JP2004244771A - Sizing agent for carbon fiber production, fiber bundle of carbon fiber precursor produced by using the same and method for producing carbon fiber - Google Patents

Sizing agent for carbon fiber production, fiber bundle of carbon fiber precursor produced by using the same and method for producing carbon fiber Download PDF

Info

Publication number
JP2004244771A
JP2004244771A JP2003037909A JP2003037909A JP2004244771A JP 2004244771 A JP2004244771 A JP 2004244771A JP 2003037909 A JP2003037909 A JP 2003037909A JP 2003037909 A JP2003037909 A JP 2003037909A JP 2004244771 A JP2004244771 A JP 2004244771A
Authority
JP
Japan
Prior art keywords
carbon fiber
weight
molecular weight
oil agent
fiber bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003037909A
Other languages
Japanese (ja)
Inventor
Yasumasa Yamamoto
泰正 山本
Katsumi Yamasaki
勝巳 山▲さき▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003037909A priority Critical patent/JP2004244771A/en
Publication of JP2004244771A publication Critical patent/JP2004244771A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiber bundle of a carbon fiber precursor and a sizing agent for carbon fiber production suitable for the stable production of a carbon fiber bundle having excellent performance. <P>SOLUTION: The sizing agent for carbon fiber production contains a main component containing 92-100 wt.% component having a molecular weight of 1,000-1,000,000. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、強度の優れた炭素繊維を安定的に提供するための炭素繊維製造用油剤及びそれを用いた炭素繊維用前駆体繊維及び炭素繊維の製造方法に関する。
【0002】
【従来の技術】
炭素繊維は他の繊維に比べて優れた比強度及び比弾性率を有するため、その優れた機械的特性を利用して樹脂との複合材料用の補強繊維として工業的に広く利用されている。近年、炭素繊維複合材料の優位性はますます高まり、特にスポーツ、航空宇宙用途においては、この炭素繊維複合材料に対する高性能化要求が強い。複合材料としての特性は炭素繊維そのものの特性に起因するところが大きく、この要求はとりもなおさず炭素繊維自身への高性能化要求である。
【0003】
最も広く利用されているポリアクリロニトリル系炭素繊維は、アクリル系前駆体繊維束を200〜400℃の酸化性雰囲気下で耐炎化繊維へ転換する耐炎化工程、少なくとも1000℃の不活性雰囲気下で炭素化する炭化工程を経て、工業的に製造される。これら焼成工程においては、単繊維同士の接着が発生し、得られる炭素繊維の品質、品位を低下させるという問題があった。
【0004】
この問題に対し、耐熱性の高いシリコーン油剤をアクリル系前駆体繊維束に付与する技術が多数提案され、工業的に広く適用されている。例えば、特定のアミノ変成シリコーン、エポキシ変性シリコーン、アルキレンオキサイド変性シリコーンを混合した油剤は、空気中及び窒素中での加熱時の減量が少なく、接着防止効果が高いことが開示されている(例えば、特許文献1及び2)。しかしながら、更なる炭素繊維の高性能化については限界があった。更に、本発明者らの知見によれば、アミノ変性シリコーンが少なくとも一部に用いられた油剤の場合、前駆体繊維束に油剤を付与し始めた直後と、数時間経った後とでは、前駆体繊維束の高圧スチーム下での延伸性が変化し、ひいては炭素繊維としての物性が経時的に変化することがあるという問題があった。
【0005】
本発明に関連して、重量平均分子量が、300〜20,000のシリコーンがピッチ系炭素繊維の油剤として好適であると提案されている(例えば、特許文献3)。しかしながら、この提案では前駆体繊維束の高圧スチーム下での延伸性が経時的に変化し、ひいては炭素繊維の物性や操業性に経時変化が生じるという問題は依然として解決されていないのが現状であった。
【0006】
【特許文献1】特公平3−40152号公報(全体)
【0007】
【特許文献2】特開2001−172880号公報(全体)
【0008】
【特許文献3】特開昭62−191582号公報(第4頁左下段3〜4行)
【0009】
【発明が解決しようとする課題】
本発明は、上記問題点を解決し、優れた性能を有する炭素繊維を安定的に製造するための炭素繊維製造用油剤及びそれを用いた炭素繊維用前駆体繊維束及び炭素繊維の製造方法を提供せんとするものである。
【0010】
【課題を解決するための手段】
本発明は、鋭意検討した結果、油剤成分の分子量、特に低分子量物が炭素繊維の物性に影響を及ぼすことを見出したことによるものであり、下記骨子によって上記課題を解決するものである。
【0011】
即ち、本発明は、分子量1,000〜1,000,000の分子が92〜100重量%を占める化合物を含んでなる炭素繊維製造用油剤であり、また、その炭素繊維製造用油剤が付与されてなる炭素繊維用前駆体繊維束であり、また、その炭素繊維用前駆体繊維束を焼成する炭素繊維の製造方法である。
【0012】
【発明の実施の形態】
以下、本発明をより詳細に説明する。
【0013】
本発明の炭素繊維製造用油剤は、分子量が特定範囲にある化合物を含むことが必須である。かかる特定の化合物の分子量としては、必ずしも単分散である必要はなく、分布を持っていても構わないが、少なくとも、分子量1,000〜1,000,000、より好ましくは2,000〜500,000、更に好ましくは3,000〜200,000の分子が、92〜100重量%、より好ましくは95〜100重量%、更に好ましくは98〜100重量%を占める必要がある。分布を有する場合、数平均分子量としては、5,000〜100,000が好ましく、7,000〜80,000がより好ましく、10,000〜60,000が更に好ましい。重量平均分子量としては、28,000〜100,000が好ましく、29,000〜80,000がより好ましく、30,000〜60,000が更に好ましい。また、重量平均分子量を数平均分子量で除して求められる多分散度は、1〜5が好ましく、1〜4がより好ましく、1〜3が更に好ましい。分子量が1,000よりも低い低分子量物が化合物全体の10重量%よりも多く含まれている場合は、炭素繊維の物性が低下する。そのメカニズムは必ずしも明らかではないが、そのような低分子量物は、炭素繊維前駆体繊維の中に拡散・収着しやすく、焼成して炭素繊維とした時に、繊維中に拡散・収着した主剤が欠陥となって物性を低下させているからではないかと考えている。なお、ここでいう分子量は、ゲル浸透クロマトグラフィー(GPC)によって測定し、ポリスチレンの分子量を基に分子量を求める方法を用いることができる。すなわち既知の分子量を有するポリスチレンによって溶出時間と分子量の関係を示した検量線を作成し、それに基づき、測定検体の溶出時間をポリスチレン換算の分子量として表記する方法であり、広く用いられている方法である。例えば、測定装置としては、Waters社製GPC−224、検出器としてWaters社製401示差屈折率計、カラムとして東ソー製TSK−gel−GMHXL及び東ソー製TSK−gel−G2500HXL、溶媒として1.5重量%のt−ブチルアミンを含むトルエンをそれぞれ用い、流速1.0ml/min、温度23℃、注入量150μl(測定検体濃度0.5重量%)の条件で測定することができる。
【0014】
