JP2004243229A - Method of removing contaminant - Google Patents

Method of removing contaminant Download PDF

Info

Publication number
JP2004243229A
JP2004243229A JP2003036039A JP2003036039A JP2004243229A JP 2004243229 A JP2004243229 A JP 2004243229A JP 2003036039 A JP2003036039 A JP 2003036039A JP 2003036039 A JP2003036039 A JP 2003036039A JP 2004243229 A JP2004243229 A JP 2004243229A
Authority
JP
Japan
Prior art keywords
injection
well
suction
packers
heating fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003036039A
Other languages
Japanese (ja)
Other versions
JP2004243229A5 (en
JP4042969B2 (en
Inventor
Norio Saito
紀夫 西塔
Kazuya Kitamura
和也 北村
Yoshitomo Kinoshita
吉友 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raito Kogyo Co Ltd
Original Assignee
Raito Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raito Kogyo Co Ltd filed Critical Raito Kogyo Co Ltd
Priority to JP2003036039A priority Critical patent/JP4042969B2/en
Publication of JP2004243229A publication Critical patent/JP2004243229A/en
Publication of JP2004243229A5 publication Critical patent/JP2004243229A5/ja
Application granted granted Critical
Publication of JP4042969B2 publication Critical patent/JP4042969B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/002Reclamation of contaminated soil involving in-situ ground water treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C2101/00In situ

