JP2004245766A - Device for detecting rotation angle - Google Patents

Device for detecting rotation angle Download PDF

Info

Publication number
JP2004245766A
JP2004245766A JP2003037886A JP2003037886A JP2004245766A JP 2004245766 A JP2004245766 A JP 2004245766A JP 2003037886 A JP2003037886 A JP 2003037886A JP 2003037886 A JP2003037886 A JP 2003037886A JP 2004245766 A JP2004245766 A JP 2004245766A
Authority
JP
Japan
Prior art keywords
rotation angle
signal
magnetoresistive
magnetoresistive elements
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003037886A
Other languages
Japanese (ja)
Inventor
Kiyotaka Sasanouchi
清孝 笹之内
Koji Oike
幸司 御池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003037886A priority Critical patent/JP2004245766A/en
Publication of JP2004245766A publication Critical patent/JP2004245766A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for detecting rotation angle which accurately detects a rotation angle with high resolution, without being influenced by temperature changes etc. <P>SOLUTION: The device for detecting rotation angle is composed of at least two magnetoresistive elements 12, 13, 14, 15, a magnetism-generating section for applying a magnetic field to each magnetoresistive element 12-15, a signal processing section 21 for detecting the rotation angle by output signals from the magnetoresistive elements 12-15, and a signal controlling section 26 for controlling the output signals of the magnetoresistive elements 12-15, and the at least two magnetoresistive elements 12-15 are arranged so that their phase difference is 90 degrees. The accuracy of detection of the rotation angle is increased, by controlling the output signal levels of the magnetoresistance elements 12-15, arranged so as to be different in phase, and moreover, by comparing them. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は磁気抵抗素子を用いて被検出物の回転角を検出する回転角検出装置に関するものである。
【0002】
【従来の技術】
従来の回転角検出装置としては、図6に示すものがある。図6に示すように回転角検出装置は、2個の磁石1と主ヨーク2とで構成されるロータと、一組の補助ヨーク3と磁気検出素子4とで構成されるステータとを具備し、被検出物の回転物の回転軸にロータが固定されている。主ヨーク2は2個の磁石1の間をリング状に閉じて磁気回路を構成し、一組の補助ヨーク3は両者間に空隙5を設けるように配置し、その空隙5の中央部に磁気検出素子4が組み込まれている。このステータはロータ内部に配置されロータとの間に設けられるエアギャップGが周方向で徐々に変化するように配置されている。具体的にはステータの空隙方向をロータの中心線A−Aに合わせ、さらにステータの中心Osをロータの中心Orから所定量だけずらして配置している。
【0003】
なお、この出願の発明に関連する先行技術文献情報としては、例えば特許文献1が知られている。
【0004】
【特許文献1】
特開2001−28969号公報
【0005】
【発明が解決しようとする課題】
従来の回転角検出装置では温度変化などにより、磁気検出素子の抵抗値や検出レベルなどが大きく変化し、検出される回転角に誤差が生じ易くなる。
【0006】
本発明は温度変化などの影響を受けず高分解能で回転角を正確に検出する回転角検出装置を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、本発明は以下の構成を有する。
【0008】
本発明の請求項1に記載の発明は、少なくとも2つの磁気抵抗素子と、この磁気抵抗素子に磁界を与える磁気発生部と、前記磁気抵抗素子からの出力信号より回転角を検出する信号処理部と、前記磁気抵抗素子の出力信号を制御する信号制御部とからなり、前記少なくとも2つの磁気抵抗素子からの出力信号の位相が1/4周期異なるように2つの磁気抵抗素子を配置した回転角検出装置であり、異なる位相になるように配置する磁気抵抗素子の出力信号レベルを制御し、さらにこれらの出力信号を比較することにより回転角の検出精度が向上する。
【0009】
請求項2に記載の発明は、信号制御部が電源電圧を切り換える電源回路と、回転角の検出誤差に応じて電源回路を制御する制御部とから構成される請求項1に記載の回転角検出装置であり、異なる位相になるように配置する磁気抵抗素子の出力信号レベルを制御し、さらに比較することにより回転角の検出精度が向上する。
【0010】
請求項3に記載の発明は、信号制御部が電源回路と磁気抵抗素子間およびGNDと磁気抵抗素子間に抵抗素子とこの抵抗素子と並列にスイッチを挿入したスイッチ部と、回転角の検出誤差に応じて前記スイッチを制御する制御部とから構成される請求項1に記載の回転角検出装置であり、異なる位相になるように配置する磁気抵抗素子の出力信号レベルを制御し、さらに比較することにより回転角の検出精度が向上する。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について図を用いて説明する。
【0012】
(実施の形態1)
図1は本発明の回転角検出装置の回路ブロック図である。
【0013】
本発明の回転角検出装置の回路構成について図1を用いて説明する。図1に示す本発明の回転角検出装置は2組のブリッジ回路11,16からの出力信号の位相が1/4周期異なる4つの磁気抵抗素子12,13,14,15と、2組の2つのOPアンプ18,19からなる増幅部17,20と、回転角を検出する信号処理部21から構成される。
【0014】
そして、2組のブリッジ回路11,16は4つの磁気抵抗素子12,13,14,15からなり、電源27から磁気抵抗素子12、磁気抵抗素子12および磁気抵抗素子13、磁気抵抗素子13を介してGNDに接続される。同様に電源27から磁気抵抗素子14、磁気抵抗素子14および磁気抵抗素子15、磁気抵抗素子15を介してGNDにそれぞれ接続される。
【0015】
ブリッジ回路11,16の磁気抵抗素子12と磁気抵抗素子13の接続点および磁気抵抗素子14と磁気抵抗素子15の接続点から増幅部17,20のOPアンプ18の反転入力端子および非反転入力端子に接続される。そして増幅部17,20のOPアンプ18の出力端子から次段のOPアンプ19、信号処理部21の入力端子23,25に接続される。さらに増幅部17,20のOPアンプ19から信号処理部21の入力端子22,24に接続される構成となっている。
【0016】
以下、本発明の回転角検出装置の動作について図2(a),(b)、図3(a)〜(c)を用いて説明する。図2(a),(b)は回転角検出装置の構成を示す側面図および正面図、図3は本発明の回転角検出装置内の信号処理部に入力される信号波形図である。
【0017】
図2(a),(b)に示すように磁気抵抗素子12,13,14,15からなるブリッジ回路11とブリッジ回路16は位相が1/4周期異なるように配置されている。またブリッジ回路11とブリッジ回路16に近接して磁気発生部28a,28bが回転する稼働部に配置され、磁気発生部28a,28bが回転することにより磁気抵抗素子12,13,14,15の抵抗値が変化し、磁気抵抗素子12と磁気抵抗素子13の接続点と磁気抵抗素子14と磁気抵抗素子15の接続点から微小出力信号として出力され、増幅部17,20により増幅される。この増幅部17,20からの出力信号波形を図3(a)に示す。
【0018】
次に、磁気抵抗素子12,13,14,15からなるブリッジ回路11について説明する。対向する磁気抵抗素子12と磁気抵抗素子15は同じ感磁方向を有し、また磁気抵抗素子13と磁気抵抗素子14も同じ感磁方向を有している。さらにブリッジ回路11とブリッジ回路16は1/4周期異なるように配置される。
【0019】
例えば、磁気発生部28aが回転してブリッジ回路11の磁気抵抗素子12,13,14,15に同じ磁界が作用すると、磁気抵抗素子12,13,14,15は同じ抵抗値R1となり磁気抵抗素子12と磁気抵抗素子13の接続点および磁気抵抗素子14と磁気抵抗素子15の接続点の電位は電源電圧の1/2となる。さらに磁気発生部28aが回転して2つの磁気抵抗素子12と磁気抵抗素子15の抵抗値がΔRだけ大きく、もう2つの磁気抵抗素子13と磁気抵抗素子14の抵抗値がΔRだけ小さくなると、磁気抵抗素子12と磁気抵抗素子13の接続点の電位((R1−ΔR)×Vcc)/2R1と磁気抵抗素子14と磁気抵抗素子15の接続点の電位((R1+ΔR)×Vcc)/2R1となり、電位差は(ΔR1×Vcc)/R1となり、この2つの信号が増幅部17に入力され電位差の(ΔR1×Vcc)/R1に増幅部17の利得倍された信号として図3に示す電圧29aが得られる。そしてさらに磁気発生部28aが回転して2つの磁気抵抗素子12と磁気抵抗素子15の抵抗値がΔRだけ小さくなり、もう2つの磁気抵抗素子13と磁気抵抗素子14の抵抗値がΔRだけ大きくなると、磁気抵抗素子12と磁気抵抗素子13の接続点の電位((R1−ΔR)×Vcc)/2R1と磁気抵抗素子14と磁気抵抗素子15の接続点の電位((R1+ΔR)×Vcc)/2R1が増幅部17に入力され、増幅部17により増幅され図3に示す電圧29bが得られる。そして磁気発生部28aが連続回転の動作を繰り返すと、図3に示す信号波形29が得られることになる。
【0020】
一方、位相が1/4周期異なる磁気抵抗素子12,13,14,15からなるブリッジ回路16についてはブリッジ回路11と位相が90度異なる信号を磁気抵抗素子12と磁気抵抗素子13および磁気抵抗素子14と磁気抵抗素子15の接続点から出力され、これらの信号が増幅部20に入力され、同様に図3に示す信号波形30が得られる。
【0021】
増幅部17,20からの出力信号29,30は信号処理部21の入力端子22,24に入力され、結果として回転角が検出される。回転角を検出する方法として、例えば一方の出力信号29を正弦波a・sinθとすると、もう一方の出力信号30を余弦波a・cosθとすることができる。そしてtanθ=(a・sinθ)/(a・cosθ)となり、A=tanθとすると、θ=tan−1Aとなり、振幅レベルに関係なく回転角θを求めることができる。さらに正弦波を振幅の中心である回転角θ=0とすると、余弦波が最大となり係数aの振幅レベルが求まる。また((a・sinθ)+(a・cosθ)1/2により求めることもできる。
【0022】
しかし、温度変化などの影響により磁気抵抗素子12,13,14,15の抵抗値が変化するため、磁気発生部28a,28bの回転によりブリッジ回路11,16の磁気抵抗素子12と磁気抵抗素子13および磁気抵抗素子14と磁気抵抗素子15の接続点に発生する信号レベルも変化する。
【0023】
例えば、周囲温度が低下すると、磁気抵抗素子12,13,14,15の抵抗値が変化し、増幅部17,20から信号処理部21の入力端子22,24に入力される信号は図3(b)に示すように所定の回転角検出の許容誤差範囲の最大閾値レベルe(V)、f(V)を超え、さらに増幅部17,20の出力電圧の上限および下限にクリップする信号波形31,32となる。そこで信号処理部21の内部の制御部26が常に回転角の検出誤差を監視し、この回転角の検出誤差が大きくなると瞬時に増幅部17,20の利得より数dB低い利得のOPアンプ18から入力される入力端子23,25に切り換え、図3(a)に示す信号波形29,30となるように制御することができ、回転角の検出精度が向上する。
【0024】
また、周囲温度が高くなると、増幅部17,20からの出力信号は図3(c)に示すように所定の回転角検出の許容誤差範囲の最小閾値レベルg(V)、h(V)に達しない信号波形33,34となる。そこで信号処理部21の内部の制御部26が常に回転角の検出誤差を監視し、この回転角の検出誤差が大きくなると瞬時に入力端子23,25に入力される信号から数dB高い利得のOPアンプ19より入力端子22,24に入力される信号に切り換え、図3(a)に示す信号波形28,29となるように制御することができ、回転角の検出精度が向上する。
【0025】
(実施の形態2)
図4は本発明の回転角検出装置の回路ブロック図である。本発明の実施の形態1と異なる構成および動作について図を用いて説明する。
【0026】
図4に示すように電源電圧値を切り換える電源回路35と、4つの磁気抵抗素子12,13,14,15からなるブリッジ回路11,16と、1つのOPアンプからなる増幅部18a,18b、入力信号より回転角を検出する信号処理部21から構成される。
【0027】
信号処理部21は2つの入力端子22,24を有し、さらにこの入力端子22,24に入力される信号から常に回転角の検出誤差を監視して、この回転角の検出誤差が大きくなると瞬時に電源回路35の電源電圧を所定の電圧に切り換えて信号レベルを所定範囲になるように制御する制御部26を有している。この場合は回転角の検出誤差を抑制するため電源回路35の電源電圧の切り換えと同時に信号処理部21に入力される信号レベルの許容範囲の変更またはシフトを信号処理部21の内部で行われる。
【0028】
例えば、ブリッジ回路11,16に電源回路35からVx(V)の電圧が供給されている場合、ブリッジ回路11,16に隣接して磁気発生部28a,28bが配置され、この磁気発生部28a,28bの回転により磁界方向が変化し、4つの磁気抵抗素子12,13,14,15の抵抗値が変化し、ブリッジ回路11,16からそれぞれ位相が1/4周期異なる信号が出力される。この信号はVx/2(V)を中心に微弱な信号であり、この信号を増幅部18a,18bにより所定の信号レベルに増幅する。そしてこの増幅された信号は信号処理部21の入力端子22,24に入力され回転角の検出が行われる。
【0029】
しかし、温度変化などの影響により磁気抵抗素子12,13,14,15の抵抗値が変化するため、磁気発生部28a,28bの回転によりブリッジ回路11,16の磁気抵抗素子12と磁気抵抗素子13および磁気抵抗素子14と磁気抵抗素子15の接続点に発生する信号レベルも変化する。
【0030】
例えば、周囲温度が低下すると、増幅部18a,18bから信号処理部21の入力端子22,24に入力される信号は図3(b)に示すように所定の回転角検出の許容誤差範囲の最大閾値レベルe(V)、f(V)を超え、さらに増幅部18a,18bの出力電圧の上限および下限にクリップする信号波形31,32となる。そこで信号処理部21の内部の制御部26が常に回転角の検出誤差を監視し、この回転角の検出誤差が大きくなると瞬時に信号処理部21の制御部26から電源回路35をVy(V)となるように切り換え、図3(a)に示す信号波形29,30となるように制御することができ、回転角の検出精度が向上する。
【0031】
また、周囲温度が高くなると、増幅部18a,18bからの出力信号は図3(c)に示すように所定の回転角検出の許容誤差範囲の最小閾値レベルg(V)、h(V)に達しない信号波形33,34となる。そこで信号処理部21の内部の制御部26が常に回転角の検出誤差を監視し、この回転角の検出誤差が大きくなると瞬時に信号処理部21の制御部26から電源回路35をVx(V)となるように切り換え、図3(a)に示す信号波形29,30となるように制御することができ、回転角の検出精度が向上する。
【0032】
(実施の形態3)
図5は本発明の回転角検出装置の回路ブロック図である。本発明の実施の形態1と異なる構成および動作について図を用いて説明する。
【0033】
図5に示すように電源27とブリッジ回路11,16の間およびGNDとブリッジ回路11,16との間に挿入された抵抗素子36a,36b,36c,36dと、この抵抗素子36a,36b,36c,36dと並列に挿入されたスイッチとしてのトランジスタ37a,37b,37c,37dと、ブリッジ回路11,16と、1つのOPアンプからなる増幅部18a,18b、入力信号より回転角を検出する信号処理部21から構成される。ここでトランジスタ37a,37b,37c,37dのコレクタおよびエミッタが抵抗素子36a,36b,36c,36dの両端と接続されている。
【0034】
信号処理部21は2つの入力端子22,24を有し、さらにこの入力端子22,24に入力される信号から常に回転角の検出誤差を監視して、この回転角の検出誤差が大きくなると制御部26からの信号によりトランジスタ37a,37b,37c,37dをON/OFFしてブリッジ回路11,16の両端の印加電圧を切り換えて信号レベルを所定範囲になるように制御する制御部26を有している。
【0035】
例えば、周囲温度が低下すると、増幅部18a,18bから信号処理部21の入力端子22,24に入力される信号は図3(b)に示すように所定の回転角検出の許容誤差範囲の最大閾値レベルe(V)、f(V)を超え、さらに増幅部の出力電圧の上限および下限にクリップする信号波形31,32となる。そこで信号処理部21の内部の制御部26が常に回転角の検出誤差を監視し、この回転角の検出誤差が大きくなると瞬時に信号処理部21の制御部26からトランジスタ37a,37b,37c,37dのベースにOFF信号を入力し、抵抗素子36a,36b,36c,36dに電圧が生じるため、ブリッジ回路の両端に印加される電圧を低くし、結果として図3(a)に示す信号波形29,30となるように制御することができ、回転角の検出精度が向上する。
【0036】
また、周囲温度が高くなると、増幅部18a,18bからの出力信号は図3(c)に示すように所定の回転角検出の許容誤差範囲の最小閾値レベルg(V)、h(V)に達しない信号波形33,34となる。そこで信号処理部21の内部の制御部26が常に回転角の検出誤差を監視し、この回転角の検出誤差が大きくなると瞬時に信号処理部21の制御部26からトランジスタ37a,37b,37c,37dのベースにON信号を入力し、抵抗素子36a,36b,36c,36dに電圧がほとんど生じなくなりブリッジ回路の両端に印加される電圧が高くなり、結果として図3(a)に示す信号波形29,30となるように制御することができ、回転角の検出精度が向上する。
【0037】
【発明の効果】
以上のように本発明は、少なくとも2つの磁気抵抗素子と、この磁気抵抗素子に磁界を与える磁気発生部と、前記磁気抵抗素子からの出力信号より回転角を検出する信号処理部と、前記磁気抵抗素子の出力信号を制御する制御部からなり、前記少なくとも2つの磁気抵抗素子の位相が1/4周期異なるように2つの磁気抵抗素子を配置した回転角検出装置であり、異なる位相になるように配置する磁気抵抗素子の出力信号レベルを制御し、さらにこれらの出力信号を比較することにより回転角の検出精度が向上する。
【図面の簡単な説明】
【図1】本発明の回転角検出装置の回路ブロック図
【図2】(a)本発明の回転角検出装置の構成を示す側面図
(b)本発明の回転角検出装置の構成を示す正面図
【図3】(a)〜(c)本発明の回転角検出装置内の信号処理部に入力される信号波形図
【図4】本発明の回転角検出装置の回路ブロック図
【図5】本発明の回転角検出装置の回路ブロック図
【図6】従来の回転角検出装置の構成図
【符号の説明】
11 ブリッジ回路
12 磁気抵抗素子
13 磁気抵抗素子
14 磁気抵抗素子
15 磁気抵抗素子
16 ブリッジ回路
17 増幅部
18 OPアンプ
18a OPアンプ
18b OPアンプ
19 OPアンプ
20 増幅部
21 信号処理部
22 入力端子
23 入力端子
24 入力端子
25 入力端子
26 制御部
27 電源
28a 磁気発生部
28b 磁気発生部
29 OPアンプからの出力信号
29a 電圧
29b 電圧
30 OPアンプからの出力信号
30a 電圧
30b 電圧
31 OPアンプからの出力信号
32 OPアンプからの出力信号
33 OPアンプからの出力信号
34 OPアンプからの出力信号
35 電源回路
36a 抵抗素子
36b 抵抗素子
36c 抵抗素子
36d 抵抗素子
37a トランジスタ
37b トランジスタ
37c トランジスタ
37d トランジスタ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rotation angle detection device that detects a rotation angle of an object using a magnetoresistive element.
[0002]
[Prior art]
FIG. 6 shows a conventional rotation angle detecting device. As shown in FIG. 6, the rotation angle detection device includes a rotor composed of two magnets 1 and a main yoke 2, and a stator composed of a set of an auxiliary yoke 3 and a magnetic detection element 4. The rotor is fixed to the rotating shaft of the rotating object to be detected. The main yoke 2 closes the two magnets 1 in a ring shape to form a magnetic circuit, and a pair of auxiliary yokes 3 are arranged so as to provide a gap 5 between them. The detection element 4 is incorporated. The stator is arranged such that an air gap G provided inside the rotor and provided between the stator and the rotor gradually changes in the circumferential direction. Specifically, the direction of the air gap of the stator is aligned with the center line AA of the rotor, and the center Os of the stator is further shifted from the center Or of the rotor by a predetermined amount.
[0003]
As prior art document information related to the invention of this application, for example, Patent Document 1 is known.
[0004]
[Patent Document 1]
JP-A-2001-28969
[Problems to be solved by the invention]
In the conventional rotation angle detection device, the resistance value, the detection level, and the like of the magnetic detection element greatly change due to a temperature change or the like, and an error easily occurs in the detected rotation angle.
[0006]
SUMMARY OF THE INVENTION An object of the present invention is to provide a rotation angle detection device that accurately detects a rotation angle with high resolution without being affected by a temperature change or the like.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configurations.
[0008]
The invention according to claim 1 of the present invention provides at least two magnetoresistive elements, a magnetism generating unit for applying a magnetic field to the magnetoresistive elements, and a signal processing unit for detecting a rotation angle from an output signal from the magnetoresistive elements. And a signal control unit for controlling an output signal of the magnetoresistive element, wherein the two magnetoresistive elements are arranged such that the phases of the output signals from the at least two magnetoresistive elements differ by 1 / period. The detection device controls the output signal levels of the magnetoresistive elements arranged so as to have different phases, and further compares these output signals to improve the detection accuracy of the rotation angle.
[0009]
According to a second aspect of the present invention, the rotation angle detection device according to the first aspect includes a power supply circuit that switches a power supply voltage by the signal control unit and a control unit that controls the power supply circuit according to a rotation angle detection error. The device controls the output signal levels of the magnetoresistive elements arranged so as to have different phases, and further improves the detection accuracy of the rotation angle by comparing the output signal levels.
[0010]
According to a third aspect of the present invention, the signal control unit includes a resistance element between the power supply circuit and the magnetoresistive element and between the GND and the magnetoresistive element, and a switch unit in which a switch is inserted in parallel with the resistance element. 2. The rotation angle detection device according to claim 1, further comprising: a control unit configured to control the switch in accordance with a control signal, wherein the output signal levels of the magnetoresistive elements arranged to have different phases are controlled and further compared. This improves the detection accuracy of the rotation angle.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
(Embodiment 1)
FIG. 1 is a circuit block diagram of the rotation angle detecting device of the present invention.
[0013]
The circuit configuration of the rotation angle detecting device of the present invention will be described with reference to FIG. The rotation angle detecting device of the present invention shown in FIG. 1 has four magnetoresistive elements 12, 13, 14, 15 in which the phases of the output signals from the two sets of bridge circuits 11, 16 are different by 周期 period, and two sets of two magnetoresistive elements. Amplifying sections 17 and 20 each including two OP amplifiers 18 and 19, and a signal processing section 21 for detecting a rotation angle.
[0014]
The two sets of bridge circuits 11 and 16 are composed of four magnetoresistive elements 12, 13, 14 and 15, and are connected to the power supply 27 via the magnetoresistive element 12, the magnetoresistive element 12, the magnetoresistive element 13, and the magnetoresistive element 13. Connected to GND. Similarly, the power supply 27 is connected to GND via the magnetoresistive element 14, the magnetoresistive element 14, the magnetoresistive element 15, and the magnetoresistive element 15, respectively.
[0015]
Inverting input terminals and non-inverting input terminals of the OP amplifiers 18 of the amplifying units 17 and 20 from a connection point between the magnetoresistive elements 12 and 13 of the bridge circuits 11 and 16 and a connection point between the magnetoresistive elements 14 and 15. Connected to. The output terminals of the OP amplifiers 18 of the amplification units 17 and 20 are connected to the OP amplifier 19 of the next stage and the input terminals 23 and 25 of the signal processing unit 21. Further, the amplifiers 17 and 20 are connected from the OP amplifier 19 to the input terminals 22 and 24 of the signal processing unit 21.
[0016]
Hereinafter, the operation of the rotation angle detecting device of the present invention will be described with reference to FIGS. 2 (a) and 2 (b) and FIGS. 3 (a) to 3 (c). 2A and 2B are a side view and a front view showing a configuration of the rotation angle detection device, and FIG. 3 is a signal waveform diagram input to a signal processing unit in the rotation angle detection device of the present invention.
[0017]
As shown in FIGS. 2A and 2B, the bridge circuit 11 and the bridge circuit 16 including the magnetoresistive elements 12, 13, 14, and 15 are arranged so that the phases are different from each other by 1 / period. In addition, the magnetic generators 28a and 28b are disposed in an operating section in which the magnetic generators 28a and 28b rotate close to the bridge circuit 11 and the bridge circuit 16, and the resistance of the magnetoresistive elements 12, 13, 14, and 15 is increased by the rotation of the magnetic generators 28a and 28b. The value changes and is output as a minute output signal from a connection point between the magnetoresistive element 12 and the magnetoresistive element 13 and a connection point between the magnetoresistive element 14 and the magnetoresistive element 15, and is amplified by the amplifiers 17 and 20. FIG. 3A shows the output signal waveforms from the amplifiers 17 and 20.
[0018]
Next, the bridge circuit 11 including the magnetoresistive elements 12, 13, 14, and 15 will be described. The opposing magnetoresistive elements 12 and 15 have the same magnetic sensing direction, and the magnetoresistive elements 13 and 14 also have the same magnetic sensing direction. Further, the bridge circuit 11 and the bridge circuit 16 are arranged so as to differ by 1/4 cycle.
[0019]
For example, when the magnetism generating section 28a rotates and the same magnetic field acts on the magnetoresistive elements 12, 13, 14, 15 of the bridge circuit 11, the magnetoresistive elements 12, 13, 14, 15 have the same resistance value R1 and the magnetoresistive element. The potential at the connection point between the magnetoresistive element 12 and the magnetoresistive element 13 and the potential at the junction point between the magnetoresistive element 14 and the magnetoresistive element 15 are の of the power supply voltage. Further, when the magnetism generating part 28a rotates and the resistance values of the two magnetoresistive elements 12 and 15 increase by ΔR and the resistance values of the other two magnetoresistive elements 13 and 14 decrease by ΔR, The potential ((R1−ΔR) × Vcc) / 2R1 at the connection point between the resistance element 12 and the magnetoresistance element 13 and the potential ((R1 + ΔR) × Vcc) / 2R1 at the connection point between the magnetoresistance element 14 and the magnetoresistance element 15 are obtained. The potential difference is (ΔR1 × Vcc) / R1, and these two signals are input to the amplifier 17 and the voltage 29a shown in FIG. 3 is obtained as a signal obtained by multiplying the potential difference by (ΔR1 × Vcc) / R1 by the gain of the amplifier 17. Can be When the magnetism generating part 28a further rotates, the resistance values of the two magnetoresistive elements 12 and 15 decrease by ΔR, and the resistance values of the other two magnetoresistive elements 13 and 14 increase by ΔR. , The potential at the connection point between the magneto-resistive elements 12 and 13 ((R1−ΔR) × Vcc) / 2R1 and the potential at the connection point between the magneto-resistive elements 14 and 15 ((R1 + ΔR) × Vcc) / 2R1 Is input to the amplifier 17 and is amplified by the amplifier 17 to obtain a voltage 29b shown in FIG. Then, when the magnetism generating section 28a repeats the operation of the continuous rotation, the signal waveform 29 shown in FIG. 3 is obtained.
[0020]
On the other hand, for the bridge circuit 16 composed of the magnetoresistive elements 12, 13, 14, and 15 whose phases are different from each other by 1/4 period, a signal whose phase is different from the bridge circuit 11 by 90 degrees is applied to the magnetoresistive elements 12, 13, and The signals are output from the connection point of the magnetic resistance element 14 and the magnetoresistive element 15, and these signals are input to the amplifying unit 20, and the signal waveform 30 shown in FIG. 3 is similarly obtained.
[0021]
Output signals 29 and 30 from the amplifying units 17 and 20 are input to input terminals 22 and 24 of the signal processing unit 21, and as a result, a rotation angle is detected. As a method of detecting the rotation angle, for example, if one output signal 29 is a sine wave a · sin θ, the other output signal 30 can be a cosine wave a · cos θ. Then, tan θ = (a · sin θ) / (a · cos θ), and if A = tan θ, θ = tan −1 A, and the rotation angle θ can be obtained regardless of the amplitude level. Further, when the sine wave is the rotation angle θ = 0, which is the center of the amplitude, the cosine wave becomes maximum and the amplitude level of the coefficient a is obtained. It can also be determined by ((a · sin θ) 2 + (a · cos θ) 2 ) 1/2 .
[0022]
However, since the resistance values of the magnetoresistive elements 12, 13, 14, and 15 change due to the influence of temperature change and the like, the rotation of the magnetism generating units 28a and 28b causes the magnetoresistive elements 12 and 16 of the bridge circuits 11 and 16 to rotate. In addition, the signal level generated at the connection point between the magnetoresistive elements 14 and 15 also changes.
[0023]
For example, when the ambient temperature decreases, the resistance values of the magnetoresistive elements 12, 13, 14, 15 change, and the signals input from the amplifying units 17, 20 to the input terminals 22, 24 of the signal processing unit 21 are as shown in FIG. As shown in b), the signal waveform 31 exceeds the maximum threshold levels e (V) and f (V) within the predetermined error range of the rotation angle detection and further clips to the upper and lower limits of the output voltages of the amplifiers 17 and 20. , 32. Therefore, the control unit 26 inside the signal processing unit 21 always monitors the detection error of the rotation angle, and when the detection error of the rotation angle becomes large, the control unit 26 instantaneously outputs the gain from the OP amplifier 18 having a gain several dB lower than the gain of the amplification units 17 and 20. Switching to the input terminals 23 and 25 to be input can be performed so that the signal waveforms 29 and 30 shown in FIG. 3A can be controlled, and the detection accuracy of the rotation angle is improved.
[0024]
When the ambient temperature increases, the output signals from the amplifying units 17 and 20 change to the minimum threshold levels g (V) and h (V) within a predetermined allowable range of rotation angle detection as shown in FIG. The signal waveforms 33 and 34 do not reach. Therefore, the control unit 26 in the signal processing unit 21 constantly monitors the detection error of the rotation angle, and when the detection error of the rotation angle increases, the OP having a gain several dB higher than the signal input to the input terminals 23 and 25 instantaneously. Switching to signals input from the amplifier 19 to the input terminals 22 and 24 can be performed so that the signal waveforms 28 and 29 shown in FIG. 3A are controlled, and the rotation angle detection accuracy is improved.
[0025]
(Embodiment 2)
FIG. 4 is a circuit block diagram of the rotation angle detecting device of the present invention. The configuration and operation different from the first embodiment of the present invention will be described with reference to the drawings.
[0026]
As shown in FIG. 4, a power supply circuit 35 for switching a power supply voltage value, bridge circuits 11 and 16 including four magnetoresistive elements 12, 13, 14, and 15, amplifying sections 18a and 18b including one OP amplifier, and inputs. The signal processing unit 21 detects a rotation angle from a signal.
[0027]
The signal processing unit 21 has two input terminals 22 and 24, and further monitors a rotation angle detection error from a signal input to the input terminals 22 and 24. When the rotation angle detection error becomes large, an instantaneous The control unit 26 controls the power supply voltage of the power supply circuit 35 to a predetermined voltage to control the signal level to be within a predetermined range. In this case, in order to suppress the detection error of the rotation angle, the allowable range of the signal level input to the signal processing unit 21 is changed or shifted at the same time as the switching of the power supply voltage of the power supply circuit 35 inside the signal processing unit 21.
[0028]
For example, when a voltage of Vx (V) is supplied to the bridge circuits 11 and 16 from the power supply circuit 35, the magnetic generators 28a and 28b are arranged adjacent to the bridge circuits 11 and 16, and the magnetic generators 28a and 28b are The direction of the magnetic field changes due to the rotation of 28b, the resistance values of the four magnetoresistive elements 12, 13, 14, and 15 change, and the bridge circuits 11 and 16 output signals whose phases are different by 1 / period. This signal is a weak signal centered on Vx / 2 (V), and this signal is amplified to a predetermined signal level by the amplifiers 18a and 18b. The amplified signal is input to the input terminals 22 and 24 of the signal processing unit 21 and the rotation angle is detected.
[0029]
However, since the resistance values of the magnetoresistive elements 12, 13, 14, and 15 change due to the influence of temperature change and the like, the rotation of the magnetism generating units 28a and 28b causes the magnetoresistive elements 12 and 16 of the bridge circuits 11 and 16 to rotate. In addition, the signal level generated at the connection point between the magnetoresistive elements 14 and 15 also changes.
[0030]
For example, when the ambient temperature decreases, the signals input from the amplifying sections 18a and 18b to the input terminals 22 and 24 of the signal processing section 21 have the maximum allowable error range for the predetermined rotation angle detection as shown in FIG. The signal waveforms 31 and 32 exceed the threshold levels e (V) and f (V) and further clip to the upper and lower limits of the output voltages of the amplifiers 18a and 18b. Therefore, the control unit 26 in the signal processing unit 21 constantly monitors the detection error of the rotation angle, and when the detection error of the rotation angle becomes large, the control unit 26 of the signal processing unit 21 instantaneously changes the power supply circuit 35 to Vy (V). And control can be performed so that the signal waveforms 29 and 30 shown in FIG. 3A are obtained, and the detection accuracy of the rotation angle is improved.
[0031]
When the ambient temperature increases, the output signals from the amplifying units 18a and 18b fall to the minimum threshold levels g (V) and h (V) within the predetermined error range for detecting the rotation angle as shown in FIG. The signal waveforms 33 and 34 do not reach. Therefore, the control unit 26 inside the signal processing unit 21 always monitors the detection error of the rotation angle, and when the detection error of the rotation angle becomes large, the control unit 26 of the signal processing unit 21 instantaneously changes the power supply circuit 35 to Vx (V). And control can be performed so that the signal waveforms 29 and 30 shown in FIG. 3A are obtained, and the detection accuracy of the rotation angle is improved.
[0032]
(Embodiment 3)
FIG. 5 is a circuit block diagram of the rotation angle detecting device of the present invention. The configuration and operation different from the first embodiment of the present invention will be described with reference to the drawings.
[0033]
As shown in FIG. 5, resistance elements 36a, 36b, 36c, 36d inserted between the power supply 27 and the bridge circuits 11, 16 and between GND and the bridge circuits 11, 16, and the resistance elements 36a, 36b, 36c , 36d, transistors 37a, 37b, 37c, and 37d as switches, bridge circuits 11 and 16, amplifying sections 18a and 18b each including one OP amplifier, and signal processing for detecting a rotation angle from an input signal. It comprises a unit 21. Here, the collectors and emitters of the transistors 37a, 37b, 37c, 37d are connected to both ends of the resistance elements 36a, 36b, 36c, 36d.
[0034]
The signal processing unit 21 has two input terminals 22 and 24, and further monitors the detection error of the rotation angle from the signals input to the input terminals 22 and 24, and controls when the detection error of the rotation angle becomes large. A control unit 26 controls ON / OFF of the transistors 37a, 37b, 37c and 37d by a signal from the unit 26 to switch the applied voltage between both ends of the bridge circuits 11 and 16 so as to control the signal level to be within a predetermined range. ing.
[0035]
For example, when the ambient temperature decreases, the signals input from the amplifying sections 18a and 18b to the input terminals 22 and 24 of the signal processing section 21 have the maximum allowable error range for the predetermined rotation angle detection as shown in FIG. The signal waveforms 31 and 32 exceed the threshold levels e (V) and f (V) and further clip to the upper and lower limits of the output voltage of the amplifier. Therefore, the control unit 26 inside the signal processing unit 21 always monitors the detection error of the rotation angle, and when the detection error of the rotation angle becomes large, the control unit 26 of the signal processing unit 21 instantaneously sends the transistors 37a, 37b, 37c, 37d. Since an OFF signal is input to the bases of the bridge circuits, and a voltage is generated in the resistance elements 36a, 36b, 36c, and 36d, the voltage applied to both ends of the bridge circuit is reduced. As a result, the signal waveform 29 shown in FIG. It can be controlled to be 30 and the detection accuracy of the rotation angle is improved.
[0036]
When the ambient temperature increases, the output signals from the amplifying units 18a and 18b fall to the minimum threshold levels g (V) and h (V) within the predetermined error range for detecting the rotation angle as shown in FIG. The signal waveforms 33 and 34 do not reach. Therefore, the control unit 26 inside the signal processing unit 21 always monitors the detection error of the rotation angle, and when the detection error of the rotation angle becomes large, the control unit 26 of the signal processing unit 21 instantaneously sends the transistors 37a, 37b, 37c, 37d. Signal is input to the base of the bridge circuit, and almost no voltage is generated in the resistance elements 36a, 36b, 36c, and 36d, and the voltage applied to both ends of the bridge circuit is increased. As a result, the signal waveform 29, shown in FIG. It can be controlled to be 30 and the detection accuracy of the rotation angle is improved.
[0037]
【The invention's effect】
As described above, the present invention provides at least two magneto-resistive elements, a magnetism generating unit for applying a magnetic field to the magneto-resistive elements, a signal processing unit for detecting a rotation angle from an output signal from the magneto-resistive elements, A rotation angle detection device comprising a control unit for controlling an output signal of the resistance element, wherein the two magnetic resistance elements are arranged so that the phases of the at least two magnetic resistance elements are different from each other by 1/4 cycle, By controlling the output signal level of the magnetoresistive element arranged in the first position and comparing these output signals, the detection accuracy of the rotation angle is improved.
[Brief description of the drawings]
FIG. 1 is a circuit block diagram of a rotation angle detection device according to the present invention; FIG. 2A is a side view illustrating a configuration of the rotation angle detection device according to the invention; FIG. FIGS. 3 (a) to 3 (c) are diagrams of signal waveforms input to a signal processing unit in the rotation angle detection device of the present invention. FIG. 4 is a circuit block diagram of the rotation angle detection device of the present invention. FIG. 6 is a circuit block diagram of a rotation angle detection device of the present invention. FIG. 6 is a configuration diagram of a conventional rotation angle detection device.
DESCRIPTION OF SYMBOLS 11 Bridge circuit 12 Magnetic resistance element 13 Magnetic resistance element 14 Magnetic resistance element 15 Magnetic resistance element 16 Bridge circuit 17 Amplifying unit 18 OP amplifier 18a OP amplifier 18b OP amplifier 19 OP amplifier 20 Amplifying unit 21 Signal processing unit 22 Input terminal 23 Input terminal 24 Input terminal 25 Input terminal 26 Control unit 27 Power supply 28a Magnetic generation unit 28b Magnetic generation unit 29 Output signal 29a from OP amplifier Voltage 29b Voltage 30 Output signal from OP amplifier 30a Voltage 30b Voltage 31 Output signal from OP amplifier 32 OP Output signal from amplifier 33 Output signal from OP amplifier 34 Output signal from OP amplifier 35 Power supply circuit 36a Resistance element 36b Resistance element 36c Resistance element 36d Resistance element 37a Transistor 37b Transistor 37c Transistor 37d Transistor

Claims (3)

少なくとも2つの磁気抵抗素子と、この磁気抵抗素子に磁界を与える磁気発生部と、前記磁気抵抗素子からの出力信号より回転角を検出する信号処理部と、前記磁気抵抗素子の出力信号を制御する信号制御部とからなり、前記少なくとも2つの磁気抵抗素子からの出力信号の位相が1/4周期異なるように2つの磁気抵抗素子を配置した回転角検出装置。At least two magneto-resistive elements, a magnetism generating unit for applying a magnetic field to the magneto-resistive elements, a signal processing unit for detecting a rotation angle from an output signal from the magneto-resistive elements, and controlling an output signal of the magneto-resistive elements A rotation angle detection device, comprising: a signal control unit; and arranging two magnetoresistive elements such that phases of output signals from the at least two magnetoresistive elements are different by 1 / cycle. 信号制御部が電源電圧を切り換える電源回路と、回転角の検出誤差に応じて電源回路を制御する制御部とから構成される請求項1に記載の回転角検出装置。The rotation angle detection device according to claim 1, wherein the signal control unit includes a power supply circuit that switches a power supply voltage, and a control unit that controls the power supply circuit according to a rotation angle detection error. 信号制御部が電源回路と磁気抵抗素子間およびGNDと磁気抵抗素子間に抵抗素子とこの抵抗素子と並列にスイッチを挿入したスイッチ部と、回転角の検出誤差に応じて前記スイッチを制御する制御部とから構成される請求項1に記載の回転角検出装置。A signal control unit for connecting a resistance element between the power supply circuit and the magnetoresistive element and between GND and the magnetoresistive element, a switch unit having a switch inserted in parallel with the resistance element, and control for controlling the switch according to a rotation angle detection error; The rotation angle detection device according to claim 1, further comprising a unit.
JP2003037886A 2003-02-17 2003-02-17 Device for detecting rotation angle Pending JP2004245766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003037886A JP2004245766A (en) 2003-02-17 2003-02-17 Device for detecting rotation angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003037886A JP2004245766A (en) 2003-02-17 2003-02-17 Device for detecting rotation angle

Publications (1)

Publication Number Publication Date
JP2004245766A true JP2004245766A (en) 2004-09-02

Family

ID=33022557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003037886A Pending JP2004245766A (en) 2003-02-17 2003-02-17 Device for detecting rotation angle

Country Status (1)

Country Link
JP (1) JP2004245766A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256139A (en) * 2006-03-24 2007-10-04 Matsushita Electric Ind Co Ltd Rotation angle detection apparatus
JP2014134433A (en) * 2013-01-09 2014-07-24 Denso Corp Magnetometric sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072923U (en) * 1993-06-18 1995-01-17 株式会社コガネイ 2-wire sensor circuit
JPH07273650A (en) * 1994-03-31 1995-10-20 Nec Corp A/d converter circuit for nonlinear signal
JP2002318138A (en) * 2001-04-24 2002-10-31 Tamagawa Seiki Co Ltd Amplitude correcting method for encoder signal
JP2003039376A (en) * 2001-07-30 2003-02-13 Yaskawa Electric Corp Collision sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072923U (en) * 1993-06-18 1995-01-17 株式会社コガネイ 2-wire sensor circuit
JPH07273650A (en) * 1994-03-31 1995-10-20 Nec Corp A/d converter circuit for nonlinear signal
JP2002318138A (en) * 2001-04-24 2002-10-31 Tamagawa Seiki Co Ltd Amplitude correcting method for encoder signal
JP2003039376A (en) * 2001-07-30 2003-02-13 Yaskawa Electric Corp Collision sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256139A (en) * 2006-03-24 2007-10-04 Matsushita Electric Ind Co Ltd Rotation angle detection apparatus
JP4735362B2 (en) * 2006-03-24 2011-07-27 パナソニック株式会社 Rotation angle detector
JP2014134433A (en) * 2013-01-09 2014-07-24 Denso Corp Magnetometric sensor

Similar Documents

Publication Publication Date Title
JP4319153B2 (en) Magnetic sensor
JP2007240202A (en) Magnetic detector and electronic compass using it
JP3888200B2 (en) Rotation detector
JP2002243407A (en) Rotation angle detector and its apparatus
JP2004245766A (en) Device for detecting rotation angle
JP3598984B2 (en) Rotation detection device
JP6457192B2 (en) Hall electromotive force signal processing apparatus, current sensor, and hall electromotive force signal processing method
KR100269793B1 (en) Index signal forming circuit
JP2000056000A (en) Magnetic sensor device and current sensor device
JP2007139709A (en) Magnetic detector
JP2002054902A (en) Displacement detecting device
JPH0778528B2 (en) Magnetic sensor
JP3098879B2 (en) Magnetic flux density detector
JPH09197030A (en) Output characteristic measuring apparatus for magnetic sensor and method for regulating output characteristics of sensor
JP6174393B2 (en) Resolver excitation device
US20140125328A1 (en) Magnetic detection device
JP2012117486A (en) Control circuit for air-blowing apparatus, and air-blowing apparatus using the same
JP2012130089A (en) Blower control circuit and blower using the same
JP4776990B2 (en) Torque sensor
JP2007114155A (en) Magnetic type encoder device
JPH112506A (en) Structure for detecting rotating position of rotor of motor
JPH02120615A (en) Displacement quantity detection circuit
JP2009204305A (en) Earth magnetism detecting program and electronic compass
JP2021135161A (en) Rotation detection device
JP4461956B2 (en) Magnetic sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080527