また、本発明の炭素繊維製造用油剤に含まれる上記の化合物としては、有機化合物、有機ケイ素化合物、あるいはそれらの混合物を問わないが、240℃で2時間、空気中で熱処理した時に、その減量率が70%以下、好ましくは50%以下に抑えられるような耐熱性があるものが好ましく、各種芳香族系有機化合物やシリコーン類は好ましい一例である。芳香族系有機化合物としては例えばナフタレンのホルマリン縮合物を基本骨格に有する化合物やビスフェノール骨格を有する化合物、ジフェニル骨格を有する化合物などを挙げることができる。また、シリコーン類は、離型性も高く、特に好ましく用いられる。シリコーン類としては、ジメチルポリシロキサン等のジオルガノポリシロキサンや、それを基本にしたアミノ変性やエポキシ変性やポリエーテル変性等の各種変性物が知られており、本発明にも用いられるが、本発明の上記化合物の一部には少なくとも離型性に特に優れるアミノ変性シリコーンが含まれているのは好ましく、アミノ変性シリコーンと乳化安定性に寄与するポリエーテル変成シリコーンを併用するのは更に好ましく、アミノ変性シリコーンと耐熱性に寄与するエポキシ変性シリコーンとポリエーテル変性シリコーンを併用するのが特に好ましい。アミノ変性シリコーンは、上記化合物のうち、20〜100重量%が好ましく、30〜100重量%がより好ましく、40〜100重量%がなお好ましい。これらアミノ変性シリコーン等は、上述のように離型性に特に優れるため好ましく用いられるが、その一方で、炭素繊維用前駆体に油剤を付与し、高圧スチーム下で延伸するという工程を採る場合に、分子量1000未満の低分子アミノ変性シリコーンや、上述したような芳香族系有機化合物をアミノ基などでカチオン化した化合物が一定量以上存在すると、油剤付与直後は、延伸工程で糸切れが起こりやすくなり、炭素繊維の物性も低下する。この原因は定かではないが、アミノ変性シリコーンなどの低分子カチオン性化合物は、親水性媒体への溶解性が高かったり、拡散性が高かったりして、炭素繊維用前駆体繊維に油剤を付与する際、前駆体繊維に優先吸着し、更には前駆体繊維内部にも収着するため、前駆体繊維を可塑化する作用を与えるスチーム由来の水分子の前駆体繊維内部への拡散を阻止すると共に、前駆体繊維に収着した低分子カチオン性化合物が欠陥の元となるからではないかと考えている。尚、前記のごとく低分子量の分子含有量が少ない化合物を合成する方法は、特に限定するものではなく、いかなる方法であっても構わないが、シリコーンの場合、例えば縮重合や環状オリゴマーの開環重合などの手法を用いて合成したり、更に各種変性反応を行うことにより目的とするシリコーンを得ることができる。また、有機化合物の場合は、それぞれに適した有機合成反応から得られる。その際、合成した化合物に低分子量物が含まれている場合、低分子除去を行えば良い。その方法として、例えば、高分子等からできた微多孔膜による分離や、アフィニティクロマトグラフィー、イオン交換クロマトグラフィー、ゲル浸透クロマトグラフィー等が挙げられる。
【0015】
本発明の炭素繊維製造用油剤の好ましい一様態としては、上記の化合物単独もしくはそれらの混合物からなる油剤であり、本発明の狙いとする高性能な炭素繊維を得るのに好適である。また、その化合物がアミノ変性シリコーンなどのカチオン性化合物単独もしくはそれを含む場合には、操業性の向上、ひいては炭素繊維物性の安定化が可能となる。それ以外の様態として、上記化合物を例えば水等の親水性媒体と混合あるいは分散してもよく、それに上記化合物を分散または乳化するための乳化剤または分散剤または界面活性剤等、pH調整剤、キレーター、酸化防止剤等を目的に応じて適宜用いることは何ら制限されるものではない。本発明の炭素繊維製造用油剤に用いられる乳化剤または分散剤または界面活性剤は、特に種類は問わず、アニオン性、カチオン性、ノニオン性、両性のいずれもが用いられるが、カチオン性やノニオン性は好ましくアミノ基等がもたらす弱カチオン性やノニオン性はなお好ましく、ノニオン性は特に好ましく用いられる。ノニオン性の乳化剤または分散剤または界面活性剤としては、例えばポリエチレングリコールのアルキルエーテルやアルキルフェニルエーテル、アルキルアミンエーテルなどを挙げることができる。また特に、不飽和結合を含む反応性基を有する乳化剤または分散剤または界面活性剤は好ましく用いられる。
【0016】
本発明の上記化合物を水等の親水性媒体に乳化または分散せしめる場合には、乳化剤または分散剤の量は、油剤の乳化系または分散系の安定性によって適宜決められるが、化合物100重量部に対して、10〜100重量部が好ましく、10〜50重量部が更に好ましく、20〜40重量部がなかんずく好ましい。
【0017】
本発明の炭素繊維製造用油剤を前駆体繊維束に付与することにより炭素繊維用前駆体繊維束を得ることができる。前駆体繊維束としては、ピッチ系とポリアクリロニトリル系が挙げられるが、ポリアクリロニトリル系繊維は特に好ましい。
【0018】
本発明の炭素繊維製造用油剤は前駆体繊維束の製糸工程のいずれの段階で付与してもよい。例えば紡糸後、延伸前付与してもよいし、延伸後に付与してもよいし、あるいは製糸工程の最後の段階、すなわち巻取り直前に付与してもよい。延伸における単繊維間接着を防ぐという点で延伸前に付与するのがより好ましい。
【0019】
付与する様態は、上記のように化合物のみからなる、いわばストレートオイル状で付与しても構わないし、それに水等の親水性媒体を加えて乳化状態もしくは分散状態として、付与しても構わない。これらは、油剤の付与量対比効果で適宜決められるが、炭素繊維製造用油剤中に固形分が1〜5重量%、より好ましくは2〜4重量%含まれた乳化または分散状態として、付与するのが好ましい。なお、固形分の含有量は、水分が蒸発しやすいように、広い底を持った容器中に少量の油剤を入れて薄く拡げた状態で、40℃で12時間オーブン処理し、その前後の重量変化から求められる。乳化または分散した時の化合物の平均粒子径は、0.001〜1μmが好ましく、0.01〜0.5μmがより好ましく、0.05〜0.2μmがなかんずく好ましい。かかる平均粒子径は市販の光散乱等を原理とする粒度分布計で確認することができる。
【0020】
油剤を前駆体繊維束に付与した後は、かかる前駆体繊維束を加熱して化合物を硬化させるのが好ましい。加熱温度は、120〜220℃が好ましく、140〜210℃がより好ましく、160〜200℃が更に好ましい。220℃を超えると単繊維間接着を起こしやすく、120℃以下では硬化に時間が掛かり、効率的ではない場合がある。加熱時間は、油剤がストレートオイルの場合は、5〜120秒が好ましく、10〜90秒がより好ましく、15〜60秒が更に好ましい。加熱時間が5秒に満たないと硬化が不十分になり、本発明の効果が十分に発現しない場合があり、120秒を超えても、効果は飽和していることが多い。油剤が水等の親水性媒体を含んでいる場合は、前記の加熱時間に好ましくは5〜30秒、より好ましくは10〜20秒を加えると好ましい加熱時間となる。この時間は、水等の親水性媒体の乾燥に要する時間であるので、加熱温度や加熱の方式(例えば、接触加熱か非接触加熱か等)等によって適宜決められる。加熱する形態は、電気ヒーターやスチーム等で加熱した空気の中に前駆体繊維束を通過させるテンターや赤外線加熱装置のような非接触式と、プレート式ヒーターやドラム式ヒーター等のような接触式のいずれもが用いられるが、接触式の方が熱伝達効率の点でより好ましい。
【0021】
このようにして得られた本発明の炭素繊維用前駆体繊維束は、焼成せしめることにより高性能な炭素繊維束とすることができる。尚、本発明でいう炭素繊維とは、黒鉛構造を有する黒鉛化繊維も含むものである。
【0022】
かかる焼成工程は、炭素繊維用前駆体繊維束を例えば200〜400℃の酸化性雰囲気下で耐炎化繊維へ転換する耐炎化工程と、500〜800℃の不活性雰囲気下で処理する前炭化工程と1,000〜2,000℃の不活性雰囲気下で炭素化する炭化工程を有することができる。耐炎化工程は、220〜270℃で行うのがより好ましい。
【0023】
前炭化工程においては優れた炭素繊維の機械特性、特に複合材料において優れた圧縮強度を得るために高張力で処理することが好ましく、そのための延伸比としては1.0〜1.3が好ましい。
【0024】
炭化工程においては、得ようとする炭素繊維に求める性能によって変わるが、処理温度を1,000〜2,000℃とすることが好ましい。特に炭素繊維のストランドの引張強度が6GPaを超えるような高強度炭素繊維を得ることを目的とする場合には、処理温度1,200〜1,500℃がより好ましい。また、単繊維の弾性率が400GPaを超えるような高弾性率炭素繊維を得ることを目的とする場合は、処理温度1,500〜3,000℃が好ましく、2,000〜3,000℃がより好ましい。
【0025】
【実施例】
以下、実施例によって、本発明を更に詳細に説明する。なお、実施例によって本発明が制限されることはない。なお、アミノ当量、エポキシ当量の当量とは、各官能基1mol当たりのシリコーン重量(kg)を表す。
【0026】
また、本実施例において分子量、炭素繊維束のストランド引張強度は以下の方法で測定した。
<分子量>
既知の分子量を有するポリスチレンによって溶出時間と分子量の関係を示した検量線を作成し、それに基づき、測定検体の溶出時間をポリスチレン換算の分子量として表記した。測定装置としてWaters社製GPC−224、検出器としてWaters社製401示差屈折率計、カラムとして東ソー製TSK−gel−GMHXL及び東ソー製TSK−gel−G2500HXL、溶媒として1.5重量%のt−ブチルアミンを含むトルエンをそれぞれ用い、流速1.0ml/min、温度23℃、注入量150μl(測定検体濃度0.5重量%)の条件で測定した。
<炭素繊維束のストランド引張強度>
束状の炭素繊維に下記組成の樹脂を含浸させ、130℃で35分間硬化させた後、JIS R7601に基づいて引張試験を行った。
【0027】

Figure 2004244771
実施例1
下記処方の炭素繊維製造用油剤を調製した。
【0028】
アミノ変性シリコーン 100重量部
界面活性剤 30重量部
水 4,203重量部
アミノ変性シリコーンとしては、式1に示される構造であり、アミノ等量2の、図1に示される分子量分布(分子量1,000以上の化合物が全体に占める割合99重量%、数平均分子量12,200、重量平均分子量31,200)のものを用いた。
【0029】
【化1】
Figure 2004244771
【0030】
界面活性剤としては、ノニルフェノールのエチレンオキサイド10mol付加物を使用し、シリコーンを乳化した。シリコーンの平均粒子径は、粒度分布計(ベックマンコールター製LS−230)で測定した結果、0.1μmであった。また、かかる油剤の固形分は3重量%であった。
【0031】
この油剤を、アクリル系繊維(0.7dtex、3,000フィラメント)に付着させ、次いで170℃×30秒で乾燥させた。その後、延伸倍率5のスチーム延伸(スチーム圧力450kPa)を経て、炭素繊維用前駆体繊維束を得た。
【0032】
かかる炭素繊維用前駆体繊維束を8本合糸して単繊維数24,000本とした後、250℃で延伸倍率0.9の耐炎化工程、延伸比1.05、650℃の前炭化工程、1,400℃の炭化工程を経て、炭素繊維束を得た。かかる炭素繊維束の引張強度を上記方法に従って測定した。
【0033】
表1には油剤付与開始後から1時間以内および5〜6時間後の時間帯におけるスチーム延伸工程の操業性と、それぞれの時間帯に得られた前駆体繊維束を用いて製造した炭素繊維の物性を示している。
実施例2
下記処方の炭素繊維製造用油剤を調製し、使用した以外は、実施例1と同じ方法で炭素繊維用前駆体繊維束および炭素繊維束を得て、かかる炭素繊維束の引張強度を上記方法に従って測定した。
【0034】
アミノ変性シリコーン 50重量部
エポキシ変性シリコーン 25重量部
ポリエーテル変性シリコーン 25重量部
界面活性剤 30重量部
水 4,203重量部
アミノ変性シリコーンは、実施例1と同じものを用いた。
【0035】
エポキシ変性シリコーンとしては、式2に示される構造であり、分子量1,000以上の化合物が全体に占める割合98重量%、数平均分子量14,200、重量平均分子量32,600、エポキシ等量4.5のものを用いた。
【0036】
【化2】
Figure 2004244771
【0037】
ポリエーテル変性シリコーンとしては、式3に示される構造であり、分子量1,000以上の化合物が全体に占める割合99重量%、数平均分子量15,600、重量平均分子量35,600、ポリエーテル含有量50重量%のものを用いた。
【0038】
【化3】
Figure 2004244771
【0039】
界面活性剤としては、実施例1と同じものを用いた。3種のシリコーンが混合したシリコーンの平均粒子径は、粒度分布計で測定した結果、0.1μmであった。また、かかる油剤の固形分は3重量%であった。
実施例3
エポキシ変性シリコーンとして、分子量1,000以上の化合物が全体に占める割合89重量%、数平均分子量3,600、重量平均分子量19,800のものを用い、ポリエーテル変性シリコーンとして、分子量1,000以上の化合物が全体に占める割合90重量%、数平均分子量3,450、重量平均分子量20,100のものを用いた以外は、実施例2と同様の方法により炭素繊維用前駆体繊維束および炭素繊維束を得た。かかる炭素繊維束の引張強度を上記方法に従って測定した。尚、3種のシリコーンが混合したシリコーンの平均粒子径は、粒度分布計で測定した結果、0.1μmであった。また、かかる油剤の固形分は3重量%であった。
比較例1
アミノ変性シリコーンとして、図2に示される分子量分布(分子量1,000以上の化合物が全体に占める割合90重量%、数平均分子量3,330、重量平均分子量21,700)のものを用いた以外は、実施例1と同様の方法で炭素繊維用前駆体繊維束および炭素繊維を得た。かかる炭素繊維束の引張強度を上記方法に従って測定した。尚、3種のシリコーンが混合したシリコーンの平均粒子径は、粒度分布計で測定した結果、0.1μmであった。また、かかる油剤の固形分は3重量%であった。
比較例2
アミノ変性シリコーンとして、図2に示される分子量分布(分子量1000以上の化合物が全体に占める割合90重量%、数平均分子量3,330、重量平均分子量21,700)のものを用いた以外は、実施例3と同様の方法により炭素繊維用前駆体繊維束および炭素繊維を得た。かかる炭素繊維束の引張強度を上記方法に従って測定した。尚、3種のシリコーンが混合したシリコーンの平均粒子径は、粒度分布計で測定した結果、0.1μmであった。また、かかる油剤の固形分は3重量%であった。
【0040】
上記実施例及び比較例における各結果を表1に示した。実施例1と比較例1、および実施例2と比較例2のそれぞれの対比において、いずれも、実施例は高強度であり、かつ経時変化がなく、操業性も安定していた。実施例3は、比較例2と対比され、炭素繊維の強度は比較例2の安定した時期とほぼ同等ながら、初期から安定して高性能炭素繊維を得ることができた。
【0041】
【表1】
Figure 2004244771
【0042】
【発明の効果】
本発明の炭素繊維製造用油剤によって、優れた性能を有する炭素繊維の製造に適した炭素繊維用前駆体繊維束を提供する。また、優れた性能を有する炭素繊維を安定的に製造することができる。
【図面の簡単な説明】
【図1】本発明に用いられるアミノ変性シリコーンの分子量分布の一例
【図2】分子量1,000以上の分子が全体に占める割合が90重量%であるアミノ変性シリコーンの分子量分布の一例[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to an oil agent for producing carbon fibers for stably providing carbon fibers having excellent strength, a precursor fiber for carbon fibers using the same, and a method for producing carbon fibers.
[0002]
[Prior art]
Since carbon fibers have superior specific strength and specific elastic modulus as compared with other fibers, carbon fibers are industrially widely used as reinforcing fibers for composite materials with resins by utilizing their excellent mechanical properties. In recent years, the superiority of carbon fiber composite materials has been further increased, and particularly in sports and aerospace applications, there is a strong demand for higher performance of the carbon fiber composite materials. The properties of the composite material largely depend on the properties of the carbon fiber itself, and this demand is, of course, a demand for higher performance of the carbon fiber itself.
[0003]
The most widely used polyacrylonitrile-based carbon fiber is an oxidization-resistant fiber in an oxidizing atmosphere at a temperature of 200 to 400 ° C. It is industrially manufactured through a carbonizing process. In these baking processes, there was a problem that adhesion between the single fibers occurred, and the quality and quality of the obtained carbon fibers were reduced.
[0004]
To address this problem, many techniques for applying a silicone oil agent having high heat resistance to an acrylic precursor fiber bundle have been proposed and widely applied industrially. For example, it is disclosed that an oil agent mixed with a specific amino-modified silicone, epoxy-modified silicone, or alkylene oxide-modified silicone has a small weight loss upon heating in air or nitrogen and has a high anti-adhesion effect (for example, Patent Documents 1 and 2). However, there is a limit to further improving the performance of carbon fibers. Furthermore, according to the findings of the present inventors, in the case of an oil agent in which the amino-modified silicone is used at least in part, the precursor immediately after the start of applying the oil agent to the precursor fiber bundle and after several hours have passed. There has been a problem that the stretchability of the body fiber bundle under high-pressure steam changes and, as a result, the physical properties of the carbon fiber may change with time.
[0005]
In connection with the present invention, it has been proposed that silicone having a weight average molecular weight of 300 to 20,000 is suitable as an oil agent for pitch-based carbon fibers (for example, Patent Document 3). However, at present, the problem that the drawability of the precursor fiber bundle under high-pressure steam changes with time and the physical properties and operability of the carbon fiber change with time has not been solved by this proposal. Was.
[0006]
[Patent Document 1] Japanese Patent Publication No. 3-40152 (whole)
[0007]
[Patent Document 2] JP-A-2001-172880 (whole)
[0008]
[Patent Document 3] Japanese Patent Application Laid-Open No. Sho 62-191582 (lower left column, 3-4 lines, page 4)
[0009]
[Problems to be solved by the invention]
The present invention solves the above problems, and provides an oil agent for producing carbon fibers for stably producing carbon fibers having excellent performance, and a precursor fiber bundle for carbon fibers and a method for producing carbon fibers using the same. It will not be provided.
[0010]
[Means for Solving the Problems]
The present invention is based on the finding that the molecular weight of an oil agent component, particularly a low molecular weight substance, affects the physical properties of carbon fibers as a result of intensive studies, and solves the above-mentioned problems by the following gist.
[0011]
That is, the present invention is an oil agent for producing carbon fiber, comprising a compound in which molecules having a molecular weight of 1,000 to 1,000,000 occupy 92 to 100% by weight, and the oil agent for producing carbon fiber is provided. And a method for producing a carbon fiber by firing the precursor fiber bundle for carbon fiber.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0013]
It is essential that the oil agent for producing carbon fiber of the present invention contains a compound having a molecular weight in a specific range. The molecular weight of the specific compound is not necessarily required to be monodisperse and may have a distribution, but at least a molecular weight of 1,000 to 1,000,000, more preferably 2,000 to 500, 000, more preferably 3,000-200,000 molecules should account for 92-100% by weight, more preferably 95-100% by weight, even more preferably 98-100% by weight. When it has a distribution, the number average molecular weight is preferably from 5,000 to 100,000, more preferably from 7,000 to 80,000, even more preferably from 10,000 to 60,000. The weight average molecular weight is preferably from 28,000 to 100,000, more preferably from 29,000 to 80,000, and still more preferably from 30,000 to 60,000. The polydispersity determined by dividing the weight average molecular weight by the number average molecular weight is preferably 1 to 5, more preferably 1 to 4, and still more preferably 1 to 3. When a low molecular weight substance having a molecular weight lower than 1,000 is contained in an amount of more than 10% by weight of the whole compound, the physical properties of the carbon fiber are reduced. Although the mechanism is not always clear, such low molecular weight substances are easily diffused and sorbed in the carbon fiber precursor fiber, and when baked into carbon fiber, the main agent diffused and sorbed in the fiber. Is considered to be a defect and deteriorates the physical properties. In addition, the molecular weight mentioned here can be measured by gel permeation chromatography (GPC), and a method of obtaining the molecular weight based on the molecular weight of polystyrene can be used. That is, a calibration curve showing the relationship between the elution time and the molecular weight is created using polystyrene having a known molecular weight, and based on that, the elution time of the measurement sample is expressed as a polystyrene-converted molecular weight, and is a widely used method. is there. For example, as a measuring apparatus, GPC-224 manufactured by Waters, a 401 differential refractive index meter manufactured by Waters, as a detector, TSK-gel-GMHXL and TSK-gel-G2500HXL manufactured by Tosoh as a column, and 1.5 wt. % Of t-butylamine, at a flow rate of 1.0 ml / min, a temperature of 23 ° C., and an injection volume of 150 μl (measurement sample concentration: 0.5% by weight).
[0014]
The compound contained in the oil agent for producing carbon fiber of the present invention may be an organic compound, an organosilicon compound or a mixture thereof, but when heated at 240 ° C. for 2 hours in the air, the weight loss is reduced. It is preferable to use a material having heat resistance such that the ratio can be suppressed to 70% or less, preferably 50% or less, and various aromatic organic compounds and silicones are preferable examples. Examples of the aromatic organic compound include a compound having a formalin condensate of naphthalene as a basic skeleton, a compound having a bisphenol skeleton, and a compound having a diphenyl skeleton. Further, silicones have high releasability and are particularly preferably used. As silicones, diorganopolysiloxanes such as dimethylpolysiloxane and various modified products based on the same, such as amino-modified, epoxy-modified and polyether-modified silicones, are used in the present invention. It is preferable that at least a part of the compound of the invention contains an amino-modified silicone which is particularly excellent in releasability, and it is more preferable to use the amino-modified silicone and a polyether-modified silicone which contributes to emulsion stability in combination. It is particularly preferable to use amino-modified silicone, epoxy-modified silicone and polyether-modified silicone which contribute to heat resistance in combination. The amino-modified silicone is preferably 20 to 100% by weight, more preferably 30 to 100% by weight, and still more preferably 40 to 100% by weight of the above compounds. These amino-modified silicones and the like are preferably used because they are particularly excellent in mold releasability as described above.On the other hand, when an oil agent is applied to a carbon fiber precursor and a step of drawing under high-pressure steam is employed. When a low-molecular-weight amino-modified silicone having a molecular weight of less than 1000 or a compound obtained by cationizing an aromatic organic compound with an amino group or the like as described above is present in a certain amount or more, yarn breakage easily occurs in the stretching step immediately after the oil agent is applied. And the physical properties of the carbon fiber also deteriorate. The cause is not clear, but low molecular cationic compounds such as amino-modified silicones have high solubility in hydrophilic media or high diffusivity, and give oil agents to precursor fibers for carbon fibers. In this case, the precursor fibers are preferentially adsorbed and further sorbed inside the precursor fibers, so that diffusion of water molecules derived from steam, which acts to plasticize the precursor fibers, into the precursor fibers is prevented. It is thought that the low molecular cationic compound sorbed on the precursor fiber may cause defects. The method for synthesizing a compound having a low molecular weight and a small molecular content as described above is not particularly limited, and any method may be used. In the case of silicone, for example, polycondensation or ring-opening of a cyclic oligomer may be used. The target silicone can be obtained by synthesizing using a technique such as polymerization or by further performing various modification reactions. In the case of an organic compound, it can be obtained from an organic synthesis reaction suitable for each. At this time, if the synthesized compound contains a low-molecular-weight substance, low-molecular-weight removal may be performed. Examples of the method include separation using a microporous membrane made of a polymer or the like, affinity chromatography, ion exchange chromatography, gel permeation chromatography, and the like.
[0015]
A preferred embodiment of the oil agent for producing carbon fiber of the present invention is an oil agent comprising the above compound alone or a mixture thereof, and is suitable for obtaining the high-performance carbon fiber targeted by the present invention. In addition, when the compound is a single cationic compound such as an amino-modified silicone or contains the same, it is possible to improve the operability and to stabilize the physical properties of carbon fibers. As another embodiment, the compound may be mixed or dispersed with a hydrophilic medium such as water, and an emulsifier or a dispersant for dispersing or emulsifying the compound or a surfactant, a pH adjuster, a chelator, and the like. The use of an antioxidant or the like as appropriate according to the purpose is not limited at all. The emulsifier or dispersant or surfactant used in the oil agent for producing carbon fiber of the present invention is not particularly limited, and any of anionic, cationic, nonionic and amphoteric is used. Preferably, weak cationicity or nonionicity provided by an amino group or the like is still more preferable, and nonionicity is particularly preferably used. Examples of the nonionic emulsifier or dispersant or surfactant include alkyl ether, alkyl phenyl ether and alkyl amine ether of polyethylene glycol. Particularly, an emulsifier, a dispersant, or a surfactant having a reactive group containing an unsaturated bond is preferably used.
[0016]
When the above compound of the present invention is emulsified or dispersed in a hydrophilic medium such as water, the amount of the emulsifier or dispersant is appropriately determined depending on the stability of the emulsifying system or dispersion system of the oil agent. On the other hand, 10 to 100 parts by weight is preferable, 10 to 50 parts by weight is more preferable, and 20 to 40 parts by weight is particularly preferable.
[0017]
A precursor fiber bundle for carbon fiber can be obtained by applying the oil agent for producing carbon fiber of the present invention to the precursor fiber bundle. Examples of the precursor fiber bundle include a pitch-based fiber and a polyacrylonitrile-based fiber, and a polyacrylonitrile-based fiber is particularly preferable.
[0018]
The oil agent for producing carbon fibers of the present invention may be applied at any stage of the process of producing the precursor fiber bundle. For example, it may be applied after spinning, before stretching, after stretching, or may be applied at the last stage of the spinning process, ie, immediately before winding. It is more preferable to apply it before stretching from the viewpoint of preventing adhesion between single fibers in stretching.
[0019]
As for the mode of application, it may be applied in the form of a straight oil consisting of only the compound as described above, or may be applied as an emulsified state or a dispersed state by adding a hydrophilic medium such as water thereto. These are appropriately determined depending on the effect of the applied amount of the oil agent, but are applied as an emulsified or dispersed state in which the solid content is 1 to 5% by weight, more preferably 2 to 4% by weight, in the oil agent for carbon fiber production. Is preferred. The solid content was determined by placing a small amount of oil in a container with a wide bottom and spreading it thinly in a container with a wide bottom so that water could easily evaporate. Sought from change. The average particle size of the compound when emulsified or dispersed is preferably 0.001 to 1 μm, more preferably 0.01 to 0.5 μm, and particularly preferably 0.05 to 0.2 μm. Such an average particle diameter can be confirmed by a commercially available particle size distribution meter based on light scattering or the like.
[0020]
After applying the oil agent to the precursor fiber bundle, it is preferable to heat the precursor fiber bundle to cure the compound. The heating temperature is preferably from 120 to 220C, more preferably from 140 to 210C, and still more preferably from 160 to 200C. If the temperature exceeds 220 ° C., adhesion between single fibers is likely to occur, and if the temperature is lower than 120 ° C., it takes a long time to cure, which may be inefficient. When the oil agent is straight oil, the heating time is preferably from 5 to 120 seconds, more preferably from 10 to 90 seconds, even more preferably from 15 to 60 seconds. If the heating time is less than 5 seconds, the curing is insufficient, and the effect of the present invention may not be sufficiently exhibited. Even if it exceeds 120 seconds, the effect is often saturated. When the oil agent contains a hydrophilic medium such as water, the heating time is preferably 5 to 30 seconds, more preferably 10 to 20 seconds, when added to the above heating time. Since this time is the time required for drying the hydrophilic medium such as water, it is appropriately determined according to the heating temperature and the heating method (for example, contact heating or non-contact heating). The heating method is a non-contact type such as a tenter or an infrared heating device that allows the precursor fiber bundle to pass through air heated by an electric heater or steam, and a contact type such as a plate type heater or a drum type heater. Are used, but the contact type is more preferable in terms of heat transfer efficiency.
[0021]
The thus obtained precursor fiber bundle for carbon fiber of the present invention can be made into a high-performance carbon fiber bundle by firing. The carbon fibers referred to in the present invention also include graphitized fibers having a graphite structure.
[0022]
The sintering step includes a oxidizing step of converting the precursor fiber bundle for carbon fiber into oxidized fiber under an oxidizing atmosphere of, for example, 200 to 400 ° C, and a pre-carbonizing step of performing treatment in an inert atmosphere of 500 to 800 ° C. And a carbonization step of carbonizing under an inert atmosphere at 1,000 to 2,000 ° C. It is more preferable to perform the flame-proofing step at 220 to 270 ° C.
[0023]
In the pre-carbonization step, it is preferable to perform the treatment with high tension in order to obtain excellent mechanical properties of the carbon fiber, particularly excellent compressive strength in the composite material, and the stretching ratio for that purpose is preferably 1.0 to 1.3.
[0024]
In the carbonization step, the treatment temperature is preferably set to 1,000 to 2,000 ° C., although it depends on the performance required for the carbon fiber to be obtained. In particular, when the purpose is to obtain a high-strength carbon fiber in which the tensile strength of the carbon fiber strand exceeds 6 GPa, the treatment temperature is more preferably from 1,200 to 1,500 ° C. When the purpose is to obtain a carbon fiber having a high elastic modulus such that the elastic modulus of the single fiber exceeds 400 GPa, the treatment temperature is preferably 1,500 to 3,000 ° C, and 2,000 to 3,000 ° C. More preferred.
[0025]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited by the embodiments. In addition, the equivalent of amino equivalent and epoxy equivalent represents a silicone weight (kg) per 1 mol of each functional group.
[0026]
In this example, the molecular weight and the strand tensile strength of the carbon fiber bundle were measured by the following methods.
<Molecular weight>
A calibration curve showing the relationship between the elution time and the molecular weight was prepared using polystyrene having a known molecular weight, and based on the calibration curve, the elution time of the measurement sample was expressed as a molecular weight in terms of polystyrene. Waters GPC-224 as a measuring device, Waters 401 differential refractometer as a detector, Tosoh TSK-gel-GMHXL and Tosoh TSK-gel-G2500HXL as columns, 1.5 wt% t- as a solvent. Using toluene containing butylamine, the measurement was performed under the conditions of a flow rate of 1.0 ml / min, a temperature of 23 ° C., and an injection amount of 150 μl (measurement sample concentration: 0.5% by weight).
<Strand tensile strength of carbon fiber bundle>
A bundle of carbon fibers was impregnated with a resin having the following composition, cured at 130 ° C. for 35 minutes, and then subjected to a tensile test based on JIS R7601.
[0027]
Figure 2004244771
Example 1
An oil agent for carbon fiber production having the following formulation was prepared.
[0028]
Amino-modified silicone 100 parts by weight Surfactant 30 parts by weight Water 4,203 parts by weight The amino-modified silicone has a structure represented by the formula 1, and has a molecular weight distribution (molecular weight 1,1) shown in FIG. A compound having a ratio of 99% by weight or more based on the total number of compounds of 000 or more, a number average molecular weight of 12,200 and a weight average molecular weight of 31,200) was used.
[0029]
Embedded image
Figure 2004244771
[0030]
As a surfactant, an adduct of nonylphenol with 10 mol of ethylene oxide was used to emulsify silicone. The average particle size of the silicone was 0.1 μm as measured by a particle size distribution meter (LS-230 manufactured by Beckman Coulter). The solid content of the oil agent was 3% by weight.
[0031]
This oil agent was attached to an acrylic fiber (0.7 dtex, 3,000 filaments), and then dried at 170 ° C. for 30 seconds. Thereafter, a precursor fiber bundle for carbon fiber was obtained through steam stretching (steam pressure: 450 kPa) with a draw ratio of 5.
[0032]
After eight such precursor fiber bundles for carbon fibers are combined into 24,000 single fibers, a flameproofing process is performed at 250 ° C. and a draw ratio of 0.9, A carbon fiber bundle was obtained through a step and a carbonization step at 1,400 ° C. The tensile strength of the carbon fiber bundle was measured according to the above method.
[0033]
Table 1 shows the operability of the steam drawing step within 1 hour and 5 to 6 hours after the start of the application of the oil agent, and the carbon fiber produced using the precursor fiber bundle obtained in each of the time zones. Indicates physical properties.
Example 2
Except for preparing and using a carbon fiber producing oil agent of the following formulation, a carbon fiber precursor fiber bundle and a carbon fiber bundle were obtained in the same manner as in Example 1, and the tensile strength of the carbon fiber bundle was determined according to the above method. It was measured.
[0034]
Amino-modified silicone 50 parts by weight Epoxy-modified silicone 25 parts by weight Polyether-modified silicone 25 parts by weight Surfactant 30 parts by weight Water 4,203 parts by weight The same amino-modified silicone as in Example 1 was used.
[0035]
The epoxy-modified silicone has a structure represented by Formula 2, in which a compound having a molecular weight of 1,000 or more occupies 98% by weight, a number average molecular weight of 14,200, a weight average molecular weight of 32,600, and an epoxy equivalent of 4. 5 were used.
[0036]
Embedded image
Figure 2004244771
[0037]
The polyether-modified silicone has a structure represented by the formula 3, in which a compound having a molecular weight of 1,000 or more accounts for 99% by weight of the total, a number average molecular weight of 15,600, a weight average molecular weight of 35,600, and a polyether content. 50% by weight was used.
[0038]
Embedded image
Figure 2004244771
[0039]
The same surfactant as in Example 1 was used. The average particle size of the silicone in which the three types of silicones were mixed was 0.1 μm as measured by a particle size distribution analyzer. The solid content of the oil agent was 3% by weight.
Example 3
As the epoxy-modified silicone, a compound having a ratio of 89% by weight of a compound having a molecular weight of 1,000 or more, a number average molecular weight of 3,600, and a weight average molecular weight of 19,800 is used. As the polyether-modified silicone, a molecular weight of 1,000 or more is used. Precursor fiber bundle for carbon fiber and carbon fiber according to the same method as in Example 2 except that the compound having a ratio of 90% by weight to the total, a number average molecular weight of 3,450 and a weight average molecular weight of 20,100 was used. I got a bunch. The tensile strength of the carbon fiber bundle was measured according to the above method. The average particle size of the silicone obtained by mixing the three types of silicone was 0.1 μm as measured by a particle size distribution analyzer. The solid content of the oil agent was 3% by weight.
Comparative Example 1
Except for using the amino-modified silicone having the molecular weight distribution shown in FIG. 2 (the ratio of the compound having a molecular weight of 1,000 or more to the whole is 90% by weight, the number average molecular weight is 3,330, and the weight average molecular weight is 21,700). In the same manner as in Example 1, a precursor fiber bundle for carbon fibers and carbon fibers were obtained. The tensile strength of the carbon fiber bundle was measured according to the above method. The average particle size of the silicone obtained by mixing the three types of silicone was 0.1 μm as measured by a particle size distribution analyzer. The solid content of the oil agent was 3% by weight.
Comparative Example 2
The procedure was carried out except that the amino-modified silicone having a molecular weight distribution shown in FIG. In the same manner as in Example 3, a precursor fiber bundle for carbon fibers and carbon fibers were obtained. The tensile strength of the carbon fiber bundle was measured according to the above method. The average particle size of the silicone obtained by mixing the three types of silicone was 0.1 μm as measured by a particle size distribution analyzer. The solid content of the oil agent was 3% by weight.
[0040]
Table 1 shows the results of the above Examples and Comparative Examples. In each comparison of Example 1 and Comparative Example 1, and Example 2 and Comparative Example 2, the Example had high strength, did not change with time, and had stable operability. Example 3 was compared with Comparative Example 2, and high-performance carbon fibers could be obtained stably from the beginning while the strength of the carbon fibers was almost the same as the stable period of Comparative Example 2.
[0041]
[Table 1]
Figure 2004244771
[0042]
【The invention's effect】
The present invention provides a carbon fiber precursor fiber bundle suitable for producing carbon fibers having excellent performance by using the oil agent for producing carbon fibers of the present invention. In addition, carbon fibers having excellent performance can be stably manufactured.
[Brief description of the drawings]
FIG. 1 shows an example of the molecular weight distribution of an amino-modified silicone used in the present invention. FIG. 2 shows an example of the molecular weight distribution of an amino-modified silicone in which 90% by weight of all the molecules having a molecular weight of 1,000 or more occupy.

Claims (5)

分子量1,000〜1,000,000の分子が92〜100重量%を占める化合物を含んでなる炭素繊維製造用油剤。An oil agent for producing carbon fibers, comprising a compound in which molecules having a molecular weight of 1,000 to 1,000,000 account for 92 to 100% by weight. 前記化合物がシリコーンである請求項1記載の炭素繊維製造用油剤。The oil agent for producing carbon fibers according to claim 1, wherein the compound is silicone. 前記シリコーンの少なくとも一部が、アミノ変性シリコーンである請求項2記載の炭素繊維製造用油剤。The oil agent for producing carbon fibers according to claim 2, wherein at least a part of the silicone is an amino-modified silicone. 請求項1〜3のいずれかに記載の炭素繊維製造用油剤が付与されてなる炭素繊維用前駆体繊維束。A precursor fiber bundle for carbon fiber, to which the oil agent for producing carbon fiber according to claim 1 is applied. 請求項4に記載の炭素繊維用前駆体繊維束を焼成する炭素繊維の製造方法。A method for producing a carbon fiber, comprising firing the precursor fiber bundle for a carbon fiber according to claim 4.
JP2003037909A 2003-02-17 2003-02-17 Sizing agent for carbon fiber production, fiber bundle of carbon fiber precursor produced by using the same and method for producing carbon fiber Pending JP2004244771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003037909A JP2004244771A (en) 2003-02-17 2003-02-17 Sizing agent for carbon fiber production, fiber bundle of carbon fiber precursor produced by using the same and method for producing carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003037909A JP2004244771A (en) 2003-02-17 2003-02-17 Sizing agent for carbon fiber production, fiber bundle of carbon fiber precursor produced by using the same and method for producing carbon fiber

Publications (1)

Publication Number Publication Date
JP2004244771A true JP2004244771A (en) 2004-09-02

Family

ID=33022571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003037909A Pending JP2004244771A (en) 2003-02-17 2003-02-17 Sizing agent for carbon fiber production, fiber bundle of carbon fiber precursor produced by using the same and method for producing carbon fiber

Country Status (1)

Country Link
JP (1) JP2004244771A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112006003335T5 (en) 2005-12-09 2008-09-25 Matsumoto Yushi-Seiyaku Co., Ltd., Yao Equipment for an acrylic fiber to be processed into a carbon fiber, and a process for producing a carbon fiber therefor
JP2021123812A (en) * 2020-02-03 2021-08-30 東レ株式会社 Method for producing carbon fiber bundle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112006003335T5 (en) 2005-12-09 2008-09-25 Matsumoto Yushi-Seiyaku Co., Ltd., Yao Equipment for an acrylic fiber to be processed into a carbon fiber, and a process for producing a carbon fiber therefor
US8852684B2 (en) 2005-12-09 2014-10-07 Matsumoto Yushi-Seiyaku Co., Ltd. Finish for acrylic fiber processed into carbon fiber, and carbon fiber manufacturing method therewith
JP2021123812A (en) * 2020-02-03 2021-08-30 東レ株式会社 Method for producing carbon fiber bundle
JP7342725B2 (en) 2020-02-03 2023-09-12 東レ株式会社 Method for manufacturing carbon fiber bundles

Similar Documents

Publication Publication Date Title
CN101313106A (en) Carbon fiber bundle, prepreg, and carbon fiber reinforced composite material
EP2470367B1 (en) Engineered crosslinked thermoplastic particles for interlaminar toughening
TWI553175B (en) Carbon fiber precursor acrylic fiber bundle,flame retardant treatment method, carbon fiber and method for manufacturing the same, carbon fiber prepreg, unidirectional fiber reinforced fabrics and method for forming fiber reinforced plastics
WO1997045576A1 (en) Carbon fiber, acrylic fiber, and method of manufacturing them
KR20120036808A (en) Particle-toughened fiber-reinforced polymer composites
US20130059988A1 (en) Remendable interfaces for polymer composites
TW201224048A (en) Epoxy resin composition, prepreg and fiber enforced complex material
Rahmani et al. Surface modification of carbon fiber for improving the interfacial adhesion between carbon fiber and polymer matrix
JP2012528237A (en) Particle reinforced polymer composition
EP4180568A1 (en) Carbon fiber bundle with adhered sizing agent
JP6115461B2 (en) Carbon fiber coated with sizing agent and method for producing the same, carbon fiber reinforced thermoplastic resin composition
JP4518046B2 (en) Oil for carbon fiber precursor and carbon fiber precursor
KR20190104347A (en) Prepreg and manufacturing method thereof, slit tape prepreg
Song et al. Interfacial and interlayer enhancement of highly hydrophilic dual-affinity waterborne polyurethane sizing agent acting on carbon fiber/epoxy resin composites
JP2008095222A (en) Carbon fiber strand and prepreg
JP2015098584A (en) Tow prepreg
JP2007016364A (en) Carbon fiber bundle
JP2004244771A (en) Sizing agent for carbon fiber production, fiber bundle of carbon fiber precursor produced by using the same and method for producing carbon fiber
JP4305081B2 (en) Oil for carbon fiber production and method for producing carbon fiber
CN101627071B (en) Organic polysiloxane, adhesive composition comprising the same, and rubber stiffener treated thereby
EP3786208A1 (en) Epoxy resin composition for carbon-fiber-reinforced composite materials, prepreg, and carbon-fiber-reinforced composite material
JP2015028147A (en) Sizing agent-applied carbon fiber, production method thereof, prepreg, and carbon fiber-reinforced composite material
JP2007145963A (en) Intermediate for producing carbon fiber-reinforced composite material and carbon fiber-reinforced composite material
JPH06173170A (en) Sizing agent composition for reinforcing fiber
JP4862226B2 (en) Precursor fiber for carbon fiber and method for producing carbon fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051107

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A131 Notification of reasons for refusal

Effective date: 20080226

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930