JP2004242790A - Phototherapy apparatus - Google Patents

Phototherapy apparatus Download PDF

Info

Publication number
JP2004242790A
JP2004242790A JP2003034287A JP2003034287A JP2004242790A JP 2004242790 A JP2004242790 A JP 2004242790A JP 2003034287 A JP2003034287 A JP 2003034287A JP 2003034287 A JP2003034287 A JP 2003034287A JP 2004242790 A JP2004242790 A JP 2004242790A
Authority
JP
Japan
Prior art keywords
light
light source
lamp
phototherapy device
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003034287A
Other languages
Japanese (ja)
Inventor
Masahiro Ishizuka
昌広 石塚
Takeshi Yamauchi
武志 山内
Osamu Matsubara
修 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hotalux Ltd
Original Assignee
NEC Lighting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Lighting Ltd filed Critical NEC Lighting Ltd
Priority to JP2003034287A priority Critical patent/JP2004242790A/en
Publication of JP2004242790A publication Critical patent/JP2004242790A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phototherapy apparatus prevented from radiating noxious ultraviolet rays with wavelength less than 280 nm and radiating useful ultraviolet rays of 280-400 nm and infrared rays of 650-1,500 nm. <P>SOLUTION: This phototherapy apparatus comprises a xenon lamp 11, a lamp holder 13, reflection mirrors 15 reflecting light in the side of a radiation window part 2, a filter part 5 transmitting the light with a prescribed wavelength range alone and a control circuit part 20 including a lamp drive circuit, a control circuit, a display circuit and the like. This apparatus is also provided with a cooling fan 17 for cooling the lamp 11 and the circumferential members, and a distance measuring sensor 3 for measuring the distance toward a part to be radiated. The light with the noxious wavelength range out of the light emitted from the xenon lamp 11 is shut off by a filter part 5, corrected into an appropriate intensity and radiated from the radiation window part 2 to the part to be irradiated. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は光線治療器に関し、特に紫外線と赤外線とを組み合わせた光線を照射できるようにした光線治療器に関する。
【0002】
【従来の技術】
この種の光線治療器では、紫外線によりケラチノサイトが刺激を受け合成する、線維芽細胞増殖因子(bFGF)生成作用と、赤外線により身体の外側から血管を拡張する刺激(温熱刺激)を与え、血液の流れを良くする血行促進作用が重要な要素の一つとなっている。
【0003】
この目的のために、例えば特許文献1は、キセノンランプと多層蒸着された分光補正フィルタとを組み合わせた光線治療器が開示されている。この例では、太陽光を用いた、いわゆる日光浴に近似した分光分布を持たせるようにしている。
【0004】
【特許文献1】
特開2002−263206号公報(p.2−3,図3,6)
【非特許文献1】
福井圀彦著,「リハビリテーション医学全書8物理療法」,第3版,医歯薬出版株式会社,1991年5月,p35〜43
【非特許文献2】
根岸直樹、菊池信,「赤外線の生体作用」,セラミックス,社団法人日本セラミックス協会,1988年,第23卷,第4号,p335−339
【0005】
【発明が解決しようとする課題】
非特許文献1には、主たる作用を持つ波長は必ずしも太陽光のように広い帯域の連続した光である必要はなく、紫外線と近赤外線があればよいことが記載されている。
【0006】
しかし、上記特許文献1に開示された光線治療器で用いられている分光補正フィルタは、皮膚浸透力の大きい800nm乃至1000nmの波長を透過しないため、本来の目的である温熱刺激を充分に与えることができない。
【0007】
又、特許文献1では、近赤外線により必要以上の熱が発生するとあるが、特許文献1の実施例で示されているキセノンランプでは、輝線スペクトルを考慮しても波長全体の相対値としてはそれほど強い赤外線を放射しているわけではなく、皮膚浸透性の高い800nm乃至1000nmの赤外線は、皆無に等しい状態となっている。更に、1000nm以上の赤外線はいくらか放射しているものの、1500nm以上の赤外線は皮膚浸透力が急激に低下し、ほとんど皮膚の上層で吸収されてしまうため、身体を外側から暖める温熱効果を与えることはできず、光線治療器としての機能を果たすには不十分である。(非特許文献2)
本発明の主な目的は、有害な280nm未満の紫外線が照射されず、有用な280nm乃至400nmの紫外線、及び650nm乃至1500nmの赤外線を照射することができる光線治療器を提供することにある。
【0008】
【課題を解決するための手段】
そのため、本発明による光線治療器は、放射光が280nm乃至2500nmの範囲の輝線または連続したスペクトルを持つ、少なくとも1種類以上の光源と、280nm未満の紫外線を透過させず、280nm乃至400nmの紫外線及び650nm乃至1500nmの赤外線を主体的に透過させる分光補正フィルタとを有することを特長とする。
【0009】
このとき、前記光源は、キセノンランプ、蛍光ランプ(=紫外線蛍光ランプ及び殺菌ランプを含む低圧水銀ランプ)、高圧水銀ランプ、超高圧水銀ランプ及び電球が含まれる群の中から選択されたものとすることができる。
【0010】
又、前記光源は、紫外線が主に放射される第1光源と、赤外線を含む光線が放射される第2光源から構成することもできる。例えば、前記第1光源を蛍光ランプとし、前記第2光源をハロゲン電球としてもよい。
【0011】
又、前記フィルタは、800nmにおける透過率が30%乃至70%であるのが好ましい。具体的には、リン酸塩系硝子の硝子基材に、2価及び3価の鉄イオンを含有させて形成できる。
【0012】
【発明の実施の形態】
次に、本発明について図面を参照して説明する。
図1は、本発明の一実施形態を説明するための図で、(a)は模式的な外観斜視図、(b)は(a)のP−P’線に沿った断面の概略を模式的に示す断面図である。図1を参照すると、本実施形態の光線治療器1は、光源としてのキセノンランプ11と、キセノンランプ11が装填される光源ホルダ13と、光を前部即ち照射窓部2側に反射する反射鏡15と、所望の波長域の放射光のみ透過させるフィルタ部5と、ランプ駆動回路,制御回路及び表示回路等を含む制御回路部20から構成される。又、ランプ11及び周辺部材を冷却するための冷却ファン17と、被照射部との距離を計測するための距離測定手段である測距センサ3を有する。キセノンランプ11から放射された光は、フィルタ部5で有害な波長帯域の光が遮断されると共に、適正な強度に補正され、照射窓部2から図示されていない被照射部へ向けて照射される。尚、図1では、煩瑣を避けて分かり易くするため、構成要素間の電気的な接続等の図示は省略してある。
【0013】
図2は、フィルタ部5の具体例を示す図である。図2を参照すると、フィルタ部5は、分光補正フィルタ51がフィルタ保持具53に保持されて、光線治療器1の光路上に装填されている。
