
《第2の実施の形態(図3および図7、負負正正)》第2の実施の形態のズームレンズ系は負・負・正・正の4群ズームレンズであり、各レンズ群は物体側から順に以下のように構成されている。第1レンズ群(Gr1)は、物体側が非球面形状の凹面と光軸を略90°折り曲げるための反射面(REF)と平面とからなるプリズム(PR)、のみで構成されている。第2レンズ群(Gr2)は、両面に非球面を有する両凹レンズと両凸の正レンズとで構成されており、第1の光軸(AX1)がプリズム(PR)で折り曲げられた後の第2の光軸(AX2)上に配置される。第3レンズ群(Gr3)は、両面に非球面を有する両凸の正レンズと、像面側に非球面を有する両凹の負レンズとで構成されている。第4レンズ群(Gr4)は、両面に非球面を有し像面側に凸の正メニスカスレンズのみで構成されている。
【0027】
《第3の実施の形態(図4および図8、負負正正)》第3の実施の形態のズームレンズ系は負・負・正・正の4群ズームレンズであり、各レンズ群は物体側から順に以下のように構成されている。第1レンズ群(Gr1)は、物体側が非球面形状の凹面と光軸を略90°折り曲げるための反射面(REF)と非球面形状の像面側に凸の面とからなるプリズム(PR)、のみで構成されている。第2レンズ群(Gr2)は、両面に非球面を有する両凹レンズと両凸の正レンズとで構成されており、第1の光軸(AX1)がプリズム(PR)で折り曲げられた後の第2の光軸(AX2)上に配置される。第3レンズ群(Gr3)は、両面に非球面を有する両凸の正レンズと、像面側に非球面を有する両凹の負レンズとで構成されている。第4レンズ群(Gr4)は、両面に非球面を有し像面側に凸の正メニスカスレンズのみで構成されている。
【0028】
《第4の実施の形態(図5および図9、負負正正)》第4の実施の形態のズームレンズ系は負・負・正・正の4群ズームレンズであり、各レンズ群は物体側から順に以下のように構成されている。第1レンズ群(Gr1)は、物体側が非球面形状の凹面と光軸を略90°折り曲げるための反射面(REF)と平面とからなるプリズム(PR)、のみで構成されている。第2レンズ群(Gr2)は、両面に非球面を有する両凹レンズと物体側に凸の正メニスカスレンズとで構成されており、第1の光軸(AX1)がプリズム(PR)で折り曲げられた後の第2の光軸(AX2)上に配置される。第3レンズ群(Gr3)は、両面に非球面を有する両凸の正レンズと、像面側に非球面を有する両凹の負レンズとで構成されている。第4レンズ群(Gr4)は、両面に非球面を有する両凸の正レンズのみで構成されている。
【0029】
上記第1の実施の形態では、広角端[W]から望遠端[T]への変倍時に、第1レンズ群(Gr1)の位置は固定で、第2レンズ群(Gr2)が像面側に移動したのち物体側にUターンし、第3のレンズ群(Gr4)は、広角端[W]での位置よりも常に像面側から物体側に位置するよう移動し、第4レンズ群(Gr4)は広角端[W]での位置より常に物体側から像面側に移動する。
【0030】
上記第2、第3および第4の実施の形態では、広角端[W]から望遠端[T]への変倍時に、第1レンズ群(Gr1)および第4レンズ群(Gr4)の位置は固定で、第2レンズ群(Gr2)が像面側に移動したのち物体側にUターンし、第3のレンズ群(Gr3)は、広角端[W]での位置よりも常に像面側から物体側に位置するよう移動する。
【0031】
各実施の形態のズームレンズ系(TL)では、ズーミングにおいて負の光学的パワーを持つ第1レンズ群(Gr1)が位置固定されており、ズームレンズ系の全長変化を抑えることが出来る。
【0032】
各実施の形態のズームレンズ系(TL)では、プリズムを使用した反射面により光路を略90°折り曲げる構成が採用されており、これによってズームレンズ系の入射光軸方向(つまり奥行き方向)の長さが短くできる。撮像レンズ装置6の入射光軸方向の長さは、実質的に、ズームレンズ系の最も物体側のレンズ面から反射面(REF)までの長さで決定されるが、各実施の形態のズームレンズ系では、負の光学的パワーを持つの第1レンズ群(Gr1)は、入射面に負の光学的パワーを有する光路折り曲げ用のプリズム(PR)のみで構成されているため、更に薄型化が可能となっている。光路折り曲げ用のプリズム(PR)は合成樹脂成型によって作製されることが好ましく、このように作製されることで、複雑な形状のプリズムを低コストに精度良く製造することができる。また、あわせて軽量化も達成できる。このような撮像レンズ装置6を電子機器(例えばデジタルカメラ)に搭載すると、非常に厚み方向に薄い電子機器が実現できる。
【0033】
なお、上記ズームレンズ系の第1レンズ群(Gr1)は、いずれも、光路折り曲げ用のプリズム(PR)のみで構成されているが、プリズム以外のレンズ要素をプリズム(PR)の像面側に備えていてもよい。
【0034】
このような撮像レンズ装置6は、以下に示す条件式を満足することが望ましい。なお、以下に説明する個々の条件をそれぞれ単独に満たせば、それに対応する作用効果を達成することは可能であるが、複数の条件を満たす方が、光学性能,小型化等の観点からより望ましいことはいうまでもない。
【0035】
撮像レンズ装置6は、以下の条件式(1)を満足することが望ましく、なかでも以下の条件式(1A)を満足することが更に望ましい。
−0.23<P1/Pw<−0.05 (1)
−0.20<P1/Pw<−0.10 (1A)
ただし、
P1:第1レンズ群の光学的パワー、
Pw:ズームレンズ系全体の広角端での光学的パワー
である。
【0036】
条件式(1)の下限値を下回ると第1レンズ群の負の光学的パワーが強くなりすぎ広角端において、第1レンズ群で発生する歪曲収差と像面湾曲の補正が過大となる。また、光学的パワーが強くなると、面形状の変化が大きくなり、例えばプリズムを成型により作製した場合など、面精度の確保が困難になる。上限値を上回ると第1レンズ群の負の光学的パワーが小さくなりすぎるため広角端で十分な画角を確保することが困難になる。また、広角端での入射瞳位置が像面側に移動するため、折り曲げ用プリズムの大きさが大きくなる。
【0037】
また撮像レンズ装置6は、以下の条件式(2)を満足することが望ましい。
−0.46<P2/Pw<−0.16 (2)
ただし、
P2:第2レンズ群の光学的パワー、
Pw:ズームレンズ系全体の広角端での光学的パワー
である。
【0038】
条件式(2)の下限値を下回ると、第2レンズ群の光学的パワーが強くなりすぎ広角端での像面湾曲補正が困難になり、また偏心による像面の傾き感度が過大になって組み立て性が困難になり量産性が悪化する。上限値を上回ると、第2レンズ群の移動量が過大となってズームレンズ系の全長が長くなりすぎる。
【0039】
また撮像レンズ装置6は、以下の条件式(3)を満足することが望ましく、なかでも以下の条件式(3A)を満足することが更に望ましい。
0.30<P3/Pw<0.85 (3)
0.45<P3/Pw<0.75 (3A)
ただし、
P3:第3レンズ群の光学的パワー、
Pw:ズームレンズ系全体の広角端での光学的パワー
である。
【0040】
条件式(3)の下限値を下回ると第3レンズ群の光学的パワーが弱くなりすぎ第3レンズ群の移動量が過大となってズームレンズ系の全長が長くなりすぎる。また、第3レンズ群のパワーが弱くなりすぎると、全系の焦点距離を所定の値にするために、第1、第2レンズ群のパワーも弱くなり、入射瞳位置が像面側に移動する。その結果、折り曲げ用プリズムの大きさが大きくなり小型化が困難になる。上限値を上回ると第3レンズ群の光学的パワーが強くなりすぎ球面収差の補正が困難となる。
【0041】
また撮像レンズ装置6は、以下の条件式(4)を満足することが望ましく、なかでも以下の条件式(4A)を満足することが更に望ましい。
0.08<P4/Pw<0.85 (4)
0.08<P4/Pw<0.7 (4A)
ただし、
P4:第4レンズ群の光学的パワー、
Pw:ズームレンズ系全体の広角端での光学的パワー
である。
【0042】
条件式(4)の下限値を下回ると第4レンズ群の光学的パワーが弱くなりすぎ撮像素子(SR)への光線の入射角が大きくなり(ズームレンズ系の射出瞳が像面に近くなりすぎる)、像面周辺部での照度低下が大きくなりすぎる。また、第2、第3レンズ群の変倍時の移動量が大きくなりズームレンズ系(TL)の全長が大きくなる。条件式(4)を上回ると第4レンズ群(Gr4)の光学的パワーが大きくなりすぎ第4レンズ群(Gr4)で発生する歪曲収差の補正が困難になる。また、第4レンズ群(Gr4)で発生する倍率色収差の補正が困難になり、第4レンズ群(Gr4)を1枚構成とすることが難しくなる。
【0043】
また撮像レンズ装置6は、第1レンズ群(Gr1)の最も物体側の面が、物体側に凹の非球面形状を有し、非球面形状は中心から周辺にいくにしたがって負の光学的パワーを弱める方向の形状であることが望ましい。このような形状により広角端において発生する負の歪曲収差を良好に補正することができる。
【0044】
また、撮像レンズ装置6は、第2、第3レンズ群がそれぞれ、少なくとも一つ以上の正レンズと負レンズとを含む構成が望ましい。第2レンズ群(Gr2)は正負各1枚以上のレンズを含むことで色消しが行われ、倍率色収差が良好に補正できる。また、第3レンズ群(Gr3)は正負各1枚以上のレンズを含むことで色消しが行われ、軸上色収差が良好に補正できる。また、倍率色収差、軸上色収差が良好に補正できるため、100万画素以上の撮像素子にも対応した良好な性能が得られる。
【0045】
また、第2レンズ群(Gr2)は正レンズ、負レンズそれぞれ1枚の2枚構成であることが望ましい。この構成により、第2レンズ群(Gr2)で倍率色収差を良好に補正しながら、低コスト、コンパクト化、軽量化が達成できる。
【0046】
また、第2レンズ群(Gr2)の正レンズと負レンズの分散値は以下の条件式を満足することが望ましい。
νd2m −νd2p > 20 (5)
ただし、
νd2m:第2レンズ群中の負レンズの分散値
νd2p:第2レンズ群中の正レンズの分散値
である。
【0047】
条件式(5)の下限値を下回ると、色収差補正のために負レンズと正レンズの光学的パワーを大きくする必要があり、そうすると補正困難な量の像面湾曲収差が発生する。
【0048】
また第3レンズ群(Gr3)は、正レンズ、負レンズそれぞれ1枚の2枚構成であることが望ましい。この構成により、第3レンズ群(Gr3)で軸上色収差を良好に補正しながら、低コスト、コンパクト化、軽量化が達成できる。
【0049】
また第3レンズ群(Gr3)の正レンズと負レンズの分散値は以下の条件式を満足することが望ましい。
νd3p −νd3m > 30 (6)
ただし、
νd3m:第3レンズ群中の負レンズの分散値
νd3p:第3レンズ群中の正レンズの分散値
である。
【0050】
条件式(6)の下限値を下回ると、色収差補正のために負レンズと正レンズの光学的パワーを大きくする必要があり、そうすると補正困難な量の球面収差が発生する。
【0051】
また第4レンズ群(Gr4)は1枚の正レンズで構成されていることが望ましい。第4レンズ群(Gr4)は、物体から撮像素子に入射する光の入射角ができるだけ垂直になるように(つまり、ズームレンズ系がテレセントリック系であるように)光線の角度を変化させるためのレンズである。したがって、第4レンズ群(Gr4)は単レンズであればよく、低コスト、コンパクト化、軽量化が達成できる。
【0052】
また第4レンズ群(Gr4)はズーミング時に位置固定とすることが望ましい。この構成によりズーム移動レンズ群の数が減るため、ズームカムや鏡胴構成が簡単になり低コスト化が達成できる。
【0053】
また第2レンズ群(Gr2)に少なくとも1面は非球面を採用することが望ましい。この構成により、少ないレンズ枚数で広角端での像面湾曲収差と歪曲収差が良好に補正できる。
【0054】
また第3レンズ群(Gr3)に少なくとも1面は非球面を採用することが望ましい。この構成により、少ないレンズ枚数で球面収差が良好に補正できる。
【0055】
また第4レンズ群(Gr4)に少なくとも1面は非球面を採用することが望ましい。この構成により少ないレンズ枚数で像面湾曲収差と望遠端での歪曲収差を良好に補正できる。
【0056】
また、絞り(SP)を第3レンズ群(Gr3)の物体側に配置することが望ましい。この構成によりズームレンズ系の射出瞳を撮像素子(SR)から遠い位置にでき(つまり、略テレセントリックな状態)、撮像素子(SR)に入射する光の角度を垂直に近づけることができる。その結果、画像周辺部の照度低下を防止することができる。また、第1レンズ群(Gr1)の有効径を十分に小さくできるため光路折り曲げに必要な光路長が短くなり、入射光軸方向に薄型の撮像レンズ装置が実現できる。
【0057】
なお、第1〜第4の実施の形態を構成している各レンズ群は、入射光線を屈折により偏向させる屈折型レンズ(つまり、異なる屈折率を有する媒質同士の界面で偏向が行われるタイプのレンズ)のみで構成されているが、これに限らない。例えば、回折により入射光線を偏向させる回折型レンズ、回折作用と屈折作用との組み合わせで入射光線を偏向させる屈折・回折ハイブリッド型レンズ、入射光線を媒質内の屈折率分布により偏向させる屈折率分布型レンズ等で、各レンズ群を構成してもよい。また、不要光をカットするための光束規制板を必要に応じて配置してもよい。
【0058】
また、各実施の形態ではズームレンズ系の最終面と撮像素子との間に配置される平行平面板形状の光学的ローパスフィルタの構成例を示したが、このローパスフィルタとしては、所定の結晶軸方向が調整された水晶等を材料とする複屈折型ローパスフィルタや、必要とされる光学的な遮断周波数の特性を回折効果により達成する位相型ローパスフィルタ等が適用可能である。
【0059】
また、上記説明では、撮像レンズ装置6をデジタルスチルカメラに搭載した例を説明したが、デジタルスチルカメラに限らず、デジタルビデオカメラ、携帯電話、PDA等の各種電子機器に搭載してもよい。
【0060】
【実施例】
以下、本発明を実施した撮像レンズ装置に用いられるズームレンズ系の構成等を、コンストラクションデータ等を挙げて、更に具体的に説明する。なお、以下に挙げる実施例1〜4は、前述した第1〜第4の実施の形態にそれぞれ対応しており、第1〜第4の実施の形態を表すレンズ構成図(図2〜図5)および光路図(図6〜図9)は、対応する実施例1〜4のレンズ構成をそれぞれ示している。
【0061】
各実施例のコンストラクションデータにおいて、ri(i=1,2,3,...)は物体側から数えてi番目の面の曲率半径、di(i=1,2,3,...)は物体側から数えてi番目の軸上面間隔を示しており、Ni(i=1,2,3,...),vi(i=1,2,3,...)は物体側から数えてi番目の光学要素のd線に対する屈折率(Nd),アッベ数(vd)をそれぞれ示している。また、コンストラクションデータ中、ズーミングにおいて変化する軸上面間隔は、広角端(短焦点距離端)[W]〜ミドル(中間焦点距離状態)[M]〜望遠端(長焦点距離端)[T]での可変空気間隔である。各焦点距離状態[W],[M],[T]に対応する全系の焦点距離(f)及びFナンバー(FNO)を併せて示し、また、条件式対応値を表1に示す。
【0062】
曲率半径riに*印が付された面は、非球面(非球面形状の屈折光学面、非球面と等価な屈折作用を有する面等)であり、非球面の面形状を表わす以下の式(AS)で定義される。各実施例の非球面データを他のデータと併せて示す(ただしAi=0の場合は省略する。)。
【0063】
X(H)=(C0・H2)/{1+√(1−ε・C02・H2)}+Σ(Ai・Hi) …(AS)
ただし、式(AS)中、
X(H):高さHの位置での光軸(AX)方向の変位量(面頂点基準)、
H:光軸(AX)に対して垂直な方向の高さ、
C0:近軸曲率(=1/曲率半径)、
ε:2次曲面パラメータ、
Ai:i次の非球面係数、
である。
【0064】
図10〜図13は実施例1〜実施例4にそれぞれ対応する収差図であり、図10〜図13は実施例1〜実施例4にそれぞれ対応する無限遠撮影状態での収差図である。図10〜図13中、[W]は広角端,[M]はミドル,[T]は望遠端における諸収差(左から順に、球面収差等,非点収差,歪曲収差である。Y’:最大像高)を示している。球面収差図において、実線(d)はd線に対する球面収差、一点鎖線(g)はg線に対する球面収差、二点鎖線(c)はc線に対する球面収差、破線(SC)は正弦条件を表している。非点収差図において、破線(DM)はメリディオナル面でのd線に対する非点収差を表しており、実線(DS)はサジタル面でのd線に対する非点収差を表わしている。また、歪曲収差図において実線はd線に対する歪曲%を表している。
【0065】
【0066】
【表1】
【0067】
【発明の効果】
以上説明したように、本発明の撮像レンズ装置によれば、ズーム比3倍程度の高性能でコンパクトなズームレンズ系を備えた撮像レンズ装置を提供することができる。そして、本発明の撮像レンズ装置をデジタルカメラ、携帯電話、携帯情報端末(PDA)等の電子機器に内蔵または外付けされるカメラに適用すれば、これらの機器のコンパクト化、高性能化、低コスト化、軽量化に寄与することができる。
【図面の簡単な説明】
【図1】第1の実施の形態のデジタルスチルカメラの内部構成の概略を示す図である。
【図2】第1の実施の形態(実施例1)のレンズ構成図である。
【図3】第2の実施の形態(実施例2)のレンズ構成図である。
【図4】第3の実施の形態(実施例3)のレンズ構成図である。
【図5】第4の実施の形態(実施例4)のレンズ構成図である。
【図6】第1の実施の形態(実施例1)の光路図である。
【図7】第2の実施の形態(実施例2)の光路図である。
【図8】第3の実施の形態(実施例3)の光路図である。
【図9】第4の実施の形態(実施例4)の光路図である。
【図10】実施例1の無限遠撮影状態での収差図である。
【図11】実施例2の無限遠撮影状態での収差図である。
【図12】実施例3の無限遠撮影状態での収差図である。
【図13】実施例4の無限遠撮影状態での収差図である。
【図14】本発明に係るデジタルスチルカメラの概略外観図である。
【符号の説明】
TL ズームレンズ系
SR 撮像素子
LPF ローパスフィルタ(平行平面板)
AX1 第1の光軸(入射光軸)
AX2 第2の光軸
PR プリズム
Gr1 第1レンズ群
Gr2 第2レンズ群
SP 絞り
Gr3 第3レンズ群
Gr4 第4レンズ群
1 デジタルスチルカメラ
2 筐体
3 レリーズボタン
4 液晶モニター(LCD)
5 操作ボタン
6 撮像レンズ装置
7 信号処理部
8 メモリ
9 操作部
10 コントローラ[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE
[0002]
[Prior art]
2. Description of the Related Art In recent years, with the spread of personal computers and the like, digital still cameras, digital video cameras, and the like (hereinafter, referred to as digital cameras) that can easily capture image information into digital devices have become widespread at the individual user level. Such digital cameras are expected to be increasingly used as image information input devices in the future. As a result, a compact imaging lens device equipped with a zoom lens system capable of changing the magnification without deteriorating the image quality has been desired, and a compact imaging lens device has been developed.
[0003]
With the miniaturization of the imaging lens device and the improvement in image processing capability, the imaging lens device has been mounted on electronic devices such as mobile phones and PDAs.
[0004]
In order to further reduce the size of such an imaging lens device, a proposal has been made to bend the zoom lens system in the middle of the optical path and to reduce the size without changing the optical path length. As such examples, there are zoom lens systems described in
[0005]
In each of the zoom lens systems described in
[0006]
The zoom lens system described in
[0007]
[Patent Document 1] JP-A-9-138347
[Patent Document 2] JP-A-11-196303
[Patent Document 3] JP-A-2000-131610
[Patent Document 4] Japanese Patent Application No. 2002-232965
[Problems to be solved by the invention]
However, in each of the zoom lens systems described in
[0008]
On the other hand, the zoom lens system described in
[0009]
The present invention has been made in view of such a situation, and an object of the present invention is to provide a zoom lens system having a zoom ratio of about three times and to make it sufficiently compact to be mounted on an ultra-compact digital camera or PDA. It is an object of the present invention to provide a high-performance imaging lens device which has been achieved and has a resolving power of one million pixels or more. It is another object of the present invention to provide an electronic device, such as a digital camera or a PDA, provided with such an imaging lens device.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, an imaging lens device according to the present invention includes a zoom lens system including a plurality of groups and performing zooming by changing an interval between the groups, and an optical image formed by the zoom lens system. An image pickup device for converting an electric signal into an electric signal, wherein the zoom lens system includes, in order from the object side, an optical path bending prism having a negative optical power as a whole. A first lens unit having a negative optical power at a fixed position at the magnification, a second lens unit having a negative optical power moving at the time of zooming, and a third lens having a positive optical power moving at the time of zooming; A first lens group having a prism for bending the optical path closest to the object side, and a fourth lens group having a prism closest to the object side. Surface is concave, satisfies the following conditional expression (1).
-0.23 <P1 / Pw <-0.05 (1)
However,
P1: optical power of the first lens group,
Pw: optical power at the wide-angle end of the zoom lens system,
It is.
[0011]
Further, an electronic apparatus according to another aspect of the present invention includes an imaging lens device having the above characteristics.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an imaging lens device embodying the present invention will be described with reference to the drawings. 2. Description of the Related Art An imaging lens device that optically captures an image of a subject and outputs the signal as an electrical signal is a camera used for capturing a still image or a moving image of a subject. For example, a digital camera; a video camera; a digital video unit; a personal computer; It is a main component of the camera 内 蔵 built in or external to an electronic device such as a computer, a mobile phone, or a PDA.
[0013]
FIG. 14 is a schematic external view of a digital still camera according to the present invention. FIG. 14A is a front view of the digital still camera, and FIG. 14B is a rear view of the digital still camera. The
[0014]
FIG. 1 is a diagram schematically showing an outline of an internal configuration of a digital still camera according to the present invention, wherein FIG. 1A is a front view of the digital still camera, and FIG. 1B is a side view of an imaging lens device. 2 schematically shows an internal configuration corresponding to FIG. The object (subject) is located on the near side in FIG. 1A, and on the left side in FIG. 1B. In FIG. 1, the outline of the digital still camera represents the
[0015]
As the imaging device (SR), for example, a solid-state imaging device such as a CCD composed of a plurality of pixels or a CMOS (Complementary Metal Oxide Semiconductor) sensor is used, and an optical image formed by a zoom lens system (TL) is used as an electric signal. Is converted to An optical image to be formed by the zoom lens system (TL) passes through an optical low-pass filter (LPF) having a predetermined cut-off frequency characteristic determined by the pixel pitch of the image sensor (SR), thereby providing an electrical image. The spatial frequency characteristic is adjusted so that the so-called aliasing noise generated when the signal is converted into a natural signal is minimized.
[0016]
The signal generated by the image sensor (SR) is subjected to sampling, predetermined analog image processing, A / D conversion, digital image processing, image compression processing, and the like by a signal processing unit 7, and is processed as a digital video signal in a memory 8 ( (A semiconductor memory, an optical disk, etc.), and in some cases, is transmitted to another device via a cable or converted into an infrared signal. The
[0017]
Next, the zoom lens system (TL) will be described with reference to FIG. The zoom lens system (TL) includes, from the object side, a prism (PR) having a negative optical power as a whole including a surface having a negative optical power and a reflection surface (REF) for bending an optical path by back reflection. A first lens group (Gr1), a second lens group (Gr2) having negative optical power, a third lens group (Gr3) having positive optical power, and a fourth lens group (Gr3) having positive optical power. And a lens group (Gr4).
[0018]
The first optical axis (AX1), which is the incident optical axis (the optical axis of the lens surface closest to the object), is bent by approximately 90 ° by the reflecting surface (REF) of the prism (PR). The second to fourth lens groups are arranged on the second optical axis (AX2) after being bent by the reflection surface (REF). The second lens group (Gr2) and the third lens group (Gr3) move on the second optical axis (AX2) during zooming.
[0019]
The digital
[0020]
2 to 5 are lens configuration diagrams respectively corresponding to the zoom lens systems constituting the first to fourth embodiments of the imaging lens device, and show the lens arrangement at the wide-angle end [W] in optical cross section. Indicated by. Arrows mj (j = 1, 2,...) In each lens configuration diagram schematically show movement of the j-th group (Grj) and the like during zooming from the wide-angle end [W] to the telephoto end [T]. Is shown. In each lens configuration diagram, the surface marked with ri (i = 1, 2, 3,...) Is the i-th surface counted from the object side, and the surface marked with * for ri is It is an aspheric surface. The axial top surface interval to which di (i = 1, 2, 3,...) is a variable interval that changes during zooming, of the i-th axial top surface interval counted from the object side. In each of the lens configuration diagrams of FIGS. 2 to 5, the optical axis is not bent for convenience, and the lenses are arranged in a straight line. Therefore, the shape of the prism (PR) for bending is not shown.
[0021]
On the other hand, FIGS. 6 to 9 are optical path diagrams respectively corresponding to the zoom lens systems constituting the first to fourth embodiments. In each optical path diagram, the on-axis light (image height Y '= 0) and the optical path of the short side section of the image sensor, that is, Y' = ± 1.56 mm in FIGS. 6 and 7, and Y '= ± in FIG. The optical path corresponding to 1.2 mm and FIG. 9 corresponds to Y ′ = ± 1.32 mm.
[0022]
Each of the zoom lens systems of the embodiments includes, in order from the object side, a first prism (PR) including a surface having negative optical power and an internal reflection surface (REF) for bending an optical path by approximately 90 °. A lens group (Gr1), a second lens group (Gr2) having negative optical power, a third lens group (Gr3) having positive optical power, and a fourth lens group having positive optical power (Gr4). At the time of zooming from the wide-angle end [W] to the telephoto end [T], the third lens unit (Gr3) moves so as to be always located closer to the object side than the position at the wide-angle end [W]. (Gr2) is configured to move so as to correct the image point movement accompanying the movement of the third lens group, and to change the magnification by changing the interval between the lens groups.
[0023]
In each of the imaging lens devices, the stop (SP) is disposed on the lens surface (r8) closest to the object in the third lens group. As shown in FIG. 1, the inner diameter of a lens pressing member (for example, a ring washer) for fixing the lens surface (r8) to the lens barrel functions as a diaphragm (SP). The aperture (SP) is not limited to such a form, and may be constituted by another member. Further, a variable aperture may be used.
[0024]
As a zoom lens system used for a camera (for example, a digital still camera) provided with a solid-state imaging device (for example, a CCD), a glass parallel plane plate (LPF) corresponding to an optical low-pass filter or the like is provided on the image plane side. Is arranged. In any of the embodiments, the first lens group (Gr1) includes only a prism (PR) for bending the optical axis. The second lens group (Gr2) and the third lens group (Gr3) each include one positive lens and one negative lens. The fourth lens group (Gr4) includes one lens element. The lens configuration of each embodiment will be described in more detail below.
[0025]
<< First Embodiment (FIGS. 2 and 6, negative-negative-positive-positive) >> The zoom lens system according to the first embodiment is a four-group negative, negative, positive, and positive zoom lens. It is configured as follows in order from the object side. The first lens group (Gr1) includes only a prism (PR) including a concave surface having an aspherical surface on the object side, a reflecting surface (REF) for bending the optical axis by approximately 90 °, and a flat surface. The second lens group (Gr2) is composed of a biconcave lens having an aspheric surface on both surfaces and a biconvex positive lens, and the second light after the first optical axis (AX1) is bent by the prism. It is arranged on the axis (AX2). The third lens group (Gr3) includes a biconvex positive lens having an aspheric surface on both surfaces, and a negative meniscus lens having an aspheric surface on the image surface side and concave on the image surface side. The fourth lens group (Gr4) includes only a positive meniscus lens having aspheric surfaces on both surfaces and convex on the image surface side.
[0026]
<< Second Embodiment (FIGS. 3 and 7, negative-negative-positive-positive) >> The zoom lens system according to the second embodiment is a four-unit zoom lens system of negative, negative, positive, and positive. It is configured as follows in order from the object side. The first lens group (Gr1) includes only a prism (PR) including a concave surface having an aspherical surface on the object side, a reflecting surface (REF) for bending the optical axis by approximately 90 °, and a flat surface. The second lens group (Gr2) includes a biconcave lens having an aspheric surface on both surfaces and a biconvex positive lens, and the first optical axis (AX1) after the first optical axis (AX1) is bent by the prism (PR). 2 on the optical axis (AX2). The third lens group (Gr3) includes a biconvex positive lens having an aspheric surface on both surfaces, and a biconcave negative lens having an aspheric surface on the image surface side. The fourth lens group (Gr4) includes only a positive meniscus lens having aspheric surfaces on both surfaces and convex on the image surface side.
[0027]
<< Third Embodiment (FIGS. 4 and 8, Negative / Negative / Positive / Positive) >> The zoom lens system according to the third embodiment is a four-group negative / negative / positive / positive zoom lens. It is configured as follows in order from the object side. The first lens group (Gr1) includes a prism (PR) including a concave surface having an aspherical surface on the object side, a reflecting surface (REF) for bending the optical axis by approximately 90 °, and a surface convex on the image surface side having an aspherical surface. , Only consists of. The second lens group (Gr2) includes a biconcave lens having an aspheric surface on both surfaces and a biconvex positive lens, and the first optical axis (AX1) after the first optical axis (AX1) is bent by the prism (PR). 2 on the optical axis (AX2). The third lens group (Gr3) includes a biconvex positive lens having an aspheric surface on both surfaces, and a biconcave negative lens having an aspheric surface on the image surface side. The fourth lens group (Gr4) includes only a positive meniscus lens having aspheric surfaces on both surfaces and convex on the image surface side.
[0028]
<< Fourth Embodiment (FIGS. 5 and 9; Negative, Negative, Positive and Positive) >> The zoom lens system according to the fourth embodiment is a four-group negative, negative, positive and positive zoom lens. It is configured as follows in order from the object side. The first lens group (Gr1) includes only a prism (PR) including a concave surface having an aspherical surface on the object side, a reflecting surface (REF) for bending the optical axis by approximately 90 °, and a flat surface. The second lens group (Gr2) includes a biconcave lens having aspherical surfaces on both surfaces and a positive meniscus lens convex on the object side, and the first optical axis (AX1) is bent by the prism (PR). It is arranged on the second optical axis (AX2). The third lens group (Gr3) includes a biconvex positive lens having an aspheric surface on both surfaces, and a biconcave negative lens having an aspheric surface on the image surface side. The fourth lens group (Gr4) includes only a biconvex positive lens having aspheric surfaces on both surfaces.
[0029]
In the first embodiment, at the time of zooming from the wide-angle end [W] to the telephoto end [T], the position of the first lens group (Gr1) is fixed, and the second lens group (Gr2) is moved to the image plane side. Then, the lens unit makes a U-turn toward the object side, moves the third lens unit (Gr4) so that it is always located closer to the object side from the image plane side than the position at the wide angle end [W], and the fourth lens unit (Gr4). Gr4) always moves from the object side to the image plane side from the position at the wide angle end [W].
[0030]
In the second, third, and fourth embodiments, at the time of zooming from the wide-angle end [W] to the telephoto end [T], the positions of the first lens group (Gr1) and the fourth lens group (Gr4) are changed. In a fixed state, the second lens group (Gr2) makes a U-turn to the object side after moving to the image plane side, and the third lens group (Gr3) always moves from the image plane side to the position at the wide angle end [W]. Move to be located on the object side.
[0031]
In the zoom lens system (TL) of each embodiment, the first lens group (Gr1) having a negative optical power during zooming is fixed in position, and a change in the overall length of the zoom lens system can be suppressed.
[0032]
In the zoom lens system (TL) of each embodiment, a configuration in which the optical path is bent by approximately 90 ° by a reflecting surface using a prism is adopted, and thereby, the length of the zoom lens system in the direction of the incident optical axis (that is, the depth direction) is increased. Can be shortened. The length of the
[0033]
Each of the first lens groups (Gr1) of the zoom lens system includes only a prism (PR) for bending the optical path. However, lens elements other than the prism are disposed on the image plane side of the prism (PR). You may have.
[0034]
It is desirable that such an
[0035]
The
-0.23 <P1 / Pw <-0.05 (1)
-0.20 <P1 / Pw <-0.10 (1A)
However,
P1: optical power of the first lens group,
Pw: optical power of the entire zoom lens system at the wide-angle end
It is.
[0036]
When the value goes below the lower limit of conditional expression (1), the negative optical power of the first lens group becomes too strong, and at the wide-angle end, distortion and field curvature generated in the first lens group are excessively corrected. In addition, when the optical power increases, the change in the surface shape increases, and it becomes difficult to ensure surface accuracy, for example, when a prism is formed by molding. When the value exceeds the upper limit, the negative optical power of the first lens unit becomes too small, so that it becomes difficult to secure a sufficient angle of view at the wide angle end. Further, since the entrance pupil position at the wide-angle end moves to the image plane side, the size of the folding prism increases.
[0037]
It is desirable that the
-0.46 <P2 / Pw <-0.16 (2)
However,
P2: optical power of the second lens group,
Pw: optical power of the entire zoom lens system at the wide-angle end
It is.
[0038]
If the lower limit of conditional expression (2) is not reached, the optical power of the second lens group becomes too strong, making it difficult to correct the curvature of field at the wide-angle end, and the sensitivity of the tilt of the image plane due to eccentricity becomes excessive. The assemblability becomes difficult and the mass productivity deteriorates. If the upper limit is exceeded, the amount of movement of the second lens group becomes excessive, and the overall length of the zoom lens system becomes too long.
[0039]
The
0.30 <P3 / Pw <0.85 (3)
0.45 <P3 / Pw <0.75 (3A)
However,
P3: optical power of the third lens group,
Pw: optical power of the entire zoom lens system at the wide-angle end
It is.
[0040]
If the lower limit of conditional expression (3) is not reached, the optical power of the third lens group will be too weak, and the amount of movement of the third lens group will be too large, making the overall length of the zoom lens system too long. If the power of the third lens group becomes too weak, the power of the first and second lens groups also becomes weak in order to set the focal length of the entire system to a predetermined value, and the entrance pupil position moves to the image plane side. I do. As a result, the size of the folding prism becomes large, and miniaturization becomes difficult. If the value exceeds the upper limit, the optical power of the third lens group becomes too strong, and it becomes difficult to correct spherical aberration.
[0041]
The
0.08 <P4 / Pw <0.85 (4)
0.08 <P4 / Pw <0.7 (4A)
However,
P4: optical power of the fourth lens group,
Pw: optical power of the entire zoom lens system at the wide-angle end
It is.
[0042]
When the value goes below the lower limit of conditional expression (4), the optical power of the fourth lens group becomes too weak, and the angle of incidence of light rays on the image sensor (SR) becomes large (the exit pupil of the zoom lens system becomes close to the image plane). Illuminance) at the periphery of the image plane. In addition, the amount of movement of the second and third lens units during zooming increases, and the overall length of the zoom lens system (TL) increases. When conditional expression (4) is exceeded, the optical power of the fourth lens group (Gr4) becomes too large, and it becomes difficult to correct the distortion generated in the fourth lens group (Gr4). Further, it becomes difficult to correct lateral chromatic aberration generated in the fourth lens group (Gr4), and it is difficult to form a single fourth lens group (Gr4).
[0043]
In the
[0044]
The
[0045]
Further, it is desirable that the second lens group (Gr2) has a two-lens configuration including one positive lens and one negative lens. With this configuration, it is possible to achieve low cost, compactness, and light weight while favorably correcting lateral chromatic aberration with the second lens group (Gr2).
[0046]
Further, it is desirable that the dispersion value of the positive lens and the negative lens of the second lens group (Gr2) satisfy the following conditional expression.
νd2m−νd2p> 20 (5)
However,
νd2m: dispersion value of the negative lens in the second lens group
νd2p: dispersion value of the positive lens in the second lens group
It is.
[0047]
When the value goes below the lower limit of conditional expression (5), it is necessary to increase the optical power of the negative lens and the positive lens for correcting chromatic aberration. In this case, an amount of field curvature that is difficult to correct occurs.
[0048]
Further, it is desirable that the third lens group (Gr3) has a two-lens configuration including one positive lens and one negative lens. With this configuration, it is possible to achieve low cost, compactness, and light weight while favorably correcting axial chromatic aberration with the third lens group (Gr3).
[0049]
It is desirable that the dispersion value of the positive lens and the negative lens of the third lens group (Gr3) satisfy the following conditional expression.
νd3p−νd3m> 30 (6)
However,
νd3m: dispersion value of the negative lens in the third lens group
νd3p: dispersion value of the positive lens in the third lens group
It is.
[0050]
When the value goes below the lower limit of conditional expression (6), it is necessary to increase the optical power of the negative lens and the positive lens for chromatic aberration correction. In this case, an amount of spherical aberration that is difficult to correct occurs.
[0051]
It is desirable that the fourth lens group (Gr4) is composed of one positive lens. The fourth lens group (Gr4) is a lens for changing the angle of a light beam so that the incident angle of light incident on the image sensor from the object is as vertical as possible (that is, the zoom lens system is a telecentric system). It is. Therefore, the fourth lens group (Gr4) may be a single lens, and low cost, compactness, and light weight can be achieved.
[0052]
It is desirable that the fourth lens group (Gr4) be fixed in position during zooming. With this configuration, the number of zoom moving lens groups is reduced, so that the configuration of the zoom cam and the lens barrel is simplified, and cost reduction can be achieved.
[0053]
It is preferable that at least one surface of the second lens group (Gr2) has an aspherical surface. With this configuration, the field curvature aberration and distortion at the wide-angle end can be favorably corrected with a small number of lenses.
[0054]
It is desirable that at least one surface of the third lens group (Gr3) be an aspheric surface. With this configuration, spherical aberration can be favorably corrected with a small number of lenses.
[0055]
It is preferable that at least one surface of the fourth lens group (Gr4) has an aspherical surface. With this configuration, the field curvature aberration and the distortion at the telephoto end can be favorably corrected with a small number of lenses.
[0056]
It is desirable that the stop (SP) be disposed on the object side of the third lens group (Gr3). With this configuration, the exit pupil of the zoom lens system can be located far from the image sensor (SR) (that is, in a substantially telecentric state), and the angle of light incident on the image sensor (SR) can be made closer to vertical. As a result, it is possible to prevent the illuminance at the periphery of the image from decreasing. Further, since the effective diameter of the first lens group (Gr1) can be made sufficiently small, the optical path length required for bending the optical path becomes short, and a thin imaging lens device in the direction of the incident optical axis can be realized.
[0057]
Each of the lens groups constituting the first to fourth embodiments is a refraction type lens that deflects an incident light ray by refraction (that is, a type in which deflection is performed at an interface between media having different refractive indexes). Lens), but is not limited to this. For example, a diffractive lens that deflects incident light by diffraction, a hybrid refraction / diffraction lens that deflects incident light by a combination of diffraction and refraction, and a refractive index distribution type that deflects incident light by a refractive index distribution in a medium. Each lens group may be constituted by a lens or the like. Further, a light flux regulating plate for cutting unnecessary light may be arranged as necessary.
[0058]
Further, in each of the embodiments, the configuration example of the optical flat low pass filter having the shape of a plane parallel plate disposed between the final surface of the zoom lens system and the image pickup device has been described. A birefringent low-pass filter made of crystal or the like whose direction is adjusted, a phase-type low-pass filter that achieves required optical cutoff frequency characteristics by a diffraction effect, and the like can be applied.
[0059]
In the above description, an example in which the
[0060]
【Example】
Hereinafter, the configuration and the like of the zoom lens system used in the imaging lens device embodying the present invention will be described more specifically with reference to construction data and the like. Examples 1 to 4 described below correspond to the first to fourth embodiments, respectively, and are lens configuration diagrams (FIGS. 2 to 5) showing the first to fourth embodiments. ) And optical path diagrams (FIGS. 6 to 9) show the corresponding lens configurations of Examples 1 to 4, respectively.
[0061]
In the construction data of each embodiment, ri (i = 1, 2, 3,...) Is the radius of curvature of the i-th surface counted from the object side, and di (i = 1, 2, 3,...) Represents the i-th axial upper surface distance counted from the object side, and Ni (i = 1, 2, 3,...) And vi (i = 1, 2, 3,. The refractive index (Nd) and Abbe number (vd) of the i-th optical element counted with respect to the d-line are shown. In the construction data, the distance between the upper surfaces of the axes that changes during zooming is from the wide-angle end (short focal length end) [W] to the middle (intermediate focal length state) [M] to the telephoto end (long focal length end) [T]. Is the variable air spacing. The focal length (f) and F-number (FNO) of the entire system corresponding to each focal length state [W], [M], [T] are shown together, and values corresponding to conditional expressions are shown in Table 1.
[0062]
Surfaces marked with an asterisk (*) in the radius of curvature ri are aspherical surfaces (refracting optical surfaces having an aspherical shape, surfaces having a refracting action equivalent to an aspherical surface, and the like), and the following expression representing the aspherical surface shape ( AS). The aspherical surface data of each embodiment is shown together with other data (however, the case of Ai = 0 is omitted).
[0063]
X (H) = (C0 · H 2 ) / {1 +} (1-ε · C0 2 ・ H 2 )} + Σ (Ai ・ H i …… (AS)
However, in the expression (AS),
X (H): displacement amount in the optical axis (AX) direction at the position of height H (based on the surface vertex),
H: height in a direction perpendicular to the optical axis (AX),
C0: paraxial curvature (= 1 / radius of curvature),
ε: quadratic surface parameter,
Ai: i-th order aspherical coefficient,
It is.
[0064]
10 to 13 are aberration diagrams corresponding to Examples 1 to 4, respectively, and FIGS. 10 to 13 are aberration diagrams corresponding to Examples 1 to 4 in an infinity shooting state. 10 to 13, [W] is the wide-angle end, [M] is the middle, [T] is various aberrations at the telephoto end (in order from the left, spherical aberration, astigmatism, and distortion. Y ′: (Maximum image height). In the spherical aberration diagram, the solid line (d) represents the spherical aberration with respect to the d line, the one-dot chain line (g) represents the spherical aberration with respect to the g line, the two-dot chain line (c) represents the spherical aberration with respect to the c line, and the dashed line (SC) represents the sine condition. ing. In the astigmatism diagram, a broken line (DM) indicates astigmatism with respect to the d-line on the meridional surface, and a solid line (DS) indicates astigmatism with respect to the d-line on the sagittal surface. In the distortion diagram, the solid line represents the distortion% with respect to the d-line.
[0065]
[0066]
[Table 1]
[0067]
【The invention's effect】
As described above, according to the imaging lens device of the present invention, it is possible to provide an imaging lens device having a high-performance and compact zoom lens system with a zoom ratio of about 3 times. If the imaging lens device of the present invention is applied to a camera built in or external to an electronic device such as a digital camera, a mobile phone, or a personal digital assistant (PDA), these devices can be made more compact, have higher performance, and have a lower performance. This can contribute to cost reduction and weight reduction.
[Brief description of the drawings]
FIG. 1 is a diagram schematically illustrating an internal configuration of a digital still camera according to a first embodiment.
FIG. 2 is a lens configuration diagram of a first embodiment (Example 1).
FIG. 3 is a lens configuration diagram of a second embodiment (Example 2).
FIG. 4 is a lens configuration diagram of a third embodiment (Example 3).
FIG. 5 is a lens configuration diagram of a fourth embodiment (Example 4).
FIG. 6 is an optical path diagram of the first embodiment (Example 1).
FIG. 7 is an optical path diagram of a second embodiment (Example 2).
FIG. 8 is an optical path diagram of a third embodiment (Example 3).
FIG. 9 is an optical path diagram of a fourth embodiment (Example 4).
FIG. 10 is an aberration diagram of the first embodiment in an infinity shooting state.
FIG. 11 is an aberrational diagram of the second embodiment in an infinity shooting state.
FIG. 12 is an aberrational diagram of the third embodiment in an infinity shooting state.
FIG. 13 is an aberrational diagram of the fourth embodiment in an infinity shooting state.
FIG. 14 is a schematic external view of a digital still camera according to the present invention.
[Explanation of symbols]
TL zoom lens system
SR image sensor
LPF low-pass filter (parallel plane plate)
AX1 First optical axis (incident optical axis)
AX2 Second optical axis
PR prism
Gr1 first lens group
Gr2 second lens group
SP aperture
Gr3 third lens group
Gr4 fourth lens group
1 Digital still camera
2 Case
3 Release button
4 Liquid crystal monitor (LCD)
5 Operation buttons
6. Imaging lens device
7 Signal processing unit
8 memory
9 Operation section
10 Controller
Claims (6)
前記ズームレンズ系により形成された光学像を電気的な信号に変換する撮像素子と、を備えた撮像レンズ装置であって、
前記ズームレンズ系は、物体側から順に、
全体として負の光学的パワーを持つ光路折り曲げ用プリズムを有し、変倍において位置固定で負の光学的パワーをもつ第1レンズ群と、
変倍において移動する負の光学的パワーをもつ第2レンズ群と、
変倍において移動する正の光学的パワーをもつ第3レンズ群と、
正の光学的パワーを持つ第4レンズ群と、
から構成され、
前記第1レンズ群は、最も物体側に前記光路折り曲げ用プリズムを有し前記光路折り曲げ用プリズムの最も物体側の面は凹面であり、
以下の条件式(1)を満足することを特徴とする撮像レンズ装置:
−0.23 < P1/Pw < −0.05 (1)
ただし、
P1:第1レンズ群の光学的パワー、
Pw:ズームレンズ系の広角端での光学的パワー、
である。A zoom lens system composed of a plurality of groups and performing zooming by changing the interval between each group,
An image pickup device that converts an optical image formed by the zoom lens system into an electric signal,
The zoom lens system, in order from the object side,
A first lens group having an optical path bending prism having a negative optical power as a whole, and having a fixed position and a negative optical power during zooming;
A second lens group having negative optical power that moves during zooming;
A third lens unit having a positive optical power that moves during zooming;
A fourth lens group having a positive optical power,
Consisting of
The first lens group has the optical path bending prism closest to the object side, and the most object side surface of the optical path bending prism is concave,
An imaging lens device satisfying the following conditional expression (1):
-0.23 <P1 / Pw <-0.05 (1)
However,
P1: optical power of the first lens group,
Pw: optical power at the wide-angle end of the zoom lens system,
It is.
−0.46 < P2/Pw < −0.16 (2)
ただし、
P2:第2レンズ群の光学的パワー、
Pw:ズームレンズ系の広角端での光学的パワー、
である。2. The imaging lens device according to claim 1, wherein the following conditional expression (2) is satisfied:
-0.46 <P2 / Pw <-0.16 (2)
However,
P2: optical power of the second lens group,
Pw: optical power at the wide-angle end of the zoom lens system,
It is.
0.30 < P3/Pw < 0.85 (3)
ただし、
P3:第3レンズ群の光学的パワー、
Pw:ズームレンズ系の広角端での光学的パワー、
である。2. The imaging lens device according to claim 1, wherein the following conditional expression (3) is satisfied:
0.30 <P3 / Pw <0.85 (3)
However,
P3: optical power of the third lens group,
Pw: optical power at the wide-angle end of the zoom lens system,
It is.
0.08 < P4/Pw < 0.85 (4)
ただし、
P4:第4レンズ群の光学的パワー、
Pw:ズームレンズ系の広角端での光学的パワー、
である。2. The imaging lens device according to claim 1, wherein the following conditional expression (4) is satisfied:
0.08 <P4 / Pw <0.85 (4)
However,
P4: optical power of the fourth lens group,
Pw: optical power at the wide-angle end of the zoom lens system,
It is.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003034475A JP4055599B2 (en) | 2003-02-13 | 2003-02-13 | Imaging lens device and electronic apparatus equipped with the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003034475A JP4055599B2 (en) | 2003-02-13 | 2003-02-13 | Imaging lens device and electronic apparatus equipped with the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004245982A true JP2004245982A (en) | 2004-09-02 |
JP4055599B2 JP4055599B2 (en) | 2008-03-05 |
Family
ID=33020137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003034475A Expired - Fee Related JP4055599B2 (en) | 2003-02-13 | 2003-02-13 | Imaging lens device and electronic apparatus equipped with the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4055599B2 (en) |
Cited By (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004348082A (en) * | 2003-05-26 | 2004-12-09 | Olympus Corp | Optical path bending optical system |
JP2006154702A (en) * | 2004-10-29 | 2006-06-15 | Konica Minolta Opto Inc | Variable power optical system, imaging lens device and digital apparatus |
JP2007079326A (en) * | 2005-09-16 | 2007-03-29 | Nidec Copal Corp | Zoom lens |
JP2007086307A (en) * | 2005-09-21 | 2007-04-05 | Olympus Imaging Corp | Zoom optical system and imaging apparatus equipped with the same |
KR100810208B1 (en) | 2006-08-24 | 2008-03-07 | 파워옵틱스 주식회사 | Zoom lens optical system and digital photographing device comprising the same |
WO2009064076A1 (en) * | 2007-11-13 | 2009-05-22 | Power Optics Co., Ltd | Zoom lens optical system |
JP2010214022A (en) * | 2009-03-18 | 2010-09-30 | Sankyo Co Ltd | Game machine |
JP2011232410A (en) * | 2010-04-26 | 2011-11-17 | Optical Logic Inc | Zoom lens |
CN102445749A (en) * | 2010-09-30 | 2012-05-09 | Hoya株式会社 | Imaging device |
CN103487919A (en) * | 2012-06-13 | 2014-01-01 | 华晶科技股份有限公司 | Camera shooting lens set and camera shooting device of camera shooting lens set |
WO2018135269A1 (en) * | 2017-01-20 | 2018-07-26 | パナソニックIpマネジメント株式会社 | Fixed focal length lens system and camera |
WO2019044934A1 (en) * | 2017-08-30 | 2019-03-07 | コニカミノルタ株式会社 | Single-focus imaging optical system, lens unit, and imaging device |
WO2019102313A1 (en) | 2017-11-23 | 2019-05-31 | Corephotonics Ltd. | Compact folded camera structure |
CN110007435A (en) * | 2014-01-17 | 2019-07-12 | 大立光电股份有限公司 | Photographing optical lens and image-taking device |
US10616484B2 (en) | 2016-06-19 | 2020-04-07 | Corephotonics Ltd. | Frame syncrhonization in a dual-aperture camera system |
US10670879B2 (en) | 2015-05-28 | 2020-06-02 | Corephotonics Ltd. | Bi-directional stiffness for optical image stabilization in a dual-aperture digital camera |
US10694168B2 (en) | 2018-04-22 | 2020-06-23 | Corephotonics Ltd. | System and method for mitigating or preventing eye damage from structured light IR/NIR projector systems |
US10694094B2 (en) | 2013-08-01 | 2020-06-23 | Corephotonics Ltd. | Thin multi-aperture imaging system with auto-focus and methods for using same |
US10706518B2 (en) | 2016-07-07 | 2020-07-07 | Corephotonics Ltd. | Dual camera system with improved video smooth transition by image blending |
US10841500B2 (en) | 2013-06-13 | 2020-11-17 | Corephotonics Ltd. | Dual aperture zoom digital camera |
US10845565B2 (en) | 2016-07-07 | 2020-11-24 | Corephotonics Ltd. | Linear ball guided voice coil motor for folded optic |
US10884321B2 (en) | 2017-01-12 | 2021-01-05 | Corephotonics Ltd. | Compact folded camera |
US10904512B2 (en) | 2017-09-06 | 2021-01-26 | Corephotonics Ltd. | Combined stereoscopic and phase detection depth mapping in a dual aperture camera |
US10917576B2 (en) | 2015-08-13 | 2021-02-09 | Corephotonics Ltd. | Dual aperture zoom camera with video support and switching / non-switching dynamic control |
USRE48444E1 (en) | 2012-11-28 | 2021-02-16 | Corephotonics Ltd. | High resolution thin multi-aperture imaging systems |
US10935870B2 (en) | 2015-12-29 | 2021-03-02 | Corephotonics Ltd. | Dual-aperture zoom digital camera with automatic adjustable tele field of view |
US10951834B2 (en) | 2017-10-03 | 2021-03-16 | Corephotonics Ltd. | Synthetically enlarged camera aperture |
US10976567B2 (en) | 2018-02-05 | 2021-04-13 | Corephotonics Ltd. | Reduced height penalty for folded camera |
US10976527B2 (en) | 2014-08-10 | 2021-04-13 | Corephotonics Ltd. | Zoom dual-aperture camera with folded lens |
US11125975B2 (en) | 2015-01-03 | 2021-09-21 | Corephotonics Ltd. | Miniature telephoto lens module and a camera utilizing such a lens module |
US11150447B2 (en) | 2016-05-30 | 2021-10-19 | Corephotonics Ltd. | Rotational ball-guided voice coil motor |
US11268829B2 (en) | 2018-04-23 | 2022-03-08 | Corephotonics Ltd | Optical-path folding-element with an extended two degree of freedom rotation range |
US11287668B2 (en) | 2013-07-04 | 2022-03-29 | Corephotonics Ltd. | Thin dual-aperture zoom digital camera |
US11287081B2 (en) | 2019-01-07 | 2022-03-29 | Corephotonics Ltd. | Rotation mechanism with sliding joint |
US11315276B2 (en) | 2019-03-09 | 2022-04-26 | Corephotonics Ltd. | System and method for dynamic stereoscopic calibration |
US11363180B2 (en) | 2018-08-04 | 2022-06-14 | Corephotonics Ltd. | Switchable continuous display information system above camera |
US11368631B1 (en) | 2019-07-31 | 2022-06-21 | Corephotonics Ltd. | System and method for creating background blur in camera panning or motion |
US11531209B2 (en) | 2016-12-28 | 2022-12-20 | Corephotonics Ltd. | Folded camera structure with an extended light-folding-element scanning range |
US11635596B2 (en) | 2018-08-22 | 2023-04-25 | Corephotonics Ltd. | Two-state zoom folded camera |
US11637977B2 (en) | 2020-07-15 | 2023-04-25 | Corephotonics Ltd. | Image sensors and sensing methods to obtain time-of-flight and phase detection information |
US11659135B2 (en) | 2019-10-30 | 2023-05-23 | Corephotonics Ltd. | Slow or fast motion video using depth information |
US11671711B2 (en) | 2017-03-15 | 2023-06-06 | Corephotonics Ltd. | Imaging system with panoramic scanning range |
US11770609B2 (en) | 2020-05-30 | 2023-09-26 | Corephotonics Ltd. | Systems and methods for obtaining a super macro image |
US11770618B2 (en) | 2019-12-09 | 2023-09-26 | Corephotonics Ltd. | Systems and methods for obtaining a smart panoramic image |
US11832018B2 (en) | 2020-05-17 | 2023-11-28 | Corephotonics Ltd. | Image stitching in the presence of a full field of view reference image |
US11910089B2 (en) | 2020-07-15 | 2024-02-20 | Corephotonics Lid. | Point of view aberrations correction in a scanning folded camera |
US11949976B2 (en) | 2019-12-09 | 2024-04-02 | Corephotonics Ltd. | Systems and methods for obtaining a smart panoramic image |
US11946775B2 (en) | 2020-07-31 | 2024-04-02 | Corephotonics Ltd. | Hall sensor—magnet geometry for large stroke linear position sensing |
US11968453B2 (en) | 2020-08-12 | 2024-04-23 | Corephotonics Ltd. | Optical image stabilization in a scanning folded camera |
US12007671B2 (en) | 2021-06-08 | 2024-06-11 | Corephotonics Ltd. | Systems and cameras for tilting a focal plane of a super-macro image |
US12007668B2 (en) | 2020-02-22 | 2024-06-11 | Corephotonics Ltd. | Split screen feature for macro photography |
US12081856B2 (en) | 2021-03-11 | 2024-09-03 | Corephotonics Lid. | Systems for pop-out camera |
US12101575B2 (en) | 2020-12-26 | 2024-09-24 | Corephotonics Ltd. | Video support in a multi-aperture mobile camera with a scanning zoom camera |
US12124106B2 (en) | 2024-04-04 | 2024-10-22 | Corephotonics Ltd. | Linear ball guided voice coil motor for folded optic |
-
2003
- 2003-02-13 JP JP2003034475A patent/JP4055599B2/en not_active Expired - Fee Related
Cited By (149)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004348082A (en) * | 2003-05-26 | 2004-12-09 | Olympus Corp | Optical path bending optical system |
JP2006154702A (en) * | 2004-10-29 | 2006-06-15 | Konica Minolta Opto Inc | Variable power optical system, imaging lens device and digital apparatus |
JP2007079326A (en) * | 2005-09-16 | 2007-03-29 | Nidec Copal Corp | Zoom lens |
JP2007086307A (en) * | 2005-09-21 | 2007-04-05 | Olympus Imaging Corp | Zoom optical system and imaging apparatus equipped with the same |
KR100810208B1 (en) | 2006-08-24 | 2008-03-07 | 파워옵틱스 주식회사 | Zoom lens optical system and digital photographing device comprising the same |
WO2009064076A1 (en) * | 2007-11-13 | 2009-05-22 | Power Optics Co., Ltd | Zoom lens optical system |
KR100927347B1 (en) | 2007-11-13 | 2009-11-24 | 파워옵틱스 주식회사 | Zoom lens optical system |
JP2010214022A (en) * | 2009-03-18 | 2010-09-30 | Sankyo Co Ltd | Game machine |
JP2011232410A (en) * | 2010-04-26 | 2011-11-17 | Optical Logic Inc | Zoom lens |
CN102445749A (en) * | 2010-09-30 | 2012-05-09 | Hoya株式会社 | Imaging device |
CN102445749B (en) * | 2010-09-30 | 2016-02-03 | Hoya株式会社 | Imaging device |
CN103487919A (en) * | 2012-06-13 | 2014-01-01 | 华晶科技股份有限公司 | Camera shooting lens set and camera shooting device of camera shooting lens set |
USRE48697E1 (en) | 2012-11-28 | 2021-08-17 | Corephotonics Ltd. | High resolution thin multi-aperture imaging systems |
USRE48945E1 (en) | 2012-11-28 | 2022-02-22 | Corephotonics Ltd. | High resolution thin multi-aperture imaging systems |
USRE48477E1 (en) | 2012-11-28 | 2021-03-16 | Corephotonics Ltd | High resolution thin multi-aperture imaging systems |
USRE49256E1 (en) | 2012-11-28 | 2022-10-18 | Corephotonics Ltd. | High resolution thin multi-aperture imaging systems |
USRE48444E1 (en) | 2012-11-28 | 2021-02-16 | Corephotonics Ltd. | High resolution thin multi-aperture imaging systems |
US12069371B2 (en) | 2013-06-13 | 2024-08-20 | Corephotonics Lid. | Dual aperture zoom digital camera |
US11470257B2 (en) | 2013-06-13 | 2022-10-11 | Corephotonics Ltd. | Dual aperture zoom digital camera |
US10841500B2 (en) | 2013-06-13 | 2020-11-17 | Corephotonics Ltd. | Dual aperture zoom digital camera |
US10904444B2 (en) | 2013-06-13 | 2021-01-26 | Corephotonics Ltd. | Dual aperture zoom digital camera |
US11838635B2 (en) | 2013-06-13 | 2023-12-05 | Corephotonics Ltd. | Dual aperture zoom digital camera |
US11287668B2 (en) | 2013-07-04 | 2022-03-29 | Corephotonics Ltd. | Thin dual-aperture zoom digital camera |
US11852845B2 (en) | 2013-07-04 | 2023-12-26 | Corephotonics Ltd. | Thin dual-aperture zoom digital camera |
US11614635B2 (en) | 2013-07-04 | 2023-03-28 | Corephotonics Ltd. | Thin dual-aperture zoom digital camera |
US12114068B2 (en) | 2013-08-01 | 2024-10-08 | Corephotonics Ltd. | Thin multi-aperture imaging system with auto-focus and methods for using same |
US11991444B2 (en) | 2013-08-01 | 2024-05-21 | Corephotonics Ltd. | Thin multi-aperture imaging system with auto-focus and methods for using same |
US11716535B2 (en) | 2013-08-01 | 2023-08-01 | Corephotonics Ltd. | Thin multi-aperture imaging system with auto-focus and methods for using same |
US10694094B2 (en) | 2013-08-01 | 2020-06-23 | Corephotonics Ltd. | Thin multi-aperture imaging system with auto-focus and methods for using same |
US11856291B2 (en) | 2013-08-01 | 2023-12-26 | Corephotonics Ltd. | Thin multi-aperture imaging system with auto-focus and methods for using same |
US11470235B2 (en) | 2013-08-01 | 2022-10-11 | Corephotonics Ltd. | Thin multi-aperture imaging system with autofocus and methods for using same |
CN110007435B (en) * | 2014-01-17 | 2021-09-17 | 大立光电股份有限公司 | Photographing optical lens and image capturing device |
CN110007435A (en) * | 2014-01-17 | 2019-07-12 | 大立光电股份有限公司 | Photographing optical lens and image-taking device |
US11543633B2 (en) | 2014-08-10 | 2023-01-03 | Corephotonics Ltd. | Zoom dual-aperture camera with folded lens |
US10976527B2 (en) | 2014-08-10 | 2021-04-13 | Corephotonics Ltd. | Zoom dual-aperture camera with folded lens |
US11982796B2 (en) | 2014-08-10 | 2024-05-14 | Corephotonics Ltd. | Zoom dual-aperture camera with folded lens |
US11703668B2 (en) | 2014-08-10 | 2023-07-18 | Corephotonics Ltd. | Zoom dual-aperture camera with folded lens |
US11042011B2 (en) | 2014-08-10 | 2021-06-22 | Corephotonics Ltd. | Zoom dual-aperture camera with folded lens |
US12007537B2 (en) | 2014-08-10 | 2024-06-11 | Corephotonics Lid. | Zoom dual-aperture camera with folded lens |
US12105268B2 (en) | 2014-08-10 | 2024-10-01 | Corephotonics Ltd. | Zoom dual-aperture camera with folded lens |
US11262559B2 (en) | 2014-08-10 | 2022-03-01 | Corephotonics Ltd | Zoom dual-aperture camera with folded lens |
US11002947B2 (en) | 2014-08-10 | 2021-05-11 | Corephotonics Ltd. | Zoom dual-aperture camera with folded lens |
US11994654B2 (en) | 2015-01-03 | 2024-05-28 | Corephotonics Ltd. | Miniature telephoto lens module and a camera utilizing such a lens module |
US11125975B2 (en) | 2015-01-03 | 2021-09-21 | Corephotonics Ltd. | Miniature telephoto lens module and a camera utilizing such a lens module |
US10670879B2 (en) | 2015-05-28 | 2020-06-02 | Corephotonics Ltd. | Bi-directional stiffness for optical image stabilization in a dual-aperture digital camera |
US10917576B2 (en) | 2015-08-13 | 2021-02-09 | Corephotonics Ltd. | Dual aperture zoom camera with video support and switching / non-switching dynamic control |
US11350038B2 (en) | 2015-08-13 | 2022-05-31 | Corephotonics Ltd. | Dual aperture zoom camera with video support and switching / non-switching dynamic control |
US12022196B2 (en) | 2015-08-13 | 2024-06-25 | Corephotonics Ltd. | Dual aperture zoom camera with video support and switching / non-switching dynamic control |
US11770616B2 (en) | 2015-08-13 | 2023-09-26 | Corephotonics Ltd. | Dual aperture zoom camera with video support and switching / non-switching dynamic control |
US11546518B2 (en) | 2015-08-13 | 2023-01-03 | Corephotonics Ltd. | Dual aperture zoom camera with video support and switching / non-switching dynamic control |
US10935870B2 (en) | 2015-12-29 | 2021-03-02 | Corephotonics Ltd. | Dual-aperture zoom digital camera with automatic adjustable tele field of view |
US11599007B2 (en) | 2015-12-29 | 2023-03-07 | Corephotonics Ltd. | Dual-aperture zoom digital camera with automatic adjustable tele field of view |
US11392009B2 (en) | 2015-12-29 | 2022-07-19 | Corephotonics Ltd. | Dual-aperture zoom digital camera with automatic adjustable tele field of view |
US11726388B2 (en) | 2015-12-29 | 2023-08-15 | Corephotonics Ltd. | Dual-aperture zoom digital camera with automatic adjustable tele field of view |
US11314146B2 (en) | 2015-12-29 | 2022-04-26 | Corephotonics Ltd. | Dual-aperture zoom digital camera with automatic adjustable tele field of view |
US11977210B2 (en) | 2016-05-30 | 2024-05-07 | Corephotonics Ltd. | Rotational ball-guided voice coil motor |
US11650400B2 (en) | 2016-05-30 | 2023-05-16 | Corephotonics Ltd. | Rotational ball-guided voice coil motor |
US11150447B2 (en) | 2016-05-30 | 2021-10-19 | Corephotonics Ltd. | Rotational ball-guided voice coil motor |
US11689803B2 (en) | 2016-06-19 | 2023-06-27 | Corephotonics Ltd. | Frame synchronization in a dual-aperture camera system |
US11172127B2 (en) | 2016-06-19 | 2021-11-09 | Corephotonics Ltd. | Frame synchronization in a dual-aperture camera system |
US10616484B2 (en) | 2016-06-19 | 2020-04-07 | Corephotonics Ltd. | Frame syncrhonization in a dual-aperture camera system |
US10706518B2 (en) | 2016-07-07 | 2020-07-07 | Corephotonics Ltd. | Dual camera system with improved video smooth transition by image blending |
US11048060B2 (en) | 2016-07-07 | 2021-06-29 | Corephotonics Ltd. | Linear ball guided voice coil motor for folded optic |
US11977270B2 (en) | 2016-07-07 | 2024-05-07 | Corephotonics Lid. | Linear ball guided voice coil motor for folded optic |
US11550119B2 (en) | 2016-07-07 | 2023-01-10 | Corephotonics Ltd. | Linear ball guided voice coil motor for folded optic |
US10845565B2 (en) | 2016-07-07 | 2020-11-24 | Corephotonics Ltd. | Linear ball guided voice coil motor for folded optic |
US11531209B2 (en) | 2016-12-28 | 2022-12-20 | Corephotonics Ltd. | Folded camera structure with an extended light-folding-element scanning range |
US12038671B2 (en) | 2017-01-12 | 2024-07-16 | Corephotonics Ltd. | Compact folded camera |
US11693297B2 (en) | 2017-01-12 | 2023-07-04 | Corephotonics Ltd. | Compact folded camera |
US10884321B2 (en) | 2017-01-12 | 2021-01-05 | Corephotonics Ltd. | Compact folded camera |
US11809065B2 (en) | 2017-01-12 | 2023-11-07 | Corephotonics Ltd. | Compact folded camera |
US11815790B2 (en) | 2017-01-12 | 2023-11-14 | Corephotonics Ltd. | Compact folded camera |
US11467374B2 (en) | 2017-01-20 | 2022-10-11 | Panasonic Intellectual Property Management Co., Ltd. | Fixed focal length lens system and camera |
WO2018135269A1 (en) * | 2017-01-20 | 2018-07-26 | パナソニックIpマネジメント株式会社 | Fixed focal length lens system and camera |
US11671711B2 (en) | 2017-03-15 | 2023-06-06 | Corephotonics Ltd. | Imaging system with panoramic scanning range |
WO2019044934A1 (en) * | 2017-08-30 | 2019-03-07 | コニカミノルタ株式会社 | Single-focus imaging optical system, lens unit, and imaging device |
JP7045002B2 (en) | 2017-08-30 | 2022-03-31 | コニカミノルタ株式会社 | Single focus imaging optical system, lens unit, and imaging device |
JPWO2019044934A1 (en) * | 2017-08-30 | 2020-10-01 | コニカミノルタ株式会社 | Single focus imaging optics, lens unit, and imaging device |
CN111033348B (en) * | 2017-08-30 | 2022-03-01 | 柯尼卡美能达株式会社 | Single-focus imaging optical system, lens unit, and imaging device |
CN111033348A (en) * | 2017-08-30 | 2020-04-17 | 柯尼卡美能达株式会社 | Single-focus imaging optical system, lens unit, and imaging device |
US10904512B2 (en) | 2017-09-06 | 2021-01-26 | Corephotonics Ltd. | Combined stereoscopic and phase detection depth mapping in a dual aperture camera |
US11695896B2 (en) | 2017-10-03 | 2023-07-04 | Corephotonics Ltd. | Synthetically enlarged camera aperture |
US10951834B2 (en) | 2017-10-03 | 2021-03-16 | Corephotonics Ltd. | Synthetically enlarged camera aperture |
JP2021047442A (en) * | 2017-11-23 | 2021-03-25 | コアフォトニクス リミテッド | Compact folded camera structure |
KR102424791B1 (en) * | 2017-11-23 | 2022-07-22 | 코어포토닉스 리미티드 | Compact folded camera structure |
JP7227210B2 (en) | 2017-11-23 | 2023-02-21 | コアフォトニクス リミテッド | Compact articulated camera structure |
KR20200045567A (en) * | 2017-11-23 | 2020-05-04 | 코어포토닉스 리미티드 | Compact folded camera structure |
KR102268862B1 (en) * | 2017-11-23 | 2021-06-24 | 코어포토닉스 리미티드 | Compact folded camera structure |
US11619864B2 (en) | 2017-11-23 | 2023-04-04 | Corephotonics Ltd. | Compact folded camera structure |
JP2023054050A (en) * | 2017-11-23 | 2023-04-13 | コアフォトニクス リミテッド | Compact folded camera structure |
KR20210068600A (en) * | 2017-11-23 | 2021-06-09 | 코어포토닉스 리미티드 | Compact folded camera structure |
KR102261024B1 (en) * | 2017-11-23 | 2021-06-04 | 코어포토닉스 리미티드 | Compact folded camera structure |
KR20220143168A (en) * | 2017-11-23 | 2022-10-24 | 코어포토닉스 리미티드 | Compact folded camera structure |
WO2019102313A1 (en) | 2017-11-23 | 2019-05-31 | Corephotonics Ltd. | Compact folded camera structure |
KR102456315B1 (en) * | 2017-11-23 | 2022-10-18 | 코어포토닉스 리미티드 | Compact folded camera structure |
JP2020510868A (en) * | 2017-11-23 | 2020-04-09 | コアフォトニクス リミテッド | Compact bendable camera structure |
CN113075838A (en) * | 2017-11-23 | 2021-07-06 | 核心光电有限公司 | Camera, manufacturing method thereof, mobile electronic equipment and method for reducing space occupied by bulges |
JP2021051319A (en) * | 2017-11-23 | 2021-04-01 | コアフォトニクス リミテッド | Compact folded camera structure |
KR20200044143A (en) * | 2017-11-23 | 2020-04-28 | 코어포토닉스 리미티드 | Compact folded camera structure |
KR20210068599A (en) * | 2017-11-23 | 2021-06-09 | 코어포토닉스 리미티드 | Compact folded camera structure |
JP7222964B2 (en) | 2017-11-23 | 2023-02-15 | コアフォトニクス リミテッド | Compact articulated camera structure |
JP7436716B2 (en) | 2017-11-23 | 2024-02-22 | コアフォトニクス リミテッド | Compact bendable camera structure |
KR102666902B1 (en) * | 2017-11-23 | 2024-05-16 | 코어포토닉스 리미티드 | Compact folded camera structure |
CN110140076A (en) * | 2017-11-23 | 2019-08-16 | 核心光电有限公司 | Compact type folding formula camera configuration |
EP3513110A4 (en) * | 2017-11-23 | 2019-12-18 | Corephotonics Ltd. | Compact folded camera structure |
US12007672B2 (en) | 2017-11-23 | 2024-06-11 | Corephotonics Ltd. | Compact folded camera structure |
US11333955B2 (en) | 2017-11-23 | 2022-05-17 | Corephotonics Ltd. | Compact folded camera structure |
US11809066B2 (en) | 2017-11-23 | 2023-11-07 | Corephotonics Ltd. | Compact folded camera structure |
EP4250695A3 (en) * | 2017-11-23 | 2023-11-22 | Corephotonics Ltd. | Compact folded camera structure |
US12007582B2 (en) | 2018-02-05 | 2024-06-11 | Corephotonics Ltd. | Reduced height penalty for folded camera |
US10976567B2 (en) | 2018-02-05 | 2021-04-13 | Corephotonics Ltd. | Reduced height penalty for folded camera |
US11686952B2 (en) | 2018-02-05 | 2023-06-27 | Corephotonics Ltd. | Reduced height penalty for folded camera |
US10694168B2 (en) | 2018-04-22 | 2020-06-23 | Corephotonics Ltd. | System and method for mitigating or preventing eye damage from structured light IR/NIR projector systems |
US10911740B2 (en) | 2018-04-22 | 2021-02-02 | Corephotonics Ltd. | System and method for mitigating or preventing eye damage from structured light IR/NIR projector systems |
US11733064B1 (en) | 2018-04-23 | 2023-08-22 | Corephotonics Ltd. | Optical-path folding-element with an extended two degree of freedom rotation range |
US11268829B2 (en) | 2018-04-23 | 2022-03-08 | Corephotonics Ltd | Optical-path folding-element with an extended two degree of freedom rotation range |
US11867535B2 (en) | 2018-04-23 | 2024-01-09 | Corephotonics Ltd. | Optical-path folding-element with an extended two degree of freedom rotation range |
US11976949B2 (en) | 2018-04-23 | 2024-05-07 | Corephotonics Lid. | Optical-path folding-element with an extended two degree of freedom rotation range |
US11359937B2 (en) | 2018-04-23 | 2022-06-14 | Corephotonics Ltd. | Optical-path folding-element with an extended two degree of freedom rotation range |
US11268830B2 (en) | 2018-04-23 | 2022-03-08 | Corephotonics Ltd | Optical-path folding-element with an extended two degree of freedom rotation range |
US12085421B2 (en) | 2018-04-23 | 2024-09-10 | Corephotonics Ltd. | Optical-path folding-element with an extended two degree of freedom rotation range |
US11363180B2 (en) | 2018-08-04 | 2022-06-14 | Corephotonics Ltd. | Switchable continuous display information system above camera |
US11635596B2 (en) | 2018-08-22 | 2023-04-25 | Corephotonics Ltd. | Two-state zoom folded camera |
US11852790B2 (en) | 2018-08-22 | 2023-12-26 | Corephotonics Ltd. | Two-state zoom folded camera |
US11287081B2 (en) | 2019-01-07 | 2022-03-29 | Corephotonics Ltd. | Rotation mechanism with sliding joint |
US12025260B2 (en) | 2019-01-07 | 2024-07-02 | Corephotonics Ltd. | Rotation mechanism with sliding joint |
US11315276B2 (en) | 2019-03-09 | 2022-04-26 | Corephotonics Ltd. | System and method for dynamic stereoscopic calibration |
US11527006B2 (en) | 2019-03-09 | 2022-12-13 | Corephotonics Ltd. | System and method for dynamic stereoscopic calibration |
US11368631B1 (en) | 2019-07-31 | 2022-06-21 | Corephotonics Ltd. | System and method for creating background blur in camera panning or motion |
US11659135B2 (en) | 2019-10-30 | 2023-05-23 | Corephotonics Ltd. | Slow or fast motion video using depth information |
US11770618B2 (en) | 2019-12-09 | 2023-09-26 | Corephotonics Ltd. | Systems and methods for obtaining a smart panoramic image |
US11949976B2 (en) | 2019-12-09 | 2024-04-02 | Corephotonics Ltd. | Systems and methods for obtaining a smart panoramic image |
US12075151B2 (en) | 2019-12-09 | 2024-08-27 | Corephotonics Ltd. | Systems and methods for obtaining a smart panoramic image |
US12007668B2 (en) | 2020-02-22 | 2024-06-11 | Corephotonics Ltd. | Split screen feature for macro photography |
US12096150B2 (en) | 2020-05-17 | 2024-09-17 | Corephotonics Ltd. | Image stitching in the presence of a full field of view reference image |
US11832018B2 (en) | 2020-05-17 | 2023-11-28 | Corephotonics Ltd. | Image stitching in the presence of a full field of view reference image |
US11770609B2 (en) | 2020-05-30 | 2023-09-26 | Corephotonics Ltd. | Systems and methods for obtaining a super macro image |
US11962901B2 (en) | 2020-05-30 | 2024-04-16 | Corephotonics Ltd. | Systems and methods for obtaining a super macro image |
US11832008B2 (en) | 2020-07-15 | 2023-11-28 | Corephotonics Ltd. | Image sensors and sensing methods to obtain time-of-flight and phase detection information |
US12003874B2 (en) | 2020-07-15 | 2024-06-04 | Corephotonics Ltd. | Image sensors and sensing methods to obtain Time-of-Flight and phase detection information |
US11637977B2 (en) | 2020-07-15 | 2023-04-25 | Corephotonics Ltd. | Image sensors and sensing methods to obtain time-of-flight and phase detection information |
US11910089B2 (en) | 2020-07-15 | 2024-02-20 | Corephotonics Lid. | Point of view aberrations correction in a scanning folded camera |
US12108151B2 (en) | 2020-07-15 | 2024-10-01 | Corephotonics Ltd. | Point of view aberrations correction in a scanning folded camera |
US11946775B2 (en) | 2020-07-31 | 2024-04-02 | Corephotonics Ltd. | Hall sensor—magnet geometry for large stroke linear position sensing |
US11968453B2 (en) | 2020-08-12 | 2024-04-23 | Corephotonics Ltd. | Optical image stabilization in a scanning folded camera |
US12101575B2 (en) | 2020-12-26 | 2024-09-24 | Corephotonics Ltd. | Video support in a multi-aperture mobile camera with a scanning zoom camera |
US12081856B2 (en) | 2021-03-11 | 2024-09-03 | Corephotonics Lid. | Systems for pop-out camera |
US12007671B2 (en) | 2021-06-08 | 2024-06-11 | Corephotonics Ltd. | Systems and cameras for tilting a focal plane of a super-macro image |
US12124106B2 (en) | 2024-04-04 | 2024-10-22 | Corephotonics Ltd. | Linear ball guided voice coil motor for folded optic |
Also Published As
Publication number | Publication date |
---|---|
JP4055599B2 (en) | 2008-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4055599B2 (en) | Imaging lens device and electronic apparatus equipped with the same | |
JP3656089B2 (en) | Imaging lens device | |
JP5045267B2 (en) | Zoom lens and imaging device | |
JP3598971B2 (en) | Imaging lens device | |
JP4211761B2 (en) | Shooting lens unit | |
JP4103475B2 (en) | Imaging lens device | |
JP4806976B2 (en) | Variable magnification optical system | |
JP5045266B2 (en) | Zoom lens and imaging device | |
JP4844012B2 (en) | Variable magnification optical system and imaging apparatus | |
JP3864897B2 (en) | Imaging lens device | |
JP2004170707A (en) | Imaging lens device and digital camera equipped with imaging lens device | |
JP5915437B2 (en) | Variable focal length lens system and imaging apparatus | |
JP2007072263A (en) | Variable power optical system | |
JP2008304708A (en) | Zoom lens and imaging apparatus | |
JP2002055278A (en) | Image pickup lens device | |
JP2001194590A (en) | Image pickup lens device | |
JP2002082284A (en) | Imaging lens device | |
WO2012077338A1 (en) | Zoom lens and imaging device | |
JP2006317478A (en) | Variable magnification optical system | |
JP2009217167A (en) | Zoom optical system and imaging apparatus | |
JP2006195071A (en) | Variable power optical system | |
JP4917922B2 (en) | Zoom lens system, imaging device and camera | |
JP2007212636A (en) | Zoom lens system, imaging apparatus and camera | |
JP2005037576A (en) | Imaging lens device | |
JP4281307B2 (en) | Zoom lens system and imaging lens device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040917 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20040917 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20070827 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071203 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101221 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101221 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111221 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111221 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121221 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131221 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |