JP2004241092A - Magnetic head slider and magnetic disk unit - Google Patents

Magnetic head slider and magnetic disk unit Download PDF

Info

Publication number
JP2004241092A
JP2004241092A JP2003031841A JP2003031841A JP2004241092A JP 2004241092 A JP2004241092 A JP 2004241092A JP 2003031841 A JP2003031841 A JP 2003031841A JP 2003031841 A JP2003031841 A JP 2003031841A JP 2004241092 A JP2004241092 A JP 2004241092A
Authority
JP
Japan
Prior art keywords
recording
flying height
magnetic disk
magnetic head
reproducing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003031841A
Other languages
Japanese (ja)
Other versions
JP4038437B2 (en
Inventor
Masayuki Kurita
昌幸 栗田
Hidekazu Kodaira
英一 小平
Kinkoku Jo
鈞国 徐
Mikio Tokuyama
幹夫 徳山
Koji Miyake
晃司 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003031841A priority Critical patent/JP4038437B2/en
Publication of JP2004241092A publication Critical patent/JP2004241092A/en
Application granted granted Critical
Publication of JP4038437B2 publication Critical patent/JP4038437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion
    • G11B5/6011Control of flying height
    • G11B5/6064Control of flying height using air pressure

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide, in particular, a flying height adjusting slider with the function of adjusting the distance between a magnetic head and magnetic disk, having a magnetic head slider structure for realizing high recording density. <P>SOLUTION: First, a film resistor 4 as a heating device is fully separated from record-reproducing components 2 and 3. Secondly, floating surface is designed so as to increase air pressure generated on the floating surface, due to the projection of a part of the floating surface accompanying energization of the resistor 4. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、磁気ディスク装置の高記録密度化を実現するための磁気ヘッドスライダ構造に係わり、特に磁気ディスクと磁気ヘッドの距離を調整する機能を持った浮上量調整スライダに関する。
【0002】
【従来の技術】
磁気ディスク装置は、回転する磁気ディスクと、記録再生素子を搭載しロードビームによって支持および径方向位置決めされた磁気ヘッドスライダ(単にスライダとも呼ぶ)を有し、スライダが相対的に磁気ディスク上を走行して磁気ディスク上に記録された磁気情報を読み書きする。前記スライダは空気潤滑軸受として空気のくさび膜効果によって浮上し、磁気ディスクとスライダが直接は固体接触しないようになっている。磁気ディスク装置の高記録密度化と、それによる装置の大容量化あるいは小型化を実現するためには、スライダと磁気ディスクの距離、すなわちスライダ浮上量を縮め、線記録密度を上げることが有効である。
【0003】
従来からスライダ浮上量の設計においては、加工ばらつきや使用環境気圧差、使用環境温度差などによる浮上量低下を見込み、最悪条件でもスライダとディスクが接触しないように、浮上量マージンを設けてきた。ヘッド個体毎に、または使用環境に応じて浮上量を調整する機能を設けたスライダを実現すれば上記マージンを廃することができ、スライダとディスクの接触は防ぎつつ記録再生素子の浮上量を大幅に縮めることができる。例えば、薄膜抵抗体から成る加熱装置を記録再生素子近傍に設け、スライダの一部を必要に応じて加熱して熱膨張、突出させ、記録再生素子の浮上量を調整するスライダ構造が提案されている(例えば、特許文献1参照)。
【特許文献1】
特開平5−20635号公報(第3頁)。
【0004】
【発明が解決しようとする課題】
第一に、再生素子寿命の課題がある。現在主流となっている磁気抵抗効果(MR効果)を利用した再生素子は熱負荷に弱く、高温に晒される時間が長いと寿命が短くなるという特徴がある。特開平5−20635号公報によって示された方法は有効な浮上量調整方法であるが、現在の記録再生素子に適用しようとすると、加熱装置である薄膜抵抗体が記録再生素子のごく近くに位置するため、加熱によって再生素子の寿命を低減してしまう恐れがある。
【0005】
第二に、浮上量調整方向の課題がある。同公報によって示された方式は記録再生素子部を熱膨張によって突出させる方式なので、通電によって浮上量は小さくなる。環境気圧(使用高度)に関しては、空気軸受がうける圧力が大きい高圧(低地)では浮上量が大きく、低圧(高地)になるに従って浮上量が小さくなる傾向がある。従って、高地でも接触しない浮上面設計をし、低地では常に通電して浮上量を下げる必要があるが、低地で使われる方が高地で使われるよりも頻度が高いので、同公報によって示された浮上量調整方向は逆の方向に比べて要する電力が大きくなる。
【0006】
以上まとめると、再生素子への熱負荷を小さくすること、および通電によって浮上量を大きくする方向の調整方法を開発すること、この二点が本発明によって解決しようとする課題である。
【0007】
【課題を解決するための手段】
上記課題は、第一に加熱装置である薄膜抵抗体を記録再生素子から十分離すこと、第二に抵抗体への通電にともなう浮上面一部の突出によって浮上面で発生する空気圧力が増加するように浮上面設計すること、この二点により解決される。
第一の点に関し、薄膜抵抗体が前記記録再生素子から0.1mm以上離れている必要がある。記録再生素子が空気流出端中央にある場合、流出端付近で記録再生素子の両側にそれぞれ少なくとも0.1mm以上離して薄膜抵抗体を設置すると良い。
第二の点に関し、現在産業界で広く使われている2段ステップ軸受スライダの浮上面は、実質的に平行な3つの面、すなわち(1)記録再生素子が設置されたレール面、(2)ステップ軸受である浅溝面、(3)負圧ポケットである深溝面、から構成されているが、近年、レール面を記録再生素子が設置された最上面(素子設置面と呼称)と、約5nm乃至50nmのごく浅いステップ軸受面(超浅溝面と呼称)の2つの面に分割し、浮上面が合計4つの平行な面から構成される3段ステップ軸受スライダが新たに提案されている。3段ステップスライダは素子設置面を小さく幅狭にして、周囲には素子設置面よりわずかに低い超浅溝面を設けたことにより、スライダのロール方向傾斜にかかわらず素子設置面が最もディスクに近くなることを保証でき、記録再生素子の低浮上化に寄与する。また、素子設置面を小さくしても超浅溝面が空気圧力を発生し荷重を支えているので、ディスク微小うねりへの追従性を損なうことはないという特徴がある。
前記の薄膜抵抗体は浮上面表面に露出して、あるいは浮上面から法線方向内部にある程度の距離を持った位置に形成される。薄膜抵抗体を浮上面に投影した位置が、前記超浅溝面領域内あるいはその近傍にあると、薄膜抵抗体に通電加熱して周囲を熱膨張変形させた時に、超浅溝面がディスク側に変位し、超浅溝面で発生する空気圧力が増加することによって、スライダ全体の浮上量および記録再生素子の浮上量が増加する。すなわち通電によって浮上量が増加する方向の浮上量調整である。
ここまで述べた手段により再生素子の寿命に影響せず、要する消費電力が小さい浮上量調整が実現できる。その結果、ヘッド個体毎に、または使用環境に応じて浮上量を調整することによって浮上量マージンを廃することができ、スライダとディスクの接触は防ぎつつ記録再生素子の浮上量を大幅に縮め、磁気ディスク面記録密度の増大、更には装置の大容量化あるいは小型化に寄与する。
【0008】
【発明の実施の形態】
本発明の実施形態に係わる磁気ヘッドスライダおよびこれを用いた磁気ディスク装置について、図面を用いて以下説明する。
【0009】
本発明の一実施例による磁気ディスク装置の概略構成を図1に示す。磁気ヘッドスライダ1には、磁気情報を記録再生する記録再生素子が搭載されている。磁気ディスク10は磁気情報が格納され、スピンドルモータによって回転される。磁気ヘッドスライダ1は、板ばね状のロードビームに取り付けられており、ロードビームによって磁気ディスク面への押し付け荷重を与えられ、ロードビームとともにボイスコイルモータによって磁気ディスク10の径方向にシーク動作し、磁気ディスク面全体で記録再生を行う。磁気ヘッドスライダ1は、装置の停止時あるいは読み書き命令が一定時間無い時に、磁気ディスク10上からランプ14上に待避する。
なお、ここではロード・アンロード機構を備えた装置を示したが、装置停止中は磁気ヘッドスライダ1が磁気ディスク10のある特定の領域で待機するコンタクト・スタート・ストップ方式の磁気ディスク装置でも本発明の効果は同様に得られる。
【0010】
図2は本発明の第一の実施形態を示すスライダ斜視図である。スライダ1は、アルミナとチタンカーバイドの焼結体に代表される材料の基板(ウエハ)部分1aと、基板上に薄膜プロセスで記録再生素子や配線パターンが形成され、アルミナなどの硬質保護膜で覆われた薄膜ヘッド部分1bから成る。
【0011】
スライダ1は長さ1.25mm、幅1.0mm、厚さ0.3mmのほぼ直方体形状をしており、浮上面9、空気流入端面12、空気流出端面13、両側の側面、背面の計6面から構成される。浮上面9にはイオンミリングやエッチングなどのプロセスによって微細な段差が設けられており、図示されていないディスク10と対向して空気圧力を発生し、背面に負荷される荷重を支える空気軸受の役目を果たしている。
【0012】
浮上面9には前記のように段差が設けられ、実質的に平行な4種類の面に分類される。最もディスクに近い素子設置面5、素子設置面より約5nm深い超浅溝面6、素子設置面より約150nm深いステップ軸受面である浅溝面7、素子設置面より約1μm深くなっている深溝面8の4種類である。なお、図示するように素子設置面5、超浅溝面6、浅溝面7はそれぞれ複数の構成要素5a、5b、5c、構成要素6a、6b、構成要素7a、7bに分割されている。浮上面の流出端側中央付近拡大図を図3に示す。また、空気流出端側から見た図を図4に示す。図4のD1、D2、D3はそれぞれ約5nm、約150nm、1μmである。
【0013】
磁気ディスク10が回転することで生じる空気流が、ステップ軸受である浅溝面7からレール面である素子設置面5、超浅溝面6へ進入する際に、先すぼまりの流路によって圧縮され、正の空気圧力を生じる。一方、レール面や浅溝面から深溝面8へ空気流が進入する際には流路の拡大によって、負の空気圧力が生じる。
【0014】
磁気ヘッドスライダ1は空気流入端12側の浮上量が空気流出端側13の浮上量より大きくなるような姿勢で浮上するように設計されている。従って流出端近傍の浮上面がディスク10に最も接近する。流出端近傍では、素子設置面5aが周囲の超浅溝面6a、6b、浅溝面7a、深溝面8に対して突出しているので、スライダピッチ姿勢およびロール姿勢が一定限度を超えて傾かない限り、素子設置面5aが最も磁気ディスク10に近づくことになる。磁気ヘッド(記録素子2および再生素子3から構成される)は、素子設置面5aの、薄膜ヘッド部分に形成されている。また少なくとも素子設置面5aは、記録再生素子の腐食を防ぐためにカーボン等の保護膜で被膜されている。
【0015】
素子設置面5と超浅溝面6の間の約5nmの段差形成方法は、約5nmの前記カーボン膜を酸素アッシング等の手段で除去することによって得るのが容易な方法である。
【0016】
超浅溝面6aおよび6bの、薄膜ヘッド部分には、薄膜抵抗体による加熱装置4a、4bが薄膜プロセスを用いて形成されている。加熱装置4a、4bは浮上面表面に露出している様子を示したが、浮上面表面から内部に一定の距離だけ離れていてもよい。薄膜抵抗体として本実施例では、材質がパーマロイ、厚さが0.5mm、幅が3μmの細線を、奥行き60μm、幅60μmの領域に蛇行させ、間隙はアルミナで埋めて発熱体を形成した。
【0017】
従来の技術に対する本実施例の特徴は、再生素子3から加熱装置4aまたは4bまでの距離Dが、0.1mm以上となっていることである。また、加熱装置4a、4bの位置(あるいは浮上面に投影した位置)が素子設置面5aではなく、超浅溝面6a、6bであることである。
【0018】
加熱装置の目的は、熱膨張変形によって記録再生素子と磁気ディスク間のスペーシングを調整し、前記浮上量マージンを無用化することである。近年、浮上量マージンは10nm以下で設計されているため、浮上量の変化量は最大10nmあれば十分である。熱膨張変形量と浮上量変化量との関係が1対1であると仮定すれば、熱膨張変形量も10nmあれば十分である。薄膜抵抗体からの発熱によるヘッド伝熱解析およびヘッド変形解析結果によれば、10nm熱膨張変形させるためには50mWの熱を薄膜抵抗体が発すればよい。その場合、10℃以上の温度上昇をするのは薄膜抵抗体の近傍だけであり、0.1mm離れた位置では温度上昇は限定されている。すなわち、加熱装置4を再生素子3から0.1mm以上離せば、再生素子の寿命に与える影響はごく限定され、信頼性の高い磁気ヘッドスライダを提供できる。なお、熱膨張変形量と浮上量変化量との関係は厳密には1対1ではないが、後で述べる浮上面設計の工夫によって、1対1に近づけることができる。
【0019】
次に図5を用い、使用環境の気圧差に起因する浮上量変動を補償する場合を例にとって、浮上量の調整原理を示す。図5のA図は低地条件におけるディスク10と記録再生素子2、3との位置関係を模式的に示したものである。低地条件での素子浮上量をH0とする。
【0020】
図5のB図は高地条件における位置関係を示す。高地で気圧が低い場合、同じ浮上量で比べると素子設置面5a等の浮上面で発生する空気圧力が小さくなり、同じ荷重で比べると浮上量は小さくなる。すなわち素子浮上量H1はH0より小さくなり、その差は現在の設計浮上量に比べて無視できない量である。低地でぎりぎり接触しない設計にすると高地ではディスクとスライダの接触が起こり、スライダ振動による記録再生エラー、サーマルアスペリティによる読み取りエラー、摩耗による素子ダメージなどを引き起こす。逆に高地でも接触しない設計をすると低地では高い浮上量で使わざるを得なくなり、記録密度を上げることができない。
【0021】
図5のC図は高地条件において本発明の磁気ヘッドスライダ構造によって加熱装置4a、4bに通電して超浅溝面6a、6bを熱膨張変形させた様子を示す。超浅溝面6a、6bで発生する空気圧力が増加することにより、高地で気圧が低くなった分を補償し、素子浮上量H2を元の素子浮上量H0と同等にすることができる。
【0022】
以上、気圧差起因の浮上量変動を補償する方法について説明したが、温度差起因の浮上量変動を補償する場合についても、記録素子の発熱による素子突出分をキャンセルする場合についても、またヘッド個体差による浮上量変動を調整する場合についても、同様である。
【0023】
従来の浮上量調整方法は、記録再生素子の近傍に加熱装置を置き、記録再生素子近傍だけ突出させて、通電によって浮上量を下げるやり方である。この方法の場合、高地で接触しないよう設計し、低地では浮上量が増える分、通電して突出させて浮上量を小さくすることになる。磁気ディスク装置の使用場所を考慮すると高地より低地の頻度が大きいため、通電する時間、あるいは大きな入力電力を要する時間が長くなり、消費電力が大きい。一方本発明の浮上量調整方法は、加熱装置付近の浮上面をディスクに近づけて浮上面面積を増やし、通電によって浮上量を上げるやり方である。この方法の場合、低地で接触しないよう設計し、高地では浮上量が減る分、通電して浮上量を大きくすることになる。高地で使用される頻度は(装置個別で見れば高地で使用される頻度の方が大きいものもあるが、機種全体で見れば)小さいため、要する消費電力は小さくて済む。
【0024】
次に浮上量の検知方法について述べる。気圧や温度を測るセンサを別途設ける方法もあるが、気圧、温度、個体差など全ての影響が入った状態で、接触が起こる(近すぎる)ことなく、かつ磁気情報の再生にエラーが起こる(遠すぎる)こともない、という2つの条件が満足されれば問題ないため、接触や再生エラーを監視してそれらが起こった時だけ加熱装置への入力電力を調整するフィードバック制御をするのが最も簡単な制御方法である。なお、ロードによる衝撃で素子が傷つくのを防ぐため、スライダをディスクにロードする時、特に装置起動時は、加熱装置に通電して浮上量を高くしておくのが有効である。
【0025】
装置起動時からの制御アルゴリズムを図9に示す。接触の検知方法については後述する。気圧差起因の浮上量変動およびヘッド個体差による浮上量変動を補償する方法については図示したように起動時のみでよいが、温度差起因の浮上量変動に関しては、規定の時間間隔毎に、あるいは使用中常に、接触および再生エラーを監視する必要がある。
【0026】
接触を検知する方法は、(1)アコースティックエミッション(AE)センサを用いる方法、(2)接触発熱によって再生信号に表れるノイズであるサーマルアスペリティを監視する方法、(3)接触摩擦力によってスライダがピボット回りに微小回転しオフトラックが起こるオフトラック信号を監視する方法、などがある。
【0027】
一方、磁気情報の再生エラーについてはいわゆるビットエラーレートを監視すればよい。再生エラーと違って記録エラーは監視するのが難しいが、記録時は記録素子のコイル発熱によって素子部が膨張して再生時より浮上量が低いのが一般的であるため、再生エラーが起こらない条件ならば記録エラーが起こる可能性も低い。
【0028】
また、浮上量調整に関わる別の方法としては、再生信号の振幅を用いて再生素子と媒体間の距離をその場観測する方法があり、これを応用することもできる。
【0029】
加熱装置4a、4bの位置(あるいは浮上面に投影した位置)が素子設置面5aではなく、超浅溝面6a、6bとなっている利点は、加熱装置4を加熱しない場合に、多少のロール姿勢があったとしても、浮上面の中で記録再生素子に極近い部分が最下点(ディスクに最も近い点)になることが保証できる点である。言い換えれば、最小浮上量位置における浮上量と記録再生素子位置における浮上量の差異が少なく、浮上量のロスが少ないということである。逆に素子設置面の流出端側エッジの幅が広い場合、最小浮上量位置と記録再生素子位置の距離が大きく、浮上量のロスが大きくなる。
【0030】
素子設置面の流出端側エッジの幅を狭く、30μmから60μm程度にすると、ディスクへの接近性能が良くなることが知られており、本実施例の構造はディスクへの接近性能向上の点からも有利である。
【0031】
図2乃至図5において超浅溝面6a、6bとした部分の高さを、素子設置面5aと同じにした場合、上記のように浮上量のロスが本実施例に比べて大きく、またディスクへの接近性能も向上しないものの、本発明の効果は同様に得られる。すなわち、再生素子3と加熱装置4の位置が0.1mm以上あるので再生素子寿命への影響は小さく、また通電によって浮上量が大きくなる方向の調整であるので、要する消費電力も小さい。
【0032】
前述した熱膨張変形量と浮上量変化量との関係は厳密には1対1ではないが、素子設置面の流出端側の幅をできるだけ小さくし、一方超浅溝面の幅をできるだけ大きくすると良い。言い換えれば、素子設置面で受け持つ荷重と超浅溝面で受け持つ荷重の比を調整し、素子設置面で受け持つ荷重の比率をできるだけ小さくすると、前記熱膨張変形量と浮上量変化量の関係を1対1に近づけることができる。図6に、素子設置面5aで受け持つ荷重の比率をできるだけ小さくした例を本発明の第二の実施例として図示する。素子設置面の面積をパラメータにして発生する圧力変化を解析した結果、素子設置面5aの面積は0.005平方mm以下にすると好適である。
【0033】
図7は本発明の第三の実施形態を示すスライダ斜視図の、流出端付近拡大図である。第一の実施例で示した番号と同じ番号は同じものを示している。本実施例と第一および第二の実施例との違いは、加熱装置4a、4bを設置した超浅溝面6a、6bが、素子設置面5aから離れ、浅溝面7aで隔てられている点である。このようにすると、加熱装置4a、4bから再生素子3までの距離Dが第一および第二の実施例と比べて大きくなり、再生素子が加熱されて寿命に影響する危険性が更に小さくなる。また、熱膨張によって変形するのが超浅溝面6a、6bだけに限定され、浅溝面で隔てられた素子設置面5aはほとんど動かないので、前述した熱膨張変形量と浮上量変化量の関係が1対1に近づく。素子設置面5aの面積はできるだけ小さく、0.005平方mm以下にすると好適である。
【0034】
図7において超浅溝面6a、6bとした部分の高さを、素子設置面5aと同じにした場合、浮上量のロスが本実施例に比べて大きく、またディスクへの接近性能も向上しないものの、本発明の効果は同様に得られる。
【0035】
図8は本発明の第四の実施形態を示すスライダ斜視図の、流出端付近拡大図である。第一の実施例で示した番号と同じ番号は同じものを示している。本実施例と第一乃至第三の実施例との違いは、加熱装置4a、4bを設置した超浅溝面6a、6bが、素子設置面5aから離れ、深溝面8で隔てられている点である。このようにすると、加熱装置4a、4bから再生素子3までの距離Dが第一乃至第三の実施例と比べて更に大きくなり、再生素子が加熱されて寿命に影響する危険性が一層小さくなる。また、熱膨張によって変形するのが超浅溝面6a、6bだけに限定され、浅溝面で隔てられた素子設置面5aはほとんど動かないので、前述した熱膨張変形量と浮上量変化量の関係が1対1に近づく。素子設置面5aの面積はできるだけ小さく、0.005平方mm以下にすると好適である。
【0036】
図8において超浅溝面6a、6bとした部分の高さを、素子設置面5aと同じにした場合、浮上量のロスが本実施例に比べて大きく、またディスクへの接近性能も向上しないものの、本発明の効果は同様に得られる。
【0037】
【発明の効果】
本発明の、第一に加熱装置である薄膜抵抗体を記録再生素子から十分離したこと、第二に抵抗体への通電にともなう浮上面一部の突出によって浮上面で発生する空気圧力が増加するように浮上面設計したこと、この二点により、再生素子の寿命に影響せず、要する消費電力が小さい浮上量調整が実現できる。その結果、ヘッド個体毎に、または使用環境に応じて浮上量を調整することによって浮上量マージンを廃することができ、スライダとディスクの接触は防ぎつつ記録再生素子の浮上量を大幅に縮め、磁気ディスク面記録密度の増大、更には装置の大容量化あるいは小型化に寄与する。
【図面の簡単な説明】
【図1】本発明の磁気ヘッドスライダを搭載する磁気ディスク装置。
【図2】本発明の第1実施例のスライダ。
【図3】第1実施例のスライダ流出端付近拡大図。
【図4】第1実施例のスライダを流出端側から見た図。
【図5】第1実施例の浮上量調整メカニズム説明図。
【図6】第2実施例のスライダ流出端付近拡大図。
【図7】第3実施例のスライダ流出端付近拡大図。
【図8】第4実施例のスライダ流出端付近拡大図。
【図9】本発明の磁気ヘッドスライダ制御方法を示すフロー図。
【符号の説明】
1…磁気ヘッドスライダ、1a…スライダ基板部分、1b…スライダ薄膜ヘッド部分、2…記録素子、3…再生素子、4…加熱装置、5…素子設置面、5a、5b、5c…素子設置面構成要素、6…超浅溝面、6a,6b,6c、…超浅溝面構成要素、7…浅溝面、7a,7b…浅溝面構成要素、8…深溝面、9…浮上面、10…磁気ディスク、11…磁気ディスク装置、12…空気流入端面、13…空気流出端面、14…ランプ、D…再生素子と加熱装置の距離、D1…超浅溝面の素子設置面からの深さ、D2…浅溝面の素子設置面からの深さ、D3…深溝面の素子設置面からの深さ、H0…低地での素子浮上量、H1…高地で加熱しない場合の素子浮上量、H2…高地で加熱した場合の浮上量
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic head slider structure for realizing a high recording density of a magnetic disk drive, and more particularly to a flying height adjusting slider having a function of adjusting a distance between a magnetic disk and a magnetic head.
[0002]
[Prior art]
A magnetic disk device has a rotating magnetic disk, and a magnetic head slider (also simply referred to as a slider) mounted with a read / write element and supported and radially positioned by a load beam, and the slider relatively moves on the magnetic disk. To read and write magnetic information recorded on the magnetic disk. The slider floats as an air-lubricated bearing by the wedge film effect of air, so that the magnetic disk and the slider do not directly come into solid contact. In order to increase the recording density of a magnetic disk drive and thereby increase the capacity or reduce the size of the drive, it is effective to reduce the distance between the slider and the magnetic disk, that is, to reduce the slider flying height and increase the linear recording density. is there.
[0003]
Conventionally, in the design of the slider flying height, a flying height margin has been provided so as to prevent the slider from coming into contact with the disk even under the worst conditions, in view of a reduction in the flying height due to processing variations, a difference in atmospheric pressure in use, a temperature difference in use environment, and the like. By realizing a slider with a function to adjust the flying height for each head or according to the usage environment, the above margin can be eliminated, and the flying height of the read / write element can be greatly increased while preventing contact between the slider and disk. Can be reduced to For example, there has been proposed a slider structure in which a heating device formed of a thin film resistor is provided in the vicinity of a recording / reproducing element and a part of the slider is heated and thermally expanded and protruded as necessary to adjust the flying height of the recording / reproducing element. (For example, see Patent Document 1).
[Patent Document 1]
JP-A-5-20635 (page 3).
[0004]
[Problems to be solved by the invention]
First, there is a problem of the life of the reproducing element. Reproduction elements utilizing the magnetoresistance effect (MR effect), which are currently mainstream, are susceptible to heat load, and have the characteristic that the life is shortened if the exposure time to high temperatures is long. The method disclosed in Japanese Patent Application Laid-Open No. Hei 5-20635 is an effective flying height adjustment method. However, when applied to a current recording / reproducing element, a thin film resistor as a heating device is located very close to the recording / reproducing element. Therefore, the life of the reproducing element may be shortened by heating.
[0005]
Second, there is a problem in the flying height adjustment direction. The method disclosed in the publication is a method in which the recording / reproducing element portion is protruded by thermal expansion, so that the flying height is reduced by energization. Regarding the atmospheric pressure (operating altitude), the flying height tends to be large at high pressure (low altitude) where the pressure applied to the air bearing is large, and the flying height tends to decrease as the pressure decreases (high altitude). Therefore, it is necessary to design a floating surface that does not contact even at high altitudes, and it is necessary to always energize at low altitudes and reduce the flying height, but it is more frequently used at low altitudes than at high altitudes. The flying height adjustment direction requires more power than the opposite direction.
[0006]
In summary, reducing the thermal load on the reproducing element and developing a method for increasing the flying height by energization are the two problems to be solved by the present invention.
[0007]
[Means for Solving the Problems]
The first problem is that the thin film resistor as the heating device is sufficiently separated from the recording / reproducing element, and second, the air pressure generated on the floating surface increases due to the projection of a part of the floating surface due to energization of the resistor. The design of the air bearing surface is solved by these two points.
Regarding the first point, the thin film resistor needs to be separated from the read / write element by 0.1 mm or more. When the recording / reproducing element is located at the center of the air outflow end, it is preferable to install a thin film resistor at least 0.1 mm apart on both sides of the recording / reproducing element near the outflow end.
Regarding the second point, the flying surface of a two-step step bearing slider widely used in the industry at present has three substantially parallel surfaces, namely, (1) a rail surface on which a read / write element is installed, (2) ) A shallow groove surface which is a step bearing; and (3) a deep groove surface which is a negative pressure pocket. In recent years, the rail surface has been referred to as an uppermost surface on which a recording / reproducing element is installed (referred to as an element installation surface). A three-step step bearing slider which is divided into two surfaces of an extremely shallow step bearing surface (referred to as an ultra-shallow groove surface) of about 5 nm to 50 nm, and whose floating surface is composed of a total of four parallel surfaces, has been newly proposed. I have. The three-step slider has a small and narrow element mounting surface and a super shallow groove surface slightly lower than the element mounting surface, so that the element mounting surface is the most suitable for the disk regardless of the roll direction inclination of the slider. It can be ensured that the distance is close to each other, which contributes to lowering the flying height of the recording and reproducing element. Further, even if the element installation surface is made smaller, the ultra-shallow groove surface generates air pressure and supports the load, so that there is a feature that the ability to follow the minute waviness of the disk is not impaired.
The thin film resistor is exposed at the surface of the air bearing surface or formed at a position at a certain distance from the air bearing surface in the normal direction. If the position where the thin-film resistor is projected on the air bearing surface is in or near the ultra-shallow groove surface area, when the thin-film resistor is heated by heating and the surroundings are thermally expanded and deformed, the ultra-shallow groove surface faces the disk side. And the air pressure generated on the ultra-shallow groove surface increases, so that the flying height of the entire slider and the flying height of the recording / reproducing element increase. That is, the flying height is adjusted in a direction in which the flying height is increased by energization.
By the means described so far, the flying height adjustment with small power consumption can be realized without affecting the life of the reproducing element. As a result, the flying height margin can be eliminated by adjusting the flying height for each individual head or according to the use environment, and the flying height of the recording / reproducing element can be significantly reduced while preventing the slider from coming into contact with the disk. This contributes to an increase in the recording density of the magnetic disk surface and further to an increase in the capacity or size of the apparatus.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
A magnetic head slider according to an embodiment of the present invention and a magnetic disk drive using the same will be described below with reference to the drawings.
[0009]
FIG. 1 shows a schematic configuration of a magnetic disk drive according to one embodiment of the present invention. The magnetic head slider 1 has a recording / reproducing element for recording / reproducing magnetic information. The magnetic disk 10 stores magnetic information and is rotated by a spindle motor. The magnetic head slider 1 is attached to a leaf spring-shaped load beam, is given a pressing load against the magnetic disk surface by the load beam, and performs a seek operation in the radial direction of the magnetic disk 10 by a voice coil motor together with the load beam. Recording and reproduction are performed on the entire surface of the magnetic disk. The magnetic head slider 1 retreats from the magnetic disk 10 onto the ramp 14 when the apparatus is stopped or when there is no read / write command for a certain period of time.
Although a device having a load / unload mechanism is shown here, a contact start / stop type magnetic disk device in which the magnetic head slider 1 waits in a specific area of the magnetic disk 10 while the device is stopped. The effect of the invention can be obtained similarly.
[0010]
FIG. 2 is a slider perspective view showing the first embodiment of the present invention. The slider 1 has a substrate (wafer) portion 1a of a material typified by a sintered body of alumina and titanium carbide, and a recording / reproducing element and a wiring pattern formed on the substrate by a thin film process, and covered with a hard protective film such as alumina. And a thin film head portion 1b.
[0011]
