JP2004245122A - Cylinder control device of multiple-cylinder internal combustion engine - Google Patents

Cylinder control device of multiple-cylinder internal combustion engine Download PDF

Info

Publication number
JP2004245122A
JP2004245122A JP2003035244A JP2003035244A JP2004245122A JP 2004245122 A JP2004245122 A JP 2004245122A JP 2003035244 A JP2003035244 A JP 2003035244A JP 2003035244 A JP2003035244 A JP 2003035244A JP 2004245122 A JP2004245122 A JP 2004245122A
Authority
JP
Japan
Prior art keywords
cylinder
combustion state
load
low
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003035244A
Other languages
Japanese (ja)
Other versions
JP4214791B2 (en
Inventor
Tomohiro Kaneko
智洋 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003035244A priority Critical patent/JP4214791B2/en
Publication of JP2004245122A publication Critical patent/JP2004245122A/en
Application granted granted Critical
Publication of JP4214791B2 publication Critical patent/JP4214791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylinder control device of a multiple-cylinder combustion engine in which the combustion state is stabilized and a low-temperature combustion state is established, and an optimal range of duty is substantially expanded. <P>SOLUTION: When a low-temperature combustion state is selected in a multiple-cylinder internal combustion engine in which a low-temperature combustion state and a normal combustion state are selectively switched, the number of cylinder to be actuated after fuel supply is set so that load for every actuated cylinder falls within a load region where the combustion state is stabilized without being affected by some disturbance such as variations in intake-air flow, and a low-temperature combustion state is attained. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、多気筒内燃機関において、作動させる気筒数を運転状態に応じて制御する多気筒内燃機関の気筒制御装置に関する。
【0002】
【従来の技術】
従来より、多気筒内燃機関において、燃費向上のために、燃料を供給する気筒の数を負荷または車速に応じて変動させる多気筒内燃機関の気筒制御装置が知られている(例えば、特許文献1参照。)。
【0003】
また、排気ガスを吸気通路に再循環させる排気ガス再循環通路を備え、再循環排気ガスが燃焼室に供給されることによって増加する煤の発生量がピークとなるときの再循環排気ガスの量よりも、燃焼室に供給される再循環排気ガスの量を多くすることで、煤の発生量が抑制される燃焼状態、いわゆる低温燃焼状態で運転を行う内燃機関が知られている(例えば、特許文献2参照。)。
【0004】
【特許文献1】
特開昭52−61636号公報
【特許文献2】
特開平11−36923号公報
【特許文献3】
特開平05−163971号公報
【0005】
【発明が解決しようとする課題】
ところで、内燃機関において燃焼状態を低温燃焼状態とするためには、上述したように、燃焼室に供給される再循環排気ガスの量を煤の発生量がピークとなる再循環排気ガスの量よりも増加させる(例えば、EGR率を略55%以上とする)必要がある。しかしながら、内燃機関が高負荷で運転している場合は、吸気量が多くなるため、燃焼室に供給する再循環排気ガスの量を煤の発生量がピークとなる量よりも増加させることが出来ない。また、内燃機関が非常に低い負荷で運転している場合は、吸気量が非常に少ないため、燃焼室に供給される再循環排気ガスの量を増加させると安定した燃焼を行うことが困難となる。そのため、内燃機関において、燃焼状態を安定して低温燃焼状態とすることが可能な負荷領域は限られている。
【0006】
そこで本発明の目的は、多気筒内燃機関において、燃焼状態を安定して低温燃焼状態とすることが可能な負荷領域を実質的に拡大することが可能な技術を提供することである。
【0007】
【課題を解決するための手段】
本発明は、上記課題を解決するために以下のような手段を採用した。
即ち、本発明は、低温燃焼状態と通常燃焼状態とを選択的に切換える多気筒内燃機関において、低温燃焼状態を選択する場合、作動させる気筒毎の負荷が、多少の吸気量変動等の外乱に影響されることなく、燃焼状態を安定して低温燃焼状態とすることが可能な負荷領域内となるように、燃料を供給し作動させる気筒の数を設定するものである。
【0008】
より詳しくは、本発明に係る多気筒内燃機関の気筒制御装置は、
複数の気筒を有すると共に、排気ガスの一部を吸気系に再循環させる排気再循環手段を有し、再循環排気ガスが前記排気再循環手段によって燃焼室に供給されることにより増加する煤の発生量がピークとなるときの前記再循環排気ガスの量よりも、前記燃焼室に供給される前記再循環排気ガスの量を多くすることで、煤の発生量が抑制される低温燃焼状態と、該低温燃焼状態以外の燃焼状態である通常燃焼状態とを選択的に切換える多気筒内燃機関の気筒制御装置において、
前記低温燃焼状態を選択するときには、作動気筒毎の負荷が、燃焼状態を安定して前記低温燃焼状態とすることが可能な所定負荷領域内となるように、前記作動気筒の数を設定する作動気筒数設定手段を備えることを特徴とする。
【0009】
ここで、作動気筒とは作動させる気筒、即ち燃料を供給する気筒のことである。
【0010】
例えば、本発明に係る多気筒内燃機関にでは、燃焼状態を低温燃焼状態とする必要があるときに、作動気筒毎の負荷が、燃焼状態を安定して低温燃焼状態とすることが可能な所定負荷領域よりも小さい場合、作動気筒の数を減少させる。
【0011】
作動気筒の数を減少させることによって、作動気筒毎の負荷を相対的に大きくすることが出来る。そのため、機関全体としては要求負荷を満たしつつ、作動気筒毎の負荷を前記所定負荷領域内とすることが可能となる。
【0012】
一方、例えば、本発明に係る多気筒内燃機関では、燃焼状態を低温燃焼状態とする必要があるときに、作動気筒毎の負荷が、燃焼状態を安定して低温燃焼状態とすることが可能な所定負荷領域よりも大きい場合、作動気筒の数を増加させる。
【0013】
作動気筒の数を増加させることによって、作動気筒毎の負荷を相対的に小さくすることが出来る。そのため、前記と同様に、機関全体としては要求負荷を満たしつつ、作動気筒毎の負荷を前記所定負荷領域内とすることが可能となる。
【0014】
上述したように、本発明に係る多気筒内燃機関の気筒制御装置によれば、作動気筒の数を変動させることによって、機関全体としては要求負荷を満たしつつ、作動気筒毎の負荷を前記所定負荷領域内とすることが可能となる。従って、燃焼状態を安定して低温燃焼状態とすることが可能な負荷領域が機関全体としては拡大することになる。
【0015】
また、本発明に係る多気筒内燃機関の気筒制御装置において、作動気筒毎の負荷が、燃焼状態を安定して低温燃焼状態とすることが可能な所定負荷領域内における最大の負荷となるように、作動気筒の数を設定しても良い。
【0016】
内燃機関においては、一般的に、高負荷運転時に燃費が良好となる傾向がある。そのため、作動気筒毎の負荷を前記所定負荷領域内における最大の負荷とすることによって、より広い負荷領域で燃焼状態を安定して低温燃焼状態とすることが可能となると共に、燃費を向上させることが出来る。
【0017】
【発明の実施の形態】
以下、本発明に係る多気筒内燃機関の気筒制御装置の具体的な実施態様について図面に基づいて説明する。ここでは、本発明を車両用ディーゼル機関に適用した場合を例に挙げて説明する。
【0018】
図1は、本発明に係る多気筒内燃機関の概略構成を示す図である。
【0019】
図1に示す内燃機関1は、4つの気筒2を有するディーゼル機関である。
【0020】
内燃機関1は、各気筒2の燃焼室に直接燃料を噴射する燃料噴射弁3を備えている。各燃料噴射弁3は、燃料を所定圧まで蓄圧する蓄圧室(コモンレール)4と接続されている。該コモンレール4には、該コモンレール4内の燃料の圧力に対応した電気信号を出力するコモンレール圧センサ4aが取り付けられている。
【0021】
前記コモンレール4は、燃料供給管5を介して燃料ポンプ6と連通している。前記燃料ポンプ6は、内燃機関1の出力軸(クランクシャフト)の回転トルクを駆動源として作動するポンプであり、該燃料ポンプ6の入力軸に取り付けられたポンププーリ6aが内燃機関1の出力軸(クランクシャフト)に取り付けられたクランクプーリ1aとベルト7を介して連結されている。
【0022】
このように構成された燃料噴射系では、クランクシャフトの回転トルクが燃料ポンプ6の入力軸へ伝達されると、燃料ポンプ6は、クランクシャフトから該燃料ポンプ6の入力軸へ伝達された回転トルクに応じた圧力で燃料を吐出する。
【0023】
前記燃料ポンプ6から吐出された燃料は、燃料供給管5を介してコモンレール4へ供給され、コモンレール4にて所定圧まで蓄圧されて各気筒2の燃料噴射弁3へ分配される。そして、燃料噴射弁3に駆動電圧が印加されると、燃料噴射弁3が開弁し、その結果、燃料噴射弁3から気筒2の燃焼室へ燃料が噴射される。
【0024】
次に、内燃機関1には、吸気枝管8が接続されており、吸気枝管8の各枝管は、各気筒2の燃焼室と図示しない吸気ポートを介して連通している。
【0025】
前記吸気枝管8は、吸気管9と接続され、前記吸気管9は、エアクリーナボックス10に接続されている。該エアクリーナボックス10より下流の吸気管9には、該吸気管9内を流れる吸気の質量に対応した電気信号を出力するエアフローメータ11と、遠心過給機(ターボチャージャ)15のコンプレッサハウジング15aと、該コンプレッサハウジング15a内で圧縮されて高温となった吸気を冷却するためのインタークーラ16と、が取り付けられている。
【0026】
さらに、前記吸気管9における吸気枝管8の直上流に位置する部位には、該吸気管9内を流れる吸気の流量を調節する吸気絞り弁13が設けられている。前記吸気絞り弁13には、ステッパモータ等で構成されて該吸気絞り弁13を開閉駆動する吸気絞り用アクチュエータ14が取り付けられている。
【0027】
一方、内燃機関1には、排気枝管18が接続され、排気枝管18の各枝管が各気筒2の燃焼室と排気ポート30を介して連通している。
【0028】
前記排気枝管18は、前記遠心過給機15のタービンハウジング15bと接続されている。該タービンハウジング15bは、排気管19と接続されている。該排気管19は、下流にて図示しないマフラーに接続されている。
【0029】
前記排気管19の途中には、排気中に含まれる窒素酸化物(NOx)の有害ガス成分を浄化するために、吸蔵還元型NOx触媒や選択還元型NOx触媒等のような排気浄化触媒20が配置されている。
【0030】
排気浄化触媒20より上流の排気管19には、該排気管19内を流れる排気の空燃比に対応した電気信号を出力する空燃比センサ23と、該排気管19内を流れる排気の温度に対応した電気信号を出力する排気温度センサ24とが取り付けられている。
【0031】
また、内燃機関1には、該内燃機関1の排気系を流れる排気の一部を吸気系へ再循環させる排気再循環装置40が設けられている。排気再循環装置40は、排気枝管18からシリンダヘッド内を通って吸気枝管8の集合部に至るよう形成された排気再循環通路(EGR通路)25と、電磁弁等からなり印加電圧の大きさに応じてEGR通路25内を流れる排気(以下、EGRガスと称する)の流量を調整する流量調整弁(EGR弁)26と、EGR弁26より上流のEGR通路25に設けられ該EGR通路25を流れるEGRガスを冷却するEGRクーラ27とを備えている。
【0032】
このように構成された排気再循環機装置40では、EGR弁26が開弁されると、排気枝管18内を流れる排気の一部が、前記EGR通路25を通り、EGRクーラによって冷却され、吸気支管8の集合部へ流入する。吸気支管8へ流入したEGRガスは、吸気枝管8の上流から流れてきた新気と混ざり合いつつ各気筒2の燃焼室へ分配され、燃料噴射弁3から噴射される燃料を着火源として燃焼される。
【0033】
ここで、EGRガスには、水(HO)や二酸化炭素(CO)などのように、自らが燃焼することがなく、且つ、吸熱性を有する不活性ガス成分が含まれているため、EGRガスが混合気中に含有されると、混合気の燃焼温度が低くなり、以て窒素酸化物(NOx)の発生量が抑制される。
【0034】
以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニット(ECU:Electronic Control Unit)35が併設されている。このECU35は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。
【0035】
ECU35には、コモンレール圧センサ4a、エアフローメータ11、吸気管圧力センサ17、空燃比センサ23、排気温度センサ24、クランクポジションセンサ33、アクセル開度センサ36等の各種センサが電気配線を介して接続され、上記した各種センサの出力信号がECU35に入力されるようになっている。
【0036】
一方、ECU35には、燃料噴射弁3、吸気絞り用アクチュエータ14、EGR弁26等が電気配線を介して接続され、上記した各部がECU35によって制御されるようになっている。
【0037】
ECU35は、CPU、ROM、RAM等を備えており、例えば、空燃比センサ23や排気温度センサ24の出力信号等に基づき排気浄化触媒20に流入する排気の空燃比をフィードバック制御する。また、ECU35は、クランクポジションセンサ33がパルス信号を出力する時間的な間隔等に基づいて機関回転数を算出し、アクセル開度センサ36の出力信号(アクセル開度)等に基づき要求負荷を算出する。
【0038】
また、ECU35は、機関回転数や要求負荷等に基づき、燃料を噴射する気筒の数や燃料噴射量を制御する。
【0039】
さらに、ECU35は、燃焼室での燃焼状態を低温燃焼状態と通常燃焼状態とで選択的に切換えるよう制御する。例えば、低温燃焼実行条件が成立した場合、ECU35は、EGR弁26の開度を調整し、燃焼室に供給されるEGRガスの量を、煤の発生量がピークとなるときのEGRガスの量よりも多くすることによって燃焼室での燃焼状態を低温燃焼状態とする。低温燃焼実行条件としては、排気の空燃比をリッチ空燃比として、排気浄化触媒20をSOx被毒から回復させる場合等が例示できる。
【0040】
次に、本実施の形態に係る多気筒機関の気筒制御装置において、燃料を噴射する気筒(以下、作動気筒と称する)の数を設定する作動気筒数制御について図2に示すフローチャートに沿って説明する。
【0041】
図2に示すフローチャートは、作動気筒数制御ルーチンを示すフローチャートである。この作動気筒数制御ルーチンは、ECU35によって所定時間毎(例えば、クランクポジションセンサ33がパルス信号を出力する度)に繰り返し実行されるルーチンであり、予めECU35に備えられたROMに記憶されている。
【0042】
この作動気筒制御ルーチンでは、ECU35は、先ずS101において、低温燃焼実行条件が成立したか否かを判別する。
【0043】
前記S101において、低温燃焼実行条件が成立していないと判定された場合、ECU35は、S104に進み、機関回転数NE等に基づき、燃費が良好となる1気筒あたりの負荷領域βを算出する。
【0044】
前記S104において負荷領域βを算出したECU35は、S105に進む。
【0045】
前記S105において、ECU35は、作動気筒毎の負荷は、前記S104にて算出された負荷領域β内となると共に、機関全体としては要求負荷Pを満たすように、作動気筒の数nを決定し、本ルーチンの実行を終了する。
【0046】
一方、前記101において、低温燃焼実行条件が成立していると判定された場合、ECU35は、S102に進む。
【0047】
上述したように、燃焼室内での燃焼状態を低温燃焼状態とするためには、燃焼室に供給されるEGRガスの量を、煤の発生量がピークとなるときのEGRガスの量よりも多くする必要がある。そのため、燃焼状態を安定して低温燃焼状態とすることが可能な負荷領域は限られている。
【0048】
そこで、前記S102において、ECU35は、機関回転数NEに基づき、燃焼室内での燃焼状態を安定して低温燃焼状態とすることが可能な1気筒あたりの負荷領域αを算出する。図3に、燃焼状態を安定して低温燃焼状態とすることが可能な1気筒あたりの負荷領域αを示す。
【0049】
前記S102において負荷領域αを算出したECU35は、S103に進み、作動気筒毎の負荷は算出された負荷領域α内となると共に、機関全体としては要求負荷Pを満たすように、作動気筒の数nを決定する。
【0050】
例えば、作動気筒毎の負荷が負荷領域αよりも小さい場合、作動気筒の数を減少させる。作動気筒の数を減少させることによって、作動気筒毎の負荷を相対的に大きくすることが出来るため、作動気筒毎の負荷を負荷領域α内とすることが可能となる。
【0051】
また、例えば、作動気筒毎の負荷が負荷領域αよりも大きい場合、作動気筒の数を増加させる。作動気筒の数を増加させることによって、作動気筒毎の負荷を相対的に小さくすることが出来るため、作動気筒毎の負荷を負荷領域α内とすることが可能となる。
【0052】
前記S103において、作動気筒の数nを決定したECU35は、本ルーチンの実行を終了する。
【0053】
本ルーチンに示す作動気筒数制御によれば、燃焼室での燃焼状態を低温燃焼状態とする必要がある場合、機関全体としては要求負荷を満たしつつ、作動気筒毎の負荷を、燃焼状態を安定して低温燃焼状態とすることが可能な所定負荷領域内とすることが可能となる。従って、燃焼状態を安定して低温燃焼状態とすることが可能な負荷領域が機関全体としては拡大することになる。
【0054】
また、本ルーチンにおける前記S103において、ECU35は、作動気筒毎の負荷は、前記S102において算出された負荷領域α内における最大の負荷となるように作動気筒の数nを決定しても良い。
【0055】
内燃機関においては、一般的に、高負荷運転時に燃費が良好となる傾向がある。そのため、作動気筒毎の負荷を負荷領域α内における最大の負荷とすることによって、より広い負荷領域で燃焼状態を安定して低温燃焼状態とすることが可能となると共に、燃費を向上させることが出来る。
【0056】
【発明の効果】
本発明に係る多気筒内燃機関の気筒制御装置によれば、機関全体としては要求負荷を満たしつつ、作動気筒毎の負荷を、燃焼室での燃焼状態を安定して低温燃焼状態とすることが可能な所定負荷領域内とすることが出来るため、機関全体としてはより広い負荷領域において、燃焼状態を安定して低温燃焼状態とすることが可能となる。
【図面の簡単な説明】
【図1】本発明に係る多気筒内燃機関の概略構成を示す図
【図2】作動気筒数制御ルーチンを示すフローチャート
【図3】低温燃焼安定領域αを示すグラフ
【符号の説明】
1・・・・内燃機関
1a・・・クランクプーリ
2・・・・気筒
3・・・・燃料噴射弁
4・・・・コモンレール
5・・・・燃料供給管
6・・・・燃料ポンプ
7・・・・ベルト
8・・・・吸気支管
9・・・・吸気管
10・・・エアクリーナボックス
11・・・エアフローメータ
13・・・吸気絞り弁
14・・・吸気絞り弁用アクチュエータ
15・・・遠心過給機(ターボチャージャ)
15a・・コンプレッサハウジング
15b・・タービンハウジング
16・・・インタークーラ
17・・・吸気管圧力センサ
18・・・排気枝管
19・・・排気管
20・・・排気浄化触媒
23・・・空燃比センサ
24・・・排気温度センサ
25・・・EGR通路
26・・・EGR弁
27・・・EGRクーラ
30・・・排気ポート
33・・・クランクポジションセンサ
35・・・ECU
36・・・アクセル開度センサ
40・・・排気再循環装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cylinder control device for a multi-cylinder internal combustion engine, which controls the number of cylinders to be operated in accordance with an operation state.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a multi-cylinder internal combustion engine, a cylinder control device of a multi-cylinder internal combustion engine that varies the number of cylinders to which fuel is supplied according to a load or a vehicle speed in order to improve fuel efficiency is known (for example, Patent Document 1) reference.).
[0003]
In addition, an exhaust gas recirculation passage for recirculating exhaust gas to the intake passage is provided, and the amount of recirculated exhaust gas when the amount of soot generated by the supply of the recirculated exhaust gas to the combustion chamber reaches a peak is increased. There is known an internal combustion engine that operates in a combustion state in which the amount of generated soot is suppressed by increasing the amount of recirculated exhaust gas supplied to a combustion chamber, that is, a so-called low-temperature combustion state (for example, See Patent Document 2.).
[0004]
[Patent Document 1]
JP-A-52-61636 [Patent Document 2]
JP-A-11-36923 [Patent Document 3]
Japanese Patent Application Laid-Open No. 05-163971
[Problems to be solved by the invention]
By the way, in order to set the combustion state to the low-temperature combustion state in the internal combustion engine, as described above, the amount of the recirculated exhaust gas supplied to the combustion chamber is made smaller than the amount of the recirculated exhaust gas at which the generation amount of soot becomes a peak. (For example, the EGR rate is set to approximately 55% or more). However, when the internal combustion engine is operating at a high load, the amount of intake air increases, so that the amount of recirculated exhaust gas supplied to the combustion chamber can be increased beyond the amount at which the amount of soot generation reaches a peak. Absent. Also, when the internal combustion engine is operating at a very low load, the intake air amount is very small, and it is difficult to perform stable combustion if the amount of recirculated exhaust gas supplied to the combustion chamber is increased. Become. Therefore, in the internal combustion engine, the load range in which the combustion state can be stably set to the low-temperature combustion state is limited.
[0006]
Therefore, an object of the present invention is to provide a technique capable of substantially expanding a load range in which a combustion state can be stably set to a low-temperature combustion state in a multi-cylinder internal combustion engine.
[0007]
[Means for Solving the Problems]
The present invention employs the following means in order to solve the above problems.
That is, according to the present invention, in a multi-cylinder internal combustion engine that selectively switches between a low-temperature combustion state and a normal combustion state, when the low-temperature combustion state is selected, the load of each cylinder to be operated is affected by disturbances such as slight intake air amount fluctuations. The number of cylinders for supplying and operating the fuel is set so that the combustion state is within a load range where the combustion state can be stably set to the low-temperature combustion state without being affected.
[0008]
More specifically, a cylinder control device for a multi-cylinder internal combustion engine according to the present invention,
It has a plurality of cylinders, and has exhaust recirculation means for recirculating a part of the exhaust gas to the intake system, soot which increases when the recirculated exhaust gas is supplied to the combustion chamber by the exhaust recirculation means. By increasing the amount of the recirculated exhaust gas supplied to the combustion chamber more than the amount of the recirculated exhaust gas when the generation amount reaches a peak, a low-temperature combustion state in which the generation amount of soot is suppressed. In a cylinder control device of a multi-cylinder internal combustion engine that selectively switches between a normal combustion state, which is a combustion state other than the low-temperature combustion state,
When selecting the low-temperature combustion state, an operation of setting the number of the working cylinders such that the load for each working cylinder is within a predetermined load region where the combustion state can be stably set to the low-temperature combustion state. It is characterized by having a cylinder number setting means.
[0009]
Here, the working cylinder is a cylinder to be operated, that is, a cylinder that supplies fuel.
[0010]
For example, in the multi-cylinder internal combustion engine according to the present invention, when the combustion state needs to be set to the low-temperature combustion state, the load for each working cylinder is set to a predetermined value that enables the combustion state to be stably set to the low-temperature combustion state. If it is smaller than the load range, the number of working cylinders is reduced.
[0011]
By reducing the number of working cylinders, the load on each working cylinder can be relatively increased. Therefore, it is possible to keep the load for each working cylinder within the predetermined load region while satisfying the required load for the entire engine.
[0012]
On the other hand, for example, in the multi-cylinder internal combustion engine according to the present invention, when the combustion state needs to be set to the low-temperature combustion state, the load for each working cylinder can stably set the combustion state to the low-temperature combustion state. If it is larger than the predetermined load range, the number of working cylinders is increased.
[0013]
By increasing the number of working cylinders, the load on each working cylinder can be relatively reduced. Therefore, similarly to the above, it is possible to keep the load for each working cylinder within the predetermined load range while satisfying the required load as the whole engine.
[0014]
As described above, according to the cylinder control device for a multi-cylinder internal combustion engine according to the present invention, by varying the number of working cylinders, the engine as a whole can satisfy the required load and reduce the load for each working cylinder to the predetermined load. It becomes possible to be within the area. Therefore, the load range in which the combustion state can be stably set to the low-temperature combustion state is expanded as the whole engine.
[0015]
In the cylinder control device for a multi-cylinder internal combustion engine according to the present invention, the load for each working cylinder may be the maximum load within a predetermined load region in which the combustion state can be stably set to the low-temperature combustion state. Alternatively, the number of working cylinders may be set.
[0016]
Generally, in an internal combustion engine, fuel efficiency tends to be improved during high-load operation. Therefore, by setting the load for each working cylinder to the maximum load within the predetermined load region, it becomes possible to stably set the combustion state to a low-temperature combustion state in a wider load region and to improve fuel efficiency. Can be done.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, specific embodiments of a cylinder control device for a multi-cylinder internal combustion engine according to the present invention will be described with reference to the drawings. Here, a case where the present invention is applied to a vehicle diesel engine will be described as an example.
[0018]
FIG. 1 is a diagram showing a schematic configuration of a multi-cylinder internal combustion engine according to the present invention.
[0019]
The internal combustion engine 1 shown in FIG. 1 is a diesel engine having four cylinders 2.
[0020]
The internal combustion engine 1 includes a fuel injection valve 3 for directly injecting fuel into a combustion chamber of each cylinder 2. Each fuel injection valve 3 is connected to a pressure accumulation chamber (common rail) 4 for accumulating fuel up to a predetermined pressure. A common rail pressure sensor 4a that outputs an electric signal corresponding to the pressure of the fuel in the common rail 4 is attached to the common rail 4.
[0021]
The common rail 4 communicates with a fuel pump 6 via a fuel supply pipe 5. The fuel pump 6 is a pump that operates using a rotational torque of an output shaft (crankshaft) of the internal combustion engine 1 as a driving source. A pump pulley 6a attached to an input shaft of the fuel pump 6 has an output shaft ( It is connected via a belt 7 to a crank pulley 1a attached to a crankshaft).
[0022]
In the fuel injection system configured as described above, when the rotation torque of the crankshaft is transmitted to the input shaft of the fuel pump 6, the fuel pump 6 rotates the rotation torque transmitted from the crankshaft to the input shaft of the fuel pump 6. The fuel is discharged at a pressure according to.
[0023]
The fuel discharged from the fuel pump 6 is supplied to a common rail 4 via a fuel supply pipe 5, accumulated in the common rail 4 to a predetermined pressure, and distributed to the fuel injection valves 3 of each cylinder 2. When a drive voltage is applied to the fuel injection valve 3, the fuel injection valve 3 opens, and as a result, fuel is injected from the fuel injection valve 3 into the combustion chamber of the cylinder 2.
[0024]
Next, an intake branch pipe 8 is connected to the internal combustion engine 1, and each branch pipe of the intake branch pipe 8 communicates with a combustion chamber of each cylinder 2 via an intake port (not shown).
[0025]
The intake branch pipe 8 is connected to an intake pipe 9, and the intake pipe 9 is connected to an air cleaner box 10. An air flow meter 11 that outputs an electric signal corresponding to a mass of intake air flowing through the intake pipe 9, a compressor housing 15 a of a centrifugal supercharger (turbocharger) 15, and an intake pipe 9 downstream of the air cleaner box 10. And an intercooler 16 for cooling the intake air which has been heated in the compressor housing 15a and has become high temperature.
[0026]
Further, at a portion of the intake pipe 9 located immediately upstream of the intake branch pipe 8, an intake throttle valve 13 for adjusting the flow rate of intake air flowing through the intake pipe 9 is provided. The intake throttle valve 13 is provided with an intake throttle actuator 14 which is configured by a stepper motor or the like and drives the intake throttle valve 13 to open and close.
[0027]
On the other hand, an exhaust branch pipe 18 is connected to the internal combustion engine 1, and each branch pipe of the exhaust branch pipe 18 communicates with a combustion chamber of each cylinder 2 via an exhaust port 30.
[0028]
The exhaust branch pipe 18 is connected to a turbine housing 15 b of the centrifugal supercharger 15. The turbine housing 15b is connected to the exhaust pipe 19. The exhaust pipe 19 is connected downstream to a muffler (not shown).
[0029]
In the middle of the exhaust pipe 19, an exhaust purification catalyst 20, such as an occlusion reduction type NOx catalyst or a selective reduction type NOx catalyst, is used to purify harmful gas components of nitrogen oxides (NOx) contained in exhaust gas. Are located.
[0030]
An exhaust pipe 19 upstream of the exhaust purification catalyst 20 has an air-fuel ratio sensor 23 that outputs an electric signal corresponding to the air-fuel ratio of the exhaust flowing through the exhaust pipe 19 and a sensor that responds to the temperature of the exhaust flowing through the exhaust pipe 19. And an exhaust gas temperature sensor 24 for outputting an electric signal.
[0031]
Further, the internal combustion engine 1 is provided with an exhaust gas recirculation device 40 for recirculating a part of the exhaust gas flowing through the exhaust system of the internal combustion engine 1 to the intake system. The exhaust gas recirculation device 40 includes an exhaust gas recirculation passage (EGR passage) 25 formed from the exhaust branch pipe 18 through the cylinder head to the gathering portion of the intake branch pipe 8, a solenoid valve, and the like. A flow control valve (EGR valve) 26 for adjusting the flow rate of exhaust gas (hereinafter, referred to as EGR gas) flowing in the EGR passage 25 according to the size, and the EGR passage provided in the EGR passage 25 upstream of the EGR valve 26. And an EGR cooler 27 for cooling the EGR gas flowing through the EGR gas 25.
[0032]
In the exhaust gas recirculation device 40 configured as described above, when the EGR valve 26 is opened, a part of the exhaust gas flowing in the exhaust branch pipe 18 passes through the EGR passage 25 and is cooled by the EGR cooler. It flows into the collecting portion of the intake branch pipe 8. The EGR gas flowing into the intake branch pipe 8 is distributed to the combustion chambers of the cylinders 2 while mixing with fresh air flowing from the upstream of the intake branch pipe 8, and the fuel injected from the fuel injection valve 3 is used as an ignition source. Burned.
[0033]
Here, the EGR gas contains an endothermic inert gas component such as water (H 2 O) or carbon dioxide (CO 2 ) that does not burn itself and is endothermic. When the EGR gas is contained in the air-fuel mixture, the combustion temperature of the air-fuel mixture becomes low, thereby suppressing the generation amount of nitrogen oxides (NOx).
[0034]
The internal combustion engine 1 configured as described above is provided with an electronic control unit (ECU: Electronic Control Unit) 35 for controlling the internal combustion engine 1. The ECU 35 is a unit that controls the operating state of the internal combustion engine 1 according to the operating conditions of the internal combustion engine 1 and the driver's requirements.
[0035]
Various sensors such as a common rail pressure sensor 4a, an air flow meter 11, an intake pipe pressure sensor 17, an air-fuel ratio sensor 23, an exhaust temperature sensor 24, a crank position sensor 33, and an accelerator opening sensor 36 are connected to the ECU 35 via electric wiring. The output signals of the various sensors described above are input to the ECU 35.
[0036]
On the other hand, the fuel injection valve 3, the intake throttle actuator 14, the EGR valve 26, and the like are connected to the ECU 35 via electric wiring, and the above-described components are controlled by the ECU 35.
[0037]
The ECU 35 includes a CPU, a ROM, a RAM, and the like, and performs feedback control of the air-fuel ratio of exhaust flowing into the exhaust purification catalyst 20 based on, for example, output signals of the air-fuel ratio sensor 23 and the exhaust temperature sensor 24. The ECU 35 calculates the engine speed based on the time interval at which the crank position sensor 33 outputs the pulse signal, and calculates the required load based on the output signal (accelerator opening) of the accelerator opening sensor 36 and the like. I do.
[0038]
Further, the ECU 35 controls the number of cylinders for injecting fuel and the fuel injection amount based on the engine speed, the required load, and the like.
[0039]
Further, the ECU 35 controls the combustion state in the combustion chamber to be selectively switched between a low-temperature combustion state and a normal combustion state. For example, when the low-temperature combustion execution condition is satisfied, the ECU 35 adjusts the opening degree of the EGR valve 26, and changes the amount of the EGR gas supplied to the combustion chamber to the amount of the EGR gas when the generation amount of soot reaches a peak. By setting the number to be larger than that, the combustion state in the combustion chamber is set to a low temperature combustion state. Examples of the low-temperature combustion execution conditions include a case where the exhaust gas purification catalyst 20 is recovered from SOx poisoning by setting the exhaust gas air-fuel ratio to a rich air-fuel ratio.
[0040]
Next, in the cylinder control device for a multi-cylinder engine according to the present embodiment, the control of the number of working cylinders for setting the number of cylinders for injecting fuel (hereinafter, referred to as working cylinders) will be described with reference to the flowchart shown in FIG. I do.
[0041]
The flowchart shown in FIG. 2 is a flowchart showing a working cylinder number control routine. This operating cylinder number control routine is a routine that is repeatedly executed by the ECU 35 at predetermined time intervals (for example, every time the crank position sensor 33 outputs a pulse signal), and is stored in a ROM provided in the ECU 35 in advance.
[0042]
In this working cylinder control routine, the ECU 35 first determines in S101 whether a low-temperature combustion execution condition has been satisfied.
[0043]
When it is determined in S101 that the low-temperature combustion execution condition is not satisfied, the ECU 35 proceeds to S104 and calculates a load region β per cylinder in which fuel efficiency is good based on the engine speed NE and the like.
[0044]
After calculating the load region β in S104, the ECU 35 proceeds to S105.
[0045]
In the S105, ECU 35, the load of each active cylinder, the with the calculated load region β in S104, as the overall engine meets the required load P, determines the number n 2 of the hydraulic cylinder Then, the execution of this routine ends.
[0046]
On the other hand, if it is determined in 101 that the low-temperature combustion execution condition is satisfied, the ECU 35 proceeds to S102.
[0047]
As described above, in order to set the combustion state in the combustion chamber to the low-temperature combustion state, the amount of the EGR gas supplied to the combustion chamber must be larger than the amount of the EGR gas when the generation amount of soot reaches a peak. There is a need to. Therefore, the load range in which the combustion state can be stably set to the low-temperature combustion state is limited.
[0048]
Therefore, in S102, the ECU 35 calculates the load area α per cylinder in which the combustion state in the combustion chamber can be stably set to the low-temperature combustion state based on the engine speed NE. FIG. 3 shows a load region α per cylinder in which the combustion state can be stably set to the low-temperature combustion state.
[0049]
The ECU 35 that has calculated the load region α in S102 proceeds to S103, and the load of each working cylinder falls within the calculated load region α, and the number n of working cylinders is set so as to satisfy the required load P for the entire engine. Determine 1 .
[0050]
For example, when the load for each working cylinder is smaller than the load region α, the number of working cylinders is reduced. By reducing the number of working cylinders, the load of each working cylinder can be relatively increased, so that the load of each working cylinder can be within the load range α.
[0051]
Further, for example, when the load of each working cylinder is larger than the load region α, the number of working cylinders is increased. By increasing the number of working cylinders, the load of each working cylinder can be relatively reduced, so that the load of each working cylinder can be within the load region α.
[0052]
In the S103, ECU 35 which determines the number n 1 of the working cylinder, terminates execution of this routine.
[0053]
According to the control of the number of working cylinders shown in this routine, when it is necessary to set the combustion state in the combustion chamber to a low-temperature combustion state, the load of each working cylinder is stabilized while maintaining the required load for the entire engine. As a result, the temperature can be set within a predetermined load region where a low-temperature combustion state can be achieved. Therefore, the load range in which the combustion state can be stably set to the low-temperature combustion state is expanded as the whole engine.
[0054]
Further, in the S103 in the present routine, ECU 35, the load of each active cylinder may determine the number n 1 of the hydraulic cylinder so as to maximize the load in said load region α calculated in S102.
[0055]
Generally, in an internal combustion engine, fuel efficiency tends to be improved during high-load operation. Therefore, by setting the load of each working cylinder to the maximum load in the load region α, the combustion state can be stably changed to the low-temperature combustion state in a wider load region, and the fuel efficiency can be improved. I can do it.
[0056]
【The invention's effect】
According to the cylinder control device for a multi-cylinder internal combustion engine according to the present invention, the load for each working cylinder can be stably set to the low-temperature combustion state while stabilizing the combustion state in the combustion chamber while satisfying the required load as the whole engine. Since it can be within the possible predetermined load range, the combustion state can be stably set to the low-temperature combustion state in a wider load range as the whole engine.
[Brief description of the drawings]
1 is a diagram showing a schematic configuration of a multi-cylinder internal combustion engine according to the present invention; FIG. 2 is a flowchart showing a routine for controlling the number of working cylinders; FIG. 3 is a graph showing a low-temperature combustion stable region α;
1, internal combustion engine 1a, crank pulley 2, cylinder 3, fuel injection valve 4, common rail 5, fuel supply pipe 6, fuel pump 7, ... Belt 8 ... Intake branch pipe 9 ... Intake pipe 10 ... Air cleaner box 11 ... Air flow meter 13 ... Intake throttle valve 14 ... Intake throttle valve actuator 15 ... Centrifugal supercharger (turbocharger)
15a, compressor housing 15b, turbine housing 16, intercooler 17, intake pipe pressure sensor 18, exhaust branch pipe 19, exhaust pipe 20, exhaust purification catalyst 23, air-fuel ratio Sensor 24 Exhaust temperature sensor 25 EGR passage 26 EGR valve 27 EGR cooler 30 Exhaust port 33 Crank position sensor 35 ECU
36: accelerator opening sensor 40: exhaust gas recirculation device

Claims (2)

複数の気筒を有すると共に、排気ガスの一部を吸気系に再循環させる排気再循環手段を有し、再循環排気ガスが前記排気再循環手段によって燃焼室に供給されることにより増加する煤の発生量がピークとなるときの前記再循環排気ガスの量よりも、前記燃焼室に供給される前記再循環排気ガスの量を多くすることで、煤の発生量が抑制される低温燃焼状態と、該低温燃焼状態以外の燃焼状態である通常燃焼状態とを選択的に切換える多気筒内燃機関の気筒制御装置において、
前記低温燃焼状態を選択するときには、作動気筒毎の負荷が、燃焼状態を安定して前記低温燃焼状態とすることが可能な所定負荷領域内となるように、前記作動気筒の数を設定する作動気筒数設定手段を備えることを特徴とする多気筒内燃機関の気筒制御装置。
It has a plurality of cylinders, and has exhaust recirculation means for recirculating a part of the exhaust gas to the intake system, soot which increases when the recirculated exhaust gas is supplied to the combustion chamber by the exhaust recirculation means. By increasing the amount of the recirculated exhaust gas supplied to the combustion chamber more than the amount of the recirculated exhaust gas when the generation amount reaches a peak, a low-temperature combustion state in which the generation amount of soot is suppressed. In a cylinder control device of a multi-cylinder internal combustion engine that selectively switches between a normal combustion state, which is a combustion state other than the low-temperature combustion state,
When selecting the low-temperature combustion state, an operation of setting the number of the working cylinders such that the load for each working cylinder is within a predetermined load region where the combustion state can be stably set to the low-temperature combustion state. A cylinder control device for a multi-cylinder internal combustion engine, comprising: a cylinder number setting unit.
前記作動気筒数設定手段は、前記作動気筒毎の負荷が、前記所定負荷領域内における最大の負荷となるように、前記作動気筒の数を設定することを特徴とする請求項1記載の多気筒内燃機関の気筒制御装置。2. The multi-cylinder engine according to claim 1, wherein the number of operating cylinders setting unit sets the number of the operating cylinders such that a load for each of the operating cylinders has a maximum load within the predetermined load region. 3. A cylinder control device for an internal combustion engine.
JP2003035244A 2003-02-13 2003-02-13 Cylinder control device for multi-cylinder internal combustion engine Expired - Fee Related JP4214791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003035244A JP4214791B2 (en) 2003-02-13 2003-02-13 Cylinder control device for multi-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003035244A JP4214791B2 (en) 2003-02-13 2003-02-13 Cylinder control device for multi-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004245122A true JP2004245122A (en) 2004-09-02
JP4214791B2 JP4214791B2 (en) 2009-01-28

Family

ID=33020725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003035244A Expired - Fee Related JP4214791B2 (en) 2003-02-13 2003-02-13 Cylinder control device for multi-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP4214791B2 (en)

Also Published As

Publication number Publication date
JP4214791B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
WO2008032187A1 (en) Internal combustion engine and control method thereof
JP2008138638A (en) Exhaust recirculating device of internal combustion engine
EP2418369A1 (en) System for controlling exhaust gas temperature of an internal combustion engine with an exhaust gas after-treatment device and prime mover including same
JP4182770B2 (en) diesel engine
JP4572709B2 (en) Exhaust gas purification system for internal combustion engine
JP2009002275A (en) Control system of internal combustion engine
EP2211037A1 (en) Exhaust purification system for internal combustion engine
JPH10196463A (en) Exhaust gas recirculation device
JP2002364412A (en) Exhaust emission control device for engine with turbo supercharger
JP2005016459A (en) Controller of internal combustion engine with supercharger
JP4214791B2 (en) Cylinder control device for multi-cylinder internal combustion engine
EP1887202A1 (en) Sulfur purge control device for an internal combustion engine
JP3743232B2 (en) White smoke emission suppression device for internal combustion engine
JP4206934B2 (en) Supercharging system for internal combustion engines
JP2008038622A (en) Exhaust emission control device and method of internal combustion engine
JP3743272B2 (en) Internal combustion engine
JP4404841B2 (en) Control device for internal combustion engine
JP2004346787A (en) Combustion control device for internal combustion engine
JP2009138651A (en) Control device for internal combustion engine with supercharger
JP4266890B2 (en) Exhaust gas purification device for internal combustion engine
JPH0791324A (en) Intake air device for engine
JP2009052504A (en) Controller of internal combustion engine
JP4175952B2 (en) Combustion control device for internal combustion engine
JP4063743B2 (en) Fuel injection timing control device for internal combustion engine
JP4218374B2 (en) Control device for an internal combustion engine with a supercharger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081027

R151 Written notification of patent or utility model registration

Ref document number: 4214791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees