JP2004245429A - 空気冷却装置及び空気冷却方法 - Google Patents

空気冷却装置及び空気冷却方法 Download PDF

Info

Publication number
JP2004245429A
JP2004245429A JP2003032590A JP2003032590A JP2004245429A JP 2004245429 A JP2004245429 A JP 2004245429A JP 2003032590 A JP2003032590 A JP 2003032590A JP 2003032590 A JP2003032590 A JP 2003032590A JP 2004245429 A JP2004245429 A JP 2004245429A
Authority
JP
Japan
Prior art keywords
cooling unit
cooling
air
opening
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003032590A
Other languages
English (en)
Inventor
Tadahiro Omi
忠弘 大見
Yasuyuki Shirai
泰雪 白井
Sadao Kobayashi
貞雄 小林
Hideo Hanaoka
秀夫 花岡
Isao Terada
功 寺田
Satoshi Minobe
智 美濃部
Toshihisa Okabe
稔久 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Hitachi Plant Technologies Ltd
Original Assignee
Nichias Corp
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp, Hitachi Plant Technologies Ltd filed Critical Nichias Corp
Priority to JP2003032590A priority Critical patent/JP2004245429A/ja
Publication of JP2004245429A publication Critical patent/JP2004245429A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】冷却性能が高く、熱効率がよく、液ガス比が小さく、圧損が小さく、省スペース及び省エネルギーを図れる空気冷却方法を提供すること。
【解決手段】複数の波板を積層してなる略直方体の斜行ハニカムを、相対する2面のみに開口部を設けたケースに収納したものであり、空気導入側の開口部を前面開口部、相対する開口部を後面開口部として、該冷却ユニットの前面開口部の上端が下端よりも空気導入方向側に近づくように水平ダクト内に傾斜させて配置される冷却ユニットと、冷却水供給手段と、受水部と、送風手段とを有する空気冷却装置であって、前記冷却ユニットは、前記斜行ハニカムの前後両面間の厚さが100〜600mm、前傾角度が10〜45°、前記冷却ユニットの傾斜配置時における大仰角セル斜行角度及び小仰角セル斜行角度が共に1〜89°である空気冷却装置。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、夏場等の高温の空気を効率良く冷却する空気冷却装置及び空気冷却方法に関するものである。さらに詳しくは、オフィスビル、病院、生産工場の空気の空気冷却装置及び空気冷却方法に関するものである。
【0002】
【従来の技術】
現在、オフィスビルや工場等空調に使用されるエネルギーは、日本のエネルギー消費の30%以上を占め、その削減は緊急の課題になっている。従来、オフィスビルや工場の循環空気や取り入れ空気は、冷媒や冷却水を流したフィンコイル式熱交換器に空気を送って、フィンコイル中を通過させることによって冷却する方法が採られてきた。しかし、フィンコイル式熱交換器では、被冷却空気量に対して大量の冷却水が必要であるため、すなわち液ガス比が大きいため、冷却水の循環ポンプ等の稼動のために多くの電力が必要であり、また圧損が大きく、さらにフィンコイルに水滴が付着すると水滴が熱伝導を大きく妨げて熱効率が大幅に低下する。なお、付着した水滴を除去する方法としてはブロア−等で吹き飛ばす方法も考えられるが、ブロア−等の設置スペースや電力が余分に必要になるため、スペース効率や省電力の観点からは好ましくない。
【0003】
そこで、処理空気中に含まれるガス不純物を除去する方法として、特開2000―317248号公報に、多孔質セラミックを材料とし、ジグザグに屈曲した折れ板状の固体壁を用いて水と空気とを直接接触させる方法が提案されており、該方法を空気の冷却に用いることができれば上記フィンコイルを用いずに、空気の冷却を行うことができると考えられる。該方法は、具体的には、水を固体に沿うように流したぬれ壁塔をシリーズに繋いで、このぬれ壁塔の中に空気を通過させ、空気中のNOx等を除去するものである。また、フィンコイルを用いずに水と空気とを直接接触させる他の方法として、通常のポリ塩化ビニル製斜行ハニカムをクーリングタワーに用いて温水又は熱水を空気で冷却する方法も知られている。
【0004】
【特許文献1】
特開2000−317248号公報(特許請求の範囲、第4頁〜第5頁、図1)
【0005】
【発明が解決しようとする課題】
しかしながら、前者の方法を空気の冷却方法として用いようとしても、一旦ぬれ壁塔を流下して温まった水を次のぬれ壁塔で再び流下させるため、空気を十分に冷却することができない、すなわち、冷却性能が低いという問題があった。また、各塔に給水するためのポンプがそれぞれ必要になるため、ポンプの設置コストと運転経費が嵩むという問題があった。
【0006】
また、後者の方法は、斜行ハニカムの材質が通常のポリ塩化ビニルであるため、温水等が斜行ハニカム表面からはじかれ、水滴状になって落下する。すなわち、温水等が斜行ハニカム表面を均一に濡らした状態にはならず、斜行ハニカムの有する大きな表面積を十分に活用することができないため、液ガス比が大きく、熱効率がフィンコイル式冷却器よりも低いという問題があった。
【0007】
従って、本発明の目的は、冷却性能が高く、熱効率がよく、液ガス比が小さく、圧損が小さく、省スペース及び省エネルギーを図れ、さらに、低コストな空気冷却装置及び空気冷却方法を提供することにある。
【0008】
【課題を解決するための手段】
かかる実情において、本発明者は鋭意検討を行った結果、斜行ハニカムが相対する2面に開口部を設けたケースに収納されてなる冷却ユニットを、水平ダクト内又は上方に屈曲したL字ダクトのエルボー部内に傾斜させて配置したものであって、前記冷却ユニットとして、前記斜行ハニカムの前後両面間の厚さ、前傾角度及び斜行角度が特定範囲内にある空気冷却装置を用いれば、冷却性能が高く、熱効率がよく、液ガス比が小さく、圧損が小さく、省スペース且つ省エネルギーであることを見出し、本発明を完成するに至った。
【0009】
すなわち、本発明は、複数の波板を積層してなり、該積層された波板同士の隙間に形成されるセル状空洞部を有する略直方体の斜行ハニカムを、相対する2面のみに開口部を設けたケースに収納したものであり、空気導入側の開口部を前面開口部、相対する開口部を後面開口部として、該冷却ユニットの前面開口部の上端が下端よりも空気導入方向側に近づくようにダクト内に傾斜させて配置される冷却ユニットと、該冷却ユニットの後面開口部の上方に付設され該後面開口部に冷却水を供給する冷却水供給手段と、該冷却ユニットの前面開口部の下方に付設され該冷却ユニットの前面開口部から排出される排出水を回収する受水部と、該冷却ユニットの前面開口部に空気を供給する送風手段とを有する空気冷却装置であって、前記冷却ユニットは、前記セル状空洞部の長さ方向であるセル方向が前記相対する2面の開口部の形成する面に対して斜めになるように配置されることを特徴とする空気冷却装置を提供するものである。
【0010】
また、本発明は、複数の波板を積層してなる略直方体の斜行ハニカムを、相対する2面のみに開口部を設けたケースに収納したものであり、空気導入側の開口部を前面開口部、相対する開口部を後面開口部として、該冷却ユニットの前面開口部の上端が下端よりも空気導入方向側に近づくように水平ダクト内に傾斜させて配置される冷却ユニットと、該冷却ユニットの後面開口部の上方に付設され該後面開口部に冷却水を供給する冷却水供給手段と、該冷却ユニットの前面開口部の下方に付設され該冷却ユニットの前面開口部から排出される排出水を回収する受水部と、該冷却ユニットの前面開口部に空気を供給する送風手段とを有する空気冷却装置であって、前記冷却ユニットは、前記斜行ハニカムの前後両面間の厚さが100〜600mm、前傾角度が10〜45°、前記冷却ユニットの傾斜配置時における大仰角セル斜行角度及び小仰角セル斜行角度が共に1〜89°であることを特徴とする空気冷却装置を提供するものである。
【0011】
また、本発明は、複数の波板を積層してなる略直方体の斜行ハニカムを、相対する2面のみに開口部を設けたケースに収納したものであり、空気導入側の開口部を前面開口部、相対する開口部を後面開口部として、該冷却ユニットの前面開口部の上端が下端よりも空気導入方向側に近づくように上方に屈曲したL字ダクトのエルボー部内に傾斜させて配置される冷却ユニットと、該冷却ユニットの後面開口部の上方に付設され該後面開口部に冷却水を供給する冷却水供給手段と、該L字ダクトのエルボー底部に付設され該冷却ユニットの前面開口部から排出される排出水を回収する受水部と、該冷却ユニットの前面開口部に空気を供給する送風手段とを有する空気冷却装置であって、前記冷却ユニットは、前記斜行ハニカムの前後両面間の厚さが100〜600mm、前傾角度が35〜55°、前記冷却ユニットの傾斜配置時における大仰角セル斜行角度及び小仰角セル斜行角度が共に1〜89°であることを特徴とする空気冷却装置を提供するものである。
【0012】
また、本発明は、複数の波板を積層してなる略直方体の斜行ハニカムを、相対する2面のみに開口部を設けたケースに収納してなる冷却ユニットを、第1冷却ユニットと第2冷却ユニットとの2個用い、空気導入側の開口部を前面開口部、相対する開口部を後面開口部として、該前面開口部の上端が下端よりも空気導入方向側に近づくように上方に屈曲したL字ダクトのエルボー部内に傾斜させて配置される第1冷却ユニットと、前記相対する2面の開口部を上面開口部及び下面開口部として該L字ダクトの垂直部内に略水平に配置され第2冷却ユニットと、該第2冷却ユニットの上面開口部の上方に付設され該上面開口部に冷却水を供給する冷却水供給手段と、該L字ダクトのエルボー底部に付設され前記第2冷却ユニット及び前記第1冷却ユニットから排出される排出水を回収する受水部と、該第1冷却ユニットの前面開口部に空気を供給する送風手段とを有する空気冷却装置であって、前記第1冷却ユニットは、前記斜行ハニカムの前後両面間の厚さが100〜600mm、前傾角度が35〜55°、前記冷却ユニットの傾斜配置時における大仰角セル斜行角度及び小仰角セル斜行角度が共に1〜89°であることを特徴とする空気冷却装置を提供するものである。この場合において、前記第2冷却ユニットは、前記斜行ハニカムの上下両面間の厚さが100〜600mm、各セルの斜行角度が30〜80°であることが好ましい。
【0013】
また、本発明は、請求項1記載の空気冷却装置を用い、空気を前記冷却ユニットの前面開口部に導入して後面開口部から排出すると共に、冷却水を該冷却ユニットの後面開口部に供給して該冷却水の全量を前面開口部から排出する空気冷却方法であって、前記冷却ユニットは、前記斜行ハニカムの前後両面間の厚さが100〜600mm、前傾角度が10〜45°、前記冷却ユニットの傾斜配置時における大仰角セル斜行角度及び小仰角セル斜行角度が共に1〜89°であることを特徴とする空気冷却方法を提供するものである。
【0014】
また、本発明は、請求項2記載の空気冷却装置を用い、空気を前記L字ダクトの水平部から前記冷却ユニットの前面開口部に導入して後面開口部から該L字ダクトの垂直部に排出すると共に、冷却水を該L字ダクトの垂直部から該冷却ユニットの後面開口部に供給して該冷却水の全量を前面開口部から該L字ダクトのエルボー底部に排出する空気冷却方法であって、前記冷却ユニットは、前記斜行ハニカムの前後両面間の厚さが100〜600mm、前傾角度が35〜55°、前記冷却ユニットの傾斜配置時における大仰角セル斜行角度及び小仰角セル斜行角度が共に1〜89°であることを特徴とする空気冷却方法を提供するものである。
【0015】
また、本発明は、請求項9記載の空気冷却装置を用い、空気を前記L字ダクトの水平部から前記第1冷却ユニットの前面開口部に導入して後面開口部から排出した後、さらに前記第2冷却ユニットの下面開口部に導入して上面開口部から該L字ダクトの垂直部に排出すると共に、冷却水を該L字ダクトの垂直部から該第2冷却ユニットの上面開口部に供給して下面開口部から第2排出水として排出した後、さらに該第2排出水を前記第1冷却ユニットの後面開口部に供給して該第2排出水の全量を前面開口部から前記L字ダクトのエルボー底部に第1排出水として排出する空気冷却方法であって、前記第1冷却ユニットは、前記斜行ハニカムの前後両面間の厚さが100〜600mm、前傾角度が35〜55°、前記冷却ユニットの傾斜配置時における大仰角セル斜行角度及び小仰角セル斜行角度が共に1〜89°であることを特徴とする空気冷却方法を提供するものである。この場合において、前記第2冷却ユニットは、前記斜行ハニカムの上下両面間の厚さが100〜600mm、各セルの斜行角度が30〜80°であることが好ましい。
【0016】
【発明の実施の形態】
まず、本発明に係る空気冷却装置の第1の実施の形態について図1を参照して説明する。図1は、空気冷却装置の第1の実施の形態の模式図である。図1中、1cは空気冷却装置、2は冷却ユニット、5は水分散装置(冷却水供給手段)、6は受水パン(受水部)である。また、空気冷却装置1cは、上記以外に図示しない送風手段を備えるものである。
【0017】
冷却ユニットは、斜行ハニカムをケースに収納してなる。斜行ハニカムについて、図2を参照して説明する。図2は、斜行ハニカム3を説明する模式図である。斜行ハニカム3は、複数の波板20を積層してなる外形が略直方体状のハニカム状体である。積層された波板20同士の隙間には、セル状空洞部が形成される。セル状空洞部は、波板20で仕切られるため波板20の積層方向には実質的に通気が不可能であるが、該積層方向の垂直方向には空気の通気が可能なようになっている。なお、本発明において、波板20のうち、積層された順番が奇数番目のものを特に奇数番目波板21といい、積層された順番が偶数番目のものを特に偶数番目波板22という。
【0018】
斜行ハニカム3は、波板20の山部が連続して形成する通気が可能なセルの奥行き方向(以下、「セル方向」ともいう。)40が、奇数番目波板21のセル(以下、「奇数番目セル」ともいう。)31のセル方向(以下、「奇数番目セル方向」ともいう。)41が各奇数番目波板21に共通して略同一であり、且つ、偶数番目波板22の形成するセル(以下、「偶数番目セル」ともいう。)32のセル方向(以下、「偶数番目セル方向」ともいう。)42が各偶数番目波板22に共通して略同一となるものである。すなわち、本発明において、斜行ハニカム3は、奇数番目セル31が全て略同一方向41に向くと共に偶数番目セル32が全て略同一方向42に向いており、且つ、奇数番目セル方向41と偶数番目セル方向42とが所定の角度をなして交差するハニカム状体である。なお、本発明においては奇数番目セル31のセル方向及び偶数番目セルのセル方向は、波板として成立しうる範囲内であれば上記のように略同一方向とならなくてもよく、若干ずれていてもよい。
【0019】
また、斜行ハニカム3は、波板20に平行な面に対して垂直な上下前後の4面101〜104がセル開口部になっており、波板20に平行な2面105及び106が末端の波板23、23で閉じられてなる略直方体状のものである。本発明において、セル開口部とは、斜行ハニカム3において、奇数番目セル31の断面と偶数番目セル32の断面とが両方開口する面を意味する。すなわち、奇数番目セル31又は偶数番目セル32に平行な面で切断された結果生じるような、奇数番目セル31又は偶数番目セル32のいずれかの断面のみが存在する面はセル開口部ではなく、このように形成されたものは斜行ハニカム3に該当しない。
【0020】
斜行ハニカム3のセルの高さ、すなわち、波形の山と谷との間の山高寸法は、通常3〜10mm、好ましくは5〜7mmである。セルの山高寸法が3mm未満であると製造が困難であり、また、圧力損失が大きくなるため好ましくない。セルの山高寸法が10mmを越えると冷却効率が低下するため好ましくない。斜行ハニカム3において波板20が形成するセルのうち、隣接するセルの山部同士の間隔、すなわち、セルピッチは、通常6〜16mm、好ましくは7〜10mmである。
【0021】
また、斜行ハニカム3は、冷却ユニット2として設置した時における通気方向43、44間の厚さ(図4中、t)、すなわち冷却ユニット2の通気方向が前後両面である場合の前面開口部44と後面開口部43との間の寸法は、通常100〜600mm、好ましくは200〜400mmである。該厚さが100mm未満であると、冷却効率が低下するため好ましくなく、該厚さが600mmを越えると冷却効率がこれ以上向上せず、圧力損失が大きくなるため好ましくない。
【0022】
なお、本発明において、斜行ハニカム3が単独では上記範囲内の寸法を満たさない小さいものである場合は、該斜行ハニカム3を複数個組み合わせて上記範囲内の寸法になるようにしてもよい。このように、空気冷却手段として斜行ハニカム3を用いると、体積当りの熱交換率が従来用いられていたフィンコイルよりも高いため、斜行ハニカム3の大きさを小さくすることができ、装置の設置スペースを小さくすることができる。さらに、水の循環量が、従来のフィンコイルのものと比較すると格段に少なくて済み、大幅な省エネルギー化をも図ることができる。
【0023】
上記斜行ハニカム3は複数の波板20が積層されてなる。波板20は、表面に凹凸があり、内部が多孔質のものであると、エレメントの表面積を大きく採れ、エレメントに浸透して流下する水と空気との接触面積が高まるため好ましい。このような波板としては、例えば、アルミナ、シリカ及びチタニアからなる群より選択される少なくとも1種の充填材又は結合材と、ガラス繊維、セラミック繊維又はアルミナ繊維等の繊維基材とからなるものが挙げられる。この内、チタニアを配合したものは酸性の化学汚染物質の除去効率が向上するため好ましい。また、波板は、通常、充填材又は結合材を60〜93重量%、繊維基材を7〜40重量%含み、好ましくは充填材又は結合材を70〜88重量%、繊維基材を12〜30重量%含む。波板の配合比率が該範囲内にあると、波板の水浸透性及び強度が高いため好ましい。
【0024】
波板20は、公知の方法で作製でき、例えば、ガラス繊維、セラミック繊維又はアルミナ繊維で作製されたペーパーを、アルミナゾル等の結合材とアルミナ水和物等の充填材を混合したスラリーに浸漬した後、乾燥し、コルゲート加工し、その後、乾燥処理と熱処理を行い、水分と有機分を除去すれば得ることができる。アルミナ以外にシリカやチタニアを含有する場合、例えば、シリカ及びチタニアの配合量は、アルミナ100重量部に対してそれぞれ、通常5〜40重量部である。また、コルゲート加工は、例えば、径方向に振幅する波形の凹凸が表面に形成された複数の幅広の歯車間に通す公知のコルゲーターを用い、平板を該コルゲーターに通す方法が挙げられる。
【0025】
波板20は、厚さが通常200〜1000μm 、好ましくは300〜800μm である。また、波板の空隙率は、通常50〜80%、好ましくは60〜75%である。空隙率を該範囲内とすることにより、波板がほどよい浸透性を実現できるため、斜行ハニカム3は空気と水との接触効率を高めることができる。該波板が、上記厚さと空隙率を有すると、液ガス比及び水の浸透速度が適度な範囲となり、水と空気の接触効率を高めると共に、強度が高くなるため好ましい。
【0026】
波板20から斜行ハニカム3を成形する方法としては、例えば、まず、波板20を山部が形成するセルのセル方向40が、矩形の裁断型の一辺に対して後述の交差角度の半分の角度をなすように配置した後、裁断して矩形の波板20を作製し、次いで、該矩形の波板を1枚おきのセルのセル方向40のなす角度が交差角度になるように配置し、これらを積層した状態でケース4中に組み込んで積層体として固定する方法が挙げられる。積層体は波板同士が固定されていればよく、特に波板同士が接着されている必要はないが、これらを接着する場合は山部や谷部等で接着すればよい。波板を接着する方法としては、アルミナゾル等の無機接着剤を波板20の山部に接着して加圧する方法が挙げられる。
【0027】
本発明において、冷却ユニット2は、上記斜行ハニカム3を所定形状のケース4に収納してなる。本発明で用いられるケースは、相対する2面のみに開口部を設けたものである。図3に、本発明で用いられるケース4の一例を示す。図3において、ケース4は、相対する2面の開口部43、44以外の4面が枠体45を形成し、該枠体45は通気及び通水が不可能になるように形成される。相対する2面の開口部43、44の形状としては、収納される斜行ハニカム3のセル開口部が通気可能であればよく、特に限定されないが、例えば、矩形状、円状等が挙げられる。ケース4の材質としては、特に限定されないが、耐久性に優れ、水への溶出成分の少ないものが好ましい。このような材質としては、例えば、SUS、アルミニウム等の金属、塩化ビニール樹脂等のプラスチックが挙げられる。
【0028】
図4に、斜行ハニカム3をケース4に収納してなる冷却ユニット2を示す。冷却ユニット2において、斜行ハニカム3は4面有するセル開口部101〜104のうちの2面101、104が、ケースの相対する2面の開口部43、44に一致するように収納される。すなわち、冷却ユニット2は、ケースの相対する2面の開口部43、44間においてのみ通気及び冷却水の流下が可能な構造になっている。
【0029】
空気冷却装置1cは、上記冷却ユニット2が、ケース4の相対する2面の開口部43、44を前面開口部44及び後面開口部43として水平ダクト77内に傾斜させて配置される。ここで、水平ダクトとは、少なくとも冷却ユニットが配置される部分及びその近傍が水平方向に延設されてなるダクトであって、被冷却空気の通気方向が冷却ユニットの通過前後を通じて実質的に水平方向になる形状のダクトを意味する。また、冷却ユニット2は、冷却ユニット2と水平ダクト77内壁との間に隙間等がなく、実質的に空気及び冷却水の全量が冷却ユニット2を通過するようにすることが好ましい。
【0030】
冷却ユニット2の設置時において、斜行ハニカム3は、交差角度が、通常10〜80°、好ましくは20〜45°である。交差角度が上記範囲内にあると、被冷却空気11及び冷却水15の進入に対する斜行角度が後述の適切な範囲内になり易く、被冷却空気11と冷却水15との接触効率、すなわち、被冷却空気11の冷却効率が高くなり易いため好ましい。
【0031】
交差角度について、図5を参照して説明する。図5は、冷却ユニット2の断面を拡大した模式図である。図5中、奇数番目セル方向41と偶数番目セル方向42とは交差して2つの角度をなすが、このうち、冷却ユニット2の設置時に開口部43、44間方向、すなわち通気方向側に開いた方の角の角度(図5中、α)を交差角度という。
【0032】
空気冷却装置1cは、前傾角度が通常10〜45°であり、好ましくは20〜45°である。前傾角度が10°より小さいと、傾斜効果が小さいため好ましくない。また、前傾角度が45°を越えると、設置スペースが大きくなるため好ましくない。ここで、前傾角度(図5中、φ)とは、冷却ユニット2の通気方向(図5中、Y)と水平面との間でなす角をいう。本発明において、通気方向とは、冷却ユニット2の開口部43の表面の法線方向のうち、開口部43から開口部44に向かう方向をいう。
【0033】
また、本発明において、奇数番目セル又は偶数番目セルのうち、冷却ユニット2を傾斜させずに下面で直立させた場合に、空気導入方向側からみたセル方向の仰角が大きい方のセルを大仰角セル、小さい方のセルを小仰角セルという。なお、空気導入方向側からみたセル方向が伏角である場合は、伏角の絶対値に負の符号を付した角度を負の値を有する仰角として扱う。例えば、伏角が30°である場合は仰角が−30°であるとして扱う。ここで、下面とは、ケース4の相対する2面の開口部43、44以外の4面のいずれかの面のうち、冷却ユニット2の設置時において最も下方にある面をいう。図5中、下面は49である。
【0034】
また、本発明において、大仰角セルのセル方向を大仰角セル方向、小仰角セルのセル方向を小仰角セル方向という。図5に、大仰角セルを35、小仰角セルを36、大仰角セル方向を45、小仰角セル方向を46で表す。図5は、大仰角セル35が奇数番目セル31に相当し、小仰角セル36が偶数番目セル32に相当する例である。このため、図5において交差角度αは、大仰角セル方向45と小仰角セル方向46とでなす角のうち、通気方向側に開いた方の角の角度でもある。
【0035】
空気冷却装置1cは、冷却ユニット2の傾斜配置時における大仰角セル斜行角度及び小仰角セル斜行角度が共に、通常1〜89°であり、好ましくは大仰角セル斜行角度が1〜79°且つ小仰角セル斜行角度が11〜89°であり、さらに好ましくは大仰角セル斜行角度が10〜30°且つ小仰角セル斜行角度が20〜60°である。大仰角セル斜行角度及び小仰角セル斜行角度が該範囲内にあると、熱効率が高く、圧損が小さいため好ましい。なお、大仰角セル斜行角度及び小仰角セル斜行角度が1°未満であると、水と空気とが対向流とならないため熱効率が低いいため好ましくない。また、大仰角セル斜行角度及び小仰角セル斜行角度が89°を越えると、空気の流れが悪くなり圧損が大きくなるため好ましくない。
【0036】
ここで、大仰角セル斜行角度(図5中、θ)とは、冷却ユニット2の設置時において、大仰角セル方向45が水平面に対してなす2つの角度のうち小さい値をとる方の角の角度をいう。また、小仰角セル斜行角度とは、冷却ユニット2の設置時において、小仰角セル方向46が水平面に対してなす2つの角度のうち小さい値をとる方の角の角度をいう。このため、大仰角セル斜行角度θ及び小仰角セル斜行角度θは、共に90°を越えることがない。図5より、α+θ=θの関係がある。
【0037】
空気冷却装置1cでは、冷却ユニット2の後面開口部43に冷却水15を供給する冷却水供給手段5が該後面開口部43の上方に設けられる。冷却水供給手段5の形態としては特に限定されないが、例えば、図1に示す単に水滴を滴下する通常の給水ダクトや、図示しないが給水管にスプレーノズルを取り付けて冷却水15を斜行ハニカム3の後面開口部43に分散して供給しうるようにしたもの等が挙げられる。このうち、広範囲に渡って均一な量で冷却水を噴霧できる給水管にスプレーノズルを取り付けたものが好ましい。また、冷却水供給手段5は、冷却ユニット2の斜行ハニカム3に必要最低量の冷却水量が供給されるように、水量調整が可能なものであることが好ましい。
【0038】
空気冷却装置1cでは、冷却ユニット2の前面開口部44の下方に該冷却ユニット2から排出される排出水16を回収する受水部6が設けられる。受水部6の形態としては特に限定されないが、例えば、受水パン等が挙げられる。また、受水部6には、排出水16を受水部6外に排出する排出管61を設けてもよいが、排出管61の設置は必須ではない。
【0039】
空気冷却装置1cは、冷却ユニット2の前面開口部44に空気を供給する送風手段を有する。送風手段は図示しないが、設置場所は、冷却ユニット2の後面開口部43側でも前面開口部44側でもいずれでもよい。送風手段としては、例えば、ファンを備えた送風機等が挙げられる。
【0040】
また、空気冷却装置1cは、受水部6と冷却水供給手段5とを、図示しない排出水冷却手段及び循環ポンプを介して接続すると、冷却ユニット2中の斜行ハニカム3を流下して被冷却空気11で温められた排出水16を冷却水15として再利用することができる点で好ましい。排出水冷却手段としては、例えば、熱交換器が挙げられる。
【0041】
また、空気冷却装置1cは、前記斜行ハニカム3と同様の斜行ハニカムを用意し、該斜行ハニカムを冷却ユニット2の後面開口部43の上方且つ冷却水供給手段5の上方に別途設置し、該斜行ハニカムを図示しないデミスターとして用いると、冷却ユニット2の後面開口部43から水滴が飛散して冷却空気に混じることを抑制することができるため好ましい。また、デミスターは、斜行ハニカムをケース4に収納して冷却ユニット2と同様の形態をしていると、水滴を効率よく除去することができるため好ましい。
【0042】
次に、空気冷却装置1cの作用について図1を参照して説明する。まず、冷却ユニット2の後面開口部43に、冷却水供給手段5から冷却水15を流下する。この際、冷却水15の供給水量を適宜調整して、冷却ユニット2中の斜行ハニカム3全体を濡れた状態とする。次に、図示しない送風手段等により被冷却空気11を冷却ユニット2の前面開口部44から図1中の矢印の方向に導入する。冷却ユニット2中の斜行ハニカム3内のセルでは、後面開口部43側から前面開口部44側に流下される冷却水15と前面開口部44側から後面開口部43側に導入される被冷却空気11とが対向流に類似した接触形態で直接気液接触して被冷却空気11が冷却されると共に、被冷却空気11中に化学汚染物質等が存在する場合は該化学汚染物質等が冷却水15に取り込まれる。熱交換して温まり且つ場合により化学汚染物質を取り込んだ冷却水15は、冷却ユニット2中の斜行ハニカム3を流下し切ったところで排出水16となり、前面開口部44から受水部6に落下する。また、受水部6中の排出水16は、排水管61を通って図示しない循環ポンプで熱交換器に供給されて所定温度まで冷却され、再び給水管51を通って冷却水供給手段5に供給されるようにすると、冷却水15として再利用することができるため好ましい。一方、冷却ユニット2の後面開口部43からは冷却された冷却空気12が得られる。
【0043】
第1の実施の形態に係る空気冷却装置1cは、被冷却空気11と冷却水15とが直接接触する斜行ハニカム3を含む冷却ユニット2を傾斜させて配置し、しかも、冷却ユニット2は、斜行ハニカム3の厚さ及び大仰角セル斜行角度及び小仰角セル斜行角度を所定範囲内のものとしたため、冷却性能が高く、熱効率がよく、液ガス比が小さく、圧損が小さく、省スペース及び省エネルギーを図れ、さらに、低コストである。ここで、省スペース性とは、限られたダクト寸法の中で斜行ハニカムの通気面積、すなわち、前面開口部の面積を増大させることができることをいう。空気冷却装置1cは冷却ユニット2を傾斜配置しているため、ダクトの断面積を変えずに通気面積を増大させることができる。なお、傾斜配置によりフットプリントが増大するが、ダクトは、通常、通気方向の長さに余裕を有するため、フットプリントの増大はあまりデメリットにならない。ここで、フットプリントとは、冷却ユニットの下面への投影図形をいう。
【0044】
また、空気冷却装置1cは、斜行ハニカムを直交流配置、すなわち、前面開口部が通気方向と垂直になるように斜行ハニカムを直立させ、空気を前面開口部から後面開口部に通気すると共に冷却水を上面開口部から下面開口部に向かって流下させる配置に比べて、キャリーオーバーが発生し難いため、通気風量を直交流配置する場合に比べて大きくすることができる。ここで、キャリーオーバーとは、斜行ハニカムに供給した水が通気される空気の通気圧力によって斜行ハニカム外に運びされる現象をいう。
【0045】
次に、本発明に係る空気冷却方法の第1の実施の形態について説明する。該方法は、空気冷却装置1cを用い、被冷却空気11を冷却ユニット2の前面開口部44に導入して後面開口部43から排出すると共に、冷却水15を冷却ユニット2の後面開口部43に供給して前面開口部44から排出する空気冷却方法である。作用等は空気冷却装置1cについて述べたところと同様である。
【0046】
また、液ガス比、すなわち、冷却ユニット2に供給する被冷却空気11の供給重量に対する冷却ユニット2に供給する冷却水15の供給重量の比が、通常0.3〜1.5であると熱交換効率及び熱交換速度の性能のバランスが良好であるため好ましい。
【0047】
本発明において、被冷却空気11としては、特に限定されないが、清浄な空気に加え、高性能(ULPA)フィルターの編み目を通過するような微細な化学汚染物質を含んだ空気も用いることができる。ここで化学汚染物質としては、例えば、ナトリウム、カリウム、カルシウム、ホウ素等の無機質の金属元素、フッ素イオン、塩化物イオン、硝酸イオン、亜硝酸イオン、硫酸イオン、亜硫酸イオン等のアニオン類や、アンモニウムイオン等のカチオン類等が挙げられる。
【0048】
本発明で用いる空気冷却装置は被冷却空気と冷却水とが直接に接触するため、これらの化学汚染物質を冷却水に取り込んで清浄な冷却空気を得ることができる。なお、被冷却空気中の化学汚染物質量が多い場合等には、必要により、受水部6と冷却水供給手段5との間に、排出水中の化学汚染物質を除去可能な手段として、例えば、イオン交換樹脂等を組込んだ純水化装置を介するようにすると、冷却水を清浄に保つことができるため好ましい。
【0049】
次に、本発明に係る空気冷却装置の第2の実施の形態1dについて図6を参照して説明する。図6は、空気冷却装置の第2の実施の形態1dの模式図である。第2の実施の形態に係る空気冷却装置1dにおいて、図6中、図1と同一構成要素には同一符号を付してその説明を省略し、異なる点についてのみ主に説明する。
【0050】
図6の空気冷却装置1dにおいて、図1の空気冷却装置1cと異なる点は、空気冷却装置1cでは、冷却ユニット2が水平ダクト77内に傾斜させて配置され、受水部6が冷却ユニット2の前面開口部44の下方に設けられるのに対し、空気冷却装置1dでは、冷却ユニット2が上方に屈曲したL字ダクト71のエルボー部74内に傾斜させて配置され、受水部6が該L字ダクト71のエルボー底部75に設けられる点にある。
【0051】
空気冷却装置1dは、第1の実施の形態に係る空気冷却装置1cと略同様の作用を有するが、冷却ユニット2をL字ダクト71のエルボー部74内に傾斜させて配置し、また、冷却ユニット2から排出される排出水16をL字ダクト71が必然的に有するエルボー底部75を利用して受水部6を設置するため、空気冷却装置1cよりも省スペース性に優れる。また、出隅部76を図中左側方向に後退させてL字ダクト71の垂直部72内を拡径し、広がったスペースに開口部43、44の面積が大きくなった冷却ユニット2を配置すると、冷却能力がより優れるため好ましい。
【0052】
なお、空気冷却装置1dは、前傾角度が通常35〜55°である。前傾角度が該範囲内にあると、空気と水の接触効率と、圧力損失とのバランスがよいため好ましい。
【0053】
次に、本発明に係る空気冷却方法の第2の実施の形態について説明する。該方法は、空気冷却装置1dを用い、被冷却空気11を冷却ユニット2の前面開口部44に導入して後面開口部43から排出すると共に、冷却水15を冷却ユニット2の後面開口部43に供給して前面開口部44から排出する空気冷却方法である。該方法の第1の実施の形態に係る方法との相違点は、空気冷却方法の第1の実施の形態では、冷却ユニットが水平ダクト77内に傾斜させて配置されるものであるのに対し、空気冷却方法の第2の実施の形態では、冷却ユニットがL字ダクト71のエルボー部74内に傾斜させて配置される点にある。空気冷却方法の第2の実施の形態は、空気冷却方法の第1の実施の形態と略同様の作用を有するが、冷却ユニットがL字ダクト71のエルボー部74内に傾斜させて配置されるため、省スペース性に優れる。
【0054】
なお、空気冷却方法の第2の実施の形態において、冷却ユニット2に供給する冷却水15の温度、冷却ユニット2に供給する被冷却空気11の温度、液ガス比、被冷却空気11の種類等は、本発明に係る空気冷却方法の第1の実施の形態と同様である。
【0055】
次に、本発明に係る空気冷却装置の第3の実施の形態1eについて図7を参照して説明する。図7は、空気冷却装置の第2の実施の形態1eの模式図である。第3の実施の形態に係る空気冷却装置1eにおいて、図7中、図6と同一構成要素には同一符号を付してその説明を省略し、異なる点についてのみ主に説明する。
【0056】
図7の空気冷却装置1eにおいて、図6の空気冷却装置1dと異なる点は、空気冷却装置1dでは、1個の冷却ユニット2が上方に屈曲したL字ダクト71のエルボー部74内に傾斜させて配置されるのに対し、空気冷却装置1eでは、冷却ユニットを、第1冷却ユニットと第2冷却ユニットとの2個用い、第1冷却ユニット2aが空気冷却装置1dと同様に傾斜させて配置されるが、第2冷却ユニット2bは上方に屈曲したL字ダクト71の垂直部72内であって、第1冷却ユニット2aの上方且つ冷却水供給手段5の下方に略水平に配置される点にある。
【0057】
空気冷却装置1eで用いられる第1冷却ユニット2aは、空気冷却装置1dにおける冷却ユニット2と同様のものを同様に配置する。
【0058】
空気冷却装置1eで用いられる第2冷却ユニット2bは、原則、第1冷却ユニット2aと同様のものを用いる。ただし、第2冷却ユニット2bは、略水平に配置されるため、図4に示す冷却ユニット2を、相対する2面の開口部43及び44がそれぞれ上面開口部43及び下面開口部44となるように略水平に配置する。
【0059】
第2冷却ユニット2bは、このように略水平に配置するため、第1冷却ユニット2aのように、斜行ハニカム3中のセルは前述の大仰角セル又は小仰角セルに分類することができない。従って、第2冷却ユニット2b中の、セルの奥行き方向の水平面に対する角度を示す指標として、前述の大仰角セル斜行角度θ及び小仰角セル斜行角度θに代えて、斜行角度で表す。ここで、斜行角度とは、冷却ユニット2bの設置時において、斜行ハニカム3中の各セルのセル方向40が水平面に対してなす2つの角度のうち小さい値をとる方の角の角度をいう。このため、斜行角度は、90°を越えることがない。
【0060】
斜行角度について、図8を参照して説明する。図8は、冷却ユニット2bの断面を拡大した模式図である。図8中、奇数番目セル方向41は、水平面との間に斜行角度θをなす(以下、奇数番目波板の斜行角度を「奇数番目斜行角度」ともいう。)。また、偶数番目セル方向42は、水平面との間に斜行角度θをなす(以下、偶数番目波板の斜行角度を「偶数番目斜行角度」ともいう。)。本発明において、斜行角度とは、奇数番目斜行角度θ及び偶数番目斜行角度θの両方を含む概念であり、本発明では、θ及びθが共に上記角度の範囲内にある。なお、図8のように、α+θ+θ=180°の関係がある。
【0061】
空気冷却装置1eは、第2冷却ユニット2bの設置時における、第2冷却ユニット2b中の各セルの斜行角度が、通常30〜80°、好ましくは45〜70°である。斜行角度が該範囲内にあると、空気と水との接触効率が高く、且つ圧損が小さいため好ましい。
【0062】
なお、空気冷却装置1eは、第1冷却ユニット2aの前傾角度が通常45〜70°である。前傾角度が該範囲内にあると、空気と水の接触効率と、圧力損失とのバランスがよいため好ましい。
【0063】
空気冷却装置1eは、第2の実施の形態に係る空気冷却装置1dと略同様の作用を有するが、作用において異なる点は、空気冷却装置1dでは、冷却水15及び被冷却空気11が空気冷却装置1eの第1冷却ユニット2aに相当する傾斜配置された1つの冷却ユニット2のみを通過するのに対し、空気冷却装置1eでは冷却水15及び被冷却空気11が、第1冷却ユニット2aの上方に水平配置された第2冷却ユニット2bをも通過し、しかも、第1冷却ユニット2aに供給される冷却水15は第2冷却ユニット2bからの排出水16を冷却水15として再利用することができる点にある。このため、空気冷却装置1eは、空気冷却装置1dよりも冷却能力及び省スペース性に優れる。
【0064】
次に、本発明に係る空気冷却方法の第3の実施の形態について説明する。該方法は、空気冷却装置1eを用い、空気を該L字ダクト71の水平部73から前記第1冷却ユニット2aの前面開口部44に導入して後面開口部43から排出した後、さらに前記第2冷却ユニット2bの下面開口部44に導入して上面開口部43から該L字ダクト71の垂直部72に排出すると共に、冷却水15を該L字ダクト71の垂直部72から該第2冷却ユニット2bの上面開口部43に供給して下面開口部44から第2排出水16bとして排出した後、さらに該第2排出水16bを前記第1冷却ユニット2aの後面開口部43に供給して該第2排出水16bの全量を前面開口部44から前記L字ダクト71のエルボー底部75に第1排出水16aとして排出する空気冷却方法である。
【0065】
該方法の第2の実施の形態に係る方法との相違点は、空気冷却装置の第3の実施の形態で述べたところと同様である。空気冷却方法の第3の実施の形態は、空気冷却方法の第2の実施の形態と略同様の作用を有するが、冷却ユニットがL字ダクト71のエルボー部74内に傾斜させて配置された第1冷却ユニット2aに加えて、第2冷却ユニット2bが上方に屈曲したL字ダクト71の垂直部72内に略水平に配置されるるため、冷却能力及び省スペース性に優れる。
【0066】
また、第1冷却ユニット2a及び第2冷却ユニット2bに供給する冷却水の供給重量と、第1冷却ユニット2a及び第2冷却ユニット2bに供給する空気の供給重量との液ガス比は、通常0.3〜1.5であると熱交換効率及び熱交換速度の性能のバランスが良好であるため好ましい。
【0067】
なお、第1冷却ユニット2aに供給する被冷却空気11の温度、被冷却空気11の種類等は、本発明に係る空気冷却方法の第1の実施の形態と同様である。
【0068】
本発明に係る空気冷却装置及び方法は、オフィスビル、病院、生産工場の空気の空気冷却装置及び方法として使用できる。
【0069】
また、本発明に係る空気冷却装置は、上記空気冷却装置1c、1d又は1eのようにダクト形状に限定されない形態で、且つ、冷却ユニットを、上記空気冷却装置1c、1d又は1eのように、斜行ハニカムの上下両面間の厚さが100〜600mm、各セルの斜行角度が30〜80°であるように配置することに代えて、セル方向がケースにおける前記相対する2面の開口部の形成する面に対して斜めになるように配置してもよい。なお、この形態においても、斜行ハニカムの上下両面間の厚さは、通常100〜600mm、好ましくは200〜400mmである。本形態においては、前記セル方向のうち、一部の前記セル状空洞部のセル方向が前記相対する2面の開口部の形成する面に対して第1の角度で交わり、残部の前記セル状空洞部のセル方向が該形成する面に対して第2の角度で交わるようにすればよい。第1の角度は、空気導入方向に対して通常30〜80°、好ましくは45〜70°の角度を有し、第2の角度は、通常空気導入方向に対して150〜100°、好ましくは135〜110°の角度を有するようにすればよい。
【0070】
【実施例】
次に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれに限定されるものではない。
【0071】
実施例1
Eガラス繊維と有機バインダで形成したガラス不織布を、充填材であるアルミナ水和物と結合材であるアルミナゾルとを含むスラリに浸漬した後に乾燥し、波付け加工して波形状物を得た。該波形状物を、波の伝播方向が交差するように交互に重ね合わせた後に500℃で熱処理して、アルミナとアルミナゾル硬化物との合計量80重量%及びEガラス繊維20重量%からなり、空隙率が65%であり、表1に示す性状で外形略直方体状の斜行ハニカムを作製した。次にこの斜行ハニカムを保持可能な大きさで、且つ前面及び後面のみが通気可能なケースに組み込んで、冷却ユニットとした。断面矩形の水平ダクト内に冷却ユニットを前面開口部が被冷却空気の供給側を向き、且つ、水平ダクト内壁と冷却ユニットとの間に隙間が実質的に生じないように取り付けた。冷却ユニット配置時の斜行ハニカムの前傾角度φは30°、大仰角セル斜行角度θは40°、小仰角セル斜行角度θは20°とした。冷却ユニットの後面開口部の上方に、冷却水を冷却ユニットの後面開口部の全面に供給するノズルを取り付けたスプレーを付設し、冷却ユニットの前面開口部の下方にハニカムを通過した冷却水を受ける排水パンを付設した。垂直ダクト内であって冷却ユニットの上方に、冷却ユニットに用いたものと同様の斜行ハニカムを冷却ユニット中の斜行ハニカムと同様の向きになるように取り付け、デミスターとした。排水パンで受けた温度の上昇した冷却水(排出水)は送水ポンプを経て、水冷却用熱交換器に送られ、冷却され、上記スプレーに循環供給されるようにした。冷却ユニット等の条件を表1、表3及び表5に示す。なお、図9に、本実施例で用いられる寸法の符号の意味を示す。
【0072】
上記装置に、夏場と同等の空気条件である32℃、70rh%の空気を流量10800m/時間で通風するとともに、給水部から8℃の冷水を水量108L/分(液ガス比L/G=0.5kg/kg)供給し、出口空気の温度、湿度、熱交換量、空気冷却装置の圧損及びキャリーオーバーの有無を測定した。なお、圧損は、冷却ユニット、スプレー及び排水パンからなる部分についての値であり、デミスター分を含まないものである。結果を表5に示す。
【0073】
実施例2及び3、比較例2〜4
冷却ユニット等の条件を表1〜表4のように変えた以外は、実施例1と同様にして出口空気の温度、湿度、熱交換量、空気冷却装置の圧損及びキャリーオーバーの有無を測定した。測定結果を表5〜表6に示す。なお、図9に、実施例2及び比較例1〜4で用いられる寸法の符号の意味を示す。また、図10に、実施例3で用いられる寸法の符号の意味を示す。
【0074】
【表1】
Figure 2004245429
【0075】
【表2】
Figure 2004245429
【0076】
【表3】
Figure 2004245429
【0077】
【表4】
Figure 2004245429
【0078】
【表5】
Figure 2004245429
【0079】
【表6】
Figure 2004245429
【0080】
実施例4
Eガラス繊維と有機バインダで形成したガラス不織布を、充填材であるアルミナ水和物と結合材であるアルミナゾルとを含むスラリに浸漬した後に乾燥し、波付け加工して波形状物を得た。該波形状物を、波の伝播方向が交差するように交互に重ね合わせた後に500℃で熱処理して、アルミナとアルミナゾル硬化物との合計量80重量%及びEガラス繊維20重量%からなり、空隙率が65%であり、表8及び表9に示す性状で外形略直方体状の斜行ハニカムを作製した。次に、表8に示す性状の斜行ハニカムを保持可能な大きさで、且つ前面及び後面のみが通気可能なケースに組み込んで、第1冷却ユニットとした。次に、表9に示す性状の斜行ハニカムを保持可能な大きさで、且つ上面及び下面のみが通気可能なケースに組み込んで、第2冷却ユニットとした。図7に示すように、第1冷却ユニット2a及び第2冷却ユニット2bを配置した。第2冷却ユニット2bの上部に、冷却水を第2冷却ユニット2bの上面開口部に供給するノズルを取り付けたスプレーを付設し、第1冷却ユニット2aの下部にハニカムを通過した冷却水を受ける排水パンとを付設した。断面矩形のL字ダクト71の垂直部72内であって第2冷却ユニット2bの上方に、第2冷却ユニット2bに用いたものと同様の斜行ハニカムを第2冷却ユニット2b中の斜行ハニカムと同様の向きになるように取り付け、デミスターとした。排水パンで受けた温度の上昇した冷却水(排出水)は送水ポンプを経て、水冷却用熱交換器に送られ、冷却され、上記スプレーに循環供給されるようにした。冷却ユニット等の条件を表7〜表9に示す。なお、図11に、本実施例で用いられる寸法の符号の意味を示す。
【0081】
上記装置に、夏場と同等の空気条件である32℃、70rh%の空気を流量10800m/時間で通風するとともに、給水部から8℃の冷水を水量280L/分(液ガス比L/G=1.3kg/kg)供給し、出口空気の温度、湿度、熱交換量、空気冷却装置の圧損及びキャリーオーバーの有無を測定した。なお、圧損は、第1冷却ユニット2a、第2冷却ユニット2b、スプレー及び排水パンからなる部分についての値であり、デミスター分を含まないものである。結果を表10に示す。
【0082】
【表7】
Figure 2004245429
【0083】
【表8】
Figure 2004245429
【0084】
【表9】
Figure 2004245429
【0085】
【表10】
Figure 2004245429
【0086】
【発明の効果】
本発明に係る空気冷却装置又は空気冷却方法を用いると、例えばオフィスビルや工場の取り入れ空気や循環空気に対し、斜行ハニカムという簡易な構成で、冷却性能が高く、熱効率がよく、液ガス比が小さく、圧損が小さく、省スペース及び省エネルギーを図れ、さらに、コストを低減できる。
【図面の簡単な説明】
【図1】本発明に係る空気冷却装置の第1の実施の形態を示す模式図である。
【図2】斜行ハニカムを説明する模式図である。
【図3】ケースを示す模式図である。
【図4】冷却ユニットを示す模式図である。
【図5】大仰角セル斜行角度及び小仰角セル斜行角度を説明する図である。
【図6】本発明に係る空気冷却装置の第2の実施の形態を示す模式図である。
【図7】本発明に係る空気冷却装置の第3の実施の形態を示す模式図である。
【図8】斜行角度を説明する図である。
【図9】実施例1、2及び比較例1〜4で用いられる寸法の符号の意味を示す図である。
【図10】実施例3で用いられる寸法の符号の意味を示す図である。
【図11】実施例4で用いられる寸法の符号の意味を示す図である。
【符号の説明】
1c、1d、1e 空気冷却装置
2 冷却ユニット
2a 第1冷却ユニット
2b 第2冷却ユニット
3 斜交ハニカム
3a 第1冷却ユニットの斜行ハニカム
3b 第2冷却ユニットの斜行ハニカム
4 ケース
5 水分散装置(冷却水供給手段)
6 受水パン(受水部)
11 被冷却空気
12 冷却空気
15 冷却水
16 排出水
16a 第1排出水
16b 第2排出水
20 波板
21 奇数番目波板
22 偶数番目波板
31 奇数番目セル
32 偶数番目セル
35 大仰角セル
36 小仰角セル
40 セル方向
41 奇数番目セル方向
42 偶数番目セル方向
43、44 ケースの開口部
45 大仰角セル方向
46 小仰角セル方向
51 給水管
61 排水管
71 L字ダクト
72 L字ダクト垂直部
73 L字ダクト水平部
74 L字ダクトエルボー部
75 L字ダクトエルボー底部
76 L字ダクト出隅部
77 水平ダクト
80 フットプリント
101、102、103、104 斜行ハニカムのセル開口部
A 斜行ハニカムの幅
B 斜行ハニカムの奥行き
C 斜行ハニカムの厚さ
D 斜行ハニカムの高さ
P ダクトの幅
Q ダクト水平部の高さ
R ダクト垂直部の奥行き
S フットプリントの幅
T フットプリントの奥行き

Claims (28)

  1. 複数の波板を積層してなり、該積層された波板同士の隙間に形成されるセル状空洞部を有する略直方体の斜行ハニカムを、相対する2面のみに開口部を設けたケースに収納したものであり、空気導入側の開口部を前面開口部、相対する開口部を後面開口部として、該冷却ユニットの前面開口部の上端が下端よりも空気導入方向側に近づくようにダクト内に傾斜させて配置される冷却ユニットと、該冷却ユニットの後面開口部の上方に付設され該後面開口部に冷却水を供給する冷却水供給手段と、該冷却ユニットの前面開口部の下方に付設され該冷却ユニットの前面開口部から排出される排出水を回収する受水部と、該冷却ユニットの前面開口部に空気を供給する送風手段とを有する空気冷却装置であって、
    前記冷却ユニットは、前記セル状空洞部の長さ方向であるセル方向が前記相対する2面の開口部の形成する面に対して斜めになるように配置されることを特徴とする空気冷却装置。
  2. 前記セル方向のうち、一部の前記セル状空洞部のセル方向が前記相対する2面の開口部の形成する面に対して第1の角度で交わり、残部の前記セル状空洞部のセル方向が該形成する面に対して第2の角度で交わることを特徴とする請求項1記載の空気冷却装置。
  3. 前記第1の角度が空気導入方向に対して30〜80°の角度を有し、前記第2の角度が空気導入方向に対して150〜100°の角度を有することを特徴とする請求項2記載の空気冷却装置。
  4. 複数の波板を積層してなる略直方体の斜行ハニカムを、相対する2面のみに開口部を設けたケースに収納したものであり、空気導入側の開口部を前面開口部、相対する開口部を後面開口部として、該冷却ユニットの前面開口部の上端が下端よりも空気導入方向側に近づくように水平ダクト内に傾斜させて配置される冷却ユニットと、該冷却ユニットの後面開口部の上方に付設され該後面開口部に冷却水を供給する冷却水供給手段と、該冷却ユニットの前面開口部の下方に付設され該冷却ユニットの前面開口部から排出される排出水を回収する受水部と、該冷却ユニットの前面開口部に空気を供給する送風手段とを有する空気冷却装置であって、
    前記冷却ユニットは、前記斜行ハニカムの前後両面間の厚さが100〜600mm、前傾角度が10〜45°、前記冷却ユニットの傾斜配置時における大仰角セル斜行角度及び小仰角セル斜行角度が共に1〜89°であることを特徴とする空気冷却装置。
  5. 複数の波板を積層してなる略直方体の斜行ハニカムを、相対する2面のみに開口部を設けたケースに収納したものであり、空気導入側の開口部を前面開口部、相対する開口部を後面開口部として、該冷却ユニットの前面開口部の上端が下端よりも空気導入方向側に近づくように上方に屈曲したL字ダクトのエルボー部内に傾斜させて配置される冷却ユニットと、該冷却ユニットの後面開口部の上方に付設され該後面開口部に冷却水を供給する冷却水供給手段と、該L字ダクトのエルボー底部に付設され該冷却ユニットの前面開口部から排出される排出水を回収する受水部と、該冷却ユニットの前面開口部に空気を供給する送風手段とを有する空気冷却装置であって、
    前記冷却ユニットは、前記斜行ハニカムの前後両面間の厚さが100〜600mm、前傾角度が35〜55°、前記冷却ユニットの傾斜配置時における大仰角セル斜行角度及び小仰角セル斜行角度が共に1〜89°であることを特徴とする空気冷却装置。
  6. 前記大仰角セル斜行角度が1〜79°、前記小仰角セル斜行角度が11〜89°であることを特徴とする請求項5又は6記載の空気冷却装置。
  7. 前記受水部と前記冷却水供給手段とを、排出水冷却手段及び循環ポンプを介して接続することを特徴とする請求項4〜6のいずれか1項記載の空気冷却装置。
  8. 前記波板が、アルミナ、シリカ及びチタニアからなる群より選択される少なくとも1種の充填材又は結合材と、ガラス繊維、セラミック繊維又はアルミナ繊維とからなるものであることを特徴とする請求項4〜7のいずれか1項記載の空気冷却装置。
  9. 前記波板は、空隙率が50〜80%であることを特徴とする請求項4〜8のいずれか1項記載の空気冷却装置。
  10. 前記斜行ハニカムは、セルの山高が3.0〜9.0mmであることを特徴とする請求項4〜9のいずれか1項記載の空気冷却装置。
  11. 前記斜行ハニカムと同様の斜行ハニカムを前記冷却ユニットの上方に別途設置し、デミスターとして用いることを特徴とする請求項4〜10のいずれか1項記載の空気冷却装置。
  12. 複数の波板を積層してなる略直方体の斜行ハニカムを、相対する2面のみに開口部を設けたケースに収納してなる冷却ユニットを、第1冷却ユニットと第2冷却ユニットとの2個用い、空気導入側の開口部を前面開口部、相対する開口部を後面開口部として、該前面開口部の上端が下端よりも空気導入方向側に近づくように上方に屈曲したL字ダクトのエルボー部内に傾斜させて配置される第1冷却ユニットと、前記相対する2面の開口部を上面開口部及び下面開口部として該L字ダクトの垂直部内に略水平に配置され第2冷却ユニットと、該第2冷却ユニットの上面開口部の上方に付設され該上面開口部に冷却水を供給する冷却水供給手段と、該L字ダクトのエルボー底部に付設され前記第2冷却ユニット及び前記第1冷却ユニットから排出される排出水を回収する受水部と、該第1冷却ユニットの前面開口部に空気を供給する送風手段とを有する空気冷却装置であって、
    前記第1冷却ユニットは、前記斜行ハニカムの前後両面間の厚さが100〜600mm、前傾角度が35〜55°、前記冷却ユニットの傾斜配置時における大仰角セル斜行角度及び小仰角セル斜行角度が共に1〜89°であることを特徴とする空気冷却装置。
  13. 前記大仰角セル斜行角度が1〜79°、前記小仰角セル斜行角度が11〜89°であることを特徴とする請求項12記載の空気冷却装置。
  14. 前記第2冷却ユニットは、前記斜行ハニカムの上下両面間の厚さが100〜600mm、各セルの斜行角度が30〜80°であることを特徴とする請求項12又は13記載の空気冷却装置。
  15. 前記受水部と前記冷却水供給手段とを、排出水冷却手段及び循環ポンプを介して接続することを特徴とする請求項12〜14のいずれか1項記載の空気冷却装置。
  16. 前記波板が、アルミナ、シリカ及びチタニアからなる群より選択される少なくとも1種の充填材又は結合材と、ガラス繊維、セラミック繊維又はアルミナ繊維とからなるものであることを特徴とする請求項12〜15のいずれか1項記載の空気冷却装置。
  17. 前記波板は、空隙率が50〜80%であることを特徴とする請求項12〜16のいずれか1項記載の空気冷却装置。
  18. 前記斜行ハニカムは、セルの山高が3.0〜9.0mmであることを特徴とする請求項12〜17のいずれか1項記載の空気冷却装置。
  19. 前記第2斜行ハニカムと同様の斜行ハニカムを前記第2冷却ユニットの上方に別途設置し、デミスターとして用いることを特徴とする請求項12〜18のいずれか1項記載の空気冷却装置。
  20. 請求項1〜4のいずれか1項記載の空気冷却装置を用い、空気を前記冷却ユニットの前面開口部に導入して後面開口部から排出すると共に、冷却水を該冷却ユニットの後面開口部に供給して該冷却水の全量を前面開口部から排出することを特徴とする空気冷却方法。
  21. 請求項4記載の空気冷却装置を用い、空気を前記冷却ユニットの前面開口部に導入して後面開口部から排出すると共に、冷却水を該冷却ユニットの後面開口部に供給して該冷却水の全量を前面開口部から排出する空気冷却方法であって、
    前記冷却ユニットは、前記斜行ハニカムの前後両面間の厚さが100〜600mm、前傾角度が10〜45°、前記冷却ユニットの傾斜配置時における大仰角セル斜行角度及び小仰角セル斜行角度が共に1〜89°であることを特徴とする空気冷却方法。
  22. 請求項5記載の空気冷却装置を用い、空気を前記L字ダクトの水平部から前記冷却ユニットの前面開口部に導入して後面開口部から該L字ダクトの垂直部に排出すると共に、冷却水を該L字ダクトの垂直部から該冷却ユニットの後面開口部に供給して該冷却水の全量を前面開口部から該L字ダクトのエルボー底部に排出する空気冷却方法であって、
    前記冷却ユニットは、前記斜行ハニカムの前後両面間の厚さが100〜600mm、前傾角度が35〜55°、前記冷却ユニットの傾斜配置時における大仰角セル斜行角度及び小仰角セル斜行角度が共に1〜89°であることを特徴とする空気冷却方法。
  23. 前記大仰角セル斜行角度が1〜79°、前記小仰角セル斜行角度が11〜89°であることを特徴とする請求項21又は22記載の空気冷却方法。
  24. 前記冷却ユニットに供給する冷却水の供給重量と該冷却ユニットに供給する空気の供給重量との液ガス比が0.3〜1.5であることを特徴とする請求項21〜23のいずれか1項記載の空気冷却方法。
  25. 請求項12記載の空気冷却装置を用い、空気を前記L字ダクトの水平部から前記第1冷却ユニットの前面開口部に導入して後面開口部から排出した後、さらに前記第2冷却ユニットの下面開口部に導入して上面開口部から該L字ダクトの垂直部に排出すると共に、冷却水を該L字ダクトの垂直部から該第2冷却ユニットの上面開口部に供給して下面開口部から第2排出水として排出した後、さらに該第2排出水を前記第1冷却ユニットの後面開口部に供給して該第2排出水の全量を前面開口部から前記L字ダクトのエルボー底部に第1排出水として排出する空気冷却方法であって、
    前記第1冷却ユニットは、前記斜行ハニカムの前後両面間の厚さが100〜600mm、前傾角度が35〜55°、前記冷却ユニットの傾斜配置時における大仰角セル斜行角度及び小仰角セル斜行角度が共に1〜89°であることを特徴とする空気冷却方法。
  26. 前記大仰角セル斜行角度が1〜79°、前記小仰角セル斜行角度が11〜89°であることを特徴とする請求項25記載の空気冷却方法。
  27. 前記第2冷却ユニットは、前記斜行ハニカムの上下両面間の厚さが100〜600mm、各セルの斜行角度が30〜80°であることを特徴とする請求項25又は26記載の空気冷却方法。
  28. 前記第1冷却ユニット及び第2冷却ユニットに供給する冷却水の供給重量と、該第1冷却ユニット及び第2冷却ユニットに供給する空気の供給重量との液ガス比が0.3〜1.5であることを特徴とする請求項25〜27のいずれか1項記載の空気冷却方法。
JP2003032590A 2003-02-10 2003-02-10 空気冷却装置及び空気冷却方法 Pending JP2004245429A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003032590A JP2004245429A (ja) 2003-02-10 2003-02-10 空気冷却装置及び空気冷却方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003032590A JP2004245429A (ja) 2003-02-10 2003-02-10 空気冷却装置及び空気冷却方法

Publications (1)

Publication Number Publication Date
JP2004245429A true JP2004245429A (ja) 2004-09-02

Family

ID=33018898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003032590A Pending JP2004245429A (ja) 2003-02-10 2003-02-10 空気冷却装置及び空気冷却方法

Country Status (1)

Country Link
JP (1) JP2004245429A (ja)

Similar Documents

Publication Publication Date Title
US20200386421A1 (en) Liquid desiccant air conditioning systems and methods
JP2003202174A (ja) 空気冷却装置
EP1400761B1 (en) Method and device for cleaning air
US6684939B2 (en) Air-ventilator with high efficiency thermal exchanger and air filter
KR20050072697A (ko) 공기 냉각 장치 및 공기 냉각 방법
JP4033677B2 (ja) 空気冷却方法
JP3750800B2 (ja) 空気清浄装置
JP2004245429A (ja) 空気冷却装置及び空気冷却方法
JP2004245428A (ja) 空気冷却装置及び空気冷却方法
JP2005195231A (ja) 空気冷却装置及び空気冷却方法
JP2005195230A (ja) 空気冷却装置及び空気冷却方法
JP2005274075A (ja) 空気冷却装置及び空気冷却方法
JP3716926B2 (ja) 空気清浄方法
JP4710741B2 (ja) 換気装置
CN217763885U (zh) 全热交换芯体及全热交换器
KR100898926B1 (ko) 환기 장치용 열교환기
KR100946587B1 (ko) 열교환 환풍기

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080724