【0014】
尚、制御回路部20に含まれるキセノンランプ駆動回路(図示せず)は、AC100Vを整流した電圧をスイッチングして高周波電圧を発生させ、変圧した後、整流平滑してランプ11を点灯させる。又、ランプ11の始動を容易にするため、始動時はスターター(図示せず)から一定時間高い電圧が印加される。又、キセノンランプ11は点灯中の温度が上がりすぎると寿命が短くなるので冷却ファン17により冷却される。又、図示されていない被照射部位となる皮膚疾患の症状に合わせて光線強度を変えるためには被照射部位と光源であるキセノンランプ11との距離を変えるのが簡易で有用であり、測距センサ3で被照射部位と光源の距離を測定し、測定結果に応じて、例えば操作パネル部4等に適切な表示をさせるようにしている。
【0015】
キセノンランプの発光スペクトルは波長が220nm乃至2500nmの広帯域にわたる発光スペクトルを有し、光線治療器用光源としては好適な光源の一つであるが、波長が280nm未満の人体にとって有害な紫外線を含むので、この波長帯はカットする必要がある。又、波長が750nm付近乃至1000nm付近の近赤外域にはキセノンの強い線スペクトルがあり、皮膚疾患の治療には有効であるが、急性皮膚炎症や皮膚の過度の乾燥を抑えるためにも、適度に制御する必要がある。図3は、本実施形態で用いたキセノンランプ11の分光放射強度分布の例を、横軸及び縦軸をそれぞれ光の波長(単位:nm)及び分光放射強度(単位:μW・cm−2・nm−1)として示すグラフである。
【0016】
又、本実施形態の光線治療器1に用いる分光補正フィルタ51は、280nm乃至400nmの紫外線と、650nm乃至1500nmの赤外線を透過させるようにしてある。具体的には、例えばリン酸塩系硝子をベースとして2価及び3価の鉄イオンを含有させたものを用いることができる。この場合、鉄イオンの含有量で280nm乃至2500nm、特に600nm乃至1000nmの透過率を制御することができ、800nmの透過率が30%〜70%のものがより好ましい。図4は、分光補正フィルタ51の分光透過特性を、横軸及び縦軸をそれぞれ光の波長(単位:nm)及び分光透過率(単位:%)として示すグラフである。更に、図5は図3に示される分光放射強度分布を有するキセノンランプ11で発光させた光が分光補正フィルタ51を透過した後の分光放射強度分布、即ち本実施形態の光線治療器1の照射窓部2から照射される光の分光放射強度分布を、図3の場合と同様、横軸及び縦軸をそれぞれ光の波長(単位:nm)及び分光放射強度(単位:μW・cm−2・nm−1)として示すグラフである。
【0017】
図3乃至図5から分かるとおり、本実施形態の光線治療器1の照射窓部2から照射される光線は、人体にとって有害な波長が280nm未満の紫外線を遮断すると共に、波長が280nm乃至2500nmの光は、波長が750nm付近乃至1000nm付近の強い線スペクトルの強度を抑制しつつ、透過させることができる。特に、分光補正フィルタ51の波長800nmにおける透過率が50%以上となっており、波長が800nm近傍の光の強度を確保できている。従って、皮膚疾患等の治療に有用な280nm乃至400nmの紫外線、及び650nm乃至1500nmの赤外線,特に皮膚浸透性が高く身体を外側から暖める温熱効果の大きい800nm近傍の光線を効率的に照射することができる。
【0018】
以上説明したとおり、本発明の光線治療器は、人体にとって有害な波長が280nm未満の紫外線を遮断しつつ、皮膚疾患等の治療に有用な280nm乃至400nmの紫外線、及び650nm乃至1500nmの赤外線,特に皮膚浸透性が高く身体を外側から暖める温熱効果の大きい800nm近傍の光線を効率的に照射することができ、簡易な構成で大きな治療効果が得られる。
【0019】
尚、本発明は上記実施形態の説明に限定されるものでなく、その技術思想の範囲内において、種々変更が可能である。
【0020】
例えば、上記実施形態において、光源は広帯域において連続した発光を有するキセノンランプを用いたが、280nm乃至400nmに主発光域を持つ、例えば紫外線蛍光ランプのような第1光源と、650nm乃至1000nmに主発光域を持つ、例えばハロゲン電球のような第2光源とを組み合わせてもよい。
【0021】
図6は、横軸及び縦軸をそれぞれ光の波長(単位:nm)及び相対放射強度(単位:%)として、紫外線蛍光ランプの一例の相対分光放射強度分布を示すグラフであり、図7は、同様に横軸及び縦軸をそれぞれ光の波長(単位:μm)及び相対放射強度(単位:%)として、ハロゲン電球の分光相対放射強度分布を色温度毎に示すグラフである。図6から分かるように、紫外線蛍光ランプは主に280nm乃至400nmの波長領域に分光分布を持っており、且つ通常紫外線蛍光ランプの発光管はソーダ硝子製であるため、発光管自身が波長280nm未満の紫外線を遮断する波長選択フィルタとして機能しており、改めて波長選択フィルタを通過させる必要はない。一方、ハロゲン電球は一般の赤外線電球に比べて光源そのものが小型化できるので、光線治療器全体も小型化し機能的にすることができる。しかし、図7から分かるように、紫外線から遠赤外線にかけ、広い波長域の光を放射する。従って、光源が、紫外線蛍光ランプのような第1光源と、ハロゲン電球のような第2光源から構成される場合、ハロゲン電球からの光のみ例えば適切な配光手段で分光補正フィルタを透過させて、波長280nm未満の紫外線を遮断すればよい。
【0022】
又、光源の他の構成例として、第1光源として殺菌ランプを用い、第2光源にハロゲン電球を組み合わせることもできる。尚、図8は、横軸及び縦軸をそれぞれ光の波長(単位:nm)及び相対放射強度(単位:%)として、殺菌ランプの一例の相対分光放射強度分布を示すグラフである。この場合、第1光源から放射される光にも、図8のように人体に有害な波長280nm未満の紫外線が含まれているので、波長280nm未満の光を分光補正フィルタで遮断する必要がある。従って、この場合は、第1光源及び第2光源から放射される光をそれぞれ適当な第1及び第2配光手段(いずれも、図示せず)により合わせた後に、一つの分光補正フィルタを用いて得られる光をコントロールするのが合理的である。尚、配光手段としては、例えばランプの形状が環状の場合であればパラボラ型反射板で照射方向へ配光することができ、ランプの形状が管状であればステンレス鋼板等の金属板で形成され且つ内面を光が効率的に反射するように鏡面状に処理された容器の中に入れ、配光したい一部分のみ開口させるようにすることもできる。
【0023】
又、光源を第1光源及び第2光源で構成する場合、上記の例では、第2光源にハロゲン電球を用いた例で説明したが、これを赤外線電球や白熱電球に置き換えることも可能であり、使用する電球に応じて分光補正フィルタの透過特性を調整すればよい。
【0024】
又、上記実施形態では、一つの分光補正フィルタで構成された例を説明したが、目的の照射光が得られるように使用する光源に応じて、複数枚の分光補正フィルタを用い、波長の選択及び強度の調整を行うようにしてもよい。
【0025】
又、本発明の光線治療器は、キャスタ等の適切な移動手段を備えた支持手段と組み合わせて使用できることはいうまでもないことであり、説明は省略する。
【0026】
【発明の効果】
以上説明したように、本発明によれば、人体に有害な波長280nm未満の紫外線を遮断すると共に、皮膚疾患等の治療に有用な280nm乃至400nmの紫外線、及び650nm乃至1500nmの赤外線,特に皮膚浸透性が高く身体を外側から暖める温熱効果の大きい800nm近傍の光線を効率的に照射する光線治療器が提供され、効果的な光線治療が可能になるという効果が得られる。
【図面の簡単な説明】
【図1】本発明の一実施形態を説明するための図で、(a)は模式的な外観斜視図、(b)は(a)のP−P’線に沿った断面の概略を模式的に示す断面図である。
【図2】図1のフィルタ部の具体例を示す図である。
【図3】キセノンランプの分光放射強度分布の例を示すグラフである。
【図4】分光補正フィルタの分光透過特性を示すグラフである。
【図5】本実施形態の光線治療器の分光放射強度分布を示すグラフである。
【図6】紫外線蛍光ランプの一例の相対分光放射分布を示すグラフである。
【図7】ハロゲン電球の相対分光放射強度分布を色温度毎に示すグラフである。
【図8】殺菌ランプの一例の相対分光放射強度分布を示すグラフである。
【符号の説明】
1 光線治療器
2 照射窓部
3 測距センサ
4 操作パネル部
5 フィルタ部
11 キセノンランプ
13 光源ホルダ
15 反射鏡
17 冷却ファン
20 制御回路部
51 分光補正フィルタ
53 フィルタ保持具
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a phototherapy device, and more particularly to a phototherapy device capable of irradiating a light beam that combines ultraviolet light and infrared light.
[0002]
[Prior art]
In this type of phototherapy device, keratinocytes are stimulated and synthesized by ultraviolet rays, and a fibroblast growth factor (bFGF) -generating action and a stimulus for expanding blood vessels from outside the body by infrared rays (thermal stimulation) are given. One of the important factors is the blood circulation promoting action to improve the flow.
[0003]
For this purpose, for example, Patent Document 1 discloses a phototherapy device combining a xenon lamp and a multilayer-deposited spectral correction filter. In this example, a spectral distribution similar to what is called sunbathing using sunlight is provided.
[0004]
[Patent Document 1]
JP-A-2002-263206 (p. 2-3, FIGS. 3 and 6)
[Non-patent document 1]
Fukui Kunihiko, "Rehabilitation Medicine Zensho 8 Physiotherapy", 3rd edition, Medical and Dental Medicine Publishing Co., Ltd., May 1991, p35-43.
[Non-patent document 2]
Negishi Naoki, Kikuchi Shin, "Biological effects of infrared radiation", Ceramics, The Ceramic Society of Japan, 1988, Vol. 23, No. 4, p.
[0005]
[Problems to be solved by the invention]
Non-Patent Document 1 describes that a wavelength having a main function does not necessarily need to be continuous light in a wide band like sunlight, but it is sufficient that ultraviolet light and near infrared light are used.
[0006]
However, the spectral correction filter used in the phototherapy device disclosed in Patent Document 1 does not transmit a wavelength of 800 nm to 1000 nm, which has a large skin penetrating power, and therefore sufficiently provides the original purpose of thermal stimulation. Can not.
[0007]
Further, in Patent Literature 1, although unnecessary heat is generated by near infrared rays, the xenon lamp described in the example of Patent Literature 1 has a relatively small relative value of the entire wavelength even in consideration of the emission line spectrum. It does not emit strong infrared rays, and there is almost no infrared rays having a high skin permeability of 800 nm to 1000 nm. Furthermore, although infrared rays of 1000 nm or more emit some radiation, infrared rays of 1500 nm or more have a rapid decrease in skin penetration and are almost completely absorbed in the upper layer of the skin. No, it is not enough to fulfill the function as a phototherapy device. (Non-Patent Document 2)
It is a main object of the present invention to provide a phototherapy device capable of irradiating useful 280 to 400 nm ultraviolet rays and 650 to 1500 nm infrared rays without being irradiated with harmful ultraviolet rays of less than 280 nm.
[0008]
[Means for Solving the Problems]
Therefore, the phototherapy device according to the present invention has at least one or more light sources whose emission light has an emission line or a continuous spectrum in the range of 280 nm to 2500 nm, and does not transmit ultraviolet light of less than 280 nm and ultraviolet light of 280 to 400 nm. A spectral correction filter that mainly transmits infrared rays of 650 nm to 1500 nm.
[0009]
At this time, the light source is selected from a group including a xenon lamp, a fluorescent lamp (= a low-pressure mercury lamp including an ultraviolet fluorescent lamp and a germicidal lamp), a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, and a bulb. be able to.
[0010]
Further, the light source may include a first light source mainly emitting ultraviolet rays and a second light source emitting light rays including infrared rays. For example, the first light source may be a fluorescent lamp, and the second light source may be a halogen bulb.
[0011]
Further, the filter preferably has a transmittance at 800 nm of 30% to 70%. Specifically, it can be formed by adding divalent and trivalent iron ions to a phosphate-based glass substrate.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described with reference to the drawings.
1A and 1B are diagrams for explaining an embodiment of the present invention, in which FIG. 1A is a schematic external perspective view, and FIG. 1B is a schematic cross-sectional view taken along line PP ′ of FIG. FIG. Referring to FIG. 1, a light therapy device 1 of the present embodiment includes a xenon lamp 11 as a light source, a light source holder 13 in which the xenon lamp 11 is mounted, and a reflection for reflecting light to a front portion, that is, an irradiation window 2 side. It comprises a mirror 15, a filter section 5 for transmitting only radiation in a desired wavelength range, and a control circuit section 20 including a lamp driving circuit, a control circuit, a display circuit, and the like. Further, it has a cooling fan 17 for cooling the lamp 11 and peripheral members, and a distance measuring sensor 3 as distance measuring means for measuring the distance to the irradiated part. The light radiated from the xenon lamp 11 is shielded from light in a harmful wavelength band by the filter unit 5, is corrected to an appropriate intensity, and is irradiated from the irradiation window unit 2 to an irradiated portion (not shown). You. In FIG. 1, illustration of electrical connections and the like between components is omitted for simplicity and simplicity.
[0013]
FIG. 2 is a diagram illustrating a specific example of the filter unit 5. Referring to FIG. 2, the filter unit 5 is mounted on the optical path of the phototherapy device 1 with the spectral correction filter 51 held by the filter holder 53.
[0014]
Note that a xenon lamp driving circuit (not shown) included in the control circuit unit 20 switches a voltage obtained by rectifying AC 100 V to generate a high-frequency voltage, transforms the voltage, rectifies and smoothes the light, and lights the lamp 11. In addition, in order to facilitate starting of the lamp 11, a high voltage is applied from a starter (not shown) for a certain period of time at the time of starting. If the temperature during operation of the xenon lamp 11 rises too high, the life of the xenon lamp 11 will be shortened. Further, it is simple and useful to change the distance between the irradiated part and the xenon lamp 11, which is a light source, in order to change the light intensity in accordance with the symptoms of the skin disease that is the irradiated part (not shown). The sensor 3 measures the distance between the illuminated site and the light source, and displays an appropriate display on, for example, the operation panel unit 4 according to the measurement result.
[0015]
The emission spectrum of the xenon lamp has an emission spectrum over a wide band with a wavelength of 220 nm to 2500 nm, and is one of suitable light sources for a light therapy device, but contains ultraviolet rays harmful to the human body with a wavelength of less than 280 nm. This wavelength band needs to be cut. In the near infrared region having a wavelength of about 750 nm to about 1000 nm, there is a strong line spectrum of xenon, which is effective for treating skin diseases. However, it is suitable for suppressing acute skin inflammation and excessive drying of the skin. Need to be controlled. FIG. 3 shows an example of the spectral radiant intensity distribution of the xenon lamp 11 used in the present embodiment. The horizontal axis and the vertical axis indicate the light wavelength (unit: nm) and the spectral radiant intensity (unit: μW · cm −2. It is a graph shown as nm- 1 ).
[0016]
Further, the spectral correction filter 51 used in the phototherapy device 1 of the present embodiment is configured to transmit ultraviolet rays of 280 nm to 400 nm and infrared rays of 650 nm to 1500 nm. Specifically, for example, a phosphate-based glass containing divalent and trivalent iron ions can be used. In this case, the transmittance of 280 nm to 2500 nm, particularly 600 nm to 1000 nm can be controlled by the content of iron ions, and a transmittance of 800 nm of 30% to 70% is more preferable. FIG. 4 is a graph showing the spectral transmission characteristics of the spectral correction filter 51, with the horizontal axis and the vertical axis representing the wavelength of light (unit: nm) and the spectral transmittance (unit:%), respectively. Further, FIG. 5 shows the spectral radiation intensity distribution after the light emitted by the xenon lamp 11 having the spectral radiation intensity distribution shown in FIG. 3 has passed through the spectral correction filter 51, that is, the irradiation of the phototherapy device 1 of the present embodiment. 3, the horizontal axis and the vertical axis represent the wavelength (unit: nm) of light and the spectral radiation intensity (unit: μW · cm −2. It is a graph shown as nm- 1 ).
[0017]
As can be seen from FIGS. 3 to 5, the light emitted from the irradiation window 2 of the light therapy device 1 of the present embodiment blocks ultraviolet rays having a wavelength less than 280 nm that is harmful to the human body and has a wavelength of 280 nm to 2500 nm. Light can be transmitted while suppressing the intensity of a strong line spectrum having a wavelength of about 750 nm to about 1000 nm. In particular, the transmittance of the spectral correction filter 51 at a wavelength of 800 nm is 50% or more, and the intensity of light having a wavelength near 800 nm can be secured. Therefore, it is possible to efficiently irradiate ultraviolet rays of 280 nm to 400 nm and infrared rays of 650 nm to 1500 nm which are useful for treatment of skin diseases and the like, and particularly, rays of about 800 nm which have a high skin permeability and a large thermal effect for warming the body from the outside. it can.
[0018]
As described above, the phototherapy device of the present invention blocks ultraviolet rays having wavelengths less than 280 nm, which are harmful to the human body, and is useful for treating skin diseases and the like, while having ultraviolet rays of 280 nm to 400 nm and infrared rays of 650 nm to 1500 nm. It is possible to efficiently irradiate a light beam having a high thermal effect for warming the body from the outside, which is high in skin permeability, in the vicinity of 800 nm, and a large therapeutic effect can be obtained with a simple configuration.
[0019]
It should be noted that the present invention is not limited to the description of the above embodiment, and various changes can be made within the scope of the technical idea.
[0020]
For example, in the above embodiment, a xenon lamp having continuous light emission in a wide band is used as the light source. It may be combined with a second light source having a light emitting area, such as a halogen bulb.
[0021]
FIG. 6 is a graph showing the relative spectral radiant intensity distribution of an example of an ultraviolet fluorescent lamp, where the horizontal axis and the vertical axis are the wavelength of light (unit: nm) and the relative radiant intensity (unit:%), respectively. Similarly, the horizontal axis and the vertical axis are respectively a light wavelength (unit: μm) and a relative radiant intensity (unit:%), and are graphs showing the spectral relative radiant intensity distribution of the halogen bulb for each color temperature. As can be seen from FIG. 6, the ultraviolet fluorescent lamp has a spectral distribution mainly in the wavelength region of 280 nm to 400 nm, and the luminous tube of the ultraviolet fluorescent lamp is usually made of soda glass. Function as a wavelength selection filter that blocks ultraviolet rays, and does not need to pass through the wavelength selection filter again. On the other hand, the light source itself of the halogen bulb can be reduced in size as compared with a general infrared light bulb, so that the entire phototherapy device can be downsized and made functional. However, as can be seen from FIG. 7, light is emitted in a wide wavelength range from ultraviolet to far infrared. Therefore, when the light source includes a first light source such as an ultraviolet fluorescent lamp and a second light source such as a halogen bulb, only light from the halogen bulb is transmitted through a spectral correction filter by, for example, an appropriate light distribution unit. It is sufficient to block ultraviolet rays having a wavelength of less than 280 nm.
[0022]
As another configuration example of the light source, a germicidal lamp can be used as the first light source, and a halogen bulb can be combined with the second light source. FIG. 8 is a graph showing the relative spectral radiant intensity distribution of an example of the germicidal lamp, with the horizontal axis and the vertical axis representing the light wavelength (unit: nm) and the relative radiant intensity (unit:%), respectively. In this case, since the light emitted from the first light source also contains ultraviolet rays having a wavelength less than 280 nm that is harmful to the human body as shown in FIG. 8, it is necessary to block the light having a wavelength less than 280 nm with a spectral correction filter. . Therefore, in this case, the light emitted from the first light source and the light emitted from the second light source are combined by appropriate first and second light distribution means (both not shown), and then one spectral correction filter is used. It is rational to control the light obtained. As the light distribution means, for example, if the lamp has a ring shape, light can be distributed in the irradiation direction with a parabolic reflector, and if the lamp has a tubular shape, it is formed of a metal plate such as a stainless steel plate. It can also be placed in a container which has been mirror-finished so that light is reflected efficiently from the inner surface, and only a part of the light to be distributed is opened.
[0023]
Further, in the case where the light source is constituted by the first light source and the second light source, in the above example, the example in which the halogen light bulb is used as the second light source has been described, but it is also possible to replace this with an infrared light bulb or an incandescent light bulb. The transmission characteristics of the spectral correction filter may be adjusted according to the bulb used.
[0024]
In the above-described embodiment, an example in which one spectral correction filter is used has been described. However, a plurality of spectral correction filters are used according to a light source used so as to obtain target irradiation light, and wavelength selection is performed. And the strength may be adjusted.
[0025]
In addition, it goes without saying that the phototherapy device of the present invention can be used in combination with a supporting means provided with an appropriate moving means such as a caster, and a description thereof will be omitted.
[0026]
【The invention's effect】
As described above, according to the present invention, ultraviolet rays having a wavelength of less than 280 nm that are harmful to the human body are blocked, and at the same time, ultraviolet rays having a wavelength of 280 nm to 400 nm and infrared rays having a wavelength of 650 nm to 1500 nm, which are useful for treatment of skin diseases and the like, particularly skin penetration. A phototherapy device that efficiently irradiates light near 800 nm, which has a high thermal effect and has a high thermal effect to warm the body from the outside, is provided, and an effect of enabling effective phototherapy is obtained.
[Brief description of the drawings]
1A and 1B are diagrams for explaining an embodiment of the present invention, in which FIG. 1A is a schematic external perspective view, and FIG. 1B is a schematic cross-sectional view taken along line PP ′ of FIG. FIG.
FIG. 2 is a diagram illustrating a specific example of a filter unit in FIG. 1;
FIG. 3 is a graph showing an example of a spectral radiation intensity distribution of a xenon lamp.
FIG. 4 is a graph showing a spectral transmission characteristic of a spectral correction filter.
FIG. 5 is a graph showing a spectral radiation intensity distribution of the phototherapy device of the present embodiment.
FIG. 6 is a graph showing a relative spectral radiation distribution of an example of an ultraviolet fluorescent lamp.
FIG. 7 is a graph showing a relative spectral radiation intensity distribution of a halogen bulb for each color temperature.
FIG. 8 is a graph showing a relative spectral radiation intensity distribution of an example of a germicidal lamp.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 light treatment device 2 irradiation window unit 3 distance measuring sensor 4 operation panel unit 5 filter unit 11 xenon lamp 13 light source holder 15 reflecting mirror 17 cooling fan 20 control circuit unit 51 spectral correction filter 53 filter holder

Claims (10)

紫外線と赤外線とを患部に照射して治療を行う光線治療器であって、放射光が280nm乃至2500nmの範囲の輝線または連続したスペクトルを持つ、少なくとも1種類以上の光源と、280nm未満の紫外線を透過させず、280nm乃至400nmの紫外線及び650nm乃至1500nmの赤外線を透過させる分光補正フィルタとを有することを特長とする光線治療器。A phototherapy device for performing treatment by irradiating an affected part with ultraviolet light and infrared light, wherein at least one or more light sources whose emitted light has a bright line or a continuous spectrum in a range of 280 nm to 2500 nm, and an ultraviolet light of less than 280 nm. A phototherapy device comprising: a spectral correction filter that transmits ultraviolet light of 280 nm to 400 nm and infrared light of 650 nm to 1500 nm without transmitting the light. 前記光源は、キセノンランプ、蛍光ランプ(=紫外線蛍光ランプ及び殺菌ランプを含む低圧水銀ランプ)、高圧水銀ランプ、超高圧水銀ランプ及び電球が含まれる群の中から選択されたものである請求項1記載の光線治療器。The light source is selected from a group including a xenon lamp, a fluorescent lamp (= low-pressure mercury lamp including an ultraviolet fluorescent lamp and a germicidal lamp), a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, and a light bulb. A phototherapy device as described. 前記光源は、紫外線が主に放射される第1光源と、赤外線を含む光線が放射される第2光源からなる請求項1記載の光線治療器。2. The phototherapy device according to claim 1, wherein the light source comprises a first light source mainly emitting ultraviolet rays and a second light source emitting light rays including infrared rays. 前記第1光源が蛍光ランプであり、前記第2光源がハロゲン電球である請求項3記載の光線治療器。4. The phototherapy device according to claim 3, wherein the first light source is a fluorescent lamp, and the second light source is a halogen bulb. 前記フィルタは、800nmにおける透過率が30%乃至70%である請求項1乃至4いずれか1項に記載の光線治療器。The phototherapy device according to any one of claims 1 to 4, wherein the filter has a transmittance at 800 nm of 30% to 70%. 前記フィルタが、硝子基材に所定の金属イオンを含有させて分光特性を持たせた光学フィルタである請求項5記載の光線治療器。6. The phototherapy device according to claim 5, wherein the filter is an optical filter having a glass substrate containing predetermined metal ions to have a spectral characteristic. 前記硝子基材がリン酸塩系硝子であり、前記金属イオンが2価及び3価の鉄イオンである請求項6記載の光線治療器。The phototherapy device according to claim 6, wherein the glass substrate is a phosphate glass, and the metal ions are divalent and trivalent iron ions. 紫外線と赤外線とを含む照射光を患部に照射して治療を行う光線治療器であって、第1光源と、第2光源と、前記第1光源の放射光が前記照射光を出射する照射窓部に導かれると共に強度が調整される第1配光手段と、前記第2光源の放射光が前記照射窓部に導かれると共に強度が調整される第2配光手段とを有し、
前記照射光は、波長が280nm未満の紫外線を含まず、波長が280nm乃至400nmの範囲の紫外線及び波長が650nm乃至1500nmの範囲の赤外線を含むことを特徴とする光線治療器。
What is claimed is: 1. A light therapy apparatus for performing treatment by irradiating an affected part with irradiation light containing ultraviolet light and infrared light, comprising: a first light source, a second light source, and an irradiation window from which the light emitted from the first light source emits the irradiation light. A first light distribution unit whose intensity is adjusted while being guided to the unit, and a second light distribution unit whose intensity is adjusted while the radiated light of the second light source is guided to the irradiation window unit,
The light treatment device, wherein the irradiation light does not include ultraviolet light having a wavelength of less than 280 nm, but includes ultraviolet light having a wavelength of 280 nm to 400 nm and infrared light having a wavelength of 650 nm to 1500 nm.
前記第1光源が蛍光ランプであり、前記第2光源が赤外線ランプである請求項8記載の光線治療器。9. The phototherapy device according to claim 8, wherein the first light source is a fluorescent lamp, and the second light source is an infrared lamp. 被照射部位との距離を計測する距離測定手段を更に備えた請求項1乃至9いずれか1項に記載の光線治療器。The phototherapy device according to any one of claims 1 to 9, further comprising a distance measuring means for measuring a distance from the irradiation target site.
JP2003034287A 2003-02-12 2003-02-12 Phototherapy apparatus Pending JP2004242790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003034287A JP2004242790A (en) 2003-02-12 2003-02-12 Phototherapy apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003034287A JP2004242790A (en) 2003-02-12 2003-02-12 Phototherapy apparatus

Publications (1)

Publication Number Publication Date
JP2004242790A true JP2004242790A (en) 2004-09-02

Family

ID=33020024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003034287A Pending JP2004242790A (en) 2003-02-12 2003-02-12 Phototherapy apparatus

Country Status (1)

Country Link
JP (1) JP2004242790A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007159785A (en) * 2005-12-13 2007-06-28 Ushio Inc Excimer laser treatment apparatus
WO2007072459A2 (en) * 2005-12-23 2007-06-28 Koninklijke Philips Electronics N.V. Apparatus to provide therapeutic treatment by infrared irradiation
JP2007267936A (en) * 2006-03-31 2007-10-18 Nagoya City Univ Phototherapeutic apparatus
WO2017029923A1 (en) * 2015-08-18 2017-02-23 ウシオ電機株式会社 Phototherapy apparatus
CN110960800A (en) * 2018-09-28 2020-04-07 公立大学法人名古屋市立大学 Phototherapy device and phototherapy method
WO2023153478A1 (en) * 2022-02-10 2023-08-17 株式会社坪田ラボ Method for improving physiological conditions by photostimulation and device to be used therein

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007159785A (en) * 2005-12-13 2007-06-28 Ushio Inc Excimer laser treatment apparatus
JP4687436B2 (en) * 2005-12-13 2011-05-25 ウシオ電機株式会社 Excimer light therapy device
US8540757B2 (en) 2005-12-13 2013-09-24 Ushiodenki Kabushiki Kaisha Phototherapy apparatus using excimer radiation
WO2007072459A2 (en) * 2005-12-23 2007-06-28 Koninklijke Philips Electronics N.V. Apparatus to provide therapeutic treatment by infrared irradiation
WO2007072459A3 (en) * 2005-12-23 2008-02-14 Koninkl Philips Electronics Nv Apparatus to provide therapeutic treatment by infrared irradiation
JP2007267936A (en) * 2006-03-31 2007-10-18 Nagoya City Univ Phototherapeutic apparatus
WO2017029923A1 (en) * 2015-08-18 2017-02-23 ウシオ電機株式会社 Phototherapy apparatus
JP2017038671A (en) * 2015-08-18 2017-02-23 ウシオ電機株式会社 Phototherapeutic device
KR20180037251A (en) * 2015-08-18 2018-04-11 우시오덴키 가부시키가이샤 Ray therapy machine
CN107921275A (en) * 2015-08-18 2018-04-17 优志旺电机株式会社 Phototherapy device
KR102001794B1 (en) * 2015-08-18 2019-07-18 우시오덴키 가부시키가이샤 Ray therapy machine
CN110960800A (en) * 2018-09-28 2020-04-07 公立大学法人名古屋市立大学 Phototherapy device and phototherapy method
WO2023153478A1 (en) * 2022-02-10 2023-08-17 株式会社坪田ラボ Method for improving physiological conditions by photostimulation and device to be used therein

Similar Documents

Publication Publication Date Title
US6447537B1 (en) Targeted UV phototherapy apparatus and method
JP4560046B2 (en) Phototherapy treatment of skin diseases
US5344434A (en) Apparatus for the photodynamic therapy treatment
CN100571650C (en) The equipment that is used for cosmetic skin rejuvenation treatment
JP2004505734A (en) Apparatus and method for ultraviolet targeted irradiation phototherapy for skin diseases
JP4687436B2 (en) Excimer light therapy device
US20120123507A1 (en) Phototherapeutic Apparatus and Method
JP2015522315A (en) Device for use in medical treatment rooms
JP2012531938A (en) Phototherapy system
WO2016208244A1 (en) Photodynamic therapy light irradiating device and light irradiating method
TW201825143A (en) Light source module, phototherapy apparatus and method of using the same
JP2020049142A (en) Phototherapy apparatus and phototherapy method
JP2004242790A (en) Phototherapy apparatus
FI64054C (en) MEDICAL PROCESSING
JP2006015051A (en) Photo-therapy apparatus
US7087074B2 (en) Light therapy apparatus
JP2016178018A5 (en) Lighted building
BR112016025468B1 (en) APPARATUS FOR CONDUCTING A METHOD FOR TREATMENT
RU2492883C1 (en) Ultraviolet and infrared phototherapeutic apparatus
JP7336757B2 (en) Filter for phototherapy equipment
JP2013208331A (en) Photodynamic therapy system accompanying temperature adjustment
RU179372U1 (en) Phototherapy device
JP3131561B2 (en) Infrared irradiation device
JPH10165524A (en) Light beam irradiating device for living body
JPH02302276A (en) Optical medical instrument

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20050323

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Effective date: 20060524

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Effective date: 20060728

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061017