JP2004244649A - Method of producing two-dimensional or three-dimensional nano-structure - Google Patents

Method of producing two-dimensional or three-dimensional nano-structure Download PDF

Info

Publication number
JP2004244649A
JP2004244649A JP2003032840A JP2003032840A JP2004244649A JP 2004244649 A JP2004244649 A JP 2004244649A JP 2003032840 A JP2003032840 A JP 2003032840A JP 2003032840 A JP2003032840 A JP 2003032840A JP 2004244649 A JP2004244649 A JP 2004244649A
Authority
JP
Japan
Prior art keywords
dimensional
nanostructure
producing
substrate
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003032840A
Other languages
Japanese (ja)
Inventor
Kazuki Mitsuishi
和貴 三石
Masayuki Shimojo
雅幸 下条
Kazuo Furuya
一夫 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2003032840A priority Critical patent/JP2004244649A/en
Publication of JP2004244649A publication Critical patent/JP2004244649A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently produce a two-dimensional or three-dimensional nano-structure with a diameter of ten odd nanometers or less. <P>SOLUTION: A substrate (1) is arranged in a magnetic field, and a converged electronic beam (4) is applied to the desired position of the substrate while flowing a gaseous starting material (3) over the surface of the substrate, so that a two-dimensional or three-dimensional nanostructure (5) with dimensions of ten odd nanometers or less is formed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この出願の発明は、2次元又は3次元ナノ構造物の作製方法に関するものである。さらに詳しくは、この出願の発明は、十数ナノメートル以下の大きさの2次元又は3次元のナノ構造物を作製し、しかもこれを効率よく作製することのできる2次元又は3次元ナノ構造物の作製方法に関するものである。
【0002】
【従来の技術】
これまでの半導体では主に2次元的に配線されているが、3次元的な配線を自在に行うことができれば、より高集積な半導体デバイスの作製が期待される。
【0003】
一方、半導体デバイスにおける集積度の高まりにつれ、より微細な構造をその位置と大きさを制御して作製する技術への要求が高まっており、必要とされるパターンや配線のサイズは数ナノメートルの領域に入りつつある(たとえば、非特許文献1参照)。
【0004】
これまでナノサイズの構造の作製には、一般にリソグラフィーが適用されてきたが、リソグラフィーでは立体的な構造を効率よく作製することは難しい。
【0005】
また、20ナノメートル以下の大きさの2次元又は3次元のナノ構造物を作製する手法は存在しない。
【0006】
【非特許文献1】
表面技術,2002年,第53巻,第12号,p.807
【0007】
【発明が解決しようとする課題】
この出願の発明は、以上のとおりの事情に鑑みてなされたものであり、十数ナノメートル以下の大きさの2次元又は3次元のナノ構造物を作製し、しかもこれを効率よく作製することのできる2次元又は3次元ナノ構造物の作製方法を提供することを解決すべき課題としている。
【0008】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、基板を磁場中に配置し、原料ガスを基板表面上に流しながら、収束させた電子線を基板の所望の位置に向かって照射して、十数ナノメートル以下の大きさの2次元又は3次元のナノ構造物を形成させることを特徴とする2次元又は3次元ナノ構造物の作製方法(請求項1)を提供する。
【0009】
また、この出願の発明は、電子線の照射位置に加え、スポットサイズ及び/又は照射時間を変化させ、ナノ構造物の大きさ及び/又は形状を変化させること(請求項2)を一態様として提供する。
【0010】
以下、実施例を示しつつ、この出願の発明の2次元又は3次元ナノ構造物の作製方法についてさらに詳しく説明する。
【0011】
【発明の実施の形態】
この出願の発明の2次元又は3次元ナノ構造物の作製方法では、図1に示したように、基板(1)を磁場(図1図中の符号2は磁力線を示す)中に配置し、原料ガス(3)を基板(1)の表面上に流しながら、収束させた電子線(4)を基板(1)の所望の位置に向かって照射する。この時の電子線(4)は、たとえば、その直径が数ナノメートルにまで収束したものとすることができる。
【0012】
そして、この出願の発明の2次元又は3次元ナノ構造物の作製方法では、十数ナノメートル以下の大きさの2次元又は3次元のナノ構造物(5)を形成させる。電子線(4)を一点に照射することで点状物が、また、電子線(4)を照射しながら照射位置を変化させることで直線や曲線の線状物が、それぞれ直径十数ナノメートルの大きさで形成される。このような直線や曲線の線状物を組み合わせることにより、2次元又は3次元の構造物(5)が自在に作製される。その作製位置はナノメートル以下の精度で変えることができる。
【0013】
さらに、電子線(4)を基板(1)のある領域を塗りつぶすように照射すると、板状物を作製することができる。この板状物の幅や長さもナノメートルの精度で変えることができる。以上から明らかなように、この出願で言及するところの大きさには、2次元又は3次元のナノ構造物(5)の直径、幅、長さ等が包含される。
【0014】
このように、この出願の発明の2次元又は3次元ナノ構造物の作製方法により、これまで実現されていなかった20ナノメートル以下の大きさの2次元又は3次元のナノ構造物が作製可能となる。このため、半導体デバイス内のパターン、配線の太さをナノメートルオーダーにすることが可能となり、高集積化が図れ、立体配線の実現が有望視される。
【0015】
また、2次元又は3次元のナノ構造物(5)は、電子線(4)の照射位置を走査することにより所望の位置に形成させることができるため、指定した箇所に必要なナノ構造物を作製することも可能であり、たとえば、マイクロマシン用の部品の作製への応用が期待される。
【0016】
さらに、この出願の発明の2次元又は3次元ナノ構造物の作製方法では、リソグラフィーのようにマスクを使用することがないため、十数ナノメートル以下の大きさの2次元又は3次元のナノ構造物(5)が効率よく作製される。
【0017】
そして、この出願の発明の2次元又は3次元ナノ構造物の作製方法では、電子線(4)の照射位置に加え、スポットサイズ及び/又は照射時間を変化させることにより、ナノ構造物(5)のサイズ及び/又は形状を変化させることも可能である。
【0018】
なお、この出願の発明の2次元又は3次元ナノ構造物の作製方法では、原料ガス(3)の種類は特定されない。たとえば、W(CO)、Mo(CO)、In(C、(CH(CH−C)Pt、(CHAu(C)等が例示される。それぞれの原料ガス(3)を使用することにより、W、Mo、In、Pt、Au等のナノ構造物(5)が作製される。
【0019】
【実施例】
[実施例1]
シリコン(Si)基板の表面上に、室温、10Pa以下の条件で原料ガスのW(CO)ガスを流した。照射位置を断続的に変えて電子線をシリコン基板に向かって照射した。電子線については、加速電圧200kV、電流1ナノアンペア、スポットサイズ3ナノメートルとした。
【0020】
図2に透過電子顕微鏡像を示したように、電子線の照射によりW(CO)ガスが分解してタングステン(W)のナノ微粒子が形成され、等間隔に配列した。タングステンナノ微粒子の直径は、電子線の照射時間を変化させることにより変化した(照射時間は0.5秒、2秒、5秒とした)。最も小さいタングステンナノ微粒子の直径は約5ナノメートルであり、電子線の照射時間を長くすることによりタングステンナノ微粒子の直径は大きくなった。
[実施例2]
カーボングリッドを基板とし、室温、10Pa以下の条件で原料ガスのW(CO)ガスをカーボングリッドの表面上を流した。照射位置を徐々に移動させて電子線をカーボングリッドに向かって照射した。電子線については、実施例1と同様に、加速電圧200kV、電流1ナノアンペア、スポットサイズ3ナノメートルとした。
【0021】
図3に走査型電子顕微鏡像を示したように、リングとこれにつながる2本の直線の線状物であり、直径十数ナノメートル以下のタングステンの3次元ナノ構造物が形成された(像中央)。このように、3次元ナノ構造物は、基板だけでなく、空間中にも形成可能であることが確認される。
【0022】
もちろん、この出願の発明は、以上の実施形態及び実施例によって限定されるものではない。細部については様々な態様が可能であることはいうまでもない。
【0023】
【発明の効果】
以上詳しく説明したとおり、この出願の発明によって、直径十数ナノメートル以下の2次元又は3次元のナノ構造物を作製し、しかもこれを効率よく作製することができる。
【図面の簡単な説明】
【図1】この出願の発明の2次元又は3次元ナノ構造物の作製方法の概要を示した模式図である。
【図2】実施例1で作製したタングステンナノ微粒子の透過電子顕微鏡像である。
【図3】実施例2で作製したタングステンの3次元ナノ構造物の走査電子顕微鏡像である。
【符号の説明】
1 基板
2 磁力線
3 原料ガス
4 電子線
5 ナノ構造物
[0001]
TECHNICAL FIELD OF THE INVENTION
The invention of this application relates to a method for producing a two-dimensional or three-dimensional nanostructure. More specifically, the invention of this application provides a two-dimensional or three-dimensional nanostructure capable of producing a two-dimensional or three-dimensional nanostructure having a size of ten or more nanometers or less, and capable of efficiently producing the two-dimensional or three-dimensional nanostructure. The method relates to a method for producing the same.
[0002]
[Prior art]
Conventional semiconductors are mainly two-dimensionally wired. However, if three-dimensional wiring can be freely performed, the production of a highly integrated semiconductor device is expected.
[0003]
On the other hand, as the degree of integration in semiconductor devices has increased, there has been an increasing demand for techniques for producing finer structures by controlling their positions and sizes, and the required pattern and wiring sizes are several nanometers. (See, for example, Non-Patent Document 1).
[0004]
Until now, lithography has generally been applied to the production of nano-sized structures, but it is difficult to efficiently produce a three-dimensional structure by lithography.
[0005]
Further, there is no method for producing a two-dimensional or three-dimensional nanostructure having a size of 20 nanometers or less.
[0006]
[Non-patent document 1]
Surface Technology, 2002, Vol. 53, No. 12, p. 807
[0007]
[Problems to be solved by the invention]
The invention of this application has been made in view of the circumstances described above, and is intended to produce a two-dimensional or three-dimensional nanostructure having a size of not more than ten nanometers and to efficiently produce the same. An object of the present invention is to provide a method for manufacturing a two-dimensional or three-dimensional nanostructure that can be performed.
[0008]
[Means for Solving the Problems]
The invention of this application solves the above-mentioned problem by arranging a substrate in a magnetic field and irradiating a focused electron beam toward a desired position on the substrate while flowing a source gas on the substrate surface. The present invention provides a method for producing a two-dimensional or three-dimensional nanostructure, wherein a two-dimensional or three-dimensional nanostructure having a size of not more than ten nanometers is formed.
[0009]
In addition, the invention of this application has an aspect of changing the size and / or shape of the nanostructure by changing the spot size and / or irradiation time in addition to the irradiation position of the electron beam (claim 2). provide.
[0010]
Hereinafter, the method for producing a two-dimensional or three-dimensional nanostructure of the invention of the present application will be described in more detail with reference to examples.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
In the method for producing a two-dimensional or three-dimensional nanostructure according to the invention of the present application, as shown in FIG. 1, the substrate (1) is arranged in a magnetic field (the reference numeral 2 in FIG. 1 indicates a line of magnetic force), While the source gas (3) is flowing over the surface of the substrate (1), the focused electron beam (4) is irradiated toward a desired position on the substrate (1). At this time, the electron beam (4) may have a diameter converged to several nanometers, for example.
[0012]
Then, in the method for producing a two-dimensional or three-dimensional nanostructure of the invention of this application, a two-dimensional or three-dimensional nanostructure (5) having a size of not more than ten nanometers is formed. By irradiating the electron beam (4) to one point, a point-like object is obtained, and by changing the irradiation position while irradiating the electron beam (4), a linear or curved linear object is obtained with a diameter of tens of nanometers. It is formed in the size of. By combining such linear or curved linear objects, a two-dimensional or three-dimensional structure (5) can be freely manufactured. Its fabrication position can be changed with sub-nanometer accuracy.
[0013]
Further, when the electron beam (4) is irradiated so as to fill a certain area of the substrate (1), a plate-like object can be manufactured. The width and length of the plate can also be varied with nanometer precision. As is apparent from the above, the size referred to in this application includes the diameter, width, length, etc. of the two-dimensional or three-dimensional nanostructure (5).
[0014]
As described above, according to the method for producing a two-dimensional or three-dimensional nanostructure of the invention of the present application, it is possible to produce a two-dimensional or three-dimensional nanostructure having a size of 20 nm or less, which has not been realized until now. Become. For this reason, the thickness of the pattern and wiring in the semiconductor device can be on the order of nanometers, high integration can be achieved, and the realization of three-dimensional wiring is expected.
[0015]
The two-dimensional or three-dimensional nanostructure (5) can be formed at a desired position by scanning the irradiation position of the electron beam (4). It can also be manufactured, and for example, it is expected to be applied to manufacturing of parts for micromachines.
[0016]
Furthermore, in the method for producing a two-dimensional or three-dimensional nanostructure of the invention of this application, a mask is not used unlike lithography, so that a two-dimensional or three-dimensional nanostructure having a size of ten or less nanometers or less is used. The object (5) is produced efficiently.
[0017]
In the method for producing a two-dimensional or three-dimensional nanostructure according to the invention of this application, the nanostructure (5) is changed by changing the spot size and / or irradiation time in addition to the irradiation position of the electron beam (4). It is also possible to vary the size and / or shape of the.
[0018]
In the method for producing a two-dimensional or three-dimensional nanostructure of the invention of this application, the type of the source gas (3) is not specified. For example, W (CO) 6, Mo (CO) 6, In (C 5 H 7 O 2) 3, (CH 3) 3 (CH 3 -C 5 H 4) Pt, (CH 3) 2 Au (C 5 H 7 O 2 ) and the like. By using each source gas (3), a nanostructure (5) such as W, Mo, In, Pt, or Au is produced.
[0019]
【Example】
[Example 1]
On the surface of the silicon (Si) substrate, a source gas W (CO) 6 gas was flown at room temperature under a condition of 10 2 Pa or less. The irradiation position was changed intermittently to irradiate the electron beam toward the silicon substrate. For the electron beam, the accelerating voltage was 200 kV, the current was 1 nanoampere, and the spot size was 3 nanometers.
[0020]
As shown in the transmission electron microscope image in FIG. 2, the W (CO) 6 gas was decomposed by irradiation with the electron beam to form tungsten (W) nanoparticles, which were arranged at equal intervals. The diameter of the tungsten nanoparticles was changed by changing the irradiation time of the electron beam (the irradiation time was set to 0.5 seconds, 2 seconds, and 5 seconds). The diameter of the smallest tungsten nanoparticle was about 5 nanometers, and the diameter of the tungsten nanoparticle was increased by increasing the irradiation time of the electron beam.
[Example 2]
Using a carbon grid as a substrate, a raw material gas W (CO) 6 gas was flowed over the surface of the carbon grid at room temperature under a condition of 10 2 Pa or less. The irradiation position was gradually moved, and the electron beam was irradiated toward the carbon grid. As for the electron beam, as in Example 1, the acceleration voltage was 200 kV, the current was 1 nanoampere, and the spot size was 3 nanometers.
[0021]
As shown in the scanning electron microscope image in FIG. 3, a three-dimensional tungsten nanostructure having a diameter of not more than tens of nanometers, which is a ring and two linear linear objects connected to the ring, was formed. Center). Thus, it is confirmed that the three-dimensional nanostructure can be formed not only on the substrate but also in the space.
[0022]
Of course, the invention of this application is not limited by the above embodiments and examples. It goes without saying that various aspects are possible for the details.
[0023]
【The invention's effect】
As described in detail above, according to the invention of this application, a two-dimensional or three-dimensional nanostructure having a diameter of not less than ten and several nanometers can be manufactured, and the nanostructure can be manufactured efficiently.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an outline of a method for producing a two-dimensional or three-dimensional nanostructure of the invention of the present application.
FIG. 2 is a transmission electron microscope image of the tungsten nanoparticles prepared in Example 1.
FIG. 3 is a scanning electron microscope image of a three-dimensional tungsten nanostructure produced in Example 2.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Substrate 2 Magnetic field line 3 Source gas 4 Electron beam 5 Nanostructure

Claims (2)

基板を磁場中に配置し、原料ガスを基板表面上に流しながら、収束させた電子線を基板の所望の位置に向かって照射して、十数ナノメートル以下の大きさの2次元又は3次元のナノ構造物を形成させることを特徴とする2次元又は3次元ナノ構造物の作製方法。The substrate is placed in a magnetic field, and a focused electron beam is irradiated toward a desired position on the substrate while the source gas is flowing over the substrate surface, so that a two-dimensional or three-dimensional having a size of less than ten and several nanometers is obtained. A method for producing a two-dimensional or three-dimensional nanostructure, characterized by forming a nanostructure of (1). 電子線の照射位置に加え、スポットサイズ及び/又は照射時間を変化させ、ナノ構造物の大きさ及び/又は形状を変化させる請求項1記載の2次元又は3次元ナノ構造物の作製方法。The method for producing a two-dimensional or three-dimensional nanostructure according to claim 1, wherein the size and / or shape of the nanostructure is changed by changing the spot size and / or irradiation time in addition to the irradiation position of the electron beam.
JP2003032840A 2003-02-10 2003-02-10 Method of producing two-dimensional or three-dimensional nano-structure Pending JP2004244649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003032840A JP2004244649A (en) 2003-02-10 2003-02-10 Method of producing two-dimensional or three-dimensional nano-structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003032840A JP2004244649A (en) 2003-02-10 2003-02-10 Method of producing two-dimensional or three-dimensional nano-structure

Publications (1)

Publication Number Publication Date
JP2004244649A true JP2004244649A (en) 2004-09-02

Family

ID=33019045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003032840A Pending JP2004244649A (en) 2003-02-10 2003-02-10 Method of producing two-dimensional or three-dimensional nano-structure

Country Status (1)

Country Link
JP (1) JP2004244649A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006123150A (en) * 2004-11-01 2006-05-18 National Institute For Materials Science Nano-structure making control method using electron beam-inductive vapor deposition method
KR100767994B1 (en) 2005-11-18 2007-10-18 한국표준과학연구원 Deformation method of nanometer scale material using particle beam and nano tool thereby
US7611810B2 (en) 2006-02-28 2009-11-03 Canon Kabushiki Kaisha Charged beam processing apparatus
JP2012506543A (en) * 2008-10-22 2012-03-15 ナノスカレ システムズ、ナノス ゲゼルシャフト ミット ベシュレンクテル ハフツング Electrochemical sensor and manufacturing method thereof
KR101762091B1 (en) 2009-03-24 2017-07-26 소니 주식회사 Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus
CN116511719A (en) * 2023-05-25 2023-08-01 中山大学 Method and system for preparing micro-nano structure by laser-electron beam and micro-nano structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006123150A (en) * 2004-11-01 2006-05-18 National Institute For Materials Science Nano-structure making control method using electron beam-inductive vapor deposition method
KR100767994B1 (en) 2005-11-18 2007-10-18 한국표준과학연구원 Deformation method of nanometer scale material using particle beam and nano tool thereby
US7611810B2 (en) 2006-02-28 2009-11-03 Canon Kabushiki Kaisha Charged beam processing apparatus
JP2012506543A (en) * 2008-10-22 2012-03-15 ナノスカレ システムズ、ナノス ゲゼルシャフト ミット ベシュレンクテル ハフツング Electrochemical sensor and manufacturing method thereof
KR101762091B1 (en) 2009-03-24 2017-07-26 소니 주식회사 Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus
KR101804100B1 (en) 2009-03-24 2017-12-01 소니 주식회사 Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus
CN116511719A (en) * 2023-05-25 2023-08-01 中山大学 Method and system for preparing micro-nano structure by laser-electron beam and micro-nano structure
CN116511719B (en) * 2023-05-25 2023-11-28 中山大学 Method and system for preparing micro-nano structure by laser-electron beam and micro-nano structure

Similar Documents

Publication Publication Date Title
US7976815B2 (en) Shape controlled growth of nanostructured films and objects
JP2010212619A (en) Graphene manufacturing method, graphene, graphene manufacturing device, and semiconductor device
TWI427031B (en) Method of preparing graphene nanoribbons
JP4755643B2 (en) Mask forming method and three-dimensional fine processing method
JP6052537B2 (en) Graphene structure, semiconductor device using the same, and manufacturing method thereof
JP2004244649A (en) Method of producing two-dimensional or three-dimensional nano-structure
Wang et al. Review on 3D fabrication at nanoscale
US9725801B2 (en) Method for implanted-ion assisted growth of metal oxide nanowires and patterned device fabricated using the method
WO2004105111A1 (en) Electron beam microprocessing method
TWI438144B (en) A method for making a substrate with micro-structure
JP2007518067A (en) Manufacturing method of nanostructure chip
Takenaka et al. Directed self-assembly of block copolymers
JP2007216369A (en) Method for manufacturing silicon nano-crystal material and silicon nano-crystal material manufactured by the method
WO2003054973A1 (en) Light receiving element and light receiving device incorporating circuit and optical disc drive
KR20050004436A (en) Process for nanoparticle patterning and preparation of sintered body using same
Stevens et al. Nanomanipulation and fabrication by ion beam molding
JP2004269913A (en) Manufacturing method and preparing apparatus for microstructure
JP2006005110A (en) Manufacturing method of fine structure and manufacturing device
JP5152715B2 (en) Three-dimensional fine processing method and three-dimensional fine structure
JP4052430B2 (en) Ion beam microfabrication method of inorganic multilayer resist and semiconductor device, quantum device, micromachine component and microstructure by this method
JP2003179031A (en) MACHINING METHOD OF Si SEMICONDUCTOR FINE STRUCTURE DUE TO ION BEAM IMPLANTATION LITHOGRAPHY OF INORGANIC MULTILAYER RESIST AND INTEGRATED CIRCUIT, DEVICE, AND MICROMACHINE COMPONENT THEREBY
JP4250760B2 (en) Nano-dendritic structure and fabrication method thereof
JP2006123150A (en) Nano-structure making control method using electron beam-inductive vapor deposition method
Hildreth et al. Wet chemical method to etch sophisticated nanostructures into silicon wafers using sub-25nm feature sizes and high aspect ratios
Bieber et al. Synthesis of nanoscale structures in single crystal silicon carbide by electron beam lithography

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060720

A131 Notification of reasons for refusal

Effective date: 20060801

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212