JP2004243722A - Method for extrusion-molding semiconductive material and seamless belt manufactured using the same - Google Patents

Method for extrusion-molding semiconductive material and seamless belt manufactured using the same Download PDF

Info

Publication number
JP2004243722A
JP2004243722A JP2003038063A JP2003038063A JP2004243722A JP 2004243722 A JP2004243722 A JP 2004243722A JP 2003038063 A JP2003038063 A JP 2003038063A JP 2003038063 A JP2003038063 A JP 2003038063A JP 2004243722 A JP2004243722 A JP 2004243722A
Authority
JP
Japan
Prior art keywords
semiconductive
die
thermoplastic resin
resin composition
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003038063A
Other languages
Japanese (ja)
Inventor
Jiro Watanabe
次郎 渡辺
Yuuji Kawamori
裕二 河守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2003038063A priority Critical patent/JP2004243722A/en
Publication of JP2004243722A publication Critical patent/JP2004243722A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for extrusion-molding a semiconductive material by which the fluctuation of surface resistivity can be ameliorated and seamless belt manufactured using the same. <P>SOLUTION: In a method for extrusion-molding in which a plurality of flows of a semiconductive thermoplastic resin composition is extrusion-molded into a cylindrical form after combining these flows, the semiconductive thermoplastic resin composition is extrusion-molded into a cylindrical form, using a die 2 which sets a distance L between points where the flow velocity (1/2 Vmax) is half the maximum flow velocity (Vmax) in the flow velocity distribution of each adjacent flow passage outlet, at 10 mm or less. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導電性材料の押出成形方法及びそれを用いて製造したシームレスベルトに関し、更に詳しくは、表面抵抗率のバラツキを改善するようにした半導電性材料の押出成形方法及びそれを用いて製造したシームレスベルトに関する。
【0002】
【従来の技術】
例えば、複写機やプリンタなどの電子写真方式を用いた画像形成装置に使用される、像担持体上に形成されたトナー像を転写する転写ベルトや、中間転写体や用紙を搬送する搬送ベルトなどのシームレスベルトは、押出機に供給して溶融混練した半導電性熱可塑性樹脂組成物を環状ダイに配置した複数の流路から円筒状に押出成形して製造するようにしている。
【0003】
このような半導電性を有するシームレスベルトは、表面抵抗率のバラツキが大きいと、特にカラー画像において、部分的な転写効率の違いによって、部分的な色抜けなどが発生し、均一な高画質を得ることができないため、表面抵抗率のバラツキを極力小さくすることが求められている。
【0004】
そこで、本出願人は、熱可塑性樹脂中に少なくとも一部が架橋したゴム成分を分散した構造を有し、該ゴム成分中に導電性充填剤を含有させた熱可塑性エラストマー組成物を半導電性熱可塑性樹脂組成物として提案している。導電性を有するゴム成分を熱可塑性樹脂中に均一的に分散させることが容易であるため、表面抵抗率のバラツキを大きく改善することができる事を開示した(特許文献1参照)。
【0005】
【特許文献1】
特開2001−254022号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記特許公報の導電性熱可塑性樹脂組成物においても、その抵抗値のバラツキは材料だけでなく、円筒を作る成形方法にも大きく依存している。
【0007】
一般に円筒形状の薄もの製品を作成する方法としては、スパイダーダイと呼ばれる内部ダイ(マンドレル)を4ヶ所の支持体で固定して、その支持体間に樹脂を流して大きな4本の流路をストレートに押出していくダイと、スパイラルダイと呼ばれる4本〜8本の流れをあらかじめ作って、それらを周方向に回転させながら薄く引伸ばし、各流れを合流させていくダイ形状とがある。
【0008】
ただ、いずれの方法においても、単純に上記ダイで半導電性樹脂組成物を用いて円筒状フィルムを作製しても、表面抵抗のバラツキが大きくなってしまう。このフィルムについて詳細に抵抗観察を行なってみると、複数の流れが合流して成形されている円筒フィルムの各流路の中心部において抵抗値が高く、端部で抵抗値が低くなるという現象が見られる。
【0009】
これは、各流路内の中心部と端部で流速が異なるため、結果的に樹脂内に含まれる導電性物質の分散状態が異なってしまうことにより生じる現象であることがわかってきた。
【0010】
本発明の目的は、表面抵抗率のバラツキを改善することが可能な半導電性材料の押出成形方法及びそれを用いて製造したシームレスベルトを提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成する本発明の半導電性材料の押出成形方法は、半導電性熱可塑性樹脂組成物を複数の流れが合流して円筒状に押出成形する成形方法において、隣接する各流路出口の流速分布における最大流速(Vmax) の半分の流速(1/2 Vmax)になる地点間の距離が10mm以内となるダイを使用して前記半導電性熱可塑性樹脂組成物を円筒状に押出成形することを特徴とする。
【0012】
本発明のシームレスベルトは、上記半導電性材料の押出成形方法を用いて製造したことを特徴とする。
【0013】
上述した本発明によれば、各流路では中央部で最大流速となり、流路端部側で最小流速になって流速差が生じるが、隣接する流路における最大流速の半分となる地点間の距離を10mm以下にすることによって、半導電性熱可塑性樹脂組成物中の導電性充填剤を流路出口において従来より均一に分散させた状態で押し出すことができるため、表面抵抗率のバラツキを改善することができる。
【0014】
【発明の実施の形態】
以下、本発明の構成について添付の図面を参照しながら詳細に説明する。
【0015】
図1は、本発明の半導電性材料の押出成形方法に使用される装置の一例を示し、1は半導電性熱可塑性樹脂組成物を押し出すスクリュー式の押出機、2は押出機1の先端に取り付けたダイであり、押出機1は、材料に剪断変形を加えながら溶融混練できるようになっている。
【0016】
ダイ2は、図2に示すように、ダイ本体2aとマンドレル2bから成り、マンドレル2bにはマニホールド3が開いている。押出機1から溶融混練された樹脂組成物が流れてくると、マニホールド3を通過する間に複数の流れに分岐され、再びダイ内部で合流し、ダイ出口から円筒状のフィルムとして押出される事になるのである。
【0017】
図3に示すように樹脂組成物がマニホールド3を通過する際には、マニホールド3の数と同数の流路が形成される。この流路における樹脂組成物の流れ4は中心部が最も流速が速く、マニホールド壁面近傍が最低となる。次に、これらの流れはダイ内で引伸ばされ、合流していくが、マニホールド通過時の流速分布は維持
されていく。
【0018】
以下、本発明の半導電性材料の押出成形方法を説明する。
【0019】
本発明に用いられる半導電性熱可塑性樹脂組成物は、熱可塑性樹脂中にカーボンまたは金属粉などの導電性材料を分散させた組成物、あるいは、特開2001−254022号公報にあるような熱可塑性樹脂中に導電性充填剤を含有し、一部が架橋したゴム成分を分散した組成物が挙げられる。
【0020】
半導電性領域における抵抗値のバラツキを小さくできるという長所から、特に熱可塑性樹脂中に導電性充填剤を含む架橋ゴムを分散した半導電性樹脂組成物が好ましく用いる事ができる。
【0021】
先ず、半導電性樹脂塑性物のペレットをホッパー1aから押出機1内に供給する。ペレットはスクリューにより剪断変形を加えながら溶融混練する混練ゾーンに送られ、そこで剪断を受けながら溶融混練される。
【0022】
溶融混練された半導電性樹脂組成物は、次いでダイ2から円筒状に押出成形される。その際、各流路出口の流速分布において、押し出される半導電熱可塑性樹脂組成物の最大流速(Vmax) (流速の中央部で最大となる)の半分の流速(1/2 Vmax)になる地点が、隣接する各流路間で10mm以内の距離となるようにしている。
【0023】
本発明者らは、特開2001−254022号公報に開示される半導電熱性可塑性エラストマー組成物を押し出してOA機器に用いられるシームレスベルトを製造した際に、その利点を十分に生かすべく、押出成形方法に関して鋭意検討した結果、以下のことを知見した。以下、上記半導電性熱可塑性エラストマー組成物を例に説明する。
【0024】
即ち、上記半導電性熱可塑性エラストマー組成物は、押出機1内ではスクリューの回転で導電材料を含む架橋ゴムが均一に分散されるが、その後通過するダイ2の内部では溶解状態で攪拌がないため、架橋ゴムに2次凝集が起こってくる。ダイ2内でマニホールド3によってつくられた各流路においては、中央部と流路端部側で流速差が生じるため、ダイ2内の滞留時間に部分的な差が生じ、その結果としてゴムの凝集具合が変化し、それが製造されたシームレスベルトにおける表面抵抗率のバラツキに影響していることがわかった。
【0025】
例えば、ダイ内部に4つの流れがあった場合、このダイで作られた円筒フィルムを切り開いて各部分の表面抵抗値を測定すると、図4に示すように大きなピークが4ケ所観察される。表面抵抗の高い位置は流れの中央部にあたり、逆に抵抗の低い位置は流れの端部にあたる。これは、流れの中央部では流速が速いため、分散された架橋ゴムが分散を維持したまま、ダイ出口から押出されるのに対し、端部の場合は、流速が遅いために、ダイ内での滞留時間が長くなり、結果としてゴムの2次凝集が起こって抵抗が低下したものと考えられる。
【0026】
特に、流速が最大流速の半分以下になる部分においては抵抗低下が大きく、円筒フィルム内の抵抗バラツキの均一化の妨げとなってくる。
【0027】
そこで、本発明では、上述したように隣接する各流路出口での流速分布において最大流速の半分になる地点間の距離が10mm以内となるようにして押し出すようにしたのである。このようにして円筒状に連続して押出成形された筒体を冷却した後、順次所定幅に切断してシームレスベルトを製造することができるが、上記のような関係を特定することで、導電性充填剤を含有させたゴム成分を熱可塑性樹脂中に従来より均一的に分散させた状態で押し出すことが可能になり、表面抵抗率のバラツキを0.8乗以内に抑えることができる。従って、表面抵抗率のバラツキの改善が可能になる。
【0028】
本発明においてダイの流路出口での各流路の流速分布は以下の式によって求めることとする。
【0029】
【数1】

Figure 2004243722
ここで、V:流路中のb地点での流速〔mm/sec〕
max :最大流速(流路中心部:b=0での速度)〔mm/sec〕
B:流路の幅(ダイの流路出口の周長/流路数)〔mm〕
b:流路の中心からある地点までの距離〔mm〕
m:流れ指数(材料定数)
本式で流速が最大流速の半分になる地点(b)は、
【0030】
【数2】
Figure 2004243722
従って、隣接する各流路における最大流速の半分になる地点間の距離Lは図5に示すようになり、以下の式で表すことができる。
【0031】
【数3】
Figure 2004243722
【0032】
本発明において、上記のように最大流速の半分になる地点間の距離を小さくする手法としては、流路を更に分岐させて流路数を増加させるのがよい(式中のBの値を小さくする)。ダイ2の流路出口の周長を流路数で除した長さで定義される流路の幅Bとしては、特に2cm以下となるようにするのがよい。この流路の幅Bが2cmを超えると、表面抵抗率を改善することが難しくなる。下限としては、ダイ中のマニホールドを小さくし、多数にしていけば良いのだが、押出機の樹脂圧が上がってしまうので5mm程度が良い。
【0033】
その他、樹脂配合でニュートン流体に近づけること、ダイ内流路をせまくすることでも可能である。
【0034】
本発明は、上述したように熱可塑性樹脂中に少なくとも一部が架橋したゴム成分を分散した構造を有し、そのゴム成分中に導電性充填剤を含有させた熱可塑性エラストマー組成物を押し出す際に好適に用いることができるが、熱可塑性樹脂中にカーボンブラックなどの導電性充填剤を分散させるようにした半導電性熱可塑性樹脂組成物からなる半導電性材料の押出成形にも好適に使用することができる。
【0035】
また、上記実施形態では、シームレスベルトを製造する例をとって説明したが、本発明の半導電性材料の押出成形方法は当然のことながらそれに限定されない。
【0036】
【実施例】
以下、実施例を示して本発明を具体的に説明する。
組成物の調製
下記表1に示す配合で、以下のようにして各種の成形物を製造した。
【0037】
まず、下記表1に示される組成物1のゴム成分を密閉式バンバリーミキサーにて初期温度40℃で3分間混合し、ロールでシート化した後、ゴム用ペレタイザーにてペレット化した。
【0038】
次いで、ゴムペレットと樹脂ペレットとを、2軸混練押出機に投入して溶融混練することで、マトリクスとしての樹脂成分中に、ドメインとして分散するゴム成分を動的に架橋させて、半導電性ベルト用熱可塑性エラストマー組成物を作製した。混練条件は、混練温度200〜320℃、混練時間約3分間、せん断速度約1000秒−1で実施した。得られた組成物は、水冷して樹脂用ペレタイザーでペレット化した。
【0039】
また組成物2は2軸混練機にて、2種類の材料を上記同様の条件で混練してペレット化した。
ベルトの成形
得られた組成物は、単軸押出成形機から円筒成形によって、外径170mm、厚さ0.2mmの筒状に成形し、その後、350mm幅に切断してベルトとした。
【0040】
実験に用いたダイの流路出口の周長は628mm(φ200mm)、リップ間隙は1mm品を使用した。変数としては、マニホールドの数を8から66までの間で変量させ流路の数を変化させることにより、各流路間の 1/2Vmax の地点の距離を変えている。成形条件は押出温度250℃、せん断速度1000秒−1で行なった。