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To remove a contaminant more effectively and efficiently by virtue of an appropriate and exact heating. <P>SOLUTION: When removing at least one of volatile contaminant, non-volatile water soluble contaminant, non volatile and water insoluble contaminant which are all maintained underground, a pouring well PW and a suction well SW are separately provided within a range from an area in which the removing is carried out to its adjacent area, thereby pouring a heated fluid G from the pouring well PW and performing a suction through the suction well SW, thus removing the contaminant. The heated fluid G is poured to the removing area from a pouring position which is a specified position in the depth direction of the pouring well PW, with such pouring position being sealed with a packer 6, 6 fore and aft. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、土壌や地下水中に保持された揮発性汚染物質、非揮発性の水溶性汚染物質および非揮発性の非水溶性汚染物質を現場で除去する方法に関するものである。
【0002】
【従来の技術】
従来、地中に保持された揮発性汚染物質、非揮発性の水溶性汚染物質および非揮発性の非水溶性汚染物質等を現場で除去する方法として、除去対象領域の横方向一方側に上下方向に沿う注入井戸および他方側に上下方向に沿う吸引井戸をそれぞれ設け、注入井戸から蒸気を注入する一方で吸引井戸から吸引を行い、蒸気を水平方向に沿って除去対象領域を通過させる方法が提案されている(例えば、特許文献1参照)。
【0003】
また、地下水中の非水溶液(NAPL:Non−Aqueous PhaseLiquid)の除去の容易化のために、蒸気に代えて高温水を用いる技術も提案されている(例えば、特許文献2参照)。
【0004】
さらに、構造物直下における汚染物質除去を容易にするべく、除去対象領域の上下両側に水平方向に沿う注入井戸及び吸引井戸をそれぞれ形成し、蒸気を上下方向に沿って通過させる技術も提案されている。(例えば、特許文献3参照)。
【0005】
【特許文献1】
特許第2660307号公報
【特許文献2】
特開2002−11456号公報
【特許文献3】
特開2002−239524号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来技術は、いずれも対象領域の全体に対して注入井戸の全体から共通の注入条件で注入を行うものであったため、例えば注入井戸の深さ方向に地層特性が異なるような場合において、各層に適した注入条件で注入を行うことができず、加熱流体が局所的に流通することにより所望の加熱効果・加熱効率が得られず、除去レベルが注入井戸の深さ方向に不均一になる、あるいは除去効率が低いといった問題点を有していた。
【0007】
そこで、本発明の主たる課題は、より効果的かつ効率的な汚染物質の除去を可能とすることにある。
【0008】
【課題を解決するための手段】
上記課題を解決した本発明は、次記のとおりである。
<請求項1記載の発明>
地中に保持された汚染物質を除去するにあたり、除去対象領域からその近傍領域にわたる範囲内に注入井戸および吸引井戸を間隔をあけてそれぞれ設け、前記注入井戸から加熱流体を注入する一方で、吸引井戸から吸引を行い汚染物質を取り出す方法において、
注入井戸の深さ方向の所定位置を注入部位とし、注入部位の前後をシールした状態で当該注入部位から前記除去対象領域に対する加熱流体の注入を行う、汚染物質の除去方法。
【0009】
(作用効果)
このように、注入井戸の深さ方向の所定位置を注入部位とし、注入部位の前後をシールした状態で当該注入部位から加熱流体の注入を行うと、井戸深さ方向の注入範囲を限定することができ、当該深さ範囲の地層特性に適合した条件で注入を行うことができるようになる。よって、より効果的かつ効率的な汚染物質の除去が可能となる。
【0010】
<請求項2記載の発明>
軸方向に間隔をおいて設けられた複数のパッカーを外面に有し、パッカー間に注入口を有する注入管を前記注入井戸に挿入し、前記隣り合うパッカーを膨出させて当該パッカー間の前後をシールした状態で、当該パッカー間の注入口から前記加熱流体を注入する、請求項1記載の汚染物質の除去方法。
【0011】
(作用効果)
注入部位の前後をシールする手段としては、パッカーが好ましい。
【0012】
<請求項3記載の発明>
前記注入管として、軸方向に間隔をおいた少なくとも3箇所にパッカーをそれぞれ有し、かつ各パッカー間に注入口をそれぞれ有するものを用い、
各パッカー間の注入口から順次または同時に注入を行い、かつこの際、各パッカー間毎に独立した注入条件でそれぞれ注入を行うようにする、請求項2記載の汚染物質除去方法。
【0013】
(作用効果)
このように、各パッカー間の注入口から順次または同時に注入を行い、かつこの際、各パッカー間毎に独立した注入条件でそれぞれ注入を行うことによって、注入井戸の深さ方向に地層特性が異なるような場合において、各層に適した注入条件で注入することができ、除去レベルが注入井戸の深さ方向に均一となり、均一な汚染物質の除去を効率的に実施できるようになる。
【0014】
<請求項4記載の発明>
前記汚染物質が、揮発性汚染物質、非揮発性の水溶性汚染物質および非揮発性の非水溶性汚染物質のうちの少なくとも一種である、請求項1〜3のいずれか1項に記載の汚染物質除去方法。
【0015】
(作用効果)
本発明は、かかる汚染物質の除去に特に好適である。
【0016】
【発明の実施の形態】
以下、本発明の実施形態について詳説する。
(基本的構成)
図1は、本発明に係る汚染物質の除去方法の基本原理を概念的に示したものである。本方法では、注入井戸PWおよび吸引井戸SWを間隔をあけて設け、注入井戸PWから加熱流体を注入する一方で、吸引井戸SWから吸引を行い汚染物質を取り出すようにする。
【0017】
すなわち、加熱流体を注入井戸PWに注入する一方で、吸引井戸SWから吸引を行う(吸引井戸に負圧をかける)と、注入した加熱流体は吸引井戸SWへ向かって地中を通過しながら周囲を加熱する。これによって、揮発性汚染物質は揮発し、また他の非揮発性の汚染物質は加熱により、地中を移動し易くなる。その結果、これらの汚染物質P1,P2,P3は加熱流体、その液体、または地中の水分等に伴って吸引井戸PWへ移動し、吸引井戸SWから取り出すことができる。
【0018】
注入と吸引とを同時に停止すると、その処理時間にもよるが、注入した加熱流体が汚染物質P1,P2,P3を含んだ状態で地中に残留する。よって、注入を停止した状態で吸引を行うこと、例えば所定時間の注入及び吸引の後、注入を停止するとともに吸引は継続して行うことも、場合によっては好ましい形態である。加熱の程度によっては、加熱流体の注入を停止した後においても、地中の温度は汚染物質除去に有効なレベルにあるため、所定時間の注入後に注入を停止し吸引のみ行っても、地中に蓄えられた熱によって汚染物質の移動除去が促進される。また、注入を停止した状態での吸引により注入領域を乾燥させることができるメリットもある。このメリットは、特に加熱流体が蒸気のような気体であるときに顕著である。
【0019】
本発明が対象とする汚染物質は、地中に保持された揮発性汚染物質、非揮発性の水溶性汚染物質および非揮発性の非水溶性汚染物質のうちの少なくとも一種の汚染物質であり、これらは、地下水位よりも上の地中に保持されたものP1、地下水面に存在するものP2、地下水位下に存在するものP3として、かつある領域を占める汚染物質帯として、又は土粒子間の微小領域に保持された状態で存在する。具体的な汚染物質の例としては、トリクロロエチレン、テトラクロロエチレン、ベンゼン等の揮発性有機汚染物質、非揮発性の水溶性汚染物質、等の非揮発性の非水溶性汚染物質を挙げることができるが、本発明はこれらに限定されるものではない。
【0020】
注入井戸PW及び吸引井戸SWの深度は、対象とする汚染物質の深度や存在形態に応じて適宜定めることができる。例えば地下水位よりも上の深さ方向範囲を対象とするときには、井戸PW,SWの深さを地下水位よりも上に設定でき、また、地下水位よりも上の範囲から地下水位下の範囲までの全体を処理対象とするときには、井戸PW,SWの深さを地下水位下に設定できる。
【0021】
一方、井戸PW,SWの数及び配置は、施工面積、施工深度、加熱効率、吸引効率、除去効率(処理時間)、除去対象物質の種類、加熱流体の種類等に応じて各々適宜定めることができる。注入井戸PWおよび吸引井戸SWは、地盤条件および注入条件(加熱流体の種類・温度、処理時間等)等を考慮し、上述の原理により汚染物質の除去が可能な適切な間隔で、除去対象領域からその近傍領域にわたる範囲内に少なくとも各一つ設ける。より具体的には、施工面積が狭く、長さ及び幅にあまり差がなく、かつ加熱効率を重視する場合には、施工領域の中心にのみ吸引井戸3Wを設け、施工領域の周囲を囲むように間隔をおいて複数の注入井戸PW,PWを設けたり、反対に加熱効率を重視せず、吸引効率を重視するならば、施工領域の中心にのみ注入井戸を設け、施工領域の周囲を囲むように間隔をおいて複数の吸引井戸を設けたりすることができる。また、施工領域が広い又は細長い場合には、その広さや長さに応じて複数の注入井戸および複数の吸引井戸を規則的にまたは不規則に配列形成することができる。簡素な施行形態として、除去対象領域を挟んだ一方側に注入井戸を設け、他方側に吸引井戸を設ける形態を採ることもできる。
【0022】
本発明における加熱流体は、基本的に、地中に存在する状態の除去対象物質を加熱しうるものであればその温度の高低を問わず、また気体・液体等の状態を問わず使用でき、例えば汚染物質が存在する地中位置における温度が15℃であれば、それよりも温度の高い常温水や常温空気を用いても十分な効果が発揮される。具体的な加熱流体としては、蒸気が好適であるが、施工面積、施工深度、対象物質の温度、加熱効率、吸引効率、除去効率(処理時間)、除去対象物質の種類に応じて、高温若しくは常温のエアー、高温若しくは常温の水、蒸気、またはこれらの少なくとも二種の混合流体を用いることができ、また、その温度は通常の場合で15℃以上、汚染物質の種類によっては30℃以上、加熱効率を考慮すれば60〜100℃とするのが好ましい。例えば、前述のように地下水中の非水溶液として汚染物質が存在する場合には、高温水のみ、またはこれを主として他の蒸気や高温若しくは常温の空気との混合流体を使用できる。揮発性汚染物質を主対象とする場合や、地中の乾燥性を確保したい場合、また流体の地中通過性を重視する場合等においては、地上の空気を主とし、これに、汚染物質の種類や地中の温度等を考慮して蒸気を混合して温度調整した混合流体を用いるのも好ましい。また本発明では、地中に注入可能であり且つ汚染物質を加熱しうるものであれば、他の流体でも基本的には使用可能であるが、安価で環境を汚染しないため、蒸気、水、空気が好適である。
【0023】
(第1の実施形態)
本発明は、加熱流体の注入手法にポイントがあり、注入井戸の深さ方向の所定位置を注入部位とし、注入部位の前後をシールした状態で当該注入部位から前記除去対象領域に対する加熱流体の注入を行うものである。
【0024】
かかるシールを伴う注入手段としては、例えば図2に示すような、地盤に薬液を注入するために使用される、いわゆる二重管パッカー式注入管を応用できる。通常の二重管パッカー式注入管は、高温流体を注入することを想定したものではないので、耐熱性を考えた材質選定が必要であるが、基本構造および原理は薬液注入におけるものと同様のものを用いることができる。
【0025】
図示例について更に詳細に説明すると、本例の注入装置は注入外管と注入内管20とを有し、注入外管は外管10により構成されている。外管10は第一管1、第二管2及び第三管3を有する。第一管1の壁面には透孔4が形成され、この透孔4を覆って変形可能なゴムなどの可撓性スリーブ5が設けられ、このスリーブ5を跨いで、軸方向前後がそれぞれ、第一管1と螺合した第二管2および第三管3に液密に封止されたゴムなどの可撓性のパッカー6が装着されている。
【0026】
図3に示されているように、外管10は単位管として用意され、単位管の第二管2と他の単位管の第三管3とが螺合連結されて長尺の注入外管とされうる。
【0027】
連結型の注入外管の場合、パッカー6は軸方向に間隔を置いて複数、たとえば3個以上外面部に装着されうる。さらに、隣接パッカー6,6の間にそれぞれ注入口7が、第三管3に形成されている。注入口7は一つのほか、図2に示すように複数、たとえば4段で各段において90度間隔で合計16個形成することができる。これらの注入口7,7…は、周辺地盤からの砂粒子の侵入防止手段を採用することが望ましく、この砂粒子の侵入防止手段としては、各段を図2に示すように、ゴムなどの可撓性スリーブ8で覆う、あるいは加熱流体の送給圧により破断するたとえば塩化ビニル製の被膜を各段もしくは全体にわたって被覆するなどの態様を採用できる。
【0028】
一方、図2に示すように、注入内管20は外管10に挿入可能であり、外管10内面に吐出口22の前後が液密に密着し、かつ内部に加熱流体を圧送するものであれば限定されないが、その構造例として、単純に、加熱流体の送給路を有する内管主体21の吐出口22の前後に、ゴムなどのパッカー部材23,24を設けたもののほか、特公昭63−44893号公報の第4図に図示されたものをそままま利用することができる。
【0029】
パッカー6,6間の寸法としては、10cm〜2m、特に好ましくは25〜50cm程度とすることができる。また、図7に示すように、パッカー6とパッカー6,6間寸法の合計長は、加熱対象範囲(たとえば5〜6m程度)にほぼ一致させるのが好ましい
【0030】
かかる注入装置を用いて施工を行う際には、除去対象領域に対して設定した所定位置に吸引井戸及び注入井戸をそれぞれ形成する。すなわち先ず、図3に示すように、対象地盤30を所定深度まで掘削して挿入孔31を形成する。この場合、挿入孔31の崩落防止のためにケーシング50を用いて削孔することが望ましい。吸引井戸SW及び注入井戸PWの形成の順番は適宜定めればよく、いずれを先に行っても、また複数の削孔機を用いて同時に行っても良い。
【0031】
挿入孔31を形成したならば、井戸の深さや地盤の性状にもよるが、少なくとも吸引井戸SWに関しては、また好適には注入井戸PWについても、図4に示すようにストレーナ51を設置し、孔壁の保護および孔内と地盤内との連通状態の確保を図るのが好ましい。
【0032】
しかる後、図5に示すように、吸引井戸SWには、例えば吸引管61およびその先端に接続された揚水ポンプ62からなる吸引装置60を挿入する等により、井戸内を吸引するための手段を設ける。また注入井戸PWには注入外管10を挿入する。ケーシング50は、これら装置の挿入後に撤去するか、あるいはストレーナ51を設置する場合にはその設置後に撤去するのが好ましい。注入外管10、吸引装置60、ストレーナ51は直接またはケーシング50とともに建込むことができる。
【0033】
また、汚染物質の除去ステップに先立って、少なくとも吸引井戸SWについては、また好適には注入井戸PWについても、口元における吸引装置60または注入外管10と孔壁との隙間をジャケット52(ゴム等の可撓性シール材)等によりシールする。
【0034】
注入外管10を設置したならば、加熱流体の注入に先立って、図6に示すように注入内管20を挿入し、パッカー6位置に吐出口22を位置させてそのパッカー6の透孔4と吐出口22とを連通させた状態で、注入内管20内の流路を通して膨出用流体、好適には固結性材料たとえばセメントもしくはセメントベントナイトなどを圧送し、隣接するパッカー6,6のそれぞれの内部に送り込んでこれらのパッカー6,6を膨出させて挿入孔31壁面に密着させる。パッカーの膨出用流体としては、セメントベントナイトのほか、水や空気を用いることもできるが、セメントベントナイトであると、これがやがて硬化し、強固にパッカー6を挿入孔31の孔壁面に密着させることができる点で好ましい。
【0035】
この膨出用流体40の送り込みに際しては、前述のように、注入内管20を用いてその内部流路を通して吐出口22から吐出させるほか、他の適宜の手段を用いることができる。いずれにしても、膨出用流体40は透孔4を通り、その送給圧によりスリーブ5が変形し、たとえばそのスリーブ5両端部を第一管1の外面と離間させながらパッカー6内に送り込まれる。パッカー6が十分に膨出した時点で、膨出用流体40の送り込みを停止する。すると、スリーブ5は復元して、透孔4を封止する。このパッカー6の膨出は、少なくとも隣接パッカー6,6において行えばよいが、必要ならば対象のパッカーの全てを順次膨出させておいてもよい。
【0036】
この膨出用流体の送り込みに際しては、前述のように、注入内管20を用いてその内部流路を通して吐出口22から吐出させるほか、他の適宜の手段を用いることができる。いすれにしても、膨出用流体は透孔4を通り、その送給圧によりスリーブ5が変形し、たとえばそのスリーブ5両端部を第一管1の外面と離間させながらパッカー6内に送り込まれる。パッカー6が十分に膨出した時点で、膨出用流体の送り込みを停止する。すると、スリーブ5は復元して、透孔4を封止する。このパッカー6の膨出は、少なくとも隣接パッカー6,6において行えばよいが、必要ならば対象のパッカーの全てを順次膨出させておいてもよい。
【0037】
かかる段取りが終了したならば、図7に示すように、パッカー6,6を作用させた状態で、注入外管10内に注入内管20を挿入し、あるいは注入内管20を膨出用流体40の送り込みに用いるのであればそのまま注入内管20を所定位置まで挿入し、注入内管20に膨出用流体40に代えて加熱流体を圧送して吐出口22からから吐出させ、注入口7,7…を通して、可撓性スリーブ8を変形させつつもしくは被膜を破断させて、注入井戸PWから加熱流体Gを周辺地盤に向かって浸透注入させる。
【0038】
加熱流体Gの注入に際しては、好適には注入内管20を外管10の最深部まで挿入し、隣接パッカーをまたは前述のように全てのパッカーを膨出させた後に、注入内管20を対応する注入口7,7…形成部位に対応する1ステップごと引き上げて順次注入することが望ましい。逆に、上部から最深部に向かうステップダウン方式や適宜の選択位置順で上下させる方式を採用できる。
【0039】
この注入と同時に、または注入に先立って若しくは注入後所定時間経過後に、吸引井戸SWを介して吸引を行う。本発明では、吸引を連続的に行いつつその一方で順次注入個所を変更するのが望ましいが、注入個所変更時に吸引を停止することもできる。
【0040】
かかる吸引によって、前述のように、注入した加熱流体Gは吸引井戸SWへ向かって地中を通過しながら周囲を加熱する。そして、揮発性汚染物質は揮発し、また他の非揮発性の汚染物質は加熱により、地中を移動し易くなる。その結果、これらの汚染物質は加熱流体G、その液体、または地中の水分等に伴われて吸引井戸SWへ向かって移動し、吸引井戸SWから取り出される。本実施形態では、吸引位置を吸引井戸SWの深さ方向に限定していないので、加熱中の領域のみならず、図示のように加熱済みの領域についてもその加熱効果が有効に作用している間であって吸引を行っている際には、当該領域から吸引井戸SWへの汚染物質の移動除去が継続される。吸引物は、必要に応じて気液分離等を行った後、図示しない浄化装置により浄化したり、浄化処理後または未浄化のまま貯留槽等に蓄えたりすることができる。
【0041】
本第1の実施形態の注入装置では、図8にも示すように、隣接パッカー6,6と挿入孔31壁面と注入外管10外面との間を充填物のない空間とし、その空間全体から加熱流体Gを注入することができ、この場合、注入口7,7…を通して注入された加熱流体Gは、隣接パッカー6,6間において、加熱流体Gがその広い空間に満たされつつ地盤30内に注入される。したがって、その空間に面する挿入孔31の全体を浸透対象面積として浸透注入されるので、一つの注入ゾーンから大量の加熱流体Gを注入することが可能となり、地盤内に浸透した加熱流体Gは遠くまで浸透注入される。
【0042】
加熱流体Gの注入速度・注入圧は、地盤の浸透許容速度・許容圧力に応じて定めるのが好ましい。
【0043】
そして、このように、注入井戸の深さ方向の所定位置の前後をパッカーによりシールした状態で当該注入部位から加熱流体の注入を行うと、井戸深さ方向の注入範囲を限定することができ、当該深さ範囲の地層特性に適合した条件で注入を行うことができる。したがって、例えば、ボーリング調査等の公知の地質調査手法により地層構造や汚染物質の種類、その存在位置等を予め把握しておき、この調査結果に基づいて各深さ範囲における適切な注入条件を定め、各パッカー間毎に独立した注入条件でそれぞれ注入を行うことによって、注入井戸の深さ方向に地層特性が異なるような場合でも、各注入部位に適した注入条件(注入圧・注入速度・注入量・加熱流体の種類等)で注入することができる。
【0044】
さらに詳細に説明すると、このように注入条件をスライドさせる場合、地層の種類(砂礫等)の影響を考慮すると、注入圧や加熱流体の種類が重要なファクターとなるから、これらを注入位置に応じて変更するのが望ましい。また、汚染物質の種類に着目すると、例えば地下水位以下に存在する非水溶液を除去する場合、地下水位以下では高温水を用い、それ以外の部位では蒸気を用いるといったことも可能である。このように、本発明によれば、注入位置毎に適切な注入条件で限定注入を行うことができるため、均一な汚染物質の除去を効率的に実施できるようになるのである。
【0045】
ところで、図示形態では、注入内管20の注入系統が一系統になっているため、複数位置における同時注入は不可能であるが、注入系統を複数設けることによって注入条件の独立性を維持しながらも複数箇所における同時注入が可能となる。例えば、図示しないが、注入内管の吐出口を、外管の注入孔7と対応する間隔をもって長手方向に複数設け、各吐出口に対する供給路を個別に設け、各吐出口から個別の注入条件(独立していれば異なっていても、同じでも良い)で同時注入することもできる。この場合、注入内管を二重管等の多重管構造とするか、あるいは複数本の管を束ねたパラレル管構造とすることにより、各吐出口に対する独立の供給路を構成することができる。
【0046】
他方、第2の手法として、注入範囲を、図7に示すように井戸深さ方向(軸方向)に一部重ねて(ラップさせて)、連続的な範囲に加熱流体を注入するほか、図9に示すように、注入井戸深さ方向に間隔をあけた複数範囲に加熱流体を注入する、換言すれば注入範囲を井戸深さ方向に不連続にすることもできる。その他は、第1の手法と同様である。
【0047】
また、第3の手法として、処理対象の深さ範囲が狭い場合等、必要に応じて、一つの注入場所当り、井戸深さ方向の一箇所の範囲のみ加熱流体を注入することもできる。このとき、図10に示すように、先端より基部側にパッカー6を外面部に有し、かつこのパッカー6より先端側に注入口7を有する注入管10を挿入孔31内に相対的に挿入し、パッカー6を膨出させて挿入孔31壁面に密着させ、このときパッカー6と挿入孔31壁面と注入管10外面とで囲まれる領域を空間とした状態で、注入口7から加熱流体Gを注入するようにしてもよい。その他は、第1の手法と同様である。
【0048】
さらに、本発明の範囲において、他の種類の二重管パッカー式注入装置及び注入方法を用いることも、もちろん可能である。
【0049】
(第2の実施形態)
シールを伴う注入手段の他の形態としては、周知のスリーブ注入工法に代表されるようなシールグラウトを利用した注入工法も応用することができる。図11はスリーブ注入工法の応用例を示している。すなわち、先ず挿入孔31を形成し、その内部に先ずシールグラウトS(セメントベントナイト充填材)を充填した後、直ちにスリーブパイプ60を挿入設置し、シールグラウトSが固結するまで養生期間をとり、しかる後に、スリーブパイプ60内に注入内管20(前述の第1実施形態の注入内管と同様に、ダブルパッカー間に注入孔を有するもの)を挿入し、所望のゴムスリーブ61個所に位置決めした状態で、加熱流体Gを注入内管20を通じてゴムスリーブ61の吐出間隙から吐出させ、加熱流体の供給圧によりシールグラウトSを割裂させながら、地盤内に加熱流体Gを注入する。
【0050】
また、より簡素な形態として、図12に示すように、スリーブパイプ60を省略し、シールグラウトS内に注入内管20を直接挿入して注入を行うこともできる。
【0051】
この場合、充填材Sの割裂部位はピンポイントになり、その割裂部位のみから加熱流体Gが注入され、また地盤に対する浸透面積は割裂部位に面する面積の合計であるため、前述の第1の実施形態と異なり、浸透面積がきわめて小さくなる。本第2の実施形態と前述の第1の実施形態とのいずれを選択するかは適宜定めれば良いが、前者は井戸深さ方向の注入範囲が狭くなりすぎる結果、地盤内に割裂が発生して注入加熱範囲が極端に狭くなる傾向があり、加熱効率が低下するケースも考えられるため検討が必要である。よって、一般的には後者の注入形態のほうが好ましい。
【0052】
なお、施工手順等、その他の点については、第1の実施形態と同様であるため、敢えて説明は省略する。
【0053】
(第3の実施形態)
上記実施形態は鉛直方向に沿って直線的な注入井戸および吸引井戸を形成しているが、例えば既設構造物の下部地盤に保持された汚染物質を除去する場合、周囲地盤から下部地盤に向かって斜め下方向に直線的な井戸を掘るにしても限界がある。
【0054】
また、鉛直方向に沿う井戸は、上下方向には広範な範囲をカバーできるが、いくら井戸を深くしたとしても横方向のカバー範囲は広くならない。
【0055】
そこで、これらの場合には、図13に示すように地表面から目的の深さに至る曲線状部分A1と、その先端から横方向(略水平)に通る直線状部分A2とからなる井戸Wを形成するのが望ましい。図示のように、既設構造物Cの下部地盤を対象とする場合には、既設構造物C周囲の地表面から既設構造物C下部の深さまで曲線状部分A1を設け、既設構造物Cの下部を通るように直線状部分A2を設けることができる。
【0056】
かかる形状の井戸は、本出願人よる特開2002−194990号公報、特開2002−194991号公報、特開2002−250029号等により形成できる。この削孔方法について簡単に説明すると、次のようになる。すなわち、軸心方向に対して傾斜した受圧面を有するテーパービット71が取り付けられた削孔軸70を用い、曲線推進を行うときには図14(a)に示すように、テーパービット71の傾斜面71Sの先端が回転軸心に対して曲げたい側に位置する状態で削孔軸70の回転を止め、更にそのままの状態で削孔軸70に推進力のみを与える。この際、テーパービット71の受圧面71Sにかかる力によりテーパービット70の推進方向が徐々に変化し、削孔軸70を地中に曲線的に推進させることができる。換言すれば、テーパービット71は受圧面71Sで受ける力を逃がすように脇へ逸れつつ進行される。なお、この曲線推進は三次元曲線的な推進が可能であり、図示例では鉛直面方向において曲げているが、水平面方向に曲げることもできる。これに対して、直線推進を行うときには図14(b)に示すように、削孔軸5に回転力および推進力を与え、削孔軸70を先端のテーパービット71により削孔しながら地中に推進させる。この際、テーパービット71の先端は傾斜面71Sを有しているものの軸心周りに回転しながら前進するので傾斜面71Sによる受圧の影響は打ち消され、直線的に削孔することが可能である。
【0057】
かくして、例えば図13に示すように、削孔軸70を地表面から目標層までは曲線状状に進行させ、その後は目標層内を水平方向に沿って進行させることができる。かかる削孔は、地中内位置で止める場合の他、挿入位置から所定距離離間した位置(既設構造物下部地盤を対象とする場合には挿入側と反対側の位置)における、地上部または予め設けた立坑内まで貫くように施行する場合にも適用できる。またもちろん、他の公知の方法により、かかる直線状部分および曲線状部分からなる孔を削孔することもできる。
【0058】
かかる曲線状部分A1と直線状部分A2とからなる井戸を応用する場合、図15に示すように、注入井戸PWおよび吸引井戸SWを上下方向に間隔をおいて配列し、上下方向に加熱流体Gならびに汚染物質の移動を行わしめるのが好ましい。この場合、注入井戸PWを下側にし、吸引井戸SWを上側にすると、加熱流体Gおよび汚染物質の移動がより容易になり、汚染物除去能力が高くなるため好ましいが、反対の配置にすることもできる。また、この場合、図16に示すように、かかる上下方向の井戸の組PW,SWを横方向に間隔をおいて複数配列することにより、より広い平面方向範囲をカバーすることができる。
【0059】
これに対して、図17に示すように、注入井戸PWおよび吸引井戸SWを横方向に間隔をおいて配列し、横方向に加熱流体の供給ならびに汚染物質の移動を行わしめることもできる。この場合、図18に示すように、横方向の井戸の組PW,SWを上下方向に間隔をおいて複数配列することにより、より広い深さ範囲をカバーした施工を行うことができる。
【0060】
他方、図示しないが、本発明では、円弧状の削孔軸を用いた円弧状削孔により注入井戸および吸引井戸を構築することもできる。
【0061】
なお、本第3の実施形態における施工手順等、その他の点については、第1の実施形態と同様であるので、説明を省略する。
【0062】
(他の形態)
注入と同様に吸引を限定された範囲のみ行うこともできる。この場合、上記実施形態の注入装置と同様の構造のものを吸引に用いることができる。またこの場合、注入位置と同じ深さ位置に吸引位置を合わせて吸引を行う(注入管の深さ位置の移動時に、吸引装置も移動させる)、あるいは異なる深さ位置にして、加熱流体を斜め方向に通過させることもできる。
【0063】
また、前述のとおり、井戸の形態としては、直線状のもの、曲線状部分と直線状部分とからなるもの、円弧状のものを採用できるが、一つの施工領域内でこれらを適宜選択し、組み合わせることもできる。例えば、一つの施工領域内で、直線状の注入井戸および吸引井戸と、曲線状部分と直線状部分とからなる注入井戸および吸引井戸をそれぞれ設けたり、注入井戸を直線状の井戸にし、吸引井戸を曲線状部分と直線状部分とからなる井戸にしたりすることもできる。
【0064】
【発明の効果】
以上のとおり、本発明によれば、より効果的かつ効率的な汚染物質の除去が可能となる。
【図面の簡単な説明】
【図1】汚染物除去の概要を示す縦断面図である。
【図2】二重管パッカー式注入装置の概要を示す断面図である。
【図3】削孔工程の概要を示す断面図である。
【図4】ストレーナ設置工程の概要を示す断面図である。
【図5】注入装置等の設置工程の概要を示す断面図である。
【図6】パッカー膨出工程の概要を示す断面図である。
【図7】加熱流体注入工程の概要を示す断面図である。
【図8】加熱流体注入工程における要部拡大断面図である。
【図9】他の注入形態の概要を示す断面図である。
【図10】更に他の概要を示す断面図である。
【図11】第2の実施形態の概要を示す断面図である。
【図12】第2の実施形態の概要を示す断面図である。
【図13】第3の実施形態の概要を示す断面図である。
【図14】削孔原理を示す断面図である。
【図15】井戸配列形態の概要を示す断面図である。
【図16】他の井戸配列形態の概要を示す断面図である。
【図17】さらに他の井戸配列形態の概要を示す断面図である。
【図18】別の井戸配列形態の概要を示す断面図である。
【符号の説明】
6…パッカー、10…注入外管、12…注入内管、SW…吸引井戸、PW…注入井戸、G…加熱流体。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for on-site removal of volatile contaminants, non-volatile water-soluble contaminants, and non-volatile non-water-soluble contaminants retained in soil or groundwater.
[0002]
[Prior art]
Conventionally, as a method of removing volatile contaminants, non-volatile water-soluble contaminants, non-volatile non-water-soluble contaminants, etc. retained in the ground, on the one side in the horizontal direction of the area to be removed, A method of providing an injection well along the direction and a suction well along the vertical direction on the other side, injecting steam from the injection well while performing suction from the suction well, and passing the vapor horizontally through the removal target area. It has been proposed (for example, see Patent Document 1).
[0003]
In addition, a technique using high-temperature water instead of steam has been proposed to facilitate removal of non-aqueous phase liquid (NAPL) in groundwater (for example, see Patent Document 2).
[0004]
Further, in order to facilitate the removal of contaminants immediately below the structure, a technique has been proposed in which injection wells and suction wells are respectively formed along the horizontal direction on the upper and lower sides of a region to be removed, and vapor is passed along the vertical direction. I have. (For example, see Patent Document 3).
[0005]
[Patent Document 1]
Japanese Patent No. 2660307
[Patent Document 2]
JP-A-2002-11456
[Patent Document 3]
JP-A-2002-239524
[0006]
[Problems to be solved by the invention]
However, in the above-mentioned prior arts, since the injection is performed under the same injection condition from the entire injection well to the entire target region, for example, when the formation characteristics are different in the depth direction of the injection well, , The injection cannot be performed under the injection conditions suitable for each layer, the desired heating effect and heating efficiency cannot be obtained due to the local distribution of the heating fluid, and the removal level is not uniform in the depth direction of the injection well. Or the removal efficiency is low.
[0007]
Therefore, a main object of the present invention is to enable more effective and efficient removal of pollutants.
[0008]
[Means for Solving the Problems]
The present invention that has solved the above problems is as described below.
<Invention according to claim 1>
In removing contaminants retained in the ground, injection wells and suction wells are respectively provided at intervals in a range from the removal target area to the vicinity area, and while the heating fluid is injected from the injection well, suction is performed. In the method of taking out contaminants by sucking from the well,
A method for removing contaminants, wherein a predetermined position in the depth direction of an injection well is defined as an injection site, and a heating fluid is injected from the injection site into the removal target region with the front and rear of the injection site sealed.
[0009]
(Effect)
As described above, when a predetermined position in the depth direction of the injection well is set as the injection site and the heating fluid is injected from the injection site in a state where the front and rear of the injection site are sealed, the injection range in the well depth direction is limited. Injection can be performed under conditions suitable for the formation characteristics in the depth range. Therefore, it is possible to more effectively and efficiently remove contaminants.
[0010]
<Invention according to claim 2>
A plurality of packers provided at intervals in the axial direction are provided on the outer surface, an injection pipe having an injection port between the packers is inserted into the injection well, and the adjacent packers are swelled so that the front and rear spaces between the packers are expanded. The method for removing contaminants according to claim 1, wherein the heating fluid is injected from an injection port between the packers in a state in which the packing is sealed.
[0011]
(Effect)
As a means for sealing before and after the injection site, a packer is preferable.
[0012]
<Invention of Claim 3>
As the injection pipe, one having a packer at at least three places spaced apart in the axial direction, and having an injection port between each packer,
3. The method for removing contaminants according to claim 2, wherein the injection is performed sequentially or simultaneously from the injection ports between the packers, and at this time, the injection is performed under independent injection conditions for each of the packers.
[0013]
(Effect)
As described above, the injection is performed sequentially or simultaneously from the injection port between the packers, and at this time, the injection is performed under the independent injection conditions for each of the packers, so that the formation characteristics are different in the depth direction of the injection well. In such a case, implantation can be performed under implantation conditions suitable for each layer, the removal level becomes uniform in the depth direction of the implantation well, and uniform contaminant removal can be efficiently performed.
[0014]
<Invention of Claim 4>
The contamination according to any one of claims 1 to 3, wherein the contaminant is at least one of a volatile contaminant, a non-volatile water-soluble contaminant, and a non-volatile non-water-soluble contaminant. Material removal method.
[0015]
(Effect)
The present invention is particularly suitable for removing such contaminants.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
(Basic configuration)
FIG. 1 conceptually shows the basic principle of the method for removing contaminants according to the present invention. In this method, the injection well PW and the suction well SW are provided at intervals, and while the heating fluid is injected from the injection well PW, suction is performed from the suction well SW to remove contaminants.
[0017]
In other words, when the heating fluid is injected into the injection well PW and suction is performed from the suction well SW (a negative pressure is applied to the suction well), the injected heating fluid passes through the ground toward the suction well SW and turns around. Heat. This allows volatile pollutants to evaporate and other non-volatile pollutants to move through the ground by heating. As a result, these contaminants P1, P2, and P3 move to the suction well PW with the heating fluid, the liquid, or moisture in the ground, and can be taken out from the suction well SW.
[0018]
When the injection and the suction are simultaneously stopped, the injected heating fluid remains in the ground containing the pollutants P1, P2, and P3, depending on the processing time. Therefore, performing suction while the injection is stopped, for example, stopping the injection and continuing the suction after injection and suction for a predetermined period of time is a preferable mode in some cases. Depending on the degree of heating, even after the injection of the heating fluid is stopped, the temperature in the ground is at a level effective for removing contaminants. The heat stored in the cell facilitates the transfer and removal of pollutants. There is also an advantage that the injection region can be dried by suction while the injection is stopped. This advantage is particularly remarkable when the heating fluid is a gas such as steam.
[0019]
The pollutants targeted by the present invention are at least one of volatile pollutants held in the ground, non-volatile water-soluble pollutants and non-volatile non-water-soluble pollutants, These are P1 retained in the ground above the groundwater level, P2 existing at the groundwater level, P3 existing below the groundwater level, and as a pollutant zone occupying a certain area, or between soil particles. Exists in a state held in the very small area. Examples of specific pollutants include trichloroethylene, tetrachloroethylene, volatile organic pollutants such as benzene, nonvolatile water-soluble pollutants, and nonvolatile non-water-soluble pollutants such as, The present invention is not limited to these.
[0020]
The depth of the injection well PW and the suction well SW can be appropriately determined according to the depth and the existence form of the target pollutant. For example, when targeting a depth range above the groundwater level, the depths of the wells PW and SW can be set above the groundwater level, and from the range above the groundwater level to the range below the groundwater level. When the whole is to be treated, the depth of the wells PW and SW can be set below the groundwater level.
[0021]
On the other hand, the number and arrangement of the wells PW and SW can be appropriately determined according to the construction area, construction depth, heating efficiency, suction efficiency, removal efficiency (processing time), type of the substance to be removed, type of the heating fluid, and the like. it can. The injection wells PW and the suction wells SW are removed at appropriate intervals at which contaminants can be removed in accordance with the above-described principle in consideration of ground conditions and injection conditions (type, temperature, processing time, etc. of a heating fluid). And at least one of them is provided in a range extending from to the vicinity thereof. More specifically, when the construction area is small, there is not much difference in length and width, and when importance is placed on heating efficiency, a suction well 3W is provided only at the center of the construction area and surrounds the periphery of the construction area. If a plurality of injection wells PW, PW are provided at intervals, or if the suction efficiency is emphasized without emphasizing the heating efficiency, the injection well is provided only at the center of the construction area and surrounds the periphery of the construction area. A plurality of suction wells can be provided at intervals as described above. When the construction area is wide or elongated, a plurality of injection wells and a plurality of suction wells can be arranged regularly or irregularly according to the width and length. As a simple embodiment, an injection well may be provided on one side of the removal target region, and a suction well may be provided on the other side.
[0022]
The heating fluid in the present invention is basically applicable regardless of the temperature, if it can heat the substance to be removed in the ground, and can be used regardless of the state of gas and liquid. For example, if the temperature at the underground position where the pollutant exists is 15 ° C., a sufficient effect is exhibited even if room temperature water or room temperature air having a higher temperature is used. As a specific heating fluid, steam is preferable. However, depending on the construction area, the construction depth, the temperature of the target substance, the heating efficiency, the suction efficiency, the removal efficiency (processing time), and the type of the removal target substance, Normal-temperature air, high-temperature or normal-temperature water, steam, or a mixed fluid of at least two of these can be used, and the temperature is usually 15 ° C. or higher in a normal case, 30 ° C. or higher depending on the type of pollutant, In consideration of the heating efficiency, the temperature is preferably set to 60 to 100 ° C. For example, when the contaminants are present as a non-aqueous solution in groundwater as described above, only high-temperature water or a mixed fluid of the high-temperature water with another steam or high-temperature or normal-temperature air can be used. When volatile contaminants are the main target, when it is desired to ensure underground drying properties, or when emphasis is placed on the ability of fluids to pass through the ground, air above the ground is mainly used, It is also preferable to use a mixed fluid whose temperature is adjusted by mixing steam in consideration of the type, the temperature in the ground, and the like. Further, in the present invention, any other fluid that can be injected into the ground and can heat contaminants can be basically used.However, since it is inexpensive and does not pollute the environment, steam, water, Air is preferred.
[0023]
(1st Embodiment)
The present invention has a point in a method of injecting a heating fluid, in which a predetermined position in a depth direction of an injection well is set as an injection site, and injection of the heating fluid from the injection site to the removal target region is performed with the front and rear of the injection site sealed. Is what you do.
[0024]
As an injection means with such a seal, for example, a so-called double-tube packer type injection pipe used for injecting a chemical solution into the ground as shown in FIG. 2 can be applied. Normal double-tube packer-type injection pipes are not designed for injecting high-temperature fluids, so it is necessary to select materials that take heat resistance into consideration, but the basic structure and principle are the same as those for chemical liquid injection. Can be used.
[0025]
To explain the illustrated example in more detail, the injection device of this example has an outer injection tube and an inner injection tube 20, and the outer injection tube is constituted by an outer tube 10. The outer tube 10 has a first tube 1, a second tube 2, and a third tube 3. A through-hole 4 is formed in the wall surface of the first pipe 1, and a flexible sleeve 5 such as rubber that can be deformed to cover the through-hole 4 is provided. A flexible packer 6 such as rubber, which is liquid-tightly sealed, is attached to the second tube 2 and the third tube 3 screwed to the first tube 1.
[0026]
As shown in FIG. 3, the outer tube 10 is prepared as a unit tube, and the second tube 2 of the unit tube and the third tube 3 of the other unit tube are screwed and connected to each other to form a long injection outer tube. It can be.
[0027]
In the case of a connection-type injection outer tube, a plurality of, for example, three or more packers 6 can be mounted on the outer surface at an axial interval. Furthermore, an inlet 7 is formed in the third pipe 3 between the adjacent packers 6 and 6, respectively. As shown in FIG. 2, in addition to one injection port 7, a plurality of injection ports 7 can be formed, for example, 4 steps, and 16 steps can be formed at 90 ° intervals in each step. It is desirable that these injection ports 7, 7,... Adopt means for preventing sand particles from entering from the surrounding ground. As means for preventing sand particles from entering, as shown in FIG. It is possible to adopt a mode of covering with a flexible sleeve 8 or covering each step or the whole with a film made of, for example, vinyl chloride, which is broken by the supply pressure of the heating fluid.
[0028]
On the other hand, as shown in FIG. 2, the injection inner tube 20 can be inserted into the outer tube 10, the front and rear of the discharge port 22 are in close contact with the inner surface of the outer tube 10 in a liquid-tight manner, and the heating fluid is pressure-fed inside. Although there is no particular limitation, examples of the structure include a structure in which packing members 23 and 24 such as rubber are provided before and after a discharge port 22 of an inner pipe main body 21 having a heating fluid supply path. The structure shown in FIG. 4 of JP-A-63-44893 can be used as it is.
[0029]
The dimension between the packers 6 and 6 can be about 10 cm to 2 m, particularly preferably about 25 to 50 cm. In addition, as shown in FIG. 7, it is preferable that the total length of the dimensions between the packer 6 and the packers 6, 6 substantially coincides with the range to be heated (for example, about 5 to 6 m).
[0030]
When construction is performed using such an injection device, a suction well and an injection well are respectively formed at predetermined positions set with respect to the removal target region. That is, first, as shown in FIG. 3, the target ground 30 is excavated to a predetermined depth to form the insertion hole 31. In this case, it is desirable to drill holes using the casing 50 in order to prevent the insertion holes 31 from collapsing. The order of forming the suction wells SW and the injection wells PW may be determined as appropriate. Either of them may be performed first, or they may be performed simultaneously using a plurality of drilling machines.
[0031]
If the insertion hole 31 is formed, a strainer 51 is provided as shown in FIG. 4 at least for the suction well SW and preferably also for the injection well PW, depending on the depth of the well and the properties of the ground, It is preferable to protect the hole wall and ensure the communication between the hole and the ground.
[0032]
Thereafter, as shown in FIG. 5, a means for suctioning the inside of the well is inserted into the suction well SW, for example, by inserting a suction device 60 including a suction pipe 61 and a water pump 62 connected to the tip thereof. Provide. The outer tube 10 is inserted into the injection well PW. The casing 50 is preferably removed after the insertion of these devices or, if the strainer 51 is installed, after the installation. The outer injection tube 10, the suction device 60, and the strainer 51 can be built directly or together with the casing 50.
[0033]
Prior to the contaminant removal step, at least for the suction well SW, and preferably also for the injection well PW, the gap between the suction device 60 or the injection outer tube 10 and the hole wall at the mouth is jacket 52 (rubber or the like). (A flexible sealing material).
[0034]
When the outer injection tube 10 is installed, prior to injection of the heating fluid, the inner injection tube 20 is inserted as shown in FIG. 6, the discharge port 22 is positioned at the position of the packer 6, and the through hole 4 of the packer 6 is formed. In a state where the fluid and the discharge port 22 are communicated with each other, a swelling fluid, preferably a solidifying material such as cement or cement bentonite, is pumped through a flow path in the injection inner pipe 20, and the adjacent packers 6 and 6 are compressed. The packers 6 and 6 are fed into the respective insides to expand these packers 6 and 6 so as to be in close contact with the wall surfaces of the insertion holes 31. As the fluid for swelling the packer, in addition to cement bentonite, water and air can also be used. However, in the case of cement bentonite, this hardens eventually, and the packer 6 is firmly adhered to the hole wall surface of the insertion hole 31. It is preferable in that it can be performed.
[0035]
When the swelling fluid 40 is fed, as described above, in addition to discharging the swelling fluid 40 from the discharge port 22 through the internal flow path using the injection inner tube 20, other appropriate means can be used. In any case, the swelling fluid 40 passes through the through hole 4 and the sleeve 5 is deformed by the feed pressure. For example, the swelling fluid 40 is sent into the packer 6 while separating both ends of the sleeve 5 from the outer surface of the first pipe 1. It is. When the packer 6 has swelled sufficiently, the feeding of the swelling fluid 40 is stopped. Then, the sleeve 5 is restored and the through hole 4 is sealed. The swelling of the packer 6 may be performed at least in the adjacent packers 6, 6, but if necessary, all of the target packers may be sequentially swelled.
[0036]
When the swelling fluid is fed, as described above, in addition to discharging the fluid from the discharge port 22 through the internal flow path using the injection inner pipe 20, other appropriate means can be used. In any case, the swelling fluid passes through the through hole 4 and deforms the sleeve 5 by the feed pressure. For example, the swelling fluid is sent into the packer 6 while separating both ends of the sleeve 5 from the outer surface of the first pipe 1. It is. When the packer 6 has swelled sufficiently, the feeding of the swelling fluid is stopped. Then, the sleeve 5 is restored and the through hole 4 is sealed. The swelling of the packer 6 may be performed at least in the adjacent packers 6, 6, but if necessary, all of the target packers may be sequentially swelled.
[0037]
When the setup is completed, as shown in FIG. 7, with the packers 6 and 6 being operated, the inner tube 20 is inserted into the outer tube 10 or the inner tube 20 is expanded. If it is to be used for feeding the injection fluid 40, the injection inner pipe 20 is inserted as it is to a predetermined position, and a heating fluid is pressure-fed to the injection inner pipe 20 in place of the swelling fluid 40 to be discharged from the discharge port 22. , 7,... While the flexible sleeve 8 is deformed or the coating is broken, and the heating fluid G penetrates into the surrounding ground from the injection well PW.
[0038]
When injecting the heating fluid G, it is preferable to insert the injection inner tube 20 to the deepest portion of the outer tube 10 and to expand the adjacent packer or all the packers as described above, and It is preferable that the injection ports 7, 7,. Conversely, a step-down method from the upper part to the deepest part, or a method of moving up and down in an appropriate selection position order can be adopted.
[0039]
At the same time as this injection, or before or after a predetermined time has elapsed after the injection, suction is performed via the suction well SW. In the present invention, it is desirable to continuously change the injection point while performing suction continuously, but it is also possible to stop suction when changing the injection point.
[0040]
By the suction, as described above, the injected heating fluid G heats the surroundings while passing through the ground toward the suction well SW. Then, volatile pollutants are volatilized, and other non-volatile pollutants are easily moved underground by heating. As a result, these contaminants move toward the suction well SW with the heating fluid G, the liquid, or moisture in the ground, and are taken out from the suction well SW. In the present embodiment, since the suction position is not limited to the depth direction of the suction well SW, the heating effect works effectively not only on the area being heated but also on the heated area as shown in the drawing. While the suction is being performed, the movement and removal of the contaminants from the region to the suction well SW are continued. The aspirated material can be purified by a purifying device (not shown) after gas-liquid separation or the like as necessary, or can be stored in a storage tank or the like after the purifying treatment or unpurified.
[0041]
In the injection device of the first embodiment, as shown in FIG. 8, the space between the adjacent packers 6 and 6, the wall surface of the insertion hole 31, and the outer surface of the injection outer tube 10 is defined as a space without filler, and The heating fluid G can be injected. In this case, the heating fluid G injected through the injection ports 7, 7,... Is filled in the ground 30 between the adjacent packers 6, 6 while the heating fluid G is filled in the wide space. Is injected into. Therefore, since the whole of the insertion hole 31 facing the space is permeated and injected with the permeation target area, a large amount of the heating fluid G can be injected from one injection zone, and the heating fluid G permeated into the ground is Injected far into the distance.
[0042]
The injection speed and injection pressure of the heating fluid G are preferably determined according to the permeation permissible speed and permissible pressure of the ground.
[0043]
And, in this way, when the heating fluid is injected from the injection site in a state where the front and rear of the predetermined position in the depth direction of the injection well is sealed with a packer, the injection range in the well depth direction can be limited, Injection can be performed under conditions suitable for the formation characteristics in the depth range. Therefore, for example, the geological structure, types of contaminants, their locations, and the like are known in advance by a known geological survey method such as a boring survey, and appropriate injection conditions in each depth range are determined based on the survey results. By performing the injection under independent injection conditions for each packer, even if the formation characteristics are different in the depth direction of the injection well, the injection conditions (injection pressure, injection speed, injection Volume, type of heating fluid, etc.).
[0044]
More specifically, when the injection conditions are slid as described above, the injection pressure and the type of the heating fluid are important factors in consideration of the type of the stratum (sand and the like). It is desirable to change it. Focusing on the type of pollutant, for example, when removing a non-aqueous solution existing below the groundwater level, it is possible to use high-temperature water below the groundwater level and use steam at other locations. As described above, according to the present invention, since limited injection can be performed under appropriate injection conditions for each injection position, uniform contaminant removal can be efficiently performed.
[0045]
By the way, in the illustrated embodiment, since the injection system of the injection inner tube 20 is a single system, simultaneous injection at a plurality of positions is impossible. However, by providing a plurality of injection systems, the injection conditions can be maintained independently. Also allows simultaneous injection at a plurality of locations. For example, although not shown, a plurality of discharge ports of the injection inner pipe are provided in the longitudinal direction at intervals corresponding to the injection holes 7 of the outer pipe, supply paths for the respective discharge ports are individually provided, and individual injection conditions are set for each discharge port. (If they are independent, they may be different or they may be the same). In this case, an independent supply path for each discharge port can be formed by using a multiple pipe structure such as a double pipe or a parallel pipe structure in which a plurality of pipes are bundled.
[0046]
On the other hand, as a second method, the injection range is partially overlapped (wrapped) in the well depth direction (axial direction) as shown in FIG. 7, and the heating fluid is injected into a continuous range. As shown in FIG. 9, the heating fluid may be injected into a plurality of ranges spaced apart in the depth direction of the injection well, in other words, the injection range may be discontinuous in the depth direction of the well. Others are the same as the first method.
[0047]
Further, as a third technique, the heating fluid can be injected into only one area in the depth direction of the well per one injection location, if necessary, for example, when the depth range of the processing target is narrow. At this time, as shown in FIG. 10, the injection tube 10 having the packer 6 on the outer surface portion on the base side from the tip and the injection port 7 on the tip side of the packer 6 is relatively inserted into the insertion hole 31. Then, the packer 6 is swelled and brought into close contact with the wall surface of the insertion hole 31, and at this time, the space surrounded by the packer 6, the wall surface of the insertion hole 31, and the outer surface of the injection pipe 10 is a space, and the heating fluid G May be injected. Others are the same as the first method.
[0048]
Furthermore, it is of course possible to use other types of double-tube packer-type injection devices and injection methods within the scope of the present invention.
[0049]
(Second embodiment)
As another form of the injection means with a seal, an injection method using a seal grout, such as a well-known sleeve injection method, can be applied. FIG. 11 shows an application example of the sleeve injection method. That is, firstly, after the insertion hole 31 is formed and the inside thereof is first filled with seal grout S (cement bentonite filler), the sleeve pipe 60 is immediately inserted and installed, and a curing period is taken until the seal grout S is solidified. Thereafter, the inner injection pipe 20 (having an injection hole between the double packers, like the injection inner pipe of the first embodiment) was inserted into the sleeve pipe 60, and positioned at 61 desired rubber sleeves. In this state, the heating fluid G is discharged from the discharge gap of the rubber sleeve 61 through the injection inner pipe 20, and the heating fluid G is injected into the ground while the seal grout S is split by the supply pressure of the heating fluid.
[0050]
As a simpler form, as shown in FIG. 12, the sleeve pipe 60 may be omitted, and the injection inner pipe 20 may be directly inserted into the seal grout S to perform injection.
[0051]
In this case, the cracking site of the filler S becomes a pinpoint, the heating fluid G is injected only from the cracking site, and the permeation area to the ground is the sum of the areas facing the splitting site. Unlike the embodiment, the permeation area is extremely small. The choice between the second embodiment and the first embodiment may be determined as appropriate, but in the former case, the injection range in the well depth direction becomes too narrow, resulting in the occurrence of splitting in the ground. Therefore, the injection heating range tends to be extremely narrow, and the heating efficiency may be reduced. Therefore, the latter injection mode is generally preferred.
[0052]
The other points such as the construction procedure are the same as those in the first embodiment, so that the description is omitted.
[0053]
(Third embodiment)
Although the above embodiment forms a linear injection well and a suction well along the vertical direction, for example, when removing contaminants held in the lower ground of an existing structure, the surrounding ground is directed toward the lower ground. There is a limit to digging a straight well diagonally downward.
[0054]
In addition, the wells along the vertical direction can cover a wide range in the vertical direction, but no matter how deep the wells are, the horizontal cover range does not become wide.
[0055]
Therefore, in these cases, as shown in FIG. 13, a well W composed of a curved portion A1 extending from the ground surface to a target depth and a linear portion A2 passing laterally (substantially horizontally) from the tip thereof is formed. It is desirable to form. As shown in the figure, when targeting the lower ground of the existing structure C, a curved portion A1 is provided from the ground surface around the existing structure C to the depth below the existing structure C, and the lower part of the existing structure C is provided. A straight portion A2 can be provided so as to pass through.
[0056]
The well having such a shape can be formed by JP-A-2002-194990, JP-A-2002-194951, JP-A-2002-250029, and the like by the present applicant. The following is a brief description of this drilling method. That is, when the drilling shaft 70 to which the tapered bit 71 having the pressure receiving surface inclined with respect to the axial direction is attached is used, and the curve propulsion is performed, as shown in FIG. 14A, the inclined surface 71S of the tapered bit 71 is used. The rotation of the drilling shaft 70 is stopped in a state in which the tip of the hole is located on the side to be bent with respect to the rotation axis, and only the propulsion force is applied to the drilling shaft 70 in the state as it is. At this time, the propulsion direction of the taper bit 70 is gradually changed by the force applied to the pressure receiving surface 71S of the taper bit 71, and the drilling shaft 70 can be propelled into the ground in a curved manner. In other words, the tapered bit 71 advances while deflecting to the side to release the force received by the pressure receiving surface 71S. In addition, this curved propulsion can be performed in a three-dimensional curved propulsion. In the illustrated example, the propulsion is bent in the vertical plane direction, but can be bent in the horizontal plane direction. On the other hand, when linear propulsion is performed, as shown in FIG. 14B, a turning force and a propulsion force are applied to the drilling shaft 5, and the drilling shaft 70 is drilled by the tapered bit 71 at the tip to dig in the ground. To promote. At this time, although the tip of the tapered bit 71 has the inclined surface 71S, it advances while rotating around the axis, so that the effect of the pressure received by the inclined surface 71S is canceled out, and it is possible to drill holes linearly. .
[0057]
Thus, as shown in FIG. 13, for example, the drilling shaft 70 can be advanced in a curved shape from the ground surface to the target layer, and thereafter can be advanced in the target layer along the horizontal direction. In addition to stopping at the underground position, such drilling may be performed at a position separated from the insertion position by a predetermined distance (a position opposite to the insertion side when targeting the lower ground of the existing structure) or at the ground portion or in advance. The present invention can be applied to the case where the drilling is performed so as to penetrate the provided shaft. Of course, holes formed of such linear portions and curved portions can be formed by other known methods.
[0058]
When a well composed of such a curved portion A1 and a linear portion A2 is applied, as shown in FIG. 15, the injection well PW and the suction well SW are arranged at intervals in the vertical direction, and the heating fluid G is arranged in the vertical direction. In addition, it is preferable to carry out the transfer of contaminants. In this case, it is preferable that the injection well PW is on the lower side and the suction well SW is on the upper side, because the movement of the heating fluid G and the contaminants becomes easier, and the contaminant removing ability becomes higher. You can also. In this case, as shown in FIG. 16, by arranging a plurality of such pairs of vertical wells PW and SW at intervals in the horizontal direction, a wider planar direction range can be covered.
[0059]
On the other hand, as shown in FIG. 17, the injection wells PW and the suction wells SW can be arranged at intervals in the horizontal direction to supply the heating fluid and move the contaminants in the horizontal direction. In this case, as shown in FIG. 18, by arranging a plurality of sets of the wells PW and SW in the horizontal direction at intervals in the vertical direction, it is possible to perform the construction covering a wider depth range.
[0060]
On the other hand, although not shown, in the present invention, the injection well and the suction well can be constructed by arc drilling using an arc drilling axis.
[0061]
Note that the other points such as the construction procedure in the third embodiment are the same as those in the first embodiment, and thus description thereof will be omitted.
[0062]
(Other forms)
Like the injection, the suction can be performed only in a limited range. In this case, a device having the same structure as the injection device of the above embodiment can be used for suction. Further, in this case, suction is performed by adjusting the suction position to the same depth position as the injection position (the suction device is also moved when the depth position of the injection pipe is moved), or the suction fluid is inclined at a different depth position. It can also pass in the direction.
[0063]
In addition, as described above, as the form of the well, a linear one, a one composed of a curved part and a linear part, and an arc-shaped one can be adopted, but these are appropriately selected within one construction area, They can be combined. For example, in one construction area, a linear injection well and a suction well, and an injection well and a suction well each including a curved portion and a linear portion are provided. May be a well composed of a curved portion and a straight portion.
[0064]
【The invention's effect】
As described above, according to the present invention, it is possible to more effectively and efficiently remove contaminants.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an outline of contaminant removal.
FIG. 2 is a sectional view showing an outline of a double tube packer type injection device.
FIG. 3 is a cross-sectional view showing an outline of a drilling step.
FIG. 4 is a sectional view showing an outline of a strainer installation process.
FIG. 5 is a cross-sectional view showing an outline of an installation process of an injection device and the like.
FIG. 6 is a sectional view showing an outline of a packer swelling step.
FIG. 7 is a sectional view showing an outline of a heating fluid injection step.
FIG. 8 is an enlarged sectional view of a main part in a heating fluid injection step.
FIG. 9 is a cross-sectional view showing an outline of another injection mode.
FIG. 10 is a sectional view showing still another outline.
FIG. 11 is a sectional view showing an outline of a second embodiment.
FIG. 12 is a sectional view showing an outline of a second embodiment.
FIG. 13 is a sectional view showing an outline of a third embodiment.
FIG. 14 is a sectional view showing the principle of drilling.
FIG. 15 is a sectional view showing an outline of a well arrangement mode.
FIG. 16 is a sectional view showing an outline of another well arrangement mode.
FIG. 17 is a sectional view showing an outline of still another well arrangement mode.
FIG. 18 is a sectional view showing an outline of another well arrangement mode.
[Explanation of symbols]
6: Packer, 10: Outer tube, 12: Inner tube, SW: Suction well, PW: Injection well, G: Heated fluid.

Claims (4)

地中に保持された汚染物質を除去するにあたり、除去対象領域からその近傍領域にわたる範囲内に注入井戸および吸引井戸を間隔をあけてそれぞれ設け、前記注入井戸から加熱流体を注入する一方で、吸引井戸から吸引を行い汚染物質を取り出す方法において、
注入井戸の深さ方向の所定位置を注入部位とし、注入部位の前後をシールした状態で当該注入部位から前記除去対象領域に対する加熱流体の注入を行う、汚染物質の除去方法。
In removing contaminants retained in the ground, injection wells and suction wells are respectively provided at intervals in a range from the removal target area to the vicinity area, and while the heating fluid is injected from the injection well, suction is performed. In the method of taking out contaminants by sucking from the well,
A method for removing contaminants, wherein a predetermined position in the depth direction of an injection well is defined as an injection site, and a heating fluid is injected from the injection site into the removal target region with the front and rear of the injection site sealed.
軸方向に間隔をおいて設けられた複数のパッカーを外面に有し、パッカー間に注入口を有する注入管を前記注入井戸に挿入し、前記隣り合うパッカーを膨出させて当該パッカー間の前後をシールした状態で、当該パッカー間の注入口から前記加熱流体を注入する、請求項1記載の汚染物質の除去方法。A plurality of packers provided at intervals in the axial direction are provided on the outer surface, an injection pipe having an injection port between the packers is inserted into the injection well, and the adjacent packers are swelled so that the front and rear spaces between the packers are expanded. The method for removing contaminants according to claim 1, wherein the heating fluid is injected from an injection port between the packers in a state in which the sealing material is sealed. 前記注入管として、軸方向に間隔をおいた少なくとも3箇所にパッカーをそれぞれ有し、かつ各パッカー間に注入口をそれぞれ有するものを用い、
各パッカー間の注入口から順次または同時に注入を行い、かつこの際、各パッカー間毎に独立した注入条件でそれぞれ注入を行うようにする、請求項2記載の汚染物質除去方法。
As the injection pipe, one having a packer at at least three places spaced apart in the axial direction, and having an injection port between each packer,
3. The method for removing contaminants according to claim 2, wherein the injection is performed sequentially or simultaneously from the injection ports between the packers, and at this time, the injection is performed under independent injection conditions for each of the packers.
前記汚染物質が、揮発性汚染物質、非揮発性の水溶性汚染物質および非揮発性の非水溶性汚染物質のうちの少なくとも一種である、請求項1〜3のいずれか1項に記載の汚染物質除去方法。The contamination according to any one of claims 1 to 3, wherein the contaminant is at least one of a volatile contaminant, a non-volatile water-soluble contaminant, and a non-volatile non-water-soluble contaminant. Material removal method.
JP2003036039A 2003-02-14 2003-02-14 How to remove pollutants Expired - Fee Related JP4042969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003036039A JP4042969B2 (en) 2003-02-14 2003-02-14 How to remove pollutants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003036039A JP4042969B2 (en) 2003-02-14 2003-02-14 How to remove pollutants

Publications (3)

Publication Number Publication Date
JP2004243229A true JP2004243229A (en) 2004-09-02
JP2004243229A5 JP2004243229A5 (en) 2005-11-10
JP4042969B2 JP4042969B2 (en) 2008-02-06

Family

ID=33021250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003036039A Expired - Fee Related JP4042969B2 (en) 2003-02-14 2003-02-14 How to remove pollutants

Country Status (1)

Country Link
JP (1) JP4042969B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2423766A (en) * 2005-03-03 2006-09-06 Rockbourne Environmental Ltd Waste treatment
JP2007023577A (en) * 2005-07-14 2007-02-01 Karuto Kk Excavating method for soil and method for burying pipe for purification in dug hole
JP2007061663A (en) * 2005-07-14 2007-03-15 Karuto Kk Transfer body unit of cleaning pipe and cleaning method for soil using this
JP2007296409A (en) * 2006-02-22 2007-11-15 Nishimatsu Constr Co Ltd Soil purifying method and soil purifying apparatus
JP2008055275A (en) * 2006-08-30 2008-03-13 Chem Grouting Co Ltd Method and apparatus for purifying polluted soil
JP2010063978A (en) * 2008-09-09 2010-03-25 Maezawa Ind Inc Injection outer tube and method of cleaning soil and groundwater
JP2015024401A (en) * 2013-07-29 2015-02-05 Dowaエコシステム株式会社 Soil and groundwater purifying method, and soil and groundwater purifying apparatus
JP2018061915A (en) * 2016-10-11 2018-04-19 株式会社沙羅 Purification method of contaminated ground
CN111960484A (en) * 2020-08-07 2020-11-20 宝航环境修复有限公司 Multidirectional three-dimensional circulation in-situ remediation system
KR20210024819A (en) * 2019-08-26 2021-03-08 (주)에스지알테크 Dual packer system for soil remediation that can be selectively installed in contaminated depths and sprayed with a purifier
CN115193898A (en) * 2022-06-22 2022-10-18 江苏大地益源环境修复有限公司 Underground water in-situ reagent packing and injecting device and underground water repairing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2423766B (en) * 2005-03-03 2009-03-11 Rockbourne Environmental Ltd Treatment of waste materials
GB2423766A (en) * 2005-03-03 2006-09-06 Rockbourne Environmental Ltd Waste treatment
JP2007023577A (en) * 2005-07-14 2007-02-01 Karuto Kk Excavating method for soil and method for burying pipe for purification in dug hole
JP2007061663A (en) * 2005-07-14 2007-03-15 Karuto Kk Transfer body unit of cleaning pipe and cleaning method for soil using this
JP2007296409A (en) * 2006-02-22 2007-11-15 Nishimatsu Constr Co Ltd Soil purifying method and soil purifying apparatus
JP4518504B2 (en) * 2006-08-30 2010-08-04 ケミカルグラウト株式会社 Contaminated soil purification method and equipment
JP2008055275A (en) * 2006-08-30 2008-03-13 Chem Grouting Co Ltd Method and apparatus for purifying polluted soil
JP2010063978A (en) * 2008-09-09 2010-03-25 Maezawa Ind Inc Injection outer tube and method of cleaning soil and groundwater
JP2015024401A (en) * 2013-07-29 2015-02-05 Dowaエコシステム株式会社 Soil and groundwater purifying method, and soil and groundwater purifying apparatus
JP2018061915A (en) * 2016-10-11 2018-04-19 株式会社沙羅 Purification method of contaminated ground
KR20210024819A (en) * 2019-08-26 2021-03-08 (주)에스지알테크 Dual packer system for soil remediation that can be selectively installed in contaminated depths and sprayed with a purifier
KR102352211B1 (en) * 2019-08-26 2022-01-17 (주)에스지알테크 Dual packer system for soil remediation that can be selectively installed in contaminated depths and sprayed with a purifier
CN111960484A (en) * 2020-08-07 2020-11-20 宝航环境修复有限公司 Multidirectional three-dimensional circulation in-situ remediation system
CN115193898A (en) * 2022-06-22 2022-10-18 江苏大地益源环境修复有限公司 Underground water in-situ reagent packing and injecting device and underground water repairing method

Also Published As

Publication number Publication date
JP4042969B2 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
JP3884793B2 (en) Pollutant removal method and apparatus
KR100925129B1 (en) Thermally enhanced soil decontamination method
US5161914A (en) Slotted extraction trench remediation system
JP2004243229A (en) Method of removing contaminant
MXPA04003711A (en) Isolation of soil with a frozen barrier prior to conductive thermal treatment of the soil.
US11767731B1 (en) Well system with attached sealant line
JP4740180B2 (en) Method of burying chemical injection pipe for cleaning contaminated soil
KR100777838B1 (en) Soil restoration an engineering method
JP6857566B2 (en) Ground purification method
JP3449613B2 (en) Ground injection method and its equipment
BRPI0417843B1 (en) process to remove contaminants from contaminated soil
JP4480169B2 (en) Soil purification method
TW201513947A (en) Method of promoting conveying and influencing area of remediation agent in low permeability polluted stratum
KR101079555B1 (en) A Barrier System And Remediation Method Of Contaminated Soil Using Ground Freezing
JP4247469B2 (en) Method and apparatus for anaerobic purification of contaminated soil
JP4413197B2 (en) Soil purification method
JP6270523B2 (en) Soil purification method
JP3313351B2 (en) Chemical injection method
JP4481049B2 (en) Groundwater circulation type contaminated soil purification method and apparatus by horizontal well
JP2772637B2 (en) Injection pipe device and ground injection method using this device
JP4176384B2 (en) Purification method for contaminated ground and water circulation device used therefor
JP2001279650A (en) Drain pipeline constructing pipe and drain pipeline construction method using this
JP2005161124A (en) System and method for purifying contaminated ground water
JPH09262576A (en) Diffusion preventing method for soil pollution
Nelson et al. Passive destruction of PCE DNAPL by potassium permanganate in a sandy aquifer.

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050926

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees