JP2004245691A - Seismic response analysis method - Google Patents

Seismic response analysis method Download PDF

Info

Publication number
JP2004245691A
JP2004245691A JP2003035532A JP2003035532A JP2004245691A JP 2004245691 A JP2004245691 A JP 2004245691A JP 2003035532 A JP2003035532 A JP 2003035532A JP 2003035532 A JP2003035532 A JP 2003035532A JP 2004245691 A JP2004245691 A JP 2004245691A
Authority
JP
Japan
Prior art keywords
ground
piles
displacement
pile
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003035532A
Other languages
Japanese (ja)
Other versions
JP3847264B2 (en
Inventor
Tadahiko Shiomi
忠彦 塩見
Ryoichi Babasaki
亮一 馬場崎
Tsutomu Namikawa
努 並河
Akira Imamura
晃 今村
Kenji Masuda
健次 枡田
Manabu Kondo
学 近藤
Fumio Yagishita
文雄 柳下
Hiroyuki Yoshida
洋之 吉田
Keisuke Koyama
桂介 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Tokyo Electric Power Services Co Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Takenaka Komuten Co Ltd
Tokyo Electric Power Services Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Takenaka Komuten Co Ltd, Tokyo Electric Power Services Co Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2003035532A priority Critical patent/JP3847264B2/en
Publication of JP2004245691A publication Critical patent/JP2004245691A/en
Application granted granted Critical
Publication of JP3847264B2 publication Critical patent/JP3847264B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a seismic response analysis method capable of providing a simple and accurate seismic response of a ground-pile-building compound system in consideration of a difference in excess clearance hydraulic pressure between a free ground and an inter-pile ground. <P>SOLUTION: The shearing force K<SB>p</SB>(Γ<SB>p</SB>) of the ground spring of the inter-pile ground is obtained by using the inter-layer displacement Γp of a pile, the shearing stress τ<SB>p</SB>of the inter-pile ground is obtained by using the shearing force K<SB>p</SB>(Γ<SB>p</SB>), a cumulative degree of damage D<SB>p</SB>of the inter-pile ground is obtained by using the shearing stress τ<SB>p</SB>, and an excess clearance hydraulic pressure rate R<SB>u_p</SB>is obtained by using the cumulative degree of damage D<SB>p</SB>. The effective stress σ<SB>m_p</SB>of the inter-pile ground is obtained by using the excess clearance hydraulic pressure rate R<SB>u_p</SB>, the initial rigidity K<SB>pfo</SB>of the inter-pile ground spring is obtained by using the effective stress σ<SB>m_p</SB>, and an interacting force K<SB>pf</SB>(Γ<SB>pf</SB>) between the inter-pile ground and the free ground is obtained (steps S20 to S27). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、地震応答解析方法に係り、特に、地盤の液状化を考慮した地盤−杭−建屋連成系の地震応答解析方法に関する。
【0002】
【従来の技術】
従来、地盤−杭−建屋連成系の解析手法としては、有限要素法等を用いて地盤、建屋を支持する杭、及び建屋をモデル化し、各々の応答を評価する方法や、例えばPenzien型モデル等の質点系モデルにより地盤を等価な地盤ばねに置換し、杭及び建屋の応答を評価する方法があった(例えば非特許文献1参照)。
【0003】
しかしながら、有限要素法等を用いた前者の方法では、地盤の剛性低下を求める方法(応力ひずみ関係、又は構成式という)を決定する係数を地盤定数から直接得ることが難しくモデル化が困難であると共に計算に長時間を要する、という問題があった。また、地震に対する正しい自然法則が分かっていない現在では、模擬的な多くの方法が提案されてはいるものの、地震のようなランダム現象に対して評価法が標準化されておらず、解析する者により解析結果が大きく異なってしまう、という問題があった。
【0004】
また、質点系モデルを用いる後者の方法では、地盤を等価な地盤ばねに置換するため、建屋を支持する杭に囲まれた地盤(以降、「杭間地盤」と呼ぶ)に発生する過剰間隙水圧を評価することが出来ない。このため、近傍に構造物の無い地盤(以降、「自由地盤」と呼ぶ)に発生する過剰間隙水圧を別途解析により求め、これを杭間地盤の過剰間隙水圧として用いなければならなかった。実際は自由地盤と杭間地盤の変形状態は異なるため、地震時において地盤に発生する過剰間隙水圧、すなわち液状化の度合いも異なる。従って、質点系モデルを用いる後者の方法では、実際とかけ離れた解析結果になる恐れがある、という問題があった。
【0005】
【非特許文献1】
宮本裕司、酒向裕司、喜多村英司、三浦賢治、「非線形、液状化地盤における杭基礎の地震応答性状に関する研究」、日本建築学会構造系論文集、1995年5月、第471号、p.41−50
【0006】
【発明が解決しようとする課題】
本発明は、上記問題を解決すべく成されたものであり、自由地盤と杭間地盤との過剰間隙水圧の違いを考慮した簡便且つ精度のよい地盤−杭−建屋連成系の地震応答を得ることができる地震応答解析方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため、請求項1記載の発明は、建屋及び杭から成る構造物と、前記杭周辺の杭間地盤及び前記構造物から所定距離以上離れた自由地盤から成る地盤と、を質点モデルによりモデル化した解析対象モデルの質量情報、剛性情報、減衰情報、及び入力地震情報による運動方程式を用いて時々刻々と変化する前記解析対象モデルの変位情報を求め、前記変位情報に基づいて、時々刻々と変化する少なくともひずみに関する応答値の時間特性を求める地震応答解析方法において、前記変位情報に基づいて前記杭間地盤の層間変位及び前記自由地盤の層間変位を算出し、前記杭間地盤の層間変位及び前記自由地盤の層間変位から前記杭間地盤の層間変位及び前記自由地盤の層間変位の相対変位を算出し、前記杭間地盤の層間変位及び前記杭間地盤の力−変位骨格・履歴曲線に基づいて前記杭間地盤のせん断応力を算出し、前記杭間地盤のせん断応力に基づいて前記杭間地盤の累積損傷度を算出し、前記杭間地盤の累積損傷度に基づいて前記杭間地盤の過剰間隙水圧比を算出し、前記杭間地盤の過剰間隙水圧比に基づいて前記杭間地盤の有効応力を算出し、前記杭間地盤の有効応力に基づいて前記杭間地盤の初期せん断ばね剛性を算出し、前記初期せん断ばね剛性を用いて、前記杭間地盤と前記自由地盤との相互作用力に関する力−変位骨格・履歴曲線を更新し、更新された力−変位骨格・履歴曲線及び前記相対変位に基づいて前記相互作用力を算出する処理を、予め定めた所定時間ごとに繰り返すことを特徴とする。
【0008】
この発明は、建屋及び杭から成る構造物と、前記杭周辺の杭間地盤及び前記構造物から所定距離以上離れた自由地盤から成る地盤と、を質点モデルによりモデル化した解析対象モデルが対象である。そして、質量情報、剛性情報、減衰情報、及び入力地震情報による運動方程式を用いて時々刻々と変化する解析対象モデルの変位情報を求め、この変位情報に基づいて、時々刻々と変化する少なくともひずみに関する応答値の時間特性を求める。
【0009】
本発明では、まず変位情報に基づいて杭間地盤の層間変位及び自由地盤の層間変位を算出する。次に、杭間地盤の層間変位及び自由地盤の層間変位から杭間地盤の層間変位及び自由地盤の層間変位の相対変位を算出し、杭間地盤の層間変位及び杭間地盤の力−変位骨格・履歴曲線に基づいて杭間地盤のせん断応力を算出する。
【0010】
そして、杭間地盤のせん断応力に基づいて杭間地盤の累積損傷度を算出する。累積損傷度は、例えばせん断応力から応力比を求め、この応力比に対応する繰り返し回数を求め、この繰り返し回数に対応する累積損傷度の増分を求め、この累積損傷度の増分から求めることができる。
【0011】
そして、杭間地盤の累積損傷度に基づいて杭間地盤の過剰間隙水圧比を算出し、杭間地盤の過剰間隙水圧比に基づいて杭間地盤の有効応力を算出し、杭間地盤の有効応力に基づいて杭間地盤の初期せん断ばね剛性を算出し、この初期せん断ばね剛性を用いて、杭間地盤と自由地盤との相互作用力に関する力−変位骨格・履歴曲線を更新し、更新された力−変位骨格・履歴曲線及び相対変位に基づいて相互作用力を算出する。
【0012】
このような処理を予め定めた所定時間ごとに繰り返すことにより地震応答の時刻歴を得ることができる。
【0013】
このように、本発明では、杭間地盤の過剰間隙水圧から杭間地盤の有効応力を評価し、これに基づいて杭間地盤と自由地盤との間の相互作用力を求めるので、従来のように自由地盤の過剰間隙水圧を用いて杭間地盤の液状化を考慮する場合と比較して精度の高い評価が可能となる。
【0014】
また、請求項2に記載したように、建屋及び杭から成る構造物と、前記杭周辺の杭間地盤及び前記構造物から所定距離以上離れた自由地盤から成る地盤と、を質点モデルによりモデル化した解析対象モデルの質量情報、剛性情報、減衰情報、及び入力地震情報による運動方程式を用いて時々刻々と変化する前記解析対象モデルの変位情報を求め、前記変位情報に基づいて、時々刻々と変化する少なくともひずみに関する応答値の時間特性を求める地震応答解析方法において、前記変位情報に基づいて前記杭間地盤の層間変位及び前記自由地盤の層間変位を算出し、前記杭間地盤の層間変位及び前記杭間地盤の力−変位骨格・履歴曲線に基づいて前記杭間地盤のせん断応力を算出すると共に、前記自由地盤の層間変位及び前記自由地盤の力−変位骨格・履歴曲線に基づいて前記自由地盤のせん断応力を算出し、前記杭間地盤のせん断応力に基づいて前記杭間地盤の累積損傷度を算出すると共に、前記自由地盤のせん断応力に基づいて前記自由地盤の累積損傷度を算出し、前記杭間地盤の累積損傷度に基づいて前記杭間地盤の過剰間隙水圧比を算出すると共に、前記自由地盤の累積損傷度に基づいて前記自由地盤の過剰間隙水圧比を算出し、前記杭間地盤の過剰間隙水圧比に基づいて前記杭間地盤の有効応力を算出すると共に、前記自由地盤の過剰間隙水圧比に基づいて前記自由地盤の有効応力を算出し、前記杭間地盤の有効応力に基づいて前記杭間地盤の初期せん断ばね剛性を算出すると共に、前記自由地盤の有効応力に基づいて前記自由地盤の初期せん断ばね剛性を算出し、前記杭間地盤の初期せん断ばね剛性を用いて、前記杭間地盤の作用力に関する力−変位骨格・履歴曲線を更新し、更新された力−変位骨格・履歴曲線及び前記杭間地盤の層間変位に基づいて前記杭間地盤の作用力を算出すると共に、前記自由地盤の初期せん断ばね剛性を用いて、前記自由地盤の作用力に関する力−変位骨格・履歴曲線を更新し、更新された力−変位骨格・履歴曲線及び前記自由地盤の層間変位に基づいて前記自由地盤の作用力を算出し、前記杭間地盤の作用力と前記自由地盤の作用力とに基づいて前記杭間地盤と前記自由地盤との相互作用力を算出する処理を、予め定めた所定時間ごとに繰り返すようにしてもよい。
【0015】
すなわち、杭間地盤の作用力と自由地盤の作用力とをそれぞれの層間変位から独立に求め、それぞれの作用力の差を相互作用力とする。これにより、杭間地盤及び自由地盤の時々刻々の非線形材料特性を忠実に評価することができる。
【0016】
【発明の実施の形態】
(第1実施形態)
以下、図面を参照して本発明の第1実施形態について説明する。
【0017】
図1には、地震応答解析装置10が示されている。地震応答解析装置10は、操作部12、記憶部14、演算部16、表示部18で構成されている。
【0018】
操作部12は、オペレータが表示部18に表示されたメニューに従って所望の解析モデルについての地震応答解析を演算部16に実行させるための指示や必要なパラメータを指定するためのものである。記憶部14は、演算部16において様々な解析モデルのパラメータや地震応答解析に必要な各種演算式が記憶されている。また、記憶部14には、演算部16による地震応答解析の解析結果が格納される。
【0019】
演算部16は、操作部12からの指示に従って記憶部14から必要なデータを読み出して地震応答解析を行うと共に、出力結果を記憶部14へ記憶すると共に、表示部18へ出力する。
【0020】
演算部16では、解析対象となる建物、杭、地盤について、杭間地盤の液状化を考慮した地震応答解析を行う。
【0021】
地震応答解析はおおよそ次のようにして行われる。すなわち、地盤に関する部分については、せん断応力の時刻歴から累積損傷度を求め、累積損傷度から過剰間隙水圧を求め、これによって得られる有効応力から液状化によるせん断剛性低下率を得る。そして、さらにこのせん断剛性低下率を考慮して得られる応力−ひずみの関係(非線形剛性)を用いて時々刻々のせん断ひずみに依存したせん断応力を求める時刻歴応答、すなわち地震応答解析を行う。建物、杭部分については、従来の弾性または塑性モデルを用いた応答解析を行う。
【0022】
地盤、杭、建屋(建物)の地震応答解析のモデルとしては、図2に示すような質点系モデルを用いる。このモデルは、地盤、杭、建屋をそれぞれ質点と質点間を結ぶばね(せん断ばね、水平地盤ばねなど)で表す。なお、地盤は、建物に対して遠方に存在する自由地盤と建物直下に存在する杭間地盤とに分けられる。
【0023】
図2に示すように、建屋20は質点22で表される。建屋20を支持する複数の杭24は、図3に示すように一体となって変形すると仮定して1本の杭24Aに集約される。この複数の杭24が集約された杭24Aは、図2に示すように複数の質点26で表される。
【0024】
図3に示す杭24間に存在する杭間地盤28は、図2に示すように質点26間を接続する地盤ばね30で表される。前述したように複数の杭24は、一体となって変形すると仮定するため、図3に示すように、杭24の変形(せん断ひずみ)γは杭間地盤の変形γと同一となる。
【0025】
自由地盤31は、質点32と、質点32間を接続する地盤ばね34とで表される。また、杭24と自由地盤31とは杭24と自由地盤31との間の水平地盤35の水平地盤ばね36及び地盤ばね30を介して力の伝達をする。
【0026】
地震応答解析は、これらのモデルを一体として解析する方法と、自由地盤の解析を先に行い、杭間地盤−杭−建物の地震応答解析に外力として作用させる方法とがある。
【0027】
本発明は、水平地盤ばね、杭間地盤の作用力及び剛性を液状化を考慮して算出する場合に、従来は杭間地盤、水平地盤、自由地盤ともに自由地盤の液状化のみを考慮していたのに対して、杭間地盤は杭間地盤の液状化を、水平地盤と自由地盤は自由地盤の液状化を考慮することにより、簡便かつ精度よく地震応答解析を行うことを可能にしたものである。
【0028】
地震時の応答値は、杭間地盤、水平地盤、自由地盤に関する次式で示す運動方程式を時間積分により解くことにより求めることができる。なお、本実施の形態では、時間積分には、一般によく知られた動的非線形問題の時間積分法を用いることができる。本実施の形態では、一例として、Newmark−β法による増分法を用いた。
【0029】
【数1】

Figure 2004245691
【0030】
なお、図4に示すように杭間地盤28のi層の節点26の変位をup_i、自由地盤31のi層の節点32の変位をuf_iとした場合、その相対変位δは次式で表される。
【0031】
δ=up_i―uf_i …(2)
また、杭間地盤28の層間変位Γは次式で表される。
【0032】
Γ=up_i―up_i−1 …(3)
また、自由地盤31の層間変位Γは次式で表される。
【0033】
Γ=uf_i―uf_i−1 …(4)
また、杭間地盤28の層間変位と自由地盤31の層間変位の相対変位Γpfは次式で表される。
【0034】
Γpf=(up_i―uf_i)−(up_i−1―uf_i−1)=Γ−Γ …(5)
次に、第1実施形態の作用として、演算部16で実行される制御ルーチンについて図5、6に示すフローチャートを参照して説明する。
【0035】
まず、図5に示すステップS1では、オペレータが表示部18に表示されたメニューに従って操作部12を操作し、地震応答解析を行うべき解析モデルのパラメータを指定すると、演算部16では、指定された解析モデルに関するデータを記憶部14から読み込む。
【0036】
この解析モデルに関するデータには、例えば解析対象の建物、杭基礎、杭・自由地盤間の地層、自由地盤の地層(例えば上から何番目の地層かを表すデータ)、材料定数、時間積分定数がある。
【0037】
次のステップS2では、以下の地震応答を求める演算において用いる各種データの初期値の設定を行う。このデータには、例えば加速度、速度、変位、せん断応力、せん断ひずみ、上記(1)式における質量行列M、剛性行列K、減衰行列Cなどがある。演算部16では、これらのデータに初期値を設定する。
【0038】
次に、ステップS3において、t+Δt時刻の各節点の応答変位、応答速度、応答加速度の予測値uを下記(6)式により算出する。なお、Δtは計算時間間隔、すなわち時刻歴ループの実行間隔であり、一定の値でもよいし、計算毎に変化させてもよい。
【0039】
=Au(t)+BΛ …(6)
ここで、Aは予測オペレーター行列、Bは修正オペレーター行列、Λは未知数である修正値ベクトルである。
【0040】
そして、各節点の変位の予測値から上記(2)〜(5)式により層間変位や相対変位を算出する。これらの値は記憶部14に記憶される。
【0041】
次に、ステップS4において、外力F(t+Δt)、粘性力F、慣性力Fの算出を行う。外力は上記(1)式の右辺の算出を(t+Δt)時刻について行うことにより得られる。粘性力Fは例えば下記(7)式により、慣性力Fは下記(8)式により算出することができる。
【0042】
【数2】
Figure 2004245691
【0043】
そして、次のステップS5において、ステップS3で算出した予測値uから建屋20、杭24、杭間地盤28、杭・自由地盤間の地盤(水平地盤35)、及び自由地盤31等に関する内力Rを算出する。
【0044】
このうち、図6には、杭間地盤28と自由地盤31の相互作用力を内力として算出する処理ルーチンを示した。図6に示す処理ルーチンでは、杭間地盤28の累積損傷度D、過剰間隙水圧比r等から、杭間地盤28と自由地盤31との力−変位骨格・履歴曲線(関数)Kpf(Γpf)を求め、この骨格・履歴曲線により杭間地盤28と自由地盤31とに関する地盤ばねの相互作用力(内力Rpf)を算出する。
【0045】
なお、建物や杭に関する内力Rについては、質点モデルにおける公知の種々の方法により求めることができる。
【0046】
具体的には、図6に示すように、まずステップS20において、t+Δt時刻の杭24の層間変位、すなわち質点26間の変位Γを記憶部14から読み込む。
【0047】
次のステップS21では、変位Γに対応するせん断地盤ばねの作用力をK(Γ)より算出する。
【0048】
次のステップS22では、杭間地盤28のせん断応力τを次式により算出する。
【0049】
τ=K(Γ)/As …(9)
ここで、Asは図7に示すように杭間地盤28の等価土柱面積、すなわち有効せん断面積である。
【0050】
また、杭間地盤の力−変位骨格・履歴曲線K(Γ)は次式で算出することができる。
【0051】
【数3】
Figure 2004245691
【0052】
ここで、Kp0は、初期平均応力σm0の時のせん断ばね剛性、Fσ(σ/σm0)は有効拘束圧に依存する微少ひずみ時の剛性の低減係数(剛性低下率)で経験式(関数)として得られ、下記(11)式で表される。g(Γ、Γp50)は微少ひずみ時の剛性で基準化されたせん断応力−せん断ひずみ曲線で主にせん断ひずみに依存する経験式である。Γp50はせん断ばね剛性が半分になるせん断ひずみの値であり、下記(12)式で表される。現在の有効応力σは、応力評価点の初期平均応力σm0に(1−過剰間隙水圧比=1−ru_p)を掛けた値である。
【0053】
【数4】
Figure 2004245691
【0054】
また、Γp50は、過剰間隙水圧比との関係から次式を用いて求めることが出来る。
【0055】
【数5】
Figure 2004245691
【0056】
ここで、(Γp50refはσrefでのΓp50である.
なお、力−変位骨格・履歴曲線は、一般に図10に示すような形をしている。中心にある曲線を骨格曲線、それを囲んでいる曲線を履歴曲線という。そして、ゼロ点からプラスまたはマイナス側に大きくなるときには、骨格曲線を用い、変位が折り返してゼロに向かいはじめたら履歴曲線を用いる。骨格曲線が決まれば、履歴曲線は自動的に決定される。たとえば骨格曲線をg(Γ)とした場合、履歴曲線は例えばg((Γ−Γ)/2)のように定義することができる。ここで、Γは折り返し点の杭間変位である。一般に骨格曲線としては、Hardin−DrnevichモデルやRamberg−Osgoodモデル等を用いることができる。本実施形態では、骨格曲線及び履歴曲線を合わせて力−変位骨格・履歴曲線とし、K(Γ)やKpf(Γpf)で表す。ここで、K(Γ)は杭間地盤の地盤ばね、Kpf(Γpf)は杭間地盤と自由地盤の相互地盤ばねである。
【0057】
ステップS23では、せん断応力τから杭間地盤28の累積損傷度Dを算出し、ステップ24では、過剰間隙水圧比ru_Pを求める。
【0058】
累積損傷度D及び過剰間隙水圧比ru_Pは、図8に示すような▲1▼〜▲4▼の関係を用いて求める。
【0059】
図8に示す▲1▼は、時々刻々と変化する杭間地盤のせん断応力τを示している。
【0060】
図8に示す▲2▼は、液状化強度曲線を示している。なお、▲2▼の横軸は液状化するときの繰り返し回数N、縦軸は応力比τ/σm0である。この液状化強度曲線は、地盤調査における動的非排水変形試験により得られたものを用いることができる。ここで、σm0は応力評価点の初期平均応力である。
【0061】
図8の▲1▼、▲2▼に示すように、せん断応力τから応力比τ/σm0を求め、この応力比τ/σm0から繰り返し回数Nを求めることができる。さらに、求めた繰り返し回数Nから、累積損傷度の増分ΔDを求めることができる。累積損傷度の増分ΔDは、次式で示される。
【0062】
ΔD=1/2N …(13)
また、図8の▲3▼に示すように、累積損傷度の増分ΔDから累積損傷度Dを求めることができる。
【0063】
図8に示す▲4▼は、累積損傷度Dと過剰間隙水圧比Rとの関係を示しており、累積損傷度Dから過剰間隙水圧比Ru_Pを求めることができる。この累積損傷度Dと過剰間隙水圧比Ru_Pとの関係は、実験により得ることができるが、公知の次式を用いて算出してもよく、Ru_P=Dとしてもよい。
【0064】
【数6】
Figure 2004245691
【0065】
なお、せん断応力から累積損傷度を求め、この累積損傷度から過剰間隙水圧比を求める方法は、上記の方法に限らず、特願2003−35390号に記載された方法や特開2001−208641号公報に記載された方法、及び他の公知の方法を用いることができる。
【0066】
次のステップS25では、杭間地盤28の有効応力σm_Pを次式により算出する。
【0067】
σm_P=(1−Ru_P)σm0 …(15)
ここで、σm0は応力評価点の初期平均応力である。
【0068】
ステップS26では、杭間地盤28の地盤ばねの初期せん断ばね剛性Kpf0を次式により更新する。
【0069】
pf0=K pf0×(σm_P/σm0 …(16)
ここで、K pf0は前回のステップで算出した初期せん断ばね剛性Kpf0である。
【0070】
このように、初期せん断ばね剛性Kpf0を更新することにより、図9に示すような力−変位骨格・履歴曲線Kpf(Γpf)が得られる。
【0071】
ステップS27では、杭間地盤28の層間変位と自由地盤31の層間変位の相対変位Γpfを記憶部14から読み出し、この相対変位Γpfに対応する、杭間地盤28と自由地盤31に関する相互作用力、すなわち内力Rpfを力−変位骨格・履歴曲線Kpf(Γpf)により算出する。
【0072】
ここで、Kpf(Γpf)は上記(10)〜(12)式と同様に求めることができ、各式において‘p’を‘pf’に置き換えることにより求めることができる。
【0073】
このように、本実施形態では、杭間地盤の骨格・履歴曲線と自由地盤の骨格・履歴曲線は本来異なるものであるため、杭間地盤28の層間変位と自由地盤31の層間変位の相対変位Γpfから杭間地盤28と自由地盤31に関する相互作用力をKpf(Γpf)より算出する。
【0074】
次に、図5のステップS6において、外部から作用する外力F、粘性力F、慣性力F、内力Rの不釣り合い力(残差力)ΔRを求める。不釣り合い力ΔRは次式により求めることができる。
【0075】
ΔR=F−F−F−R …(17)
次に、ステップS7において、建物、杭、杭間地盤ばね、自由地盤のそれぞれの接線剛性から修正値を計算するための全体修正剛性行列(動的解析用全体行列)Kを算出する。動的解析用全体行列Kは次式で示される。
【0076】
=M+γΔtC+βΔtK …(18)
ここで、β、γは、Newmark−β法における係数(一定)である。また、Kは接線剛性である。
【0077】
次に、ステップS8において、不釣り合い力ΔRより(t+Δt)時刻の修正値Λを下記(20)式により算出する。
【0078】
Λ=K*−1ΔR …(19)
次に、ステップS9において,この修正値Λにより予測値uを修正し、(t+Δt)時刻の応答変位、応答速度、応答加速度を求める。
【0079】
次に、ステップS10において、修正された応答変位、応答速度、応答加速度のもとでステップS4と同様に外力F(t+Δt)、粘性力F、慣性力Fの算出を行う。
【0080】
次に、ステップS11において、ステップS5と同様に、建物、杭、杭間地盤、杭・自由地盤間の地盤、及び自由地盤の内力Rを算出する
次に、ステップS12において、ステップS6と同様に、外部から作用する外力F、粘性力F、慣性力F、内力Rの不釣り合い力ΔRを求める。
【0081】
次に、ステップS13において、この不釣り合い力ΔRが収束したか否か、すなわち許容値以下であるか否かを判断する。そして、不釣り合い力ΔRが許容値を越えている場合には、ステップS7へ戻って上記と同様の計算を行う。一方、不釣り合い力ΔRが許容値以下であれば、次のステップS14へ移行する。
【0082】
ステップS14では、変位、速度、加速度を更新する。すなわち、不釣り合い力ΔRが収束したときの変位、速度、加速度をその時点の変位、速度、加速度とする。
【0083】
このようにして、地震時間全体についてステップS3〜S14までの処理(時刻歴ループ)を行い、各時刻毎の各応答値を算出する。
【0084】
そして、時刻歴ループが終了すると、ステップS15において、時刻歴ループにおいて算出した各応答値や各応答値の最大値などを表示部18や記憶部14に出力する。
【0085】
このように、本実施形態では、杭間地盤の過剰間隙水圧から杭間地盤のせん断ばねを評価し、これに基づいて杭間地盤と自由地盤との相互作用力を求めるので、従来のように自由地盤の過剰間隙水圧を用いて杭間地盤の液状化を考慮していた地震応答計算法よりもより精度の高い評価が可能となる。
【0086】
(第2実施形態)
次に、本発明の第2実施形態について説明する。なお、第1実施形態と同一部分には同一符号を付し、その詳細な説明は省略する。
【0087】
第1実施形態では、図6のステップS27において杭間地盤の層間変位及び自由地盤の層間変位の相対変位Γpfから杭間地盤と自由地盤との相互作用力を骨格・履歴曲線kpf(Γpf)より求めていたが、第2実施形態では、杭間地盤の層間変位Γからその作用力を図6と同様の処理によりK(Γ)より算出すると共に、自由地盤の層間変位Γからその作用力をK(Γ)より算出する。
【0088】
そして、杭間地盤と自由地盤との相互作用力、すなわち内力Rpfを次式により求める。
【0089】
pf=K(Γ)−K(Γ) …(20)
すなわち、図11に示すように、杭間地盤の作用力と自由地盤の作用力とをそれぞれの層間変位から独立に求め、それぞれの作用力の差を相互作用力とするので、杭間地盤及び自由地盤の時々刻々の非線形材料特性を忠実に評価することができる。
【0090】
【実施例】
次に、本発明の実施例について図面を参照して説明する。
【0091】
図12には、本発明を適用した液状化模型振動試験に用いた模型40の概略構成を示した。図12(A)は模型40の断面図を、図12(B)には平面図を示した。
【0092】
この液状化模型振動試験は、図12に示すようにせん断箱42に液状化層44及び及び非液状化層46の2つの材料特性の異なる砂層からなる地層と複数(5×5=25本)の杭48を基礎に持つ建屋50の模型を設置し、このせん断箱42を振動台52で水平方向に加振することにより液状化について測定する試験である。なお、入力地震動には実記録の地震動を用いた。
【0093】
図12(A)に示すように、模型40の挙動を計測するために地中には加速度計54、間隙水圧計56を、杭48にはひずみゲージ58を配置した。
【0094】
これを本発明で提案した質点−ばねモデルでモデル化を行い、試験を行った。モデル化に用いた地盤の材料諸元は、2層の地層に対して以下の表1に示す値を用いた。
【0095】
【表1】
Figure 2004245691
【0096】
図13には、これらの地層のせん断ひずみに対する剛性低下率G/G及び減衰定数hの増加率の関係を示した。なお、設定値とは、測定値を式で近似したものである。また、図14には、液状化強度曲線、すなわち繰り返し回数Nに対するせん断応力比の関係を示した。
【0097】
図15には過剰間隙水圧の最大値の深度分布について、観測記録、既存解析法によるシミュレーション結果(既往例)、本発明の解析法によるシミュレーション結果をそれぞれ示した。なお、既存解析法は、液状化の上昇を自由地盤の挙動から算出しており、本解析法では、杭間地盤から算出している。
【0098】
図15に示すように、観測値の過剰間隙水圧比は地表面付近まで1.0近くまで上昇しており、本発明の解析方法による解析結果は既存解析法の解析結果よりも、観測値により近い値となっている。これは本解析方法が、本実験で観測された「自由地盤よりも杭間地盤の方が液状化がやや進んだ」結果を再現しており、理論的に忠実に現象を再現していることを確認することができた。
【0099】
また、図16には、過剰間隙水圧の上昇過程を実験の観測記録とともに示した。図16から明らかなように、本解析法による解析結果は観測記録とよく対応していることを確認することができた。
【0100】
【発明の効果】
以上説明したように、本発明によれば、自由地盤と杭間地盤との過剰間隙水圧の違いを考慮した簡便且つ精度のよい地盤−杭−建屋連成系の地震応答を得ることができる、いう効果を有する。
【図面の簡単な説明】
【図1】地震応答解析装置の概略ブロック図である。
【図2】解析対象のモデル図である。
【図3】杭及び杭間地盤の変形について説明するための図である。
【図4】杭間地盤及び自由地盤の変形について説明するための図である。
【図5】演算部で実行されるメインルーチンのフローチャートである。
【図6】演算部で実行される内力算出ルーチンのフローチャートである。
【図7】杭間地盤の作用力等について説明するための図である。
【図8】過剰間隙水圧比の算出について説明するための図である。
【図9】力−変位骨格・履歴曲線について説明するための図である。
【図10】力−変位骨格・履歴曲線を示す図である。
【図11】杭間地盤と自由地盤との相互作用力について説明するための図である。
【図12】実施例に係る試験装置の概略構成図である。
【図13】実施例に係るせん断ひずみと剛性低下率との関係を示すグラフである。
【図14】実施例に係る繰り返し回数とせん断応力比との関係を示すグラフである。
【図15】実施例に係る過剰間隙水圧比の最大値の深度分布を示す図である。
【図16】実施例に係る過剰間隙水圧比の上昇過程を示す線図である。
【符号の説明】
10 地震応答解析装置
12 操作部
14 記憶部
16 演算部
18 表示部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for analyzing seismic response, and more particularly to a method for analyzing seismic response of a coupled soil-pile-building system in consideration of liquefaction of the ground.
[0002]
[Prior art]
Conventionally, as a ground-pile-building coupled system analysis method, a ground, a pile supporting a building, and a building are modeled using a finite element method or the like, and a method of evaluating each response, for example, a Penzien type model There is a method in which the ground is replaced by an equivalent ground spring using a mass point model such as the above, and the response of the pile and the building is evaluated (for example, see Non-Patent Document 1).
[0003]
However, in the former method using the finite element method or the like, it is difficult to directly obtain a coefficient for determining a method for determining a decrease in ground stiffness (referred to as a stress-strain relationship or a constitutive equation) from the ground constant, and modeling is difficult. In addition, there is a problem that it takes a long time to calculate. At present, the correct natural law for earthquakes is not known.However, although many simulation methods have been proposed, evaluation methods have not been standardized for random phenomena such as earthquakes. There has been a problem that the analysis results are significantly different.
[0004]
In the latter method using the mass model, the excess pore water pressure generated on the ground surrounded by piles supporting the building (hereinafter referred to as the “pile between piles”) is used to replace the ground with an equivalent ground spring. Cannot be evaluated. For this reason, the excess pore water pressure generated in the ground having no structure in the vicinity (hereinafter referred to as “free ground”) must be separately obtained by analysis and used as the excess pore water pressure in the pile ground. Actually, since the deformation state of the free ground and the ground between the piles are different, the excess pore water pressure generated in the ground during an earthquake, that is, the degree of liquefaction is also different. Therefore, in the latter method using the mass point model, there is a problem that the analysis result may be far different from the actual result.
[0005]
[Non-patent document 1]
Yuji Miyamoto, Yuji Sakai, Eiji Kitamura, Kenji Miura, "Study on Seismic Response Characteristics of Pile Foundation in Nonlinear, Liquefied Ground", Journal of Structural Engineering, Architectural Institute of Japan, May 1995, No. 471, p. 41-50
[0006]
[Problems to be solved by the invention]
The present invention has been made in order to solve the above problems, and provides a simple and accurate ground-pile-building coupled seismic response in consideration of the difference in excess pore water pressure between free ground and pile ground. An object of the present invention is to provide a seismic response analysis method that can be obtained.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 is characterized in that a structure including a building and a pile, and a ground between piles around the pile and a ground including free ground separated from the structure by a predetermined distance or more are used. Mass information of the analysis target model modeled by the model, stiffness information, damping information, and obtain the displacement information of the analysis target model that changes every moment using the equation of motion based on the input earthquake information, based on the displacement information, In the seismic response analysis method of obtaining a time characteristic of a response value related to at least a strain that changes from moment to moment, an interlayer displacement of the ground between piles and an interlayer displacement of the free ground are calculated based on the displacement information, and the ground displacement of the ground between piles is calculated. From the interlayer displacement and the interlayer displacement of the free ground, the relative displacement between the interlayer displacement of the ground between the piles and the interlayer displacement of the free ground is calculated, and the interlayer displacement of the ground between the piles and Calculating the shear stress of the ground between the piles based on the force-displacement skeleton / history curve of the ground between the piles, calculating the cumulative damage degree of the ground between the piles based on the shear stress of the ground between the piles, Calculate the excess pore water pressure ratio of the ground between the piles based on the cumulative damage degree of the ground between the piles, calculate the effective stress of the ground between the piles based on the excess pore water pressure ratio of the ground between the piles, and calculate the effective stress of the ground between the piles. The initial shear spring stiffness of the ground between piles is calculated based on the effective stress, and the force-displacement skeleton / history curve relating to the interaction force between the ground between the piles and the free ground is updated using the initial shear spring rigidity. Then, the process of calculating the interaction force based on the updated force-displacement skeleton / history curve and the relative displacement is repeated every predetermined time.
[0008]
The present invention is directed to an analysis target model obtained by modeling a structure including a building and a pile, and a ground between piles around the pile and a ground including a free ground at a predetermined distance or more from the structure using a mass point model. is there. Then, mass information, stiffness information, damping information, and using the equation of motion based on the input earthquake information to determine the displacement information of the analysis target model that changes from moment to moment, based on this displacement information, at least regarding the strain that changes from moment to moment. Find the time characteristic of the response value.
[0009]
In the present invention, first, the interlayer displacement of the ground between piles and the interlayer displacement of the free ground are calculated based on the displacement information. Next, the relative displacement of the interlayer displacement of the pile-to-pile ground and the interlayer displacement of the free ground is calculated from the interlayer displacement of the pile-to-pile ground and the interlayer displacement of the free ground.・ Calculate the shear stress of the ground between piles based on the hysteresis curve.
[0010]
Then, the cumulative damage degree of the ground between the piles is calculated based on the shear stress of the ground between the piles. For example, the cumulative damage can be determined from the shear stress, the stress ratio is determined, the number of repetitions corresponding to the stress ratio is determined, the increment of the cumulative damage corresponding to the number of repetitions is determined, and the increment of the cumulative damage can be determined. .
[0011]
Then, the excess pore water pressure ratio of the pile-to-pile ground is calculated based on the accumulated damage degree of the pile-to-pile ground, and the effective stress of the pile-to-pile ground is calculated based on the excess pore-water pressure ratio of the pile-to-pile ground. The initial shear spring stiffness of the ground between piles is calculated based on the stress, and the force-displacement skeleton / history curve relating to the interaction force between the ground between the piles and the free ground is updated using the initial shear spring stiffness. The interaction force is calculated based on the force-displacement skeleton / history curve and the relative displacement.
[0012]
The time history of the earthquake response can be obtained by repeating such processing every predetermined time.
[0013]
As described above, in the present invention, the effective stress of the ground between piles is evaluated from the excess pore water pressure of the ground between piles, and the interaction force between the ground between the piles and the free ground is determined based on this. It is possible to evaluate with higher accuracy than when considering the liquefaction of the ground between piles using excess pore water pressure of free ground.
[0014]
In addition, as described in claim 2, a structure including a building and a pile, and a ground between piles around the pile and a ground including free ground separated from the structure by a predetermined distance or more are modeled by a mass point model. Mass information, rigidity information, damping information, and the displacement information of the analysis target model, which changes every moment using the equation of motion based on the input earthquake information, are calculated based on the displacement information. In the seismic response analysis method for obtaining a time characteristic of a response value related to at least a strain, the interlayer displacement of the ground between the piles and the interlayer displacement of the free ground are calculated based on the displacement information, and the interlayer displacement of the ground between the piles and the Based on the force-displacement skeleton / history curve of the ground between piles, the shear stress of the ground between piles is calculated, and the interlayer displacement of the free ground and the force-change of the free ground are calculated. The shear stress of the free ground is calculated based on a skeleton / history curve, and the cumulative damage degree of the ground between the piles is calculated based on the shear stress of the ground between the piles, and based on the shear stress of the free ground. Calculate the cumulative damage degree of the free ground, calculate the excess pore water pressure ratio of the ground between the piles based on the cumulative damage degree of the ground between the piles, and calculate the excess pore pressure ratio of the free ground based on the cumulative damage degree of the free ground. Calculate the pore water pressure ratio, calculate the effective stress of the ground between the piles based on the excess pore water pressure ratio of the ground between the piles, and calculate the effective stress of the free ground based on the excess pore water pressure ratio of the free ground. Calculating the initial shear spring rigidity of the ground between the piles based on the effective stress of the ground between the piles, and calculating the initial shear spring rigidity of the free ground based on the effective stress of the free ground, Using the initial shear spring stiffness of the ground, the force-displacement skeleton / history curve relating to the acting force of the ground between the piles is updated, and based on the updated force-displacement skeleton / history curve and the interlayer displacement of the ground between the piles. While calculating the acting force of the ground between the piles, the force-displacement skeleton / history curve relating to the acting force of the free ground is updated using the initial shear spring stiffness of the free ground, and the updated force-displacement skeleton Calculate the acting force of the free ground based on a hysteresis curve and the interlayer displacement of the free ground, and calculate the acting force of the inter-pile ground and the free ground based on the acting force of the inter-pile ground and the acting force of the free ground. The process of calculating the interaction force may be repeated every predetermined time.
[0015]
That is, the acting force of the ground between the piles and the acting force of the free ground are obtained independently from the respective interlayer displacements, and the difference between the acting forces is defined as the interaction force. As a result, the non-linear material properties of the pile-to-pile ground and the free ground can be faithfully evaluated every moment.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
[0017]
FIG. 1 shows an earthquake response analysis device 10. The earthquake response analysis device 10 includes an operation unit 12, a storage unit 14, a calculation unit 16, and a display unit 18.
[0018]
The operation unit 12 is used by an operator to specify an instruction for causing the arithmetic unit 16 to execute an earthquake response analysis on a desired analysis model in accordance with a menu displayed on the display unit 18 and to specify necessary parameters. The storage unit 14 stores various analysis model parameters and various arithmetic expressions necessary for earthquake response analysis in the arithmetic unit 16. The storage unit 14 stores the analysis result of the earthquake response analysis performed by the calculation unit 16.
[0019]
The arithmetic unit 16 reads necessary data from the storage unit 14 in accordance with an instruction from the operation unit 12, performs an earthquake response analysis, stores the output result in the storage unit 14, and outputs the output result to the display unit 18.
[0020]
The calculation unit 16 performs an earthquake response analysis on the building, the pile, and the ground to be analyzed in consideration of the liquefaction of the ground between the piles.
[0021]
The seismic response analysis is generally performed as follows. That is, for the portion related to the ground, the cumulative damage degree is obtained from the time history of the shear stress, the excess pore water pressure is obtained from the cumulative damage degree, and the shear rigidity reduction rate due to liquefaction is obtained from the effective stress obtained thereby. Further, using the stress-strain relationship (non-linear stiffness) obtained in consideration of the shear stiffness reduction rate, a time history response for finding a shear stress depending on the shear strain every moment, that is, an earthquake response analysis is performed. For buildings and piles, response analysis using a conventional elastic or plastic model is performed.
[0022]
As a model for the seismic response analysis of the ground, piles, and building (building), a mass point model as shown in FIG. 2 is used. In this model, the ground, piles, and building are each represented by a spring (shear spring, horizontal ground spring, etc.) connecting the mass points. In addition, the ground is divided into a free ground located far from the building and a ground between piles located immediately below the building.
[0023]
As shown in FIG. 2, the building 20 is represented by a mass point 22. As shown in FIG. 3, the plurality of piles 24 supporting the building 20 are integrated into one pile 24A on the assumption that they are integrally deformed. The pile 24A in which the plurality of piles 24 are aggregated is represented by a plurality of mass points 26 as shown in FIG.
[0024]
The ground 28 between the piles existing between the piles 24 shown in FIG. 3 is represented by a ground spring 30 connecting the mass points 26 as shown in FIG. As described above, since it is assumed that the plurality of piles 24 are integrally deformed, as shown in FIG. 3, the deformation (shear strain) γ of the piles 24 is performed.pIs the deformation of the ground between piles γsIs the same as
[0025]
The free ground 31 is represented by mass points 32 and a ground spring 34 connecting the mass points 32. The pile 24 and the free ground 31 transmit force via the horizontal ground spring 36 and the ground spring 30 of the horizontal ground 35 between the pile 24 and the free ground 31.
[0026]
The seismic response analysis includes a method of integrally analyzing these models, and a method of first performing analysis of free ground and acting as an external force on seismic response analysis of ground-pile-pile-building between piles.
[0027]
In the present invention, when calculating the acting force and rigidity of the horizontal ground spring and the ground between piles in consideration of liquefaction, conventionally, only the liquefaction of the free ground is considered in the pile ground, the horizontal ground, and the free ground. On the other hand, considering the liquefaction of the pile-pile ground for the pile-pile ground and the liquefaction of the free ground for the horizontal ground and the free ground, it has made it possible to perform simple and accurate seismic response analysis. It is.
[0028]
The response value at the time of the earthquake can be obtained by solving the equation of motion for the ground between piles, the horizontal ground, and the free ground by the following equation using time integration. In the present embodiment, a generally well-known time integration method for a dynamic nonlinear problem can be used for time integration. In the present embodiment, as an example, the incremental method based on the Newmark-β method is used.
[0029]
(Equation 1)
Figure 2004245691
[0030]
In addition, as shown in FIG. 4, the displacement of the node 26 of the i-layerp_i, The displacement of the node 32 of the i layer of the free ground 31 is uf_i, The relative displacement δ is expressed by the following equation.
[0031]
δ = up_i-Uf_i    … (2)
In addition, the interlayer displacement of the ground 28 between the piles ΓpIs represented by the following equation.
[0032]
Γp= Up_i-Up_i-1        … (3)
In addition, the interlayer displacement of the free ground 31 ΓfIs represented by the following equation.
[0033]
Γf= Uf_i-Uf_i-1        … (4)
In addition, the relative displacement Γ between the interlayer displacement of the pile-to-pile ground 28 and the interlayer displacement of the free ground 31.pfIs represented by the following equation.
[0034]
Γpf= (Up_i-Uf_i)-(Up_i-1-Uf_i-1) = Γp−Γf    … (5)
Next, as an operation of the first embodiment, a control routine executed by the arithmetic unit 16 will be described with reference to flowcharts shown in FIGS.
[0035]
First, in step S1 shown in FIG. 5, the operator operates the operation unit 12 according to the menu displayed on the display unit 18 to specify parameters of an analysis model to be subjected to an earthquake response analysis. Data relating to the analysis model is read from the storage unit 14.
[0036]
The data related to this analysis model includes, for example, a building to be analyzed, a pile foundation, a stratum between piles and free ground, a stratum of free ground (for example, data indicating a stratum from the top), a material constant, and a time integration constant. is there.
[0037]
In the next step S2, initial values of various data used in the following calculation for obtaining an earthquake response are set. The data includes, for example, acceleration, velocity, displacement, shear stress, shear strain, mass matrix M, stiffness matrix K, and damping matrix C in the above equation (1). The calculation unit 16 sets initial values for these data.
[0038]
Next, in step S3, the predicted value u of the response displacement, response speed, and response acceleration of each node at time t + Δt*Is calculated by the following equation (6). Note that Δt is a calculation time interval, that is, an execution interval of a time history loop, and may be a constant value or may be changed for each calculation.
[0039]
u*= Au (t) + BΛ (6)
Here, A is a prediction operator matrix, B is a correction operator matrix, and Λ is a correction value vector that is an unknown number.
[0040]
Then, from the predicted value of the displacement of each node, the interlayer displacement and the relative displacement are calculated by the above equations (2) to (5). These values are stored in the storage unit 14.
[0041]
Next, in step S4, the external force F (t + Δt), the viscous force FC, Inertial force FMIs calculated. The external force is obtained by calculating the right side of the above equation (1) for the time (t + Δt). Viscous force FCIs, for example, by the following equation (7),MCan be calculated by the following equation (8).
[0042]
(Equation 2)
Figure 2004245691
[0043]
Then, in the next step S5, the predicted value u calculated in step S3*Then, the internal force R relating to the building 20, the pile 24, the ground 28 between the piles, the ground between the pile and the free ground (horizontal ground 35), the free ground 31, and the like is calculated.
[0044]
FIG. 6 shows a processing routine for calculating the interaction force between the ground 28 between the piles and the free ground 31 as an internal force. In the processing routine shown in FIG. 6, the accumulated damage degree D of the pile-to-pile ground 28 and the excess pore water pressure ratio ruFrom the above, the force-displacement skeleton / history curve (function) K between the pile ground 28 and the free ground 31pfpf), And the interaction force (internal force R) of the ground spring on the ground 28 between the piles and the free ground 31pf) Is calculated.
[0045]
In addition, the internal force R regarding a building or a pile can be obtained by various known methods in a mass point model.
[0046]
Specifically, as shown in FIG. 6, first, in step S20, the interlayer displacement of the pile 24 at the time t + Δt, that is, the displacement 質 between the mass points 26,PIs read from the storage unit 14.
[0047]
In the next step S21, the displacement ΓpThe acting force of the shear ground spring corresponding topp).
[0048]
In the next step S22, the shear stress τPIs calculated by the following equation.
[0049]
τP= KPP) / As… (9)
Here, As is an equivalent earth column area of the ground 28 between piles, that is, an effective shear area as shown in FIG.
[0050]
In addition, the force-displacement skeleton / history curve K of the ground between pilespp) Can be calculated by the following equation.
[0051]
(Equation 3)
Figure 2004245691
[0052]
Where Kp0Is the initial average stress σm0, The shear spring stiffness at the time of Fσ (σm/ Σm0) Is a stiffness reduction coefficient (stiffness reduction rate) at the time of micro-strain depending on the effective constraint pressure, which is obtained as an empirical formula (function) and is expressed by the following formula (11). g (Γp, Γp50) Is an empirical formula that is a shear stress-shear strain curve standardized by the rigidity at the time of micro-strain and mainly depends on the shear strain. Γp50Is the value of the shear strain at which the shear spring stiffness is halved, and is expressed by the following equation (12). Current effective stress σmIs the initial average stress σ at the stress evaluation pointm0(1-excess pore water pressure ratio = 1-ru_p).
[0053]
(Equation 4)
Figure 2004245691
[0054]
Also, Γp50Can be determined from the relationship with the excess pore water pressure ratio using the following equation.
[0055]
(Equation 5)
Figure 2004245691
[0056]
Where (Γp50)refIs σrefInp50.
Note that the force-displacement skeleton / history curve generally has a shape as shown in FIG. The curve at the center is called the skeletal curve, and the curve surrounding it is called the hysteresis curve. When the displacement increases from the zero point to the plus or minus side, the skeletal curve is used, and when the displacement starts to return to zero, the hysteresis curve is used. Once the skeletal curve is determined, the hysteresis curve is automatically determined. For example, skeletal curve is gpp), The hysteresis curve is, for example, gp((Γ-ΓR) / 2). Where ΓRIs the displacement between piles at the turning point. Generally, a Hardin-Drnevic model, a Ramberg-Osgood model, or the like can be used as the skeleton curve. In the present embodiment, the skeleton curve and the hysteresis curve are combined into a force-displacement skeleton / history curve, and Kpp) And Kpfpf). Where Kpp) Is the ground spring of the ground between piles, Kpfpf) Is the mutual ground spring between the pile ground and the free ground.
[0057]
In step S23, the shear stress τpDamage degree D of pile ground 28PIn step 24, the excess pore water pressure ratio ru_PAsk for.
[0058]
Cumulative damage degree DPAnd excess pore water pressure ratio ru_PIs obtained using the relations (1) to (4) as shown in FIG.
[0059]
(1) shown in FIG. 8 is the shear stress τ of the pile-to-pile ground that changes every moment.pIs shown.
[0060]
(2) shown in FIG. 8 indicates a liquefaction strength curve. The horizontal axis of (2) is the number of repetitions N during liquefaction, and the vertical axis is the stress ratio τ.p/ Σm0It is. As the liquefaction strength curve, a curve obtained by a dynamic undrained deformation test in a ground survey can be used. Where σm0Is the initial average stress at the stress evaluation point.
[0061]
As shown in (1) and (2) in FIG.pTo stress ratio τp/ Σm0And the stress ratio τp/ Σm0Can be used to determine the number of repetitions N. Further, the increment ΔD of the cumulative damage degree can be obtained from the obtained number of repetitions N. The increment ΔD of the cumulative damage degree is represented by the following equation.
[0062]
ΔD = 1 / N (13)
Further, as shown by (3) in FIG. 8, the cumulative damage degree D is calculated from the cumulative damage degree increment ΔD.pCan be requested.
[0063]
(4) shown in FIG. 8 indicates cumulative damage degree D and excess pore water pressure ratio R.uAnd the cumulative damage degree DpFrom excess pore water pressure ratio Ru_PCan be requested. This cumulative damage degree DpAnd excess pore water pressure ratio Ru_PCan be obtained by experiments, but may be calculated using the following known equation.u_P= DpIt may be.
[0064]
(Equation 6)
Figure 2004245691
[0065]
In addition, the method of obtaining the cumulative damage degree from the shear stress and obtaining the excess pore water pressure ratio from the cumulative damage degree is not limited to the method described above, and the method described in Japanese Patent Application No. 2003-35390 or Japanese Patent Application Laid-Open No. 2001-208641. The method described in the gazette and other known methods can be used.
[0066]
In the next step S25, the effective stress σm_PIs calculated by the following equation.
[0067]
σm_P= (1-Ru_P) Σm0    … (15)
Where σm0Is the initial average stress at the stress evaluation point.
[0068]
In step S26, the initial shear spring rigidity K of the ground spring on thepf0Is updated by the following equation.
[0069]
Kpf0= K' pf0× (σm_P/ Σm0)n  … (16)
Where K' pf0Is the initial shear spring stiffness K calculated in the previous steppf0It is.
[0070]
Thus, the initial shear spring stiffness Kpf0Is updated to obtain a force-displacement skeleton / history curve K as shown in FIG.pfpf) Is obtained.
[0071]
In step S27, the relative displacement 層 間 between the interlayer displacement of the ground 28 between the piles and the interlayer displacement of the free ground 31 is obtained.pfIs read from the storage unit 14 and the relative displacement Γpf, The interaction force between the pile ground 28 and the free ground 31, that is, the internal force RpfIs the force-displacement skeleton / history curve Kpfpf).
[0072]
Where Kpfpf) Can be obtained in the same manner as in the above equations (10) to (12), and can be obtained by replacing ‘p’ with ‘pf’ in each equation.
[0073]
As described above, in the present embodiment, since the skeleton / history curve of the ground between piles and the skeleton / history curve of the free ground are originally different, the relative displacement between the interlayer displacement of the pile ground 28 and the interlayer displacement of the free ground 31 is different. ΓpfFrom the interaction force between the pile ground 28 and the free ground 31pfpf).
[0074]
Next, in step S6 of FIG. 5, the external force F and the viscous force FC, Inertial force FM, The unbalanced force (residual force) ΔR of the internal force R is determined. The unbalance force ΔR can be obtained by the following equation.
[0075]
ΔR = FFM-FC-R (17)
Next, in step S7, an overall correction stiffness matrix (dynamic analysis overall matrix) K for calculating a correction value from the tangential stiffness of each of the building, the pile, the ground spring between the piles, and the free ground.*Is calculated. Dynamic analysis whole matrix K*Is represented by the following equation.
[0076]
K*= M + γΔtC + βΔt2K ... (18)
Here, β and γ are coefficients (constant) in the Newmark-β method. K is the tangential rigidity.
[0077]
Next, in step S8, a correction value Λ at (t + Δt) time is calculated from the unbalance force ΔR by the following equation (20).
[0078]
Λ = K* -1ΔR (19)
Next, in step S9, the predicted value u*Is corrected, and the response displacement, response speed, and response acceleration at (t + Δt) time are obtained.
[0079]
Next, in step S10, the external force F (t + Δt) and the viscous force F are obtained based on the corrected response displacement, response speed, and response acceleration, as in step S4.C, Inertial force FMIs calculated.
[0080]
Next, in step S11, similarly to step S5, the internal force R of the building, the pile, the ground between the piles, the ground between the pile and the free ground, and the free ground are calculated.
Next, in step S12, similarly to step S6, external force F and viscous force F acting from outside are applied.C, Inertial force FM, The unbalance force ΔR of the internal force R is determined.
[0081]
Next, in step S13, it is determined whether or not the unbalance force ΔR has converged, that is, whether or not the value is equal to or less than an allowable value. If the unbalance force ΔR exceeds the allowable value, the process returns to step S7 and performs the same calculation as above. On the other hand, if the unbalance force ΔR is equal to or less than the allowable value, the process proceeds to the next step S14.
[0082]
In step S14, the displacement, speed, and acceleration are updated. That is, the displacement, speed, and acceleration when the unbalance force ΔR converges are regarded as the displacement, speed, and acceleration at that time.
[0083]
In this way, the processes from step S3 to S14 (time history loop) are performed for the entire earthquake time, and each response value for each time is calculated.
[0084]
When the time history loop ends, in step S15, each response value calculated in the time history loop and the maximum value of each response value are output to the display unit 18 and the storage unit 14.
[0085]
As described above, in the present embodiment, the shear force of the ground between the piles is evaluated from the excess pore water pressure of the ground between the piles, and the interaction force between the ground between the piles and the free ground is obtained based on the evaluation. It is possible to evaluate with higher accuracy than the seismic response calculation method that considered the liquefaction of the ground between piles using excess pore water pressure of free ground.
[0086]
(2nd Embodiment)
Next, a second embodiment of the present invention will be described. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
[0087]
In the first embodiment, in step S27 of FIG. 6, the relative displacement 層 間 of the interlayer displacement of the ground between piles and the interlayer displacement of the free ground.pfThe interaction force between the ground between the piles and the free ground is calculated from thepfpf), In the second embodiment, the interlayer displacement of the ground between piles ΓpFrom the K force by the same processing as in FIG.pp) And the interlayer displacement of the free ground ΓfFrom its action forceff).
[0088]
And the interaction force between the ground between the piles and the free ground, that is, the internal force RpfIs determined by the following equation.
[0089]
Rpf= Kpp) -Kff…… (20)
That is, as shown in FIG. 11, the acting force of the ground between the piles and the acting force of the free ground are obtained independently from the respective interlayer displacements, and the difference between the acting forces is defined as the interaction force. It is possible to faithfully evaluate the non-linear material characteristics of free ground every moment.
[0090]
【Example】
Next, embodiments of the present invention will be described with reference to the drawings.
[0091]
FIG. 12 shows a schematic configuration of a model 40 used in a liquefaction model vibration test to which the present invention is applied. FIG. 12A is a cross-sectional view of the model 40, and FIG. 12B is a plan view.
[0092]
In this liquefaction model vibration test, as shown in FIG. 12, in the shear box 42, a liquefied layer 44 and a non-liquefied layer 46 composed of two layers (5 × 5 = 25) composed of sand layers having different material properties. This is a test for measuring liquefaction by installing a model of a building 50 having a pile 48 as a foundation and vibrating the shear box 42 in a horizontal direction with a shaking table 52. The actual ground motion was used as the input ground motion.
[0093]
As shown in FIG. 12A, an accelerometer 54 and a pore water pressure gauge 56 were arranged in the ground to measure the behavior of the model 40, and a strain gauge 58 was arranged on the pile 48.
[0094]
This was modeled using a mass-spring model proposed in the present invention, and a test was performed. As the material specifications of the ground used for the modeling, the values shown in Table 1 below were used for the two layers.
[0095]
[Table 1]
Figure 2004245691
[0096]
FIG. 13 shows the stiffness reduction rate G / G with respect to the shear strain of these formations.0And the relationship between the rate of increase of the damping constant h. Note that the set value is obtained by approximating the measured value by an equation. FIG. 14 shows the liquefaction strength curve, that is, the relationship between the shear stress ratio and the number of repetitions N.
[0097]
FIG. 15 shows the depth distribution of the maximum value of the excess pore water pressure, the observation record, the simulation result by the existing analysis method (an existing example), and the simulation result by the analysis method of the present invention. In addition, in the existing analysis method, the rise of liquefaction is calculated from the behavior of the free ground, and in this analysis method, it is calculated from the ground between piles.
[0098]
As shown in FIG. 15, the excess pore water pressure ratio of the observed value has increased to near 1.0 near the ground surface, and the analysis result by the analysis method of the present invention is larger than the analysis result of the existing analysis method. The values are close. This means that the analysis method reproduces the result observed in this experiment that "the liquefaction was slightly more in the pile ground than in the free ground", and reproduced the phenomenon faithfully in theory Could be confirmed.
[0099]
FIG. 16 shows the process of increasing the excess pore water pressure together with the observation record of the experiment. As is clear from FIG. 16, it was confirmed that the analysis results obtained by the present analysis method corresponded well with the observation records.
[0100]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a simple and accurate ground-pile-building-coupled seismic response in consideration of a difference in excess pore water pressure between free ground and pile ground, This has the effect of
[Brief description of the drawings]
FIG. 1 is a schematic block diagram of an earthquake response analysis device.
FIG. 2 is a model diagram of an analysis target.
FIG. 3 is a diagram for explaining deformation of a pile and ground between piles.
FIG. 4 is a diagram for explaining deformation of a ground between piles and a free ground.
FIG. 5 is a flowchart of a main routine executed by a calculation unit.
FIG. 6 is a flowchart of an internal force calculation routine executed by a calculation unit.
FIG. 7 is a diagram for explaining the acting force and the like of the ground between piles.
FIG. 8 is a diagram for explaining calculation of an excess pore water pressure ratio.
FIG. 9 is a diagram for describing a force-displacement skeleton / history curve.
FIG. 10 is a diagram showing a force-displacement skeleton / history curve.
FIG. 11 is a diagram for explaining the interaction force between the pile ground and the free ground.
FIG. 12 is a schematic configuration diagram of a test apparatus according to an example.
FIG. 13 is a graph showing a relationship between a shear strain and a stiffness reduction rate according to an example.
FIG. 14 is a graph showing the relationship between the number of repetitions and the shear stress ratio according to the example.
FIG. 15 is a diagram illustrating the depth distribution of the maximum value of the excess pore water pressure ratio according to the example.
FIG. 16 is a diagram showing a process of increasing the excess pore water pressure ratio according to the example.
[Explanation of symbols]
10 Seismic response analyzer
12 Operation section
14 Storage unit
16 Operation part
18 Display

Claims (2)

建屋及び杭から成る構造物と、前記杭周辺の杭間地盤及び前記構造物から所定距離以上離れた自由地盤から成る地盤と、を質点モデルによりモデル化した解析対象モデルの質量情報、剛性情報、減衰情報、及び入力地震情報による運動方程式を用いて時々刻々と変化する前記解析対象モデルの変位情報を求め、前記変位情報に基づいて、時々刻々と変化する少なくともひずみに関する応答値の時間特性を求める地震応答解析方法において、
前記変位情報に基づいて前記杭間地盤の層間変位及び前記自由地盤の層間変位を算出し、
前記杭間地盤の層間変位及び前記自由地盤の層間変位から前記杭間地盤の層間変位及び前記自由地盤の層間変位の相対変位を算出し、
前記杭間地盤の層間変位及び前記杭間地盤の力−変位骨格・履歴曲線に基づいて前記杭間地盤のせん断応力を算出し、
前記杭間地盤のせん断応力に基づいて前記杭間地盤の累積損傷度を算出し、
前記杭間地盤の累積損傷度に基づいて前記杭間地盤の過剰間隙水圧比を算出し、
前記杭間地盤の過剰間隙水圧比に基づいて前記杭間地盤の有効応力を算出し、
前記杭間地盤の有効応力に基づいて前記杭間地盤の初期せん断ばね剛性を算出し、
前記初期せん断ばね剛性を用いて、前記杭間地盤と前記自由地盤との相互作用力に関する力−変位骨格・履歴曲線を更新し、更新された力−変位骨格・履歴曲線及び前記相対変位に基づいて前記相互作用力を算出する処理を、予め定めた所定時間ごとに繰り返す
ことを特徴とする地震応答解析方法。
Mass information, rigidity information of an analysis target model in which a structure including a building and a pile, and a ground between piles around the pile and a free ground separated from the structure by a predetermined distance or more, and a mass model, Using the damping information and the equation of motion based on the input earthquake information, the displacement information of the model to be analyzed that changes every moment is obtained, and based on the displacement information, the time characteristic of at least the response value regarding the strain that changes every moment is obtained. In the seismic response analysis method,
Based on the displacement information, calculate the interlayer displacement of the ground between the piles and the interlayer displacement of the free ground,
From the interlayer displacement of the pile ground and the interlayer displacement of the free ground, calculate the relative displacement of the interlayer displacement of the pile ground and the interlayer displacement of the free ground,
Calculating the shear stress of the ground between the piles based on the interlayer displacement of the ground between the piles and the force-displacement skeleton / history curve of the ground between the piles,
Calculating the cumulative damage degree of the pile ground based on the shear stress of the pile ground,
Calculate the excess pore water pressure ratio of the pile ground based on the cumulative damage degree of the pile ground,
Calculate the effective stress of the ground between the piles based on the excess pore water pressure ratio of the ground between the piles,
Calculating the initial shear spring stiffness of the ground between the piles based on the effective stress of the ground between the piles,
Using the initial shear spring stiffness, the force-displacement skeleton / history curve relating to the interaction force between the ground between the piles and the free ground is updated, and based on the updated force-displacement skeleton / history curve and the relative displacement. A process of calculating the interaction force by repeating at predetermined intervals a predetermined time.
建屋及び杭から成る構造物と、前記杭周辺の杭間地盤及び前記構造物から所定距離以上離れた自由地盤から成る地盤と、を質点モデルによりモデル化した解析対象モデルの質量情報、剛性情報、減衰情報、及び入力地震情報による運動方程式を用いて時々刻々と変化する前記解析対象モデルの変位情報を求め、前記変位情報に基づいて、時々刻々と変化する少なくともひずみに関する応答値の時間特性を求める地震応答解析方法において、
前記変位情報に基づいて前記杭間地盤の層間変位及び前記自由地盤の層間変位を算出し、
前記杭間地盤の層間変位及び前記杭間地盤の力−変位骨格・履歴曲線に基づいて前記杭間地盤のせん断応力を算出すると共に、前記自由地盤の層間変位及び前記自由地盤の力−変位骨格・履歴曲線に基づいて前記自由地盤のせん断応力を算出し、
前記杭間地盤のせん断応力に基づいて前記杭間地盤の累積損傷度を算出すると共に、前記自由地盤のせん断応力に基づいて前記自由地盤の累積損傷度を算出し、
前記杭間地盤の累積損傷度に基づいて前記杭間地盤の過剰間隙水圧比を算出すると共に、前記自由地盤の累積損傷度に基づいて前記自由地盤の過剰間隙水圧比を算出し、
前記杭間地盤の過剰間隙水圧比に基づいて前記杭間地盤の有効応力を算出すると共に、前記自由地盤の過剰間隙水圧比に基づいて前記自由地盤の有効応力を算出し、
前記杭間地盤の有効応力に基づいて前記杭間地盤の初期せん断ばね剛性を算出すると共に、前記自由地盤の有効応力に基づいて前記自由地盤の初期せん断ばね剛性を算出し、
前記杭間地盤の初期せん断ばね剛性を用いて、前記杭間地盤の作用力に関する力−変位骨格・履歴曲線を更新し、更新された力−変位骨格・履歴曲線及び前記杭間地盤の層間変位に基づいて前記杭間地盤の作用力を算出すると共に、前記自由地盤の初期せん断ばね剛性を用いて、前記自由地盤の作用力に関する力−変位骨格・履歴曲線を更新し、更新された力−変位骨格・履歴曲線及び前記自由地盤の層間変位に基づいて前記自由地盤の作用力を算出し、
前記杭間地盤の作用力と前記自由地盤の作用力とに基づいて前記杭間地盤と前記自由地盤との相互作用力を算出する処理を、予め定めた所定時間ごとに繰り返す
ことを特徴とする地震応答解析方法。
Mass information, rigidity information of an analysis target model in which a structure including a building and a pile, and a ground between piles around the pile and a free ground separated from the structure by a predetermined distance or more, and a mass model, Using the damping information and the equation of motion based on the input earthquake information, the displacement information of the model to be analyzed that changes every moment is obtained, and based on the displacement information, the time characteristic of at least the response value regarding the strain that changes every moment is obtained. In the seismic response analysis method,
Based on the displacement information, calculate the interlayer displacement of the ground between the piles and the interlayer displacement of the free ground,
The shear stress of the ground between the piles is calculated based on the interlayer displacement of the ground between the piles and the force-displacement skeleton / history curve of the ground between the piles, and the interlayer displacement of the free ground and the force-displacement skeleton of the free ground are calculated. Calculating a shear stress of the free ground based on a hysteresis curve,
Calculating the cumulative damage degree of the ground between the piles based on the shear stress of the ground between the piles, and calculating the cumulative damage degree of the free ground based on the shear stress of the free ground,
While calculating the excess pore water pressure ratio of the pile ground based on the cumulative damage degree of the pile ground, calculating the excess pore water pressure ratio of the free ground based on the cumulative damage degree of the free ground,
Calculating the effective stress of the ground between the piles based on the excess pore water pressure ratio of the ground between the piles, and calculating the effective stress of the free ground based on the excess pore water pressure ratio of the free ground,
Calculating the initial shear spring stiffness of the ground between the piles based on the effective stress of the ground between the piles, and calculating the initial shear spring stiffness of the free ground based on the effective stress of the free ground,
Using the initial shear spring stiffness of the ground between the piles, the force-displacement skeleton / history curve related to the acting force of the ground between the piles is updated, and the updated force-displacement skeleton / history curve and the interlayer displacement of the ground between the piles Calculating the acting force of the ground between the piles on the basis of, and using the initial shear spring stiffness of the free ground, updating the force-displacement skeleton / history curve relating to the acting force of the free ground, and updating the updated force- Calculate the acting force of the free ground based on the displacement skeleton / history curve and the interlayer displacement of the free ground,
The process of calculating the interaction force between the pile ground and the free ground based on the acting force of the ground between the piles and the acting force of the free ground is repeated every predetermined time. Seismic response analysis method.
JP2003035532A 2003-02-13 2003-02-13 Earthquake response analysis method Expired - Lifetime JP3847264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003035532A JP3847264B2 (en) 2003-02-13 2003-02-13 Earthquake response analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003035532A JP3847264B2 (en) 2003-02-13 2003-02-13 Earthquake response analysis method

Publications (2)

Publication Number Publication Date
JP2004245691A true JP2004245691A (en) 2004-09-02
JP3847264B2 JP3847264B2 (en) 2006-11-22

Family

ID=33020930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003035532A Expired - Lifetime JP3847264B2 (en) 2003-02-13 2003-02-13 Earthquake response analysis method

Country Status (1)

Country Link
JP (1) JP3847264B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032577A (en) * 2006-07-31 2008-02-14 Asahi Kasei Homes Kk Deterioration diagnostic device for elastoplastic energy absorber
JP2008032579A (en) * 2006-07-31 2008-02-14 Asahi Kasei Homes Kk Deterioration simulation device for elastoplastic energy absorber
WO2008117743A1 (en) * 2007-03-23 2008-10-02 National University Corporation Saitama University Analysis system, analysis method, program and mechanical device
JP2009250805A (en) * 2008-04-07 2009-10-29 Takenaka Komuten Co Ltd Response analysis device, method, and program
JP2018200288A (en) * 2017-05-30 2018-12-20 株式会社フジタ Earthquake response analysis method and earthquake response analysis program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032577A (en) * 2006-07-31 2008-02-14 Asahi Kasei Homes Kk Deterioration diagnostic device for elastoplastic energy absorber
JP2008032579A (en) * 2006-07-31 2008-02-14 Asahi Kasei Homes Kk Deterioration simulation device for elastoplastic energy absorber
WO2008117743A1 (en) * 2007-03-23 2008-10-02 National University Corporation Saitama University Analysis system, analysis method, program and mechanical device
JP5077968B2 (en) * 2007-03-23 2012-11-21 国立大学法人埼玉大学 Analysis system, analysis method, program, and mechanical apparatus
JP2009250805A (en) * 2008-04-07 2009-10-29 Takenaka Komuten Co Ltd Response analysis device, method, and program
JP2018200288A (en) * 2017-05-30 2018-12-20 株式会社フジタ Earthquake response analysis method and earthquake response analysis program

Also Published As

Publication number Publication date
JP3847264B2 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
Wu et al. Dynamic nonlinear analysis of pile foundations using finite element method in the time domain
Pant et al. Appropriate viscous damping for nonlinear time‐history analysis of base‐isolated reinforced concrete buildings
Sevim et al. Finite element model calibration effects on the earthquake response of masonry arch bridges
Michel et al. Quantification of fundamental frequency drop for unreinforced masonry buildings from dynamic tests
JP5911077B2 (en) Coupling calculation apparatus, coupling calculation method, and coupling calculation program for air, water and soil skeleton
Ventura et al. Dynamic characteristics of a base isolated building from ambient vibration measurements and low level earthquake shaking
Brun et al. Pseudo-dynamic tests on low-rise shear walls and simplified model based on the structural frequency drift
Altunişik et al. Ambient vibration based seismic evaluation of isolated Gülburnu highway bridge
JP2003270080A (en) Device and method for vibration test
Türker et al. Assessment of semi-rigid connections in steel structures by modal testing
Kumar et al. Study of seismic response characteristics of building frame models using shake table test and considering soil–structure interaction
Rovithis et al. Experimental py loops for estimating seismic soil-pile interaction
Erazo et al. High‐resolution seismic monitoring of instrumented buildings using a model‐based state observer
JP3847264B2 (en) Earthquake response analysis method
JP2004534935A (en) A method for determining the seismic resistance of buildings
JP2003150043A (en) Earthquake resistant design arithmetic unit for structure, and earthquake resistant design method for structure
KR20050112698A (en) Method of bridge earthquake-proof and design
Ganev et al. Observation and numerical analysis of soil‐structure interaction of a reinforced concrete tower
JP3640583B2 (en) Earthquake response analysis method
Amiri et al. An analytical model for estimating the vibration frequency of structures located on the pile group in the case of floating piles and end-bearing pile
Patel et al. A study on efficacy of wavelet transform for damage identification in reinforced concrete buildings
JP4513776B2 (en) Earthquake response analysis method
Shadlou et al. A 1D-modelling approach for simulating the soil-pile interaction mechanism in the liquefiable ground
MULAS Shaking table tests on rc shear walls: significance of numerical modeling
JP6991703B2 (en) Damage degree judgment device and damage degree judgment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060822

R150 Certificate of patent or registration of utility model

Ref document number: 3847264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term