【0041】
各方法により得られた各試験シームレスベルトを如何に示す測定条件により、表面抵抗率のバラツキを求めたところ、表2に示す結果を得た。
表面抵抗率のバラツキ
作製したベルトをその長さ方向と幅方向に30mm間隔で切りとり、その中の任意の10点について、JISK6911に従い、体積固有抵抗値の対数をとり、最大値と最小値の差をlogばらつき(R)として示した。
【0042】
【表1】
Figure 2004243722
【0043】
【表2】
Figure 2004243722
表1から、本発明の方法は、表面抵抗率のバラツキを改善できることがわかる。
【0044】
【発明の効果】
上述したように本発明は、各流路出口での最大流速の半分の流速になる地点の距離が隣接する各流路間で10mm以内となるように規定して半導電性熱可塑性樹脂組成物を押出成形するため、表面抵抗率のバラツキの改善が可能になる。
【図面の簡単な説明】
【図1】本発明の半導電性材料の押出成形方法に使用される装置の一例を示す説明図である。
【図2】ダイの拡大説明図である。
【図3】ダイの流路を示す説明図である。
【図4】従来の円筒フィルムの周方向位置と表面抵抗の関係を示すグラフ図である。
【図5】式(3)の説明図である。
【符号の説明】
1 押出機 2 ダイ
3 マニホールド 4 樹脂組成物の流れ
B 流路の幅 L 距離[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for extruding a semiconductive material and a seamless belt manufactured using the same, and more particularly, to a method for extruding a semiconductive material so as to improve the variation in surface resistivity and using the same. And a seamless belt manufactured by the method.
[0002]
[Prior art]
For example, a transfer belt that transfers a toner image formed on an image bearing member, a transfer belt that transfers an intermediate transfer member or paper, and is used in an electrophotographic image forming apparatus such as a copying machine or a printer. Is manufactured by extruding a semiconductive thermoplastic resin composition supplied to an extruder and melt-kneaded into a cylindrical shape from a plurality of channels arranged in an annular die.
[0003]
If the seamless belt having such semi-conductivity has a large variation in surface resistivity, in particular, in a color image, a partial difference in transfer efficiency causes partial color omission and the like, and uniform high image quality is obtained. Since it cannot be obtained, it is required to minimize variations in surface resistivity.
[0004]
Therefore, the present applicant has a structure in which a rubber component at least partially cross-linked is dispersed in a thermoplastic resin, and a thermoplastic elastomer composition containing a conductive filler in the rubber component is semiconductive. It has been proposed as a thermoplastic resin composition. It has been disclosed that since it is easy to uniformly disperse a conductive rubber component in a thermoplastic resin, the variation in surface resistivity can be greatly improved (see Patent Document 1).
[0005]
[Patent Document 1]
JP 2001-254022 A
[Problems to be solved by the invention]
However, even in the conductive thermoplastic resin composition of the above-mentioned patent publication, the variation in the resistance value largely depends not only on the material but also on the molding method for forming the cylinder.
[0007]
In general, as a method for producing a thin product having a cylindrical shape, an internal die (mandrel) called a spider die is fixed at four supports, and resin is flown between the supports to form four large flow paths. There are a die that extrudes straight, and a die shape in which four to eight streams called a spiral die are made in advance, thinly stretched while rotating them in the circumferential direction, and the streams merge.
[0008]
However, in any of the methods, even if a cylindrical film is simply produced using the semiconductive resin composition by the above-mentioned die, the variation in the surface resistance becomes large. A detailed observation of the resistance of this film shows that the resistance value is high at the center of each flow path of the cylindrical film formed by merging multiple flows, and the resistance value is low at the end. Can be seen.
[0009]
This has been found to be a phenomenon caused by a difference in the dispersion state of the conductive substance contained in the resin because the flow velocity is different between the central part and the end part in each flow path.
[0010]
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for extruding a semiconductive material capable of improving the variation in surface resistivity, and a seamless belt manufactured using the method.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a method for extrusion molding a semiconductive material according to the present invention is a method for extruding a semiconductive thermoplastic resin composition into a cylindrical shape by combining a plurality of flows, wherein each of the adjacent flow path outlets is provided. The semiconductive thermoplastic resin composition is extruded into a cylindrical shape using a die in which the distance between the points at which the flow velocity is half (1/2 Vmax) of the maximum flow velocity (Vmax) in the flow velocity distribution is within 10 mm. It is characterized by doing.
[0012]
The seamless belt of the present invention is characterized by being manufactured by using the above-mentioned method for extrusion-molding a semiconductive material.
[0013]
According to the present invention described above, each flow channel has a maximum flow velocity at the center, and has a minimum flow velocity at the end of the flow path, resulting in a flow velocity difference. By setting the distance to 10 mm or less, the conductive filler in the semiconductive thermoplastic resin composition can be extruded at the outlet of the flow path in a more uniformly dispersed state than before, thereby improving the variation in surface resistivity. can do.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings.
[0015]
FIG. 1 shows an example of an apparatus used in the method for extruding a semiconductive material of the present invention, wherein 1 is a screw type extruder for extruding a semiconductive thermoplastic resin composition, and 2 is a tip of the extruder 1. The extruder 1 is capable of melt-kneading while applying shear deformation to the material.
[0016]
As shown in FIG. 2, the die 2 includes a die main body 2a and a mandrel 2b, and a manifold 3 is opened in the mandrel 2b. When the melt-kneaded resin composition flows from the extruder 1, it is branched into a plurality of flows while passing through the manifold 3, merges again inside the die, and is extruded as a cylindrical film from the die outlet. It becomes.
[0017]
As shown in FIG. 3, when the resin composition passes through the manifold 3, the same number of channels as the number of the manifolds 3 are formed. The flow 4 of the resin composition in this flow path has the highest flow velocity at the center and the lowest flow rate near the manifold wall. Next, these flows are stretched and merged in the die, but the flow velocity distribution when passing through the manifold is maintained.
[0018]
Hereinafter, the method of extrusion molding a semiconductive material of the present invention will be described.
[0019]
The semiconductive thermoplastic resin composition used in the present invention is a composition obtained by dispersing a conductive material such as carbon or metal powder in a thermoplastic resin, or a thermoelectric resin as disclosed in JP-A-2001-254022. A composition in which a conductive resin is contained in a plastic resin, and a partially crosslinked rubber component is dispersed.
[0020]
A semiconductive resin composition in which a crosslinked rubber containing a conductive filler is dispersed in a thermoplastic resin can be preferably used, since it has an advantage that variation in resistance value in the semiconductive region can be reduced.
[0021]
First, pellets of a semiconductive resin plastic are supplied into the extruder 1 from the hopper 1a. The pellets are sent to a kneading zone for melt-kneading while applying shear deformation by a screw, where they are melt-kneaded while being subjected to shearing.
[0022]
The melt-kneaded semiconductive resin composition is then extruded from the die 2 into a cylindrical shape. At that time, in the flow velocity distribution at the outlet of each flow channel, a point where the flow velocity (1/2 Vmax) is half of the maximum flow velocity (Vmax) of the extruded semiconductive thermoplastic resin composition (maximum at the center of the flow velocity). However, the distance between adjacent flow paths is set within 10 mm.
[0023]
The present inventors, when extruding a semiconductive thermoplastic elastomer composition disclosed in JP-A-2001-254022 to produce a seamless belt used for OA equipment, extrusion molding in order to make full use of its advantages. As a result of intensive studies on the method, the following was found. Hereinafter, the semiconductive thermoplastic elastomer composition will be described as an example.
[0024]
That is, in the semiconductive thermoplastic elastomer composition, the crosslinked rubber containing the conductive material is uniformly dispersed by the rotation of the screw in the extruder 1, but there is no agitation in the melted state inside the die 2 which passes thereafter. Therefore, secondary aggregation occurs in the crosslinked rubber. In each flow path formed by the manifold 3 in the die 2, a difference in flow velocity occurs between the central portion and the end of the flow path, so that a partial difference occurs in the residence time in the die 2, and as a result, It was found that the degree of agglomeration changed, which affected the variation in surface resistivity in the manufactured seamless belt.
[0025]
For example, when there are four flows inside the die, when a cylindrical film made by this die is cut open and the surface resistance value of each part is measured, four large peaks are observed as shown in FIG. The position where the surface resistance is high corresponds to the center of the flow, while the position where the surface resistance is low corresponds to the end of the flow. This is because the flow velocity is high at the center of the flow, so that the dispersed crosslinked rubber is extruded from the die outlet while maintaining the dispersion, whereas the flow velocity is low at the end, so that It is considered that the residence time of the rubber became longer, and as a result, secondary agglomeration of rubber occurred and the resistance decreased.
[0026]
In particular, in a portion where the flow velocity is half or less of the maximum flow velocity, the resistance is largely reduced, which hinders the uniformity of the resistance variation in the cylindrical film.
[0027]
Therefore, in the present invention, as described above, the extrusion is performed such that the distance between the points where the maximum flow velocity is half in the flow velocity distribution at the adjacent flow path outlets is within 10 mm. After cooling the cylindrical body continuously extruded in a cylindrical shape in this manner, it is possible to sequentially cut the cylindrical body into a predetermined width to manufacture a seamless belt. It is possible to extrude a rubber component containing a conductive filler in a state of being more uniformly dispersed in a thermoplastic resin than before, and it is possible to suppress the variation in surface resistivity to within 0.8 power. Therefore, it is possible to reduce the variation in the surface resistivity.
[0028]
In the present invention, the flow velocity distribution in each flow path at the flow path exit of the die is determined by the following equation.
[0029]
(Equation 1)
Figure 2004243722
Here, V: flow velocity [mm / sec] at point b in the flow channel
V max : maximum flow velocity (flow path center: velocity at b = 0) [mm / sec]
B: Channel width (perimeter of die channel outlet / number of channels) [mm]
b: distance from the center of the channel to a certain point [mm]
m: Flow index (material constant)
The point (b) where the flow velocity becomes half of the maximum flow velocity in this formula is
[0030]
(Equation 2)
Figure 2004243722
Accordingly, the distance L between the points at which the maximum flow velocity is half in each of the adjacent flow paths is as shown in FIG. 5 and can be expressed by the following equation.
[0031]
[Equation 3]
Figure 2004243722
[0032]
In the present invention, as a method of reducing the distance between the points where the maximum flow velocity is half as described above, it is preferable to further branch the flow path and increase the number of flow paths (the value of B in the equation is reduced. Do). The width B of the flow path defined by the length obtained by dividing the peripheral length of the flow path outlet of the die 2 by the number of flow paths is particularly preferably 2 cm or less. If the width B of the flow path exceeds 2 cm, it becomes difficult to improve the surface resistivity. As the lower limit, the manifold in the die may be made smaller and larger, but the resin pressure of the extruder increases, so that about 5 mm is preferable.
[0033]
In addition, it is also possible to approach the Newtonian fluid by blending the resin and to narrow the flow path in the die.
[0034]
The present invention has a structure in which at least a partly crosslinked rubber component is dispersed in a thermoplastic resin as described above, and when extruding a thermoplastic elastomer composition containing a conductive filler in the rubber component. Can be suitably used for extrusion molding of a semiconductive material comprising a semiconductive thermoplastic resin composition in which a conductive filler such as carbon black is dispersed in a thermoplastic resin. can do.
[0035]
Further, in the above-described embodiment, an example in which a seamless belt is manufactured has been described, but the method of extruding a semiconductive material of the present invention is not limited thereto.
[0036]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples.
Preparation of compositions Various compositions were produced with the formulations shown in Table 1 below as follows.
[0037]
First, the rubber components of the composition 1 shown in Table 1 below were mixed at an initial temperature of 40 ° C. for 3 minutes using a closed Banbury mixer, formed into a sheet with a roll, and then pelletized with a rubber pelletizer.
[0038]
Next, the rubber pellets and the resin pellets are put into a twin-screw kneading extruder and melt-kneaded, whereby the rubber component dispersed as a domain in the resin component as a matrix is dynamically cross-linked to form a semiconductive material. A thermoplastic elastomer composition for a belt was produced. The kneading conditions were a kneading temperature of 200 to 320 ° C., a kneading time of about 3 minutes, and a shear rate of about 1000 sec− 1 . The obtained composition was cooled with water and pelletized with a resin pelletizer.
[0039]
The composition 2 was formed into a pellet by kneading two kinds of materials with a biaxial kneader under the same conditions as described above.
Forming a belt The obtained composition was formed into a cylindrical shape having an outer diameter of 170 mm and a thickness of 0.2 mm by cylindrical forming from a single screw extruder, and then cut into a 350 mm width to form a belt. did.
[0040]
The peripheral length of the channel outlet of the die used in the experiment was 628 mm (φ200 mm), and the lip gap used was 1 mm. As a variable, the number of manifolds is varied from 8 to 66 to change the number of flow paths, thereby changing the distance of the point of 1/2 Vmax between the flow paths. The molding conditions were an extrusion temperature of 250 ° C. and a shear rate of 1000 sec −1 .
[0041]
The variation in surface resistivity of each test seamless belt obtained by each method was measured under the following measurement conditions, and the results shown in Table 2 were obtained.
Variation in surface resistivity The produced belt was cut at intervals of 30 mm in its length direction and width direction, and the logarithm of the volume specific resistance value was calculated for any 10 points in accordance with JIS K6911 to determine the maximum value. The difference between the minimum values is shown as log variation (R).
[0042]
[Table 1]
Figure 2004243722
[0043]
[Table 2]
Figure 2004243722
From Table 1, it is understood that the method of the present invention can improve the variation of the surface resistivity.
[0044]
【The invention's effect】
As described above, the present invention provides a semiconductive thermoplastic resin composition by defining the distance of a point where the flow velocity is half the maximum flow velocity at each flow path outlet to be within 10 mm between adjacent flow paths. By extrusion molding, it is possible to improve the variation of the surface resistivity.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an example of an apparatus used for a method for extrusion molding a semiconductive material according to the present invention.
FIG. 2 is an enlarged explanatory view of a die.
FIG. 3 is an explanatory view showing a flow path of a die.
FIG. 4 is a graph showing a relationship between a circumferential position and a surface resistance of a conventional cylindrical film.
FIG. 5 is an explanatory diagram of Expression (3).
[Explanation of symbols]
Reference Signs List 1 extruder 2 die 3 manifold 4 flow of resin composition B width of flow path L distance

Claims (4)

半導電性熱可塑性樹脂組成物を複数の流れが合流して円筒状に押出成形する成形方法において、隣接する各流路出口の流速分布における最大流速(Vmax) の半分の流速(1/2 Vmax)になる地点間の距離が10mm以内となるダイを使用して前記半導電性熱可塑性樹脂組成物を円筒状に押出成形する半導電性材料の押出成形方法。In a molding method in which a plurality of streams are joined to form a semiconductive thermoplastic resin composition and extruded into a cylindrical shape, a flow rate (半 分 Vmax) that is half of a maximum flow rate (Vmax) in a flow rate distribution of adjacent flow passage outlets. A) a method of extruding a semiconductive material, wherein the semiconductive thermoplastic resin composition is extruded into a cylindrical shape using a die having a distance between points of 10 mm or less. 前記ダイの流路出口の周長を流路数で除した長さで定義される流路の幅が2cm以下である請求項1に記載の半導電性材料の押出成形方法。2. The method according to claim 1, wherein a width of the flow path defined by a length obtained by dividing a peripheral length of a flow path outlet of the die by the number of flow paths is 2 cm or less. 3. 前記半導電性熱可塑性樹脂組成物が熱可塑性樹脂に少なくとも一部が架橋したゴム成分を分散した構造を有し、該ゴム成分中に導電性充填剤を含有する請求項1または2に記載の半導電性材料の押出成形方法。The semiconductive thermoplastic resin composition has a structure in which a rubber component at least partially cross-linked to a thermoplastic resin is dispersed, and the rubber component contains a conductive filler. Extrusion molding method of semiconductive material. 請求項1,2または3に記載の半導電性材料の押出成形方法を用いて製造したシームレスベルト。A seamless belt manufactured by using the method for extruding a semiconductive material according to claim 1.
JP2003038063A 2003-02-17 2003-02-17 Method for extrusion-molding semiconductive material and seamless belt manufactured using the same Pending JP2004243722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003038063A JP2004243722A (en) 2003-02-17 2003-02-17 Method for extrusion-molding semiconductive material and seamless belt manufactured using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038063A JP2004243722A (en) 2003-02-17 2003-02-17 Method for extrusion-molding semiconductive material and seamless belt manufactured using the same

Publications (1)

Publication Number Publication Date
JP2004243722A true JP2004243722A (en) 2004-09-02

Family

ID=33022682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038063A Pending JP2004243722A (en) 2003-02-17 2003-02-17 Method for extrusion-molding semiconductive material and seamless belt manufactured using the same

Country Status (1)

Country Link
JP (1) JP2004243722A (en)

Similar Documents

Publication Publication Date Title
JP3461005B2 (en) Seamless semiconductive belt and method of manufacturing the same
JP4317872B2 (en) Continuous kneading apparatus and kneading system using the same
JP2002519217A (en) Mixing device
US7618180B2 (en) Kneading disk apparatus
US3719351A (en) Extruder for thermoplastic or non-cross-linked elastomeric material, a mixing zone defined by a feed screw
JP2004243722A (en) Method for extrusion-molding semiconductive material and seamless belt manufactured using the same
JP6794171B2 (en) Manufacturing method for cylindrical extrusion dies and seamless tubes
US20200207021A1 (en) Mixing head systems and methods for fused deposition modeling
JP4924515B2 (en) Kneading equipment
CN100492183C (en) Electrophotographic conductive member and electrophotographic apparatus
JP2601336B2 (en) Kneading extruder
CN109070426B (en) Screw extruder
US20050127559A1 (en) Homogenizing multimodal polymer
JP2008138134A (en) Semiconductive ultra-high-molecular-weight polyethylene composition, film composed thereof and its manufacturing method
JPH03149567A (en) Method and device for continuous manufacture of toner
JP2005182002A5 (en)
JP4137441B2 (en) Method and apparatus for kneading rubber or rubber-based composition
JP2004114534A (en) Continuous kneading apparatus for rubber
JP2004331725A (en) Semiconductive fluororesin tubular film and its manufacturing method
JP7335466B1 (en) Screw for single screw extruder and single screw extruder
JP2000025097A (en) Manufacture of semiconductive fluororesin molding and its use method
JP2017080949A (en) Annular die and method for manufacturing tube-like object
JPH09151257A (en) Production of carbon masterbatch
JP2005096123A (en) Extrusion molding method
JPS6246208B2 (en)