JP2004243390A - Cooling method at secondary zone in continuous casting - Google Patents

Cooling method at secondary zone in continuous casting Download PDF

Info

Publication number
JP2004243390A
JP2004243390A JP2003037490A JP2003037490A JP2004243390A JP 2004243390 A JP2004243390 A JP 2004243390A JP 2003037490 A JP2003037490 A JP 2003037490A JP 2003037490 A JP2003037490 A JP 2003037490A JP 2004243390 A JP2004243390 A JP 2004243390A
Authority
JP
Japan
Prior art keywords
temperature
bloom
cooling zone
secondary cooling
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003037490A
Other languages
Japanese (ja)
Inventor
利幸 ▲濱▼野
Toshiyuki Hamano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2003037490A priority Critical patent/JP2004243390A/en
Publication of JP2004243390A publication Critical patent/JP2004243390A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for reducing the surface flaw of a steel material caused by a blooming mill by exactly attaining the structure control so that the reached temperature of a bloom cooler is kept higher than Ar<SB>3</SB>transformation point when the bloom is cooled in a continuous casting. <P>SOLUTION: In the cooling method at a secondary cooling zone in the continuous casting of the steel, the continuously cast bloom is made reach the bloom cooler so that the temperature of the continuously cast bloom is kept higher than the Ar<SB>3</SB>transformation point by deciding the water quantity density in the secondary cooling zone and cooling with the water based on casting speed and the continuously cast bloom temperature at the outlet side of a mold. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、鋼の分塊圧延でのキズを防止するために、連続鋳造におけるブルームクーラーによる組織制御を有効とする2次冷却帯での冷却水量のコントロールに関する。
【0002】
【従来の技術】
従来、鋼の分塊圧延でのキズ防止方法には、a.鋳造されたブルームをAr変態点以上の温度からブルームクーラーで急冷して、表面組織のベイナイト化し、次いで、b.ブルームを連続加熱炉で加熱し、c.所定温度として分塊圧延する。上記のa.で表面組織がベイナイト化しているので、ブルーム表面の結晶粒は粗大化しない。このように結晶粒が小さい状態で分塊圧延することでキズ防止を有効にしている。
【0003】
しかし、操業条件によっては、Ar変態点以下の温度からブルームクーラーに連続鋳造片が装入される場合があり、フェライトが析出し、ブルームクーラーによる急冷でフェライト+マルテンサイト組織になり冷却による粒界割れ、分塊圧延のための加熱後の粒の粗大化の問題がある。
【0004】
【特許文献1】
特開昭62−64462号公報
【0005】
【発明が解決しようとする課題】
従来技術に記載の通り、ブルームクーラー到達温度をAr変態点以上にする必要がある。しかし、連続鋳造の操業では、鋳造速度の変動、鋳込み温度の変動がある。このためブルームクーラー前温度をAr変態点以上に保つことは困難である。たとえ溶鋼の鋳込み時の温度を測定しても、モールドでの冷却条件、2次冷却帯の冷却条件が逐次変動するので、ブルームクーラー前温度の制御が困難である。
【0006】
そこで、この対策として、モールド出側のブルーム温度を測定して、ブルームクーラー到達温度をAr変態点以上にするための2次冷却帯水量を決定する。しかし、このためには鋳造速度の変動によって水量、冷却時間等の要因を考慮して冷却条件をコントロールする必要があり、制御が困難である。
【0007】
そこで本願の発明が解決しようとする課題は、連続鋳造におけるブルームの冷却に際してブルームクーラー到達温度をAr変態点以上に的確にすることにより、分塊圧延による鋼材の表面キズの発生を減少する方法を提供することである。
【0008】
すなわち、連続鋳造におけるブルームの冷却に際してブルームクーラー到達温度をAr変態点以上に的確に組織制御を図って分塊圧延による鋼材の表面キズを低減する方法を提供することであり、このようにAr変態点以上の温度からブルームクーラーで急冷することで、ブルーム表面組織をベイナイト化させ、連続加熱炉での結晶粒の粗大化を抑えて分塊圧延時のキズを防止するものである。
【0009】
【課題を解決するための手段】
上記の課題を解決するための本発明の手段は、請求項1の発明では、鋼の連続鋳造において、鋳造速度及びモールド出側の連続鋳造片温度を基に2次冷却帯の水量密度を決定して水冷することより連続鋳造片の温度をAr変態点以上としてブルームクーラーに到達させることを特徴とする連続鋳造における2次冷却帯での冷却方法である。
【0010】
請求項2の発明では、連続鋳造する鋼は質量割合でC:0.1〜0.5%を含有する鋼であることを特徴とする請求項1の手段の連続鋳造における2次冷却帯での冷却方法である。
【0011】
請求項3の発明では、2次冷却帯の水量密度の決定は、数式(1)および数式(2)を満足するものとしたことを特徴とする請求項1または2の手段の連続鋳造における2次冷却帯での冷却方法である。
【0012】
【数3】
(0.0127×T−0.5767)×0.001≦Wc≦(0.0127×T−0.5767)×0.005・・・(1)
【0013】
【数4】
0.0025≦Wc×t≦0.0167・・・(2)
【0014】
ここに、Wcは水量密度(l/cm・min)で、2次冷却帯でのスプレー冷却による単位時間での単位面積当たりのスプレー水量を示す。
【0015】
は2次冷却帯冷却温度(℃)で、モールド出側のブルーム面中央の温度と2次冷却帯を出た後の320秒後のブルーム面中央の温度の差を指す。
【0016】
tは2次冷却帯通過時間(min)を指す。
【0017】
すなわち、上記の課題を解決するために、鋳造からブルームクーラー到達までの温度解析を行い、ブルームクーラー到達時の表面温度をAr変態点以上にするための2次冷却帯の冷却条件を決定した。そして、この温度解析では、鋳込み温度、モールド冷却条件、2次冷却帯冷却条件、放冷帯冷却条件、凝固潜熱等を考慮して計算を行うものとし、解析精度として、表面温度、ブレークアウト時のブルームシェル厚等が計算及び実測が一致することを確認した。
【0018】
2次冷却帯の冷却条件の制御は、2次冷却帯の水量密度で行う必要がある。なぜならば、モールドの冷却条件は、ブルームの適切なシェル厚さを確保するために、その冷却水量を変動させることは難しい。さらにモールドパウダーの粘性を一定にするためにも冷却条件を変動させられない。さらに設備の制約から、鋳造速度に応じて放冷帯での冷却時間を変えることはできない。また、さらにブルームクーラー到達温度を制御するには、2次冷却帯の水量のコントロールが必要であるなど、種々の問題がある。
【0019】
そこで、2次冷却帯の水量をコントロールする方法として、a.鋼種別のCCT線図からブルームクーラー冷却開始温度を見積もり、Ar変態点以上の温度、つまり、この温度以上でブルームクーラーに到達させる。b.鋳造する鋼種のAr変態点以上にするために必要な2次冷却帯出側温度を見積もる。ところで2次冷却帯出側からブルームクーラーまでの距離は各鋳造設備で決まっている。さらに2次冷却帯出側からブルームクーラーまでの温度降下は、経験的な測定データおよびCAEによる温度解析から予測できる。つまり上記のa.で鋼種別のAr変態点、b.で2次冷却帯出側の温度Tco℃がそれぞれ予測できる。c.モールド出側の温度Tmo℃は放射温度計で測定する。さらに、d.2次冷却帯の冷却温度Tは上記のc.のモールド出側の温度Tmoと上記のb.の2次冷却帯出側から320秒後の温度Toaとの差で、次式(3)で示す。
【0020】
【数5】
(2次冷却帯冷却温度)℃=Tmo℃−Toa℃・・・(3)
【0021】
e.当該発明で狙うのはこの2次冷却帯冷却温度T℃である。
【0022】
【発明の実施の形態】
以下に、実施の形態を通じて本発明を説明する。電気炉で溶製し、さらに取鍋精錬したC:0.1〜0.4%、Cr:0.6〜1.5%を含有する肌焼合金鋼からなる溶鋼をタンディッシュからモールドに注湯して連続鋳造し、断面490mm×380mmのブルームを鋳造した。この連続鋳造過程において、モールド出側のブルームの表面温度を測定し、次いで、この測定した温度を基にモールドに続く2次冷却帯でのブルームを冷却するための冷却水の水量密度を決定してさらに水冷した。続いてブルームは放冷帯を経た後、適宜設定長さに切断する。2次冷却帯を出てから320秒後のブルームの温度を再び測定してブルームクーラーに装入するブルームの温度がAr変態点以上であることを確認してブルームクーラーに装入し、ブルームに50〜350秒間冷却水を噴霧して水冷した。次いで、ブルームを加熱炉に装入して120〜240分間連続加熱して分塊圧延温度とした後、分塊圧延し、φ167mmの棒鋼とした。得られた棒鋼は冷却床に移して冷却した後、磁粉探傷によりキズ検査をした。
【0023】
上記の実施の形態の2次冷却帯でのブルームを冷却するための冷却水の水量密度Wcは、次の数式(1)および数式(2)の2式を満足するものとした。
【0024】
【数6】
(0.0127×T−0.5767)×0.001≦Wc≦(0.0127×T−0.5767)×0.005・・・(1)
【0025】
【数7】
0.0025≦Wc×t≦0.0167・・・(2)
【0026】
ここに、Wcは水量密度(l/cm・min)で、2次冷却帯でのスプレー冷却による単位時間での単位面積当たりのスプレー水量を示す。
【0027】
は2次冷却帯冷却温度(℃)で、モールド出側のブルーム面中央の温度と2次冷却帯を出た後の320秒後のブルーム面中央の温度の差を指す。
【0028】
tは2次冷却帯通過時間(min)を指す。
【0029】
【実施例】
下記の表1の条件1〜9で示す鋼成分を含有する鋼種SCr420を下記の表2に示すモールド出側のブルームの温度、2次冷却帯での冷却温度、2次冷却帯通過時間、2次冷却帯での冷却水の水量密度の各条件で連続鋳造した。このようにして得られたブルームのキズの個数を評価し、同じく表2に示した。なお、キズ個数指数は条件5のキズの個数を基準にしたブルーム1本のキズの割合を示す。
【0030】
【表1】

Figure 2004243390
【0031】
表2に示す各条件を上記の数式(1)および数式(2)に適用すると、下記の表2に示すように、数式(1)を条件1、条件8は満足しないが、条件2〜7および条件9は満足する。数式(2)を条件5および条件8は満足しないが、条件1〜4、条件6、条件7および条件9は満足する。すなわち、水量密度およびキズ個数を網掛けで示す条件2、条件3、条件4、条件6、条件7および条件9は本発明例を示す。これらは数式(1)および数式(2)を共に満足するものである。これに対し、本発明の比較例である条件1、条件5および条件8は数式(1)または数式式(2)のいずれかを満足しないか、共に満足しないものである。
【0032】
【表2】
Figure 2004243390
【0033】
【発明の効果】
以上に説明したように、本願発明は鋼の連続鋳造におけるブルームの温度をAr変態点以上としてブルームクーラーに的確に到達させ得ることができ、分塊圧延における鋼材の表面キズを的確に低減することができ、生産性向上を図ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to control of the amount of cooling water in a secondary cooling zone, which makes it possible to effectively control the structure of a bloom caster in continuous casting in order to prevent scratches in the slab rolling of steel.
[0002]
[Prior art]
Conventionally, methods for preventing scratches in slab rolling of steel include: a. The cast bloom is quenched with a bloom cooler from a temperature not lower than the Ar 3 transformation point to bainite the surface structure, and then b. Heating the bloom in a continuous heating furnace; c. Slab rolling is performed at a predetermined temperature. A. Therefore, the crystal grains on the bloom surface do not become coarse. In this way, sizing and rolling in a state in which the crystal grains are small effectively prevents scratches.
[0003]
However, depending on the operating conditions, a continuous cast piece may be charged into the bloom cooler from a temperature lower than the Ar 3 transformation point, and ferrite precipitates, and becomes a ferrite + martensite structure by rapid cooling by the bloom cooler, resulting in a grain by cooling. There is a problem of intergranular cracking and coarsening of grains after heating for bulk rolling.
[0004]
[Patent Document 1]
JP-A-62-64462 [0005]
[Problems to be solved by the invention]
As described in the prior art, it is necessary to set the temperature at which the bloom cooler reaches the Ar 3 transformation point or higher. However, in the operation of continuous casting, there are variations in casting speed and variations in casting temperature. For this reason, it is difficult to keep the temperature before the bloom cooler at or above the Ar 3 transformation point. Even if the temperature at the time of casting the molten steel is measured, it is difficult to control the temperature before the bloom cooler because the cooling condition in the mold and the cooling condition in the secondary cooling zone are sequentially changed.
[0006]
Therefore, as a countermeasure, the bloom temperature at the mold exit side is measured, and the secondary cooling water amount for determining the bloom cooler arrival temperature to be equal to or higher than the Ar 3 transformation point is determined. However, for this purpose, it is necessary to control the cooling conditions in consideration of factors such as the amount of water and the cooling time due to fluctuations in the casting speed, which is difficult to control.
[0007]
The problem to be solved by the invention of the present application is to reduce the occurrence of surface scratches on the steel material by slab rolling by making the temperature reached by the bloom cooler more accurate than the Ar 3 transformation point when cooling the bloom in continuous casting. It is to provide.
[0008]
In other words, it is an object of the present invention to provide a method for reducing the surface flaw of a steel material by slab rolling by appropriately controlling the structure of a bloom cooler attained temperature equal to or higher than an Ar 3 transformation point when cooling a bloom in continuous casting. By rapidly cooling with a bloom cooler from a temperature of three or more transformation points, the bloom surface structure is made to be bainite, and the coarsening of crystal grains in a continuous heating furnace is suppressed to prevent scratches during slab rolling.
[0009]
[Means for Solving the Problems]
Means of the present invention for solving the above-mentioned problem is that, in the invention of claim 1, in the continuous casting of steel, the water density of the secondary cooling zone is determined based on the casting speed and the temperature of the continuous casting piece on the mold exit side. The cooling method in the secondary cooling zone in continuous casting is characterized in that the temperature of the continuous cast piece is increased to an Ar 3 transformation point or higher to reach a bloom cooler by water cooling.
[0010]
According to the second aspect of the present invention, the steel to be continuously cast is a steel containing C: 0.1 to 0.5% by mass. It is a cooling method.
[0011]
In the invention according to claim 3, the determination of the water density in the secondary cooling zone satisfies the equations (1) and (2). This is a cooling method in the next cooling zone.
[0012]
[Equation 3]
(0.0127 × T 2 −0.5767) × 0.001 ≦ Wc ≦ (0.0127 × T 2 −0.5767) × 0.005 (1)
[0013]
(Equation 4)
0.0025 ≦ Wc × t ≦ 0.0167 (2)
[0014]
Here, Wc is a water amount density (l / cm 2 · min) and indicates a spray water amount per unit area per unit time by spray cooling in a secondary cooling zone.
[0015]
T 2 are the secondary cooling zone cooling temperature (° C.), it refers to the difference in the temperature of the bloom surface central post 320 seconds after leaving the temperature and the secondary cooling zone of bloom surface center of the mold outlet side.
[0016]
t indicates the secondary cooling zone passage time (min).
[0017]
That is, in order to solve the above-mentioned problem, a temperature analysis was performed from casting to reaching the Bloom cooler, and the cooling condition of the secondary cooling zone for setting the surface temperature at the time of reaching the Bloom cooler to the Ar 3 transformation point or more was determined. . In this temperature analysis, calculations are performed in consideration of casting temperature, mold cooling conditions, secondary cooling zone cooling conditions, cooling zone cooling conditions, solidification latent heat, and the like. It was confirmed that the calculated and measured values of the bloom shell thickness and the like were the same.
[0018]
It is necessary to control the cooling condition of the secondary cooling zone based on the water density of the secondary cooling zone. This is because it is difficult for the cooling condition of the mold to vary the amount of cooling water in order to secure an appropriate shell thickness of the bloom. Further, the cooling condition cannot be changed in order to keep the viscosity of the mold powder constant. Furthermore, due to equipment limitations, it is not possible to change the cooling time in the cooling zone according to the casting speed. Further, there are various problems such as controlling the amount of water in the secondary cooling zone in order to further control the temperature reached by the bloom cooler.
[0019]
Therefore, as a method of controlling the amount of water in the secondary cooling zone, a. The cooling start temperature of the bloom cooler is estimated from the CCT diagram for each steel type, and the temperature reaches the Bloom cooler at a temperature equal to or higher than the Ar 3 transformation point, that is, at or above this temperature. b. Estimate the secondary cooling outlet temperature required to make the steel type to be cast an Ar 3 transformation point or higher. Incidentally, the distance from the secondary cooling zone exit side to the bloom cooler is determined in each casting facility. Further, the temperature drop from the secondary cooling zone exit side to the bloom cooler can be predicted from empirical measurement data and temperature analysis by CAE. That is, a. , Ar 3 transformation point of steel type, b. Thus, the temperature Tco ° C. on the secondary cooling zone exit side can be predicted. c. The temperature Tmo ° C on the mold exit side is measured with a radiation thermometer. Further, d. Secondary cooling zone the cooling temperature T 2 is above c. And the temperature Tmo on the mold exit side of b. And the difference from the temperature Toa 320 seconds after the secondary cooling band exit side is expressed by the following equation (3).
[0020]
(Equation 5)
T 2 (secondary cooling zone cooling temperature) ° C. = Tmo ° C.−Toa ° C. (3)
[0021]
e. The present invention aims at the secondary cooling zone cooling temperature T 2 ° C.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described through embodiments. A molten steel made of case hardened alloy steel containing C: 0.1 to 0.4% and Cr: 0.6 to 1.5%, which was melted in an electric furnace and further refined with a ladle, was poured from a tundish into a mold. Hot water was continuously cast, and a bloom having a cross section of 490 mm × 380 mm was cast. In this continuous casting process, the surface temperature of the bloom on the mold exit side is measured, and then the water density of the cooling water for cooling the bloom in the secondary cooling zone following the mold is determined based on the measured temperature. And further water cooled. Subsequently, after passing through the cooling zone, the bloom is appropriately cut to a set length. The temperature of the bloom 320 seconds after leaving the secondary cooling zone is measured again, and it is confirmed that the temperature of the bloom to be charged into the bloom cooler is equal to or higher than the Ar 3 transformation point. For 50-350 seconds. Next, the bloom was charged into a heating furnace and continuously heated for 120 to 240 minutes to reach a slab rolling temperature, followed by slab rolling to obtain a φ167 mm steel bar. The obtained steel bar was transferred to a cooling floor and cooled, and then a flaw inspection was performed by magnetic particle flaw detection.
[0023]
The water volume density Wc of the cooling water for cooling the bloom in the secondary cooling zone of the above embodiment satisfies the following two expressions (1) and (2).
[0024]
(Equation 6)
(0.0127 × T 2 −0.5767) × 0.001 ≦ Wc ≦ (0.0127 × T 2 −0.5767) × 0.005 (1)
[0025]
(Equation 7)
0.0025 ≦ Wc × t ≦ 0.0167 (2)
[0026]
Here, Wc is a water amount density (l / cm 2 · min) and indicates a spray water amount per unit area per unit time by spray cooling in a secondary cooling zone.
[0027]
T 2 are the secondary cooling zone cooling temperature (° C.), it refers to the difference in the temperature of the bloom surface central post 320 seconds after leaving the temperature and the secondary cooling zone of bloom surface center of the mold outlet side.
[0028]
t indicates the secondary cooling zone passage time (min).
[0029]
【Example】
The steel type SCr420 containing the steel components shown in the conditions 1 to 9 in Table 1 below was used to reduce the temperature of the bloom on the mold exit side shown in Table 2 below, the cooling temperature in the secondary cooling zone, the passage time in the secondary cooling zone, Continuous casting was performed under each condition of the water volume density of the cooling water in the next cooling zone. The number of scratches in the bloom thus obtained was evaluated, and is shown in Table 2. In addition, the flaw number index indicates a rate of flaws of one bloom based on the number of flaws in the condition 5.
[0030]
[Table 1]
Figure 2004243390
[0031]
When each condition shown in Table 2 is applied to the above-mentioned expressions (1) and (2), as shown in the following table 2, the expression (1) does not satisfy the conditions 1 and 8, but the conditions 2 to 7 And Condition 9 are satisfied. Condition (5) and Condition (8) do not satisfy Expression (2), but Condition (1) to Condition (4), Condition (6), Condition (7) and Condition (9) are satisfied. That is, Condition 2, Condition 3, Condition 4, Condition 6, Condition 7, and Condition 9 indicating the water density and the number of flaws by shading are examples of the present invention. These satisfy both Expression (1) and Expression (2). On the other hand, Condition 1, Condition 5, and Condition 8, which are comparative examples of the present invention, do not satisfy either Equation (1) or Equation (2) or do not satisfy both.
[0032]
[Table 2]
Figure 2004243390
[0033]
【The invention's effect】
As described above, the present invention can accurately reach the Bloom cooler by setting the temperature of the bloom in the continuous casting of steel to the Ar 3 transformation point or higher, and appropriately reduce the surface flaw of the steel material in the slab rolling. And productivity can be improved.

Claims (3)

鋼の連続鋳造において、鋳造速度及びモールド出側の連続鋳造片温度を基に2次冷却帯の水量密度を決定して水冷することより連続鋳造片の温度をAr変態点以上としてブルームクーラーに到達させることを特徴とする連続鋳造における2次冷却帯での冷却方法。In continuous casting of steel, the bloom cooler the temperature of the continuous casting strip as above Ar 3 transformation point than water cooling by determining the water flow rate of the secondary cooling zone on the basis of the continuous casting strip temperature of the casting speed and mold exit side A cooling method in a secondary cooling zone in continuous casting, characterized in that the cooling method is performed. 連続鋳造する鋼は質量割合でC:0.1〜0.5%を含有する鋼であることを特徴とする請求項1に記載の連続鋳造における2次冷却帯での冷却方法。The method of cooling in a secondary cooling zone in continuous casting according to claim 1, wherein the steel to be continuously cast is a steel containing C: 0.1 to 0.5% by mass. 2次冷却帯の水量密度の決定は、数式(1)および数式(2)を満足するものとしたことを特徴とする請求項1または2に記載の連続鋳造における2次冷却帯での冷却方法。
Figure 2004243390
Figure 2004243390
ここに、Wcは水量密度(l/cm・min)で、2次冷却帯でのスプレー冷却による単位時間での単位面積当たりのスプレー水量を示す。
は2次冷却帯冷却温度(℃)で、モールド出側のブルーム面中央の温度と2次冷却帯を出た後の320秒後のブルーム面中央の温度の差を指す。
tは2次冷却帯通過時間(min)を指す。
The cooling method in the secondary cooling zone in continuous casting according to claim 1 or 2, wherein the determination of the water density in the secondary cooling zone satisfies Expression (1) and Expression (2). .
Figure 2004243390
Figure 2004243390
Here, Wc is a water amount density (l / cm 2 · min) and indicates a spray water amount per unit area per unit time by spray cooling in the secondary cooling zone.
T 2 are the secondary cooling zone cooling temperature (° C.), it refers to the difference in the temperature of the bloom surface central post 320 seconds after leaving the temperature and the secondary cooling zone of bloom surface center of the mold outlet side.
t indicates the secondary cooling zone passage time (min).
JP2003037490A 2003-02-14 2003-02-14 Cooling method at secondary zone in continuous casting Pending JP2004243390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003037490A JP2004243390A (en) 2003-02-14 2003-02-14 Cooling method at secondary zone in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003037490A JP2004243390A (en) 2003-02-14 2003-02-14 Cooling method at secondary zone in continuous casting

Publications (1)

Publication Number Publication Date
JP2004243390A true JP2004243390A (en) 2004-09-02

Family

ID=33022274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003037490A Pending JP2004243390A (en) 2003-02-14 2003-02-14 Cooling method at secondary zone in continuous casting

Country Status (1)

Country Link
JP (1) JP2004243390A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7549797B2 (en) 2007-02-21 2009-06-23 Rosemount Aerospace Inc. Temperature measurement system
CN101983800A (en) * 2010-11-17 2011-03-09 中冶南方工程技术有限公司 Secondary cooling water distribution advanced control method for billet continuous casting machine
CN102059333A (en) * 2010-11-17 2011-05-18 中冶南方工程技术有限公司 Advanced secondary cooling water control system of billet continuous casting machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7549797B2 (en) 2007-02-21 2009-06-23 Rosemount Aerospace Inc. Temperature measurement system
CN101983800A (en) * 2010-11-17 2011-03-09 中冶南方工程技术有限公司 Secondary cooling water distribution advanced control method for billet continuous casting machine
CN102059333A (en) * 2010-11-17 2011-05-18 中冶南方工程技术有限公司 Advanced secondary cooling water control system of billet continuous casting machine
CN101983800B (en) * 2010-11-17 2012-09-05 中冶南方工程技术有限公司 Secondary cooling water distribution advanced control method for billet continuous casting machine

Similar Documents

Publication Publication Date Title
JP4829972B2 (en) Stainless steel slab quality online prediction system and prediction method using the same
RU2433885C2 (en) Method of continuous casting of billet with small cross section
CN107282900B (en) MnS inclusion size prediction technique in a kind of steel continuous casting billet
CN104364409A (en) Improved aluminum alloys and methods for producing the same
Yang et al. A method to control the transverse corner cracks on a continuous casting slab by combining microstructure analysis with numerical simulation of the slab temperature field
JP2004243390A (en) Cooling method at secondary zone in continuous casting
JP2015193040A (en) COOLING METHOD OF CASTING PIECE OF HIGH Si SPRING STEEL
JPS638868B2 (en)
KR101529287B1 (en) Continuous casting methods
CN111375736B (en) Casting method of martensite precipitation hardening stainless steel
JP2572807B2 (en) Manufacturing method of lead free-cutting steel by continuous casting method
JP2664572B2 (en) Temperature prediction method for unsolidified part of slab in continuous casting
KR101204946B1 (en) Device for predicting surface defect of products in continuous casting process and method therefor
Drożdż The influence of the superheat temperature on the slab structure in the continuous steel casting process
JP3820961B2 (en) Steel continuous casting method
JP2006231400A (en) Mold powder for continuous casting of medium carbon steel, and continuous casting method
JP2003181608A (en) Method for cooling bloom outside continuous casting machine
JP2015193041A (en) Cooling method of casting piece of spring steel
Pedersen et al. Undercooling and nodule count in thin walled ductile iron castings
JP3495006B2 (en) Steel continuous casting method
JP2001179413A (en) Method for continuously casting steel
WO2022034864A1 (en) Method for continuously casting steel and test solidification device for steel
JPH1058093A (en) Method for continuously casting steel
JP3464331B2 (en) Continuous casting method and continuous casting apparatus for non-ferrous metals
KR101545937B1 (en) Method for determining the occurence of surface crack of slab