The slider 1 has a substantially rectangular parallelepiped shape having a length of 1.25 mm, a width of 1.0 mm, and a thickness of 0.3 mm. The slider 1 has an air bearing surface 9, an air inflow end surface 12, an air outflow end surface 13, both side surfaces, and a total of six surfaces. Consists of faces. The air bearing surface 9 is provided with minute steps by a process such as ion milling or etching, and generates air pressure in opposition to a disk 10 (not shown) to serve as an air bearing for supporting a load applied to the back surface. Plays.
[0012]
The air bearing surface 9 is provided with a step as described above, and is classified into four types of substantially parallel surfaces. The element mounting surface 5 closest to the disk, the ultra-shallow groove surface 6 which is about 5 nm deeper than the element mounting surface, the shallow groove surface 7 which is a step bearing surface which is about 150 nm deeper than the element mounting surface, and the deep groove which is about 1 μm deeper than the element mounting surface There are four types of surface 8. As shown, the element installation surface 5, the ultra-shallow groove surface 6, and the shallow groove surface 7 are each divided into a plurality of components 5a, 5b, 5c, components 6a, 6b, and components 7a, 7b. FIG. 3 is an enlarged view of the vicinity of the center of the floating surface on the outflow end side. FIG. 4 shows a view from the air outflow end side. D1, D2, and D3 in FIG. 4 are about 5 nm, about 150 nm, and 1 μm, respectively.
[0013]
When the airflow generated by the rotation of the magnetic disk 10 enters the element mounting surface 5 as the rail surface and the ultra-shallow groove surface 6 from the shallow groove surface 7 as the step bearing, the flow is tapered. Compressed, producing positive air pressure. On the other hand, when the air flow enters the deep groove surface 8 from the rail surface or the shallow groove surface, a negative air pressure is generated due to the expansion of the flow path.
[0014]
The magnetic head slider 1 is designed to fly in such a posture that the flying height at the air inflow end 12 is larger than the flying height at the air outflow end 13. Therefore, the floating surface near the outflow end comes closest to the disk 10. In the vicinity of the outflow end, since the element installation surface 5a protrudes from the surrounding super-shallow groove surfaces 6a, 6b, the shallow groove surface 7a, and the deep groove surface 8, the slider pitch posture and the roll posture do not tilt beyond a certain limit. As far as possible, the element installation surface 5a is closest to the magnetic disk 10. The magnetic head (composed of the recording element 2 and the reproducing element 3) is formed on the element mounting surface 5a in the thin film head portion. At least the element mounting surface 5a is coated with a protective film such as carbon to prevent corrosion of the recording / reproducing element.
[0015]
The method of forming a step of about 5 nm between the element installation surface 5 and the ultra-shallow groove surface 6 is an easy method to obtain by removing the carbon film of about 5 nm by means such as oxygen ashing.
[0016]
Heating devices 4a and 4b using thin-film resistors are formed in the thin-film head portions of the ultra-shallow groove surfaces 6a and 6b using a thin-film process. Although the heating devices 4a and 4b are shown as being exposed on the surface of the floating surface, they may be separated from the surface of the floating surface by a certain distance. In this embodiment, a thin wire having a material of permalloy, a thickness of 0.5 mm and a width of 3 μm was meandered in a region of a depth of 60 μm and a width of 60 μm as a thin film resistor, and a gap was filled with alumina to form a heating element.
[0017]
The feature of the present embodiment over the conventional technique is that the distance D from the reproducing element 3 to the heating device 4a or 4b is 0.1 mm or more. Further, the position of the heating devices 4a and 4b (or the position projected on the air bearing surface) is not the element installation surface 5a but the ultra-shallow groove surfaces 6a and 6b.
[0018]
The purpose of the heating device is to adjust the spacing between the read / write element and the magnetic disk by thermal expansion deformation, and to make the flying height margin useless. In recent years, the flying height margin is designed to be 10 nm or less, so that a maximum variation of the flying height of 10 nm is sufficient. Assuming that the relationship between the amount of thermal expansion deformation and the amount of change in flying height is one-to-one, it is sufficient if the amount of thermal expansion deformation is also 10 nm. According to the results of the head heat transfer analysis and the head deformation analysis based on the heat generated from the thin-film resistor, the thin-film resistor only needs to generate 50 mW of heat in order to cause thermal expansion and deformation of 10 nm. In that case, the temperature rise of 10 ° C. or more is only in the vicinity of the thin film resistor, and the temperature rise is limited at a position separated by 0.1 mm. That is, if the heating device 4 is separated from the reproducing element 3 by 0.1 mm or more, the influence on the life of the reproducing element is very limited, and a highly reliable magnetic head slider can be provided. Note that the relationship between the amount of thermal expansion deformation and the amount of change in the flying height is not strictly one-to-one, but can be brought closer to one-to-one by devising the flying surface design described later.
[0019]
Next, the principle of adjusting the flying height will be described with reference to FIG. 5, taking as an example a case where the variation in the flying height caused by the pressure difference in the use environment is compensated. FIG. 5A schematically shows the positional relationship between the disk 10 and the recording / reproducing elements 2 and 3 under lowland conditions. The flying height of the element under lowland conditions is H0.
[0020]
FIG. 5B shows a positional relationship under high altitude conditions. When the air pressure is low at high altitude, the air pressure generated on the air bearing surface such as the element installation surface 5a becomes smaller as compared with the same floating amount, and the floating amount becomes smaller as compared with the same load. That is, the element flying height H1 is smaller than H0, and the difference is an amount that cannot be ignored compared to the current design flying height. If the design is such that the disk is barely contacted at low altitude, contact between the disk and the slider occurs at high altitude, causing a recording / reproducing error due to slider vibration, a reading error due to thermal asperity, and element damage due to wear. Conversely, if the design does not allow contact even at high altitudes, it must be used with a high flying height at low altitudes, and the recording density cannot be increased.
[0021]
FIG. 5C shows a state in which the heating devices 4a and 4b are energized to thermally deform the ultra-shallow groove surfaces 6a and 6b by the magnetic head slider structure of the present invention under high altitude conditions. By increasing the air pressure generated at the ultra-shallow groove surfaces 6a and 6b, the reduced air pressure at high altitude is compensated, and the element flying height H2 can be made equal to the original element flying height H0.
[0022]
The method of compensating the flying height fluctuation caused by the pressure difference has been described above.However, the method of compensating the flying height fluctuation caused by the temperature difference, the case of canceling the element protrusion due to the heat generation of the recording element, and the head individual The same applies to the case where the flying height variation due to the difference is adjusted.
[0023]
In the conventional method of adjusting the flying height, a heating device is placed near the recording / reproducing element, and is protruded only in the vicinity of the recording / reproducing element. In the case of this method, a design is made so as not to make contact at a high altitude, and at a low altitude, the flying height is increased and the flying height is reduced by an amount corresponding to an increase in the flying height. Considering the location where the magnetic disk device is used, the frequency of low land is higher than that of high land, so that the power supply time or the time required for large input power becomes longer, and the power consumption is large. On the other hand, the flying height adjusting method of the present invention is a method in which the flying surface near the heating device is brought closer to the disk to increase the flying surface area, and the flying height is increased by energization. In the case of this method, a design is made so as not to make contact at a low altitude, and at a high altitude, the floating amount is increased by energizing as much as the floating amount is reduced. Since the frequency of use at high altitude is low (the frequency of use at high altitude is higher when viewed individually, but is higher for the entire model), the required power consumption is small.
[0024]
Next, a method of detecting the flying height will be described. There is also a method of separately providing a sensor for measuring the atmospheric pressure and temperature. However, in a state where all the influences such as the atmospheric pressure, temperature, individual difference, etc. are included, contact does not occur (too close) and an error occurs in reproducing magnetic information ( It is not a problem if the two conditions are satisfied, so it is best to perform feedback control to monitor contact and regeneration errors and adjust the input power to the heating device only when they occur. This is a simple control method. In order to prevent the element from being damaged by the impact of the load, it is effective to energize the heating device to increase the flying height when the slider is loaded on the disk, particularly when the device is started.
[0025]
FIG. 9 shows a control algorithm from the start of the apparatus. A method for detecting contact will be described later. The method of compensating for the flying height variation caused by the atmospheric pressure difference and the flying height variation caused by the individual head difference may be performed only at the time of startup as shown in the figure, but for the flying height variation caused by the temperature difference, at specified time intervals, or Contact and playback errors must be monitored at all times during use.
[0026]
Methods for detecting contact include (1) a method using an acoustic emission (AE) sensor, (2) a method for monitoring thermal asperity, which is noise appearing in a reproduced signal due to contact heat generation, and (3) a slider pivoting by contact frictional force. For example, there is a method of monitoring an off-track signal that is slightly rotated around and causes off-track.
[0027]
On the other hand, for a reproduction error of magnetic information, a so-called bit error rate may be monitored. Unlike a reproduction error, it is difficult to monitor a recording error. However, at the time of recording, the element portion expands due to heat generated by the coil of the recording element and the flying height is generally lower than at the time of reproduction, so that no reproduction error occurs. Under the conditions, there is a low possibility that a recording error occurs.
[0028]
Further, as another method relating to the flying height adjustment, there is a method of in-situ observation of the distance between the reproducing element and the medium using the amplitude of the reproducing signal, and this method can be applied.
[0029]
The advantage that the position of the heating devices 4a and 4b (or the position projected on the air bearing surface) is not the element installation surface 5a but the super-shallow groove surfaces 6a and 6b is that when the heating device 4 is not heated, Even if there is a posture, it is possible to guarantee that the portion closest to the recording / reproducing element in the air bearing surface is the lowest point (point closest to the disk). In other words, the difference between the flying height at the minimum flying height position and the flying height at the recording / reproducing element position is small, and the loss of the flying height is small. Conversely, if the width of the outflow end side edge of the element installation surface is large, the distance between the minimum flying height position and the recording / reproducing element position is large, and the loss of the flying height increases.
[0030]
It is known that when the width of the edge on the outflow end side of the element installation surface is reduced to about 30 μm to about 60 μm, the access performance to the disk is improved. The structure of this embodiment is designed to improve the access performance to the disk. Is also advantageous.
[0031]
When the heights of the super-shallow groove surfaces 6a and 6b in FIGS. 2 to 5 are made the same as the height of the element mounting surface 5a, the loss of the flying height is larger than that of the present embodiment as described above. The effect of the present invention can be obtained in the same manner, although the performance of approaching the vehicle is not improved. That is, since the positions of the reproducing element 3 and the heating device 4 are 0.1 mm or more, the influence on the life of the reproducing element is small, and since the adjustment is performed in the direction in which the flying height is increased by energization, the required power consumption is small.
[0032]
Although the relationship between the amount of thermal expansion deformation and the amount of change in flying height is not strictly one-to-one, if the width of the element installation surface on the outflow end side is made as small as possible, while the width of the ultra-shallow groove surface is made as large as possible. good. In other words, by adjusting the ratio of the load supported on the element installation surface to the load supported on the ultra-shallow groove surface and reducing the ratio of the load supported on the element installation surface as much as possible, the relationship between the thermal expansion deformation amount and the floating amount change amount becomes 1 It can be close to one. FIG. 6 shows a second embodiment of the present invention in which the ratio of the load applied to the element mounting surface 5a is reduced as much as possible. As a result of analyzing the pressure change generated using the area of the element installation surface as a parameter, it is preferable that the area of the element installation surface 5a be 0.005 mm 2 or less.
[0033]
FIG. 7 is an enlarged view near the outflow end of a slider perspective view showing a third embodiment of the present invention. The same numbers as those in the first embodiment indicate the same items. The difference between this embodiment and the first and second embodiments is that the ultra-shallow groove surfaces 6a and 6b on which the heating devices 4a and 4b are installed are separated from the element installation surface 5a and separated by the shallow groove surface 7a. Is a point. In this case, the distance D from the heating devices 4a and 4b to the reproducing element 3 becomes larger than in the first and second embodiments, and the risk that the reproducing element is heated and affects the life is further reduced. Further, the deformation due to thermal expansion is limited to only the super-shallow groove surfaces 6a and 6b, and the element installation surface 5a separated by the shallow groove surface hardly moves. The relationship approaches one to one. The area of the element installation surface 5a is as small as possible, and is preferably set to 0.005 mm 2 or less.
[0034]
When the height of the super-shallow groove surfaces 6a and 6b in FIG. 7 is the same as that of the element mounting surface 5a, the loss of the flying height is larger than that of this embodiment, and the performance of approaching the disk is not improved. However, the effects of the present invention can be similarly obtained.
[0035]
FIG. 8 is an enlarged view near the outflow end of a slider perspective view showing the fourth embodiment of the present invention. The same numbers as those in the first embodiment indicate the same items. The difference between this embodiment and the first to third embodiments is that the ultra-shallow groove surfaces 6a and 6b on which the heating devices 4a and 4b are installed are separated from the element installation surface 5a and separated by the deep groove surface 8. It is. In this case, the distance D from the heating devices 4a and 4b to the reproducing element 3 is further increased as compared with the first to third embodiments, and the risk that the reproducing element is heated and affects the life is further reduced. . Further, the deformation due to thermal expansion is limited to only the super-shallow groove surfaces 6a and 6b, and the element installation surface 5a separated by the shallow groove surface hardly moves. The relationship approaches one to one. The area of the element installation surface 5a is as small as possible, and is preferably set to 0.005 mm 2 or less.
[0036]
In the case where the heights of the super-shallow groove surfaces 6a and 6b in FIG. 8 are the same as those of the element mounting surface 5a, the loss of the flying height is larger than that of this embodiment, and the performance of approaching the disk is not improved. However, the effects of the present invention can be similarly obtained.
[0037]
【The invention's effect】
In the present invention, first, the thin film resistor as the heating device is sufficiently separated from the recording / reproducing element, and second, the air pressure generated on the floating surface increases due to the protrusion of the floating surface due to the energization of the resistor. The floating surface is designed so that the flying height can be adjusted without affecting the life of the reproducing element and requiring small power consumption. As a result, the flying height margin can be eliminated by adjusting the flying height for each individual head or according to the use environment, and the flying height of the recording / reproducing element can be significantly reduced while preventing the slider from coming into contact with the disk. This contributes to an increase in the recording density of the magnetic disk surface and further to an increase in the capacity or size of the apparatus.
[Brief description of the drawings]
FIG. 1 shows a magnetic disk drive on which a magnetic head slider according to the present invention is mounted.
FIG. 2 is a slider according to the first embodiment of the present invention.
FIG. 3 is an enlarged view near a slider outflow end of the first embodiment.
FIG. 4 is a view of the slider of the first embodiment as viewed from an outflow end side.
FIG. 5 is an explanatory view of a flying height adjustment mechanism of the first embodiment.
FIG. 6 is an enlarged view near a slider outflow end of a second embodiment.
FIG. 7 is an enlarged view near a slider outflow end of a third embodiment.
FIG. 8 is an enlarged view near a slider outflow end of a fourth embodiment.
FIG. 9 is a flowchart showing a magnetic head slider control method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Magnetic head slider, 1a ... Slider substrate part, 1b ... Slider thin film head part, 2 ... Recording element, 3 ... Reproduction element, 4 ... Heating device, 5 ... Element installation surface, 5a, 5b, 5c ... Element installation surface configuration Element 6, ultra-shallow groove surface, 6a, 6b, 6c, ultra-shallow groove surface component, 7 shallow groove surface, 7a, 7b shallow groove surface component, 8 deep groove surface, 9 floating surface, 10 ... magnetic disk, 11 ... magnetic disk device, 12 ... air inflow end surface, 13 ... air outflow end surface, 14 ... ramp, D ... distance between reproducing element and heating device, D1 ... depth of ultra-shallow groove surface from element installation surface D2: Depth of the shallow groove surface from the element installation surface, D3: Depth of the deep groove surface from the element installation surface, H0: Element floating amount at low altitude, H1: Element floating amount when heating is not performed at high altitude, H2 … Flying height when heated at high altitude

Claims (5)

回転する磁気ディスク面から一定間隔で近接浮上するための空気軸受面と、磁気ディスクに情報を記録および再生する記録再生素子と、前記記録再生素子と磁気ディスク面との距離を熱膨張によって調整するための一つ以上の加熱装置とを有する磁気ヘッドスライダにおいて、
前記空気軸受面が実質的に平行な3つ以上の面すなわち、稼動時に磁気ディスクに最も接近し、かつ、記録再生素子が設置された第一の面と、第一の面から所定の深さを有する2つ以上の面とから構成され、
前記加熱装置の位置を空気軸受面に投影した位置が、第一の面以外の深さの面内にあること、あるいは前記加熱装置の位置を空気軸受面に投影した位置が第一の面内にあり、記録再生素子が設置された部分とは第一の面以外の面で隔てられていることを特徴とする磁気ヘッドスライダ。
An air bearing surface for floating close to the rotating magnetic disk surface at a constant interval, a recording / reproducing element for recording and reproducing information on and from the magnetic disk, and a distance between the recording / reproducing element and the magnetic disk surface are adjusted by thermal expansion. A magnetic head slider having one or more heating devices for
Three or more surfaces whose air bearing surfaces are substantially parallel, that is, a first surface on which the recording / reproducing element is closest to the magnetic disk during operation, and a predetermined depth from the first surface. And two or more surfaces having
The position where the position of the heating device is projected on the air bearing surface is within a plane having a depth other than the first surface, or the position where the position of the heating device is projected on the air bearing surface is within the first surface. A magnetic head slider separated from a portion where the recording / reproducing element is installed by a surface other than the first surface.
回転する磁気ディスク面から一定間隔で近接浮上するための空気軸受面と、磁気ディスクに情報を記録および再生する記録再生素子と、前記記録再生素子と磁気ディスク面との距離を熱膨張によって調整するための一つ以上の加熱装置とを有する磁気ヘッドスライダにおいて、
前記空気軸受面が実質的に平行な4つの面すなわち、稼動時に磁気ディスクに最も接近し、かつ、記録再生素子が設置された第一の面と、第一の面から約5nm乃至50nmの深さを有する第二の面と、第二の面から所定の深さを有する第三の面と、第三の面より更に深くに位置する第四の面とから構成され、
前記加熱装置の位置を空気軸受面に投影した位置が第二の面内あるいはその近傍0.05mm以内にあることを特徴とする磁気ヘッドスライダ。
An air bearing surface for floating close to the rotating magnetic disk surface at a constant interval, a recording / reproducing element for recording and reproducing information on and from the magnetic disk, and a distance between the recording / reproducing element and the magnetic disk surface are adjusted by thermal expansion. A magnetic head slider having one or more heating devices for
Four planes in which the air bearing surface is substantially parallel, that is, a first surface on which the recording / reproducing element is closest to the magnetic disk during operation, and a depth of about 5 nm to 50 nm from the first surface. And a third surface having a predetermined depth from the second surface, and a fourth surface located further deeper than the third surface,
A magnetic head slider, wherein a position where the position of the heating device is projected on an air bearing surface is within the second surface or within 0.05 mm near the second surface.
前記第二の面の一部分の、前記第一の面からの深さが、前記加熱装置の作用によって縮まることを特徴とする請求項2に記載の磁気ヘッドスライダ。3. The magnetic head slider according to claim 2, wherein a depth of a part of the second surface from the first surface is reduced by an operation of the heating device. 前記第一の面内にある記録再生素子が設置されたパッドが、第二の面とも第三の面とも接していないこと、あるいは前記第一の面内にある記録再生素子が設置されたパッドの面積が0.005平方mm以下であることを特徴とする請求項1乃至3のいずれか1項に記載の磁気ヘッドスライダ。The pad on which the recording / reproducing element is located in the first surface is not in contact with the second surface or the third surface, or the pad on which the recording / reproducing element is located in the first surface 4. The magnetic head slider according to claim 1, wherein an area of the magnetic head slider is 0.005 square mm or less. 請求項1乃至4記載の磁気ヘッドスライダを備えた磁気ディスク装置。A magnetic disk drive comprising the magnetic head slider according to claim 1.
JP2003031841A 2003-02-10 2003-02-10 Magnetic head slider and magnetic disk apparatus Expired - Fee Related JP4038437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003031841A JP4038437B2 (en) 2003-02-10 2003-02-10 Magnetic head slider and magnetic disk apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003031841A JP4038437B2 (en) 2003-02-10 2003-02-10 Magnetic head slider and magnetic disk apparatus

Publications (2)

Publication Number Publication Date
JP2004241092A true JP2004241092A (en) 2004-08-26
JP4038437B2 JP4038437B2 (en) 2008-01-23

Family

ID=32958270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003031841A Expired - Fee Related JP4038437B2 (en) 2003-02-10 2003-02-10 Magnetic head slider and magnetic disk apparatus

Country Status (1)

Country Link
JP (1) JP4038437B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7239471B2 (en) 2005-01-05 2007-07-03 Hitachi Global Storage Technologies Netherlands B.V. Method of setting the amount of power application to heater incorporated in magnetoresistive head and magnetic disk drive
US7593188B2 (en) 2006-03-31 2009-09-22 Hitachi Global Storage Technologies Netherlands, B.V. Low protrusion compensation air bearing
US7599143B2 (en) 2006-04-21 2009-10-06 Fujitsu Limited Information recording/reproduction apparatus, head levitation height control method and head levitation control circuit
US7826164B2 (en) 2005-11-16 2010-11-02 Tdk Corporation Contact type thin film magnetic head with heaters for distance control
US7859794B2 (en) 2006-09-29 2010-12-28 Hitachi Global Storage Technologies Netherlands B.V. Magnetic head slider and magnetic disk drive
US8339725B2 (en) 2008-01-11 2012-12-25 Hitachi, Ltd. Magnetic head slider and magnetic disc drive
US9484048B2 (en) 2008-12-04 2016-11-01 HGST Netherlands B.V. Magnetic head with a heating element between the read and write element and method of manufacturing thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7239471B2 (en) 2005-01-05 2007-07-03 Hitachi Global Storage Technologies Netherlands B.V. Method of setting the amount of power application to heater incorporated in magnetoresistive head and magnetic disk drive
US7826164B2 (en) 2005-11-16 2010-11-02 Tdk Corporation Contact type thin film magnetic head with heaters for distance control
US8045286B2 (en) 2005-11-16 2011-10-25 Tdk Corporation Contact type thin film magnetic head with heater for distance control
US7593188B2 (en) 2006-03-31 2009-09-22 Hitachi Global Storage Technologies Netherlands, B.V. Low protrusion compensation air bearing
US7599143B2 (en) 2006-04-21 2009-10-06 Fujitsu Limited Information recording/reproduction apparatus, head levitation height control method and head levitation control circuit
US7859794B2 (en) 2006-09-29 2010-12-28 Hitachi Global Storage Technologies Netherlands B.V. Magnetic head slider and magnetic disk drive
US8339725B2 (en) 2008-01-11 2012-12-25 Hitachi, Ltd. Magnetic head slider and magnetic disc drive
US9484048B2 (en) 2008-12-04 2016-11-01 HGST Netherlands B.V. Magnetic head with a heating element between the read and write element and method of manufacturing thereof

Also Published As

Publication number Publication date
JP4038437B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
JP4072469B2 (en) Magnetic head slider and magnetic disk apparatus
JP4255869B2 (en) Magnetic disk drive and magnetic head slider used therefor
US7495856B2 (en) Disk drive slider design for thermal fly-height control and burnishing-on-demand
US7440220B1 (en) Method for defining a touch-down power for head having a flying height actuator
US7911738B2 (en) Magnetic head slider with resistive heating film meandering in stacking direction
JP2003272335A (en) Magnetic disk device
JP2004335083A (en) Device and method for constituting air bearing surface of slider in disk drive for generating high temperature within thermally assisted recording
US7362533B2 (en) Disk drive with slider burnishing-on-demand
JP5060634B1 (en) Head, head gimbal assembly including the head, and disk device
US7719783B2 (en) Hard disk drive with mechanism for controlling protrusion of head
JP2021044031A (en) Magnetic head and disk device including the same
US7859794B2 (en) Magnetic head slider and magnetic disk drive
JP2007280502A (en) Magnetic head slider
JP4038437B2 (en) Magnetic head slider and magnetic disk apparatus
JP2008165950A (en) Magnetic head slider, head gimbal assembly, and magnetic disk device
JP2003308670A (en) Magnetic disk unit
US6731463B2 (en) Wafer fabrication for thermal pole tip expansion/recession compensation
JP2008181645A (en) Head slider, hard disk drive, and method of controlling flying height of head slider
US20100103556A1 (en) Storage device
JP3478071B2 (en) Magnetic head and magnetic recording device using the same
JP2007265493A (en) Method for manufacturing magnetic head slider, method for manufacturing head gimbals assembly, and the magnetic head slider
US11341991B1 (en) Disk device with magnetic head
JP2023030363A (en) Magnetic head and manufacturing method thereof, and magnetic recording/reproducing device and manufacturing thereof
JP2011113573A (en) Disk drive and method of measuring clearance between head slider and disk
JP2006040426A (en) Magnetic disk device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050420

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060511

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071105

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees