JP2004240058A - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor Download PDF

Info

Publication number
JP2004240058A
JP2004240058A JP2003027472A JP2003027472A JP2004240058A JP 2004240058 A JP2004240058 A JP 2004240058A JP 2003027472 A JP2003027472 A JP 2003027472A JP 2003027472 A JP2003027472 A JP 2003027472A JP 2004240058 A JP2004240058 A JP 2004240058A
Authority
JP
Japan
Prior art keywords
layer
charge
charge transport
electrophotographic photoreceptor
photosensitive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003027472A
Other languages
Japanese (ja)
Inventor
Motohiro Takeshima
基浩 竹嶋
Osamu Nabeta
修 鍋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Imaging Device Co Ltd
Original Assignee
Fuji Electric Imaging Device Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Imaging Device Co Ltd filed Critical Fuji Electric Imaging Device Co Ltd
Priority to JP2003027472A priority Critical patent/JP2004240058A/en
Publication of JP2004240058A publication Critical patent/JP2004240058A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrophotographic photoreceptor having low residual potential and giving good image quality. <P>SOLUTION: In the electrophotographic photoreceptor having a photosensitive layer 3 on a conductive substrate 1, the photosensitive layer 3 contains a phosphoric ester derivative represented by formula (1), wherein R<SB>1</SB>and R<SB>2</SB>represent aromatic cyclic groups which may have the same or different substituents; X represents H, halogen or OY; and Y represents succinimido bonding to O. Particularly, the photosensitive layer 3 comprises a layer formed by sequentially stacking a charge generating layer 4 and a charge transport layer 5, and the charge transport layer 5 contains a phosphoric ester derivative represented by the formula (1). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子写真方式のプリンタまたは複写機等に用いられる電子写真感光体に関し、詳しくは新規有機材料を含有させて画像品質を改良した電子写真感光体に関する。
【0002】
【従来の技術】
電子写真感光体は、導電性基体上に光導電機能を有する感光層を積層した構造を基本構造とする。近年、感光層の材料として電荷の発生や輸送を担う機能成分として有機化合物を用いる有機電子写真感光体が、材料の多様性、高生産性、安全性などの利点により、研究開発が活発に進められ、複写機やプリンタなどの感光体として普及してきている。
【0003】
電子写真感光体には、暗所で表面電荷を保持する機能、光を受容して電荷を発生する機能、さらには発生した電荷を輸送する機能が必要であるが、これらの機能を単層の感光層で併せ持ついわゆる単層型感光体と、主として光受容時の電荷発生の機能を担う電荷発生層と暗所で表面電荷を保持する機能と光発生電荷を輸送する機能とを担う電荷輸送層とに機能分離した積層感光層を備えるいわゆる機能分離積層型感光体とがある。最近では、後者の機能分離積層型電子写真感光体が主流となってきている。
【0004】
この機能分離積層型電子写真感光体は、有機顔料を電荷発生材料として、これを樹脂バインダと共に有機溶媒中に溶解、分散させた塗布液を導電性基体上に塗布し成膜して電荷発生層とし、さらにこの層上に有機低分子化合物を電荷輸送材料として、これを樹脂バインダと共に有機溶媒中に溶解、分散させた塗布液を塗布し成膜して得られる電荷輸送層を積層して感光層とする方法で生産されることが多い。
【0005】
一方、画像形成技術および装置の進展と共に、有機感光体の感光体特性もさらなる向上を求められている。特に帯電および露光させた後の感光体の残留電位についてはさらに低減することが望まれている。この残留電位が高いと画像品質の低下、すなわちプリンタならびに複写機で形成される画像おいて、階調性ならびに解像度の低下という問題が生じるからである。特にカラー画像の場合に影響が大きく、カラー画像形成装置の普及と共にこの問題が重要視されるようになってきた。感光体における前述の残留電位の発生メカニズムと画像品質に及ぼす影響については、以下のことが考えられる。
【0006】
電荷発生層と電荷輸送層界面、これらの層内の電荷発生材料と樹脂バインダー、電荷輸送材料と樹脂バインダー等の界面状態あるいはこれらの使用材料に含まれる不純物、さらにはコロナ放電、像露光、除電光等による材料劣化、オゾンやNOx 等の酸化性ガス吸着、それに伴う材料劣化等種々の要因に起因して、感光層中に多数のトラップが生じる。光発生電荷が前記トラップに補足されると、感光層表面への帯電によって発生する電界によっても移動できない残留電荷となり、これらの残留電荷により発生する空間電荷の総量が残留電位となって、帯電電位を分圧するようになる。帯電電位が残留電位により分圧されると、実質的に感光層中の電荷の輸送にかかる電界が低下するので、表面電荷を充分に打ち消すことができず、画像の解像度、階調性等の画像品質に悪影響を及ぼすようになると考えられる。前述のように残留電位を低減させるために有機化合物を添加することに関しては、下記特許文献1〜3に記載されている。
【0007】
【特許文献1】
特開平3−48852号公報
【特許文献2】
特開平5−27458号公報
【特許文献3】
特開平8−297373号公報
【0008】
【発明が解決しようとする課題】
しかしながら、これらの公報に記載の有機化合物による残留電位の低減では、まだ充分とは言えなかった。本発明は、上記の点に鑑みてなされたものであり、残留電位が低く画像品質の高い電子写真感光体の提供を目的とする。
【0009】
【課題を解決するための手段】
請求項1記載の本発明によれば、前記目的は、導電性基体上に感光層を備えた電子写真感光体において、感光層が下記化学式(1)で示されるリン酸エステル誘導体を含有する電子写真感光体とすることにより達成される。
【0010】
【化2】

Figure 2004240058
(式中、R、Rは、同一または異なる置換基を有してもよい芳香族環基を表し、Xは水素原子、ハロゲン原子またはOYを表し、YはOに結合したスクシンイミドを表す。)
【0011】
請求項2記載の本発明によれば、感光層が電荷発生層、電荷輸送層を順次積層した層を有し、前記電荷輸送層が請求項1記載の化学式(1)で示されるリン酸エステル誘導体を含有する請求項1記載の電子写真感光体とすることが好ましい。
【0012】
本発明は、前述の問題点を解決するために、電子吸引性の高い有機化合物を感光層、特には電荷輸送層に含有させることにより、感光層中、特には、電荷発生層と電荷輸送層との界面および/または電荷輸送層中に残された残留電荷を取り除くことができれば、残留電位低減が達成できると考え、鋭意検討の末、前記化学式(1)で示されたリン酸エステル誘導体が残留電位低減に特に大きな効果が見られることを発見し、本発明に達したのである。
【0013】
【発明の実施の形態】
図1は、本発明に関わる感光体の一実施例を示す模式的断面図であり、導電性基体1の上に、下引き層2を介して、電荷発生層4、電荷輸送層5が順次積層されてなる感光層3が設けられた負帯電型の機能分離積層型感光体である。
【0014】
図2は、本発明に関わる異なる感光体の実施例を示す模式的断面図であり、導電性基体1の上に、下引き層6を介して、単層感光層7が設けられた正帯電型の単層型感光体である。
【0015】
導電性基体1は、感光体の一電極としての役目と同時に感光体を構成する各層の支持体となっており、円筒状、板状、フィルム状などいずれの形状でもよく、材質的には、アルミニウム、ステンレス鋼、ニッケルなどの金属類、あるいはガラス、樹脂などの表面に導電処理を施したものでもよい。
【0016】
下引き層2は、樹脂を主成分とする層やアルマイトなどの金属酸化皮膜からなり、導電性基体1から感光層への電荷の注入性を制御するため、または基体表面の欠陥の被覆、感光層と下地との接着性の向上などの目的で必要に応じて設けられる。下引き層2に用いられる樹脂材料としては、カゼイン、ポリビニルアルコール、ポリアミド、メラミン、セルロースなどの絶縁性高分子、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性高分子が挙げられ、これらの樹脂は単独で、あるいは適宜組み合わせて混合して用いることができる。また、これらの樹脂に二酸化チタン、酸化亜鉛などの金属酸化物を含有することができる。
【0017】
電荷発生層4は有機光導電性材料(電荷発生材料)を真空蒸着することにより、または有機光導電性材料の微粒子を樹脂バインダー中に分散させた材料を塗布することにより形成され、光を受容して電荷を発生する。またその電荷発生効率が高いことと同時に発生した電荷の電荷輸送層5への注入性が重要であり、電場依存性が少なく低電場でも注入効率の良いことが望まれる。電荷発生材料としては、下記化学式(II−1)〜(II−6)に示す各種フタロシアニン化合物、化学式(II−7)〜(II−24)に示すアゾ化合物、化学式(II−25)〜(II−32)に示すアンスアンスロン化合物およびこれら誘導体を用いることができる。
【0018】
塗布形成による前記電荷発生層4に用いられる樹脂バインダとしては、ポリエステル樹脂、ポリビニルアセテート、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリエステル、ポリカーボネート、ポリビニルアセトアセタール、ポリビニルプロピオナール、ポリビニルブチラール、フェノキシ樹脂、エポキシ樹脂、ウレタン樹脂、セルロースエステル、セルロースエーテルなどを適宜組み合わせて使用することが可能である。
【0019】
前記樹脂バインダーと電荷発生材料との比率は、樹脂バインダ10重量部に対し電荷発生材料は5乃至500重量部、好ましくは10乃至100重量部である。電荷発生層4の膜厚は電荷発生材料の光吸収係数によって決まり、一般的には5μm以下であり、好適には1μm以下である。
【0020】
電荷輸送層5は、電荷輸送材料、樹脂バインダと共に下記化学式(1)で示されるリン酸エステル誘導体により構成される。
【0021】
【化3】
Figure 2004240058
ただし、R、Rは、水酸基、ハロゲン原子、シアノ基、ニトロ基、アルキル基、アリール基、アルコキシ基、アリールオキシ基、アルキルカルボニル基、アリールカルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルボキシル基などの置換基を有してもよいベンゼン、ナフタレン、アントラセンなどの芳香族環基を表し、 Xは水素原子、ハロゲン原子またはOYを表し、YはOに結合したスクシンイミドを表す。
【0022】
以下に本発明にかかる電子写真感光体の実施例に含まれるリン酸エステル誘導体の主な具体例を例示化合物(I−1)〜(I−16)として示すが、本発明はこれらの化合物を含む感光体にのみに限定されるものではない。
例示リン酸エステル誘導体
【0023】
【化4】
Figure 2004240058
【0024】
【化5】
Figure 2004240058
【0025】
【化6】
Figure 2004240058
【0026】
【化7】
Figure 2004240058
【0027】
【化8】
Figure 2004240058
【0028】
【化9】
Figure 2004240058
【0029】
【化10】
Figure 2004240058
【0030】
電荷輸送材料としては、ヒドラゾン化合物、ブタジエン化合物、ジアミン化合物、インドール化合物、インドリン化合物、スチルベン化合物、ジスチルベン化合物などがそれぞれ単独で、あるいは適宜組み合わせで混合して用いられる。具体的には、(III−1)〜(III−12)に示される化合物である。樹脂バインダとしては、ビスフェノールA型、ビスフェノールZ型、ビスフェノールA型ービフェニル共重合体などのポリカーボネート樹脂、ポリスチレン樹脂、ポリフェニレン樹脂などがそれぞれ単独で、あるいは適宜組み合わせで混合して用いられる。具体的には、(IV−1)〜(IV−7)に示される化合物である。かかる化合物の使用量は、樹脂バインダ100重量部に対し、電荷輸送材料2乃至50重量部、好適には3乃至30重量部である。電荷輸送層の膜厚としては、実用上有効な表面電位を維持するためには3乃至50μmの範囲が好ましく、より好適には15乃至40μmである。
【0031】
前述のリン酸エステル誘導体を電荷輸送層に添加する割合は、通常、電荷輸送材料100重量部に対して0.01乃至10重量部、好適には0.01乃至0.5重量部である。
【0032】
さらに、下引き層、電荷輸送層には耐環境性や有害な光に対する安定性の向上などを目的として必要に応じて、酸化防止剤、光安定剤などを添加することができる。具体的には、(V−1)〜(V−45)に示される化合物である。
【0033】
上述した酸化防止剤、光安定剤は通常、電荷輸送材料100重量部に対して0.05乃至10重量部、好適には0.2乃至5重量部である。さらに、感光層中には、形成した膜のレベリング性の向上や、さらなる潤滑性の付与を目的として、シリコーンオイルやフッ素系オイルなどのレベリング剤を含有させることもできる。
【0034】
また、感光層表面に、耐環境性や機械的強度をより向上させる目的で、必要に応じてさらに表面保護層を設けてもよい。表面保護層は、機械的ストレスに対する耐久性および耐環境性に優れた材料で構成され、電荷発生層が感応する光をできるだけ低損失で透過させる性能を有していることが望まれる。
【0035】
【化11】
Figure 2004240058
【0036】
【化12】
Figure 2004240058
【0037】
【化13】
Figure 2004240058
【0038】
【化14】
Figure 2004240058
【0039】
【化15】
Figure 2004240058
【0040】
【化16】
Figure 2004240058
【0041】
【化17】
Figure 2004240058
【0042】
【化18】
Figure 2004240058
【0043】
【実施例】
以下、本発明にかかる電子写真感光体の実施例について説明する。これと共に本発明に属さない比較例の感光体を挙げて、実施例との特性比較を通じて、本発明の実施例が優れていることを説明する。
【0044】
(実施例1)
導電性基体としてアルミニウム円筒の外周に、下引き層として、アルコール可溶性ナイロン(東レ(株)製 「CM 8000」)5重量部、アミノシラン処理された酸化チタン微粒子5重量部を、メタノール90重量部に溶解、分散させて調製した塗布液を浸漬塗工し、温度100℃で30分間乾燥して、膜厚約3μmの下引き層を形成した。
【0045】
この下引き層上に電荷発生材料として下記化学式で示される無金属フタロシアニン1重量部、樹脂バインダとしてポリビニルブチラール樹脂(積水化学(株)製「エスレックKS−1」)1.5重量部をジクロロメタン60重量部に溶解、分散させて調製した塗布液を浸漬塗工し、温度80℃で30分間乾燥して、膜厚約0.3μmの電荷発生層を形成した(エスレックは登録商標)。
【0046】
【化19】
Figure 2004240058
この電荷発生層上に、電荷輸送材料として下記化学式で示されるスチルベン化合物80重量部、
【0047】
【化20】
Figure 2004240058
樹脂バインダとして下記化学式で示されるポリカーボネート樹脂
【0048】
【化21】
Figure 2004240058
120重量部、前記例示化合物(I−1)のリン酸エステル化合物を0.01重量部、ジクロロメタン600重量部に溶解した塗布液を塗布成膜し、温度90℃で60分間乾燥して、膜厚約17μmの電荷輸送層を形成し、有機電子写真感光体(以下感光体ドラムとも称する)を作製した。
【0049】
(実施例2)
実施例1で使用したリン酸エステル化合物を前記例示化合物(I−2)に代えた以外は、実施例1と同様の方法で有機電子写真感光体を作製した。
【0050】
(実施例3)
実施例1で使用したリン酸エステル化合物を前記例示化合物(I−3)に代えた以外は、実施例1と同様の方法で有機電子写真感光体を作製した。
【0051】
(実施例4)
実施例1で使用した電荷輸送材料を、下記化学式で示されるジアミン化合物に代えた以外は実施例1と同様の方法で有機電子写真感光体を作製した。
【0052】
【化22】
Figure 2004240058
【0053】
(実施例5)
実施例4で使用したリン酸エステル化合物(I−1)を前記例示化合物(I−2)に代えた以外は、実施例4と同様の方法で有機電子写真感光体を作製した。
【0054】
(実施例6)
実施例4で使用したリン酸エステル化合物(I−1)を前記例示化合物(I−3)に代えた以外は、実施例4と同様の方法で有機電子写真感光体を作製した。
【0055】
(比較例1)
実施例1〜3で使用したリン酸エステル化合物を電荷輸送層(前記スチルベン化合物)中に添加せずに実施例1と同様の方法で有機電子写真感光体を作製した。
【0056】
(比較例2)
実施例4〜6で使用したリン酸エステル化合物を電荷輸送層(前記ジアミン化合物)中に添加せずに実施例4と同様の方法で有機電子写真感光体を作製した。
【0057】
(比較例3)
実施例1で使用したリン酸エステル化合物を下記例示化合物(VI−1)に代えた以外は、実施例1と同様の方法で有機電子写真感光体を作製した。
【0058】
(比較例4)
実施例1で使用したリン酸エステル化合物を下記例示化合物(VI−2)に代えた以外は、実施例1と同様の方法で有機電子写真感光体を作製した。
【0059】
(比較例5)
実施例1で使用したリン酸エステル化合物を下記例示化合物(VI−3)に代えた以外は、実施例1と同様の方法で有機電子写真感光体を作製した。
【0060】
(比較例6)
実施例1で使用したリン酸エステル化合物を下記例示化合物(VI−4)に代えた以外は、実施例1と同様の方法で有機電子写真感光体を作製した。
【0061】
【化23】
Figure 2004240058
【0062】
(感光体の評価)
前述の各実施例と各比較例で作製したそれぞれの感光体を図3記載のプロセス配置により下記の条件、方法で評価した。プロセスは、帯電器10、露光11、除電光源12から構成され、帯電器と露光間角度は90°、露光と除電光間角度は180°、除電光と帯電器間角度は90°に設定した。また、ドラム回転数は60mm/sに設定した。評価方法に関しては、以下の通りである。感光体ドラム13に暗所で−650Vに帯電した後、回転を停止させた感光体ドラムの5秒後の表面電位の保持率Vk5を求めた。続いて、室温24℃、43%(相対湿度)の環境の下で、感光体ドラム表面に露光光を照射し続け、帯電電位が−600Vから−300Vに到達するのに必要な露光量を感度E1/2と定義し、−600Vから−100Vに到達するのに必要な露光量を感度E100と定義し、それぞれ感度を求めた。また、上記感度測定においてトータル光量2.5μJ/cmの露光光を照射した直後の感光体表面電位を残留電位Vr2.5と定義し、残留電位を求めた。それぞれの測定値を表1に示す。
【0063】
さらに前記各感光体ドラムをディジタル複写機に搭載し、解像度および階調性について画像評価をするために、白細線解像度、1ドット再現性、黒ベタ濃度を調べた。白細線解像度は黒ベタ上の1ドットラインのエッジがかすれず、1ドット幅の白細線が印字できていれば○、かすれがあるか、白細線の幅がつぶれていれば×とした。1ドット再現性は600dpi/1on1off画像のドットの円周がかすれず、円に近い1ドット形状であれば○、形状の悪いものを×とした。それぞれ表2に示した。黒ベタ濃度はマクベス濃度計による測定値であり、数値の大きいほど濃度が高いことを示す。
【0064】
【表1】
Figure 2004240058
【0065】
【表2】
Figure 2004240058
【0066】
上記表1の結果から明らかなように、電荷輸送層中に前述の化学式(1)で示されるリン酸エステル化合物を用いた本発明における実施例1〜6の感光体は、リン酸エステル化合物を電荷輸送層中に添加しない比較例1、2および比較例3〜6の本発明に属さないリン酸エステル誘導体を感光層中に含む感光体と比較して、残留電位の低減効果のあることおよび解像度および階調性等の画像品質に優れていることが判る。
【0067】
また、前記各実施例にそれぞれ示した種々のリン酸エステル誘導体を含有する本発明にかかる電子写真感光体は、レーザービームプリンター用感光体のみならず、アナログ複写機用、ディジタル複写機用、ファクシミリ用感光体においても、優れた効果が得られた。さらに本発明は解像度および階調性等の画像品質に優れているのでカラー画像においても優れた画像が得られる。
【0068】
【発明の効果】
本発明によれば、導電性基体上に感光層を備えた電子写真感光体において、感光層が前記化学式(1)で示されるリン酸エステル誘導体を含有する電子写真感光体としたので、残留電位が低くて良好な画像品質の得られる電子写真感光体を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明に係わる電子写真感光体の模式的断面図
【図2】本発明に係わる異なる電子写真感光体の模式的断面図
【図3】感光体を評価するプロセス配置の概略構成図
【符号の説明】
1 導電性基体
2、6 下引き層
3 感光層
4 電荷発生層
5 電荷輸送層
7 単層感光層
10 帯電器
11 露光
111 光学フィルタ(R63/KL78)
112 露光源(タングステンランプ)
113 ケース
114 表面電位プローブ
12 除電光源(630nm)
13 感光体ドラム[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrophotographic photosensitive member used for an electrophotographic printer or copier, and more particularly, to an electrophotographic photosensitive member containing a novel organic material to improve image quality.
[0002]
[Prior art]
An electrophotographic photoreceptor has a basic structure in which a photosensitive layer having a photoconductive function is laminated on a conductive substrate. In recent years, organic electrophotographic photoreceptors that use organic compounds as functional components responsible for charge generation and transport as the material of the photosensitive layer have been actively researched and developed due to the variety of materials, high productivity, and safety. It has been widely used as a photoconductor for copying machines and printers.
[0003]
Electrophotographic photoreceptors must have the function of retaining surface charge in a dark place, the function of receiving light to generate charge, and the function of transporting the generated charge. A so-called single-layer type photoreceptor combined with a photosensitive layer, a charge generation layer mainly responsible for charge generation during photoreception, and a charge transport layer responsible for holding surface charges and transporting photogenerated charges in a dark place There is a so-called function-separated layered type photoreceptor having a layered photoconductive layer with a function separated. Recently, the latter function-separated laminated electrophotographic photosensitive member has become mainstream.
[0004]
This function-separated laminated electrophotographic photoreceptor uses an organic pigment as a charge generating material, and a coating solution in which this is dissolved and dispersed in an organic solvent together with a resin binder on a conductive substrate to form a film. Further, on this layer, a charge transporting layer obtained by applying a coating solution in which an organic low-molecular compound is used as a charge transporting material and dissolving and dispersing it in an organic solvent together with a resin binder and forming a film to form a film is laminated. Often produced in layers.
[0005]
On the other hand, with the development of image forming techniques and apparatuses, the photoreceptor characteristics of organic photoreceptors are required to be further improved. In particular, it is desired to further reduce the residual potential of the photoconductor after charging and exposure. If the residual potential is high, there is a problem that the image quality is deteriorated, that is, the gradation and the resolution are reduced in the image formed by the printer and the copying machine. In particular, the effect is great in the case of a color image, and this problem has become important with the spread of color image forming apparatuses. Regarding the generation mechanism of the above-described residual potential in the photoconductor and the effect on the image quality, the following may be considered.
[0006]
The interface between the charge generation layer and the charge transport layer, the interface between the charge generation material and the resin binder in these layers, the interface state between the charge transport material and the resin binder, and impurities contained in these materials, as well as corona discharge, image exposure, and removal. Many traps are generated in the photosensitive layer due to various factors such as material deterioration due to lightning and the like, adsorption of oxidizing gas such as ozone and NOx, and material deterioration accompanying the deterioration. When the photo-generated electric charges are captured by the trap, residual electric charges which cannot be moved by an electric field generated by charging the photosensitive layer surface become residual electric charges, and the total amount of space electric charges generated by these residual electric charges becomes a residual electric potential. Will be divided. When the charged potential is divided by the residual potential, the electric field for transporting the charges in the photosensitive layer is substantially reduced, so that the surface charges cannot be sufficiently canceled out, and the image resolution, gradation, etc. It is believed that this will adversely affect image quality. The addition of an organic compound to reduce the residual potential as described above is described in Patent Documents 1 to 3 below.
[0007]
[Patent Document 1]
JP-A-3-48852 [Patent Document 2]
Japanese Patent Application Laid-Open No. 5-27458 [Patent Document 3]
JP-A-8-297373
[Problems to be solved by the invention]
However, the reduction of the residual potential by the organic compounds described in these publications has not been sufficient yet. The present invention has been made in view of the above points, and has as its object to provide an electrophotographic photosensitive member having a low residual potential and high image quality.
[0009]
[Means for Solving the Problems]
According to the first aspect of the present invention, the object is to provide an electrophotographic photoreceptor having a photosensitive layer on a conductive substrate, wherein the photosensitive layer contains a phosphoric ester derivative represented by the following chemical formula (1). This can be achieved by using a photoreceptor.
[0010]
Embedded image
Figure 2004240058
(Wherein, R 1 and R 2 represent an aromatic ring group which may have the same or different substituents, X represents a hydrogen atom, a halogen atom or OY, and Y represents a succinimide bonded to O .)
[0011]
According to the second aspect of the present invention, the photosensitive layer has a layer in which a charge generation layer and a charge transport layer are sequentially laminated, and the charge transport layer is a phosphate ester represented by the chemical formula (1) according to the first aspect. It is preferable that the electrophotographic photoreceptor according to claim 1 contains a derivative.
[0012]
In order to solve the above-mentioned problems, the present invention includes an organic compound having a high electron-withdrawing property in a photosensitive layer, in particular, a charge transport layer. It is believed that the residual potential can be reduced if the residual charge remaining at the interface with the and / or the charge transport layer can be removed, and after intensive studies, the phosphate ester derivative represented by the chemical formula (1) is The inventors have found that a particularly large effect is found in reducing the residual potential, and have reached the present invention.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic cross-sectional view showing one embodiment of a photoreceptor according to the present invention. A charge generation layer 4 and a charge transport layer 5 are sequentially formed on a conductive substrate 1 via an undercoat layer 2. This is a negatively-charged function-separated laminated type photoconductor provided with a laminated photosensitive layer 3.
[0014]
FIG. 2 is a schematic cross-sectional view showing an example of a different photoreceptor according to the present invention, in which a single-layer photosensitive layer 7 is provided on a conductive substrate 1 via an undercoat layer 6. It is a single-layer type photoreceptor.
[0015]
The conductive substrate 1 serves as one electrode of the photoreceptor and serves as a support for each layer constituting the photoreceptor, and may have any shape such as a cylindrical shape, a plate shape, and a film shape. Metals such as aluminum, stainless steel, nickel, or the like, or those obtained by subjecting a surface of glass, resin, or the like to a conductive treatment may be used.
[0016]
The undercoat layer 2 is made of a layer mainly composed of a resin or a metal oxide film such as alumite. The undercoat layer 2 controls the injectability of charge from the conductive substrate 1 to the photosensitive layer, or covers defects on the surface of the substrate, It is provided as needed for the purpose of improving the adhesion between the layer and the base. Examples of the resin material used for the undercoat layer 2 include insulating polymers such as casein, polyvinyl alcohol, polyamide, melamine, and cellulose, and conductive polymers such as polythiophene, polypyrrole, and polyaniline. These resins are used alone. Alternatively, they can be used in combination as appropriate. Further, these resins may contain metal oxides such as titanium dioxide and zinc oxide.
[0017]
The charge generation layer 4 is formed by vacuum-depositing an organic photoconductive material (charge generation material) or by applying a material in which fine particles of the organic photoconductive material are dispersed in a resin binder to receive light. To generate electric charge. In addition, it is important that the charge generation efficiency is high, and at the same time, the injection property of the generated charge into the charge transport layer 5 is high, and it is desired that the injection efficiency be low even with a low electric field with little dependence on the electric field. As the charge generation material, various phthalocyanine compounds represented by the following chemical formulas (II-1) to (II-6), azo compounds represented by the chemical formulas (II-7) to (II-24), and chemical formulas (II-25) to (II-25) Anthuanthrone compounds and derivatives thereof described in II-32) can be used.
[0018]
As the resin binder used for the charge generation layer 4 formed by coating, polyester resin, polyvinyl acetate, polyacrylate, polymethacrylate, polyester, polycarbonate, polyvinyl acetoacetal, polyvinyl propional, polyvinyl butyral, phenoxy resin, Epoxy resins, urethane resins, cellulose esters, cellulose ethers, and the like can be used in appropriate combinations.
[0019]
The ratio of the resin binder to the charge generating material is 5 to 500 parts by weight, preferably 10 to 100 parts by weight, based on 10 parts by weight of the resin binder. The thickness of the charge generation layer 4 is determined by the light absorption coefficient of the charge generation material, and is generally 5 μm or less, preferably 1 μm or less.
[0020]
The charge transport layer 5 is composed of a phosphate ester derivative represented by the following chemical formula (1) together with a charge transport material and a resin binder.
[0021]
Embedded image
Figure 2004240058
However, R 1 and R 2 are a hydroxyl group, a halogen atom, a cyano group, a nitro group, an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an alkylcarbonyl group, an arylcarbonyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, X represents an aromatic ring group such as benzene, naphthalene or anthracene which may have a substituent such as a carboxyl group; X represents a hydrogen atom, a halogen atom or OY; and Y represents succinimide bonded to O.
[0022]
The main specific examples of the phosphoric ester derivative included in the examples of the electrophotographic photoreceptor according to the present invention are shown below as exemplary compounds (I-1) to (I-16). However, the present invention is not limited only to the photoreceptor including
Exemplary phosphate ester derivative
Embedded image
Figure 2004240058
[0024]
Embedded image
Figure 2004240058
[0025]
Embedded image
Figure 2004240058
[0026]
Embedded image
Figure 2004240058
[0027]
Embedded image
Figure 2004240058
[0028]
Embedded image
Figure 2004240058
[0029]
Embedded image
Figure 2004240058
[0030]
As the charge transporting material, a hydrazone compound, a butadiene compound, a diamine compound, an indole compound, an indoline compound, a stilbene compound, a distilbene compound, or the like is used alone or in an appropriate combination. Specifically, they are the compounds represented by (III-1) to (III-12). As the resin binder, a polycarbonate resin such as a bisphenol A type, a bisphenol Z type, a bisphenol A type-biphenyl copolymer, a polystyrene resin, a polyphenylene resin, or the like is used alone or in an appropriate combination. Specifically, it is a compound represented by (IV-1) to (IV-7). The amount of the compound to be used is 2 to 50 parts by weight, preferably 3 to 30 parts by weight, based on 100 parts by weight of the resin binder. The thickness of the charge transport layer is preferably in the range of 3 to 50 μm, more preferably 15 to 40 μm in order to maintain a practically effective surface potential.
[0031]
The ratio of adding the above-mentioned phosphate ester derivative to the charge transporting layer is usually 0.01 to 10 parts by weight, preferably 0.01 to 0.5 parts by weight, per 100 parts by weight of the charge transporting material.
[0032]
Further, an antioxidant, a light stabilizer and the like can be added to the undercoat layer and the charge transport layer as needed for the purpose of improving environmental resistance and stability against harmful light. Specifically, the compounds represented by (V-1) to (V-45).
[0033]
The above-mentioned antioxidant and light stabilizer are used in an amount of usually 0.05 to 10 parts by weight, preferably 0.2 to 5 parts by weight, based on 100 parts by weight of the charge transporting material. Further, the photosensitive layer may contain a leveling agent such as silicone oil or fluorine-based oil for the purpose of improving the leveling property of the formed film and imparting further lubricity.
[0034]
Further, on the surface of the photosensitive layer, a surface protective layer may be further provided as necessary for the purpose of further improving environmental resistance and mechanical strength. It is desired that the surface protective layer is made of a material having excellent durability against mechanical stress and environmental resistance, and has a property of transmitting light sensitive to the charge generating layer with as low a loss as possible.
[0035]
Embedded image
Figure 2004240058
[0036]
Embedded image
Figure 2004240058
[0037]
Embedded image
Figure 2004240058
[0038]
Embedded image
Figure 2004240058
[0039]
Embedded image
Figure 2004240058
[0040]
Embedded image
Figure 2004240058
[0041]
Embedded image
Figure 2004240058
[0042]
Embedded image
Figure 2004240058
[0043]
【Example】
Hereinafter, examples of the electrophotographic photosensitive member according to the present invention will be described. At the same time, the characteristics of the examples of the present invention will be described by comparing the characteristics of the examples with the photoconductors of the comparative examples that do not belong to the present invention.
[0044]
(Example 1)
5 parts by weight of alcohol-soluble nylon ("CM 8000" manufactured by Toray Industries, Inc.) and 5 parts by weight of aminosilane-treated titanium oxide fine particles were added to 90 parts by weight of methanol as an undercoat layer on the outer periphery of an aluminum cylinder as a conductive substrate. The coating solution prepared by dissolution and dispersion was applied by dip coating and dried at a temperature of 100 ° C. for 30 minutes to form an undercoat layer having a thickness of about 3 μm.
[0045]
On the undercoat layer, 1 part by weight of a metal-free phthalocyanine represented by the following chemical formula as a charge generating material, and 1.5 parts by weight of a polyvinyl butyral resin (“S-LEC KS-1” manufactured by Sekisui Chemical Co., Ltd.) as a resin binder were added to dichloromethane 60 A coating solution prepared by dissolving and dispersing in a part by weight was applied by dip coating and dried at a temperature of 80 ° C. for 30 minutes to form a charge generating layer having a thickness of about 0.3 μm (Eslek is a registered trademark).
[0046]
Embedded image
Figure 2004240058
On this charge generation layer, 80 parts by weight of a stilbene compound represented by the following chemical formula as a charge transport material:
[0047]
Embedded image
Figure 2004240058
Polycarbonate resin represented by the following chemical formula as a resin binder:
Embedded image
Figure 2004240058
A coating solution prepared by dissolving 120 parts by weight of the phosphoric ester compound of the exemplified compound (I-1) in 0.01 part by weight and 600 parts by weight of dichloromethane was applied to form a film, and dried at a temperature of 90 ° C. for 60 minutes to form a film. A charge transport layer having a thickness of about 17 μm was formed, and an organic electrophotographic photosensitive member (hereinafter, also referred to as a photosensitive drum) was manufactured.
[0049]
(Example 2)
An organic electrophotographic photoreceptor was produced in the same manner as in Example 1, except that the phosphoric ester compound used in Example 1 was changed to the exemplified compound (I-2).
[0050]
(Example 3)
An organic electrophotographic photoreceptor was prepared in the same manner as in Example 1, except that the phosphoric ester compound used in Example 1 was changed to the exemplified compound (I-3).
[0051]
(Example 4)
An organic electrophotographic photoreceptor was produced in the same manner as in Example 1, except that the charge transport material used in Example 1 was changed to a diamine compound represented by the following chemical formula.
[0052]
Embedded image
Figure 2004240058
[0053]
(Example 5)
An organic electrophotographic photoreceptor was produced in the same manner as in Example 4, except that the phosphoric ester compound (I-1) used in Example 4 was changed to the exemplified compound (I-2).
[0054]
(Example 6)
An organic electrophotographic photoreceptor was prepared in the same manner as in Example 4, except that the phosphoric ester compound (I-1) used in Example 4 was changed to the exemplified compound (I-3).
[0055]
(Comparative Example 1)
An organic electrophotographic photoreceptor was produced in the same manner as in Example 1, except that the phosphate ester compound used in Examples 1 to 3 was not added to the charge transport layer (the stilbene compound).
[0056]
(Comparative Example 2)
An organic electrophotographic photoreceptor was produced in the same manner as in Example 4 without adding the phosphoric ester compound used in Examples 4 to 6 to the charge transport layer (the diamine compound).
[0057]
(Comparative Example 3)
An organic electrophotographic photoreceptor was produced in the same manner as in Example 1, except that the phosphoric ester compound used in Example 1 was changed to the following exemplified compound (VI-1).
[0058]
(Comparative Example 4)
An organic electrophotographic photoreceptor was prepared in the same manner as in Example 1, except that the phosphoric ester compound used in Example 1 was changed to the following exemplified compound (VI-2).
[0059]
(Comparative Example 5)
An organic electrophotographic photoreceptor was produced in the same manner as in Example 1, except that the phosphoric ester compound used in Example 1 was changed to the following exemplified compound (VI-3).
[0060]
(Comparative Example 6)
An organic electrophotographic photosensitive member was produced in the same manner as in Example 1, except that the phosphoric ester compound used in Example 1 was changed to the following exemplified compound (VI-4).
[0061]
Embedded image
Figure 2004240058
[0062]
(Evaluation of photoconductor)
Each photoconductor produced in each of the above-mentioned Examples and Comparative Examples was evaluated under the following conditions and method by the process arrangement shown in FIG. The process was composed of a charger 10, an exposure 11, and a charge elimination light source 12. The angle between the charger and the exposure was set to 90 °, the angle between the exposure and the charge elimination light was set to 180 °, and the angle between the charge elimination light and the charger was set to 90 °. . The drum rotation speed was set to 60 mm / s. The evaluation method is as follows. After the photosensitive drum 13 was charged to -650 V in a dark place, the surface potential holding ratio Vk5 of the photosensitive drum whose rotation was stopped after 5 seconds was determined. Subsequently, under the environment of room temperature 24 ° C. and 43% (relative humidity), the surface of the photosensitive drum is continuously irradiated with exposure light, and the exposure amount necessary for the charging potential to reach from −600 V to −300 V is determined. The exposure amount required to reach −100 V from −600 V was defined as sensitivity E100, and the sensitivity was determined for each. Further, in the above sensitivity measurement, the surface potential of the photoreceptor immediately after irradiation with exposure light having a total light quantity of 2.5 μJ / cm 2 was defined as residual potential Vr2.5, and the residual potential was determined. Table 1 shows the measured values.
[0063]
Further, each of the photosensitive drums was mounted on a digital copier, and the resolution of white fine lines, the reproducibility of one dot, and the solid density of black were examined in order to evaluate the image in terms of resolution and gradation. The fine white line resolution was evaluated as ○ when the edge of one dot line on the black solid was not blurred and a white fine line of one dot width was printed, and as × when there was blurred or the width of the fine white line was crushed. Regarding the reproducibility of one dot, the circle of the dot of the 600 dpi / 1on1off image was not blurred, and the shape of one dot close to a circle was evaluated as ○, and the poor shape was evaluated as ×. Each is shown in Table 2. The solid black density is a value measured by a Macbeth densitometer, and a larger value indicates a higher density.
[0064]
[Table 1]
Figure 2004240058
[0065]
[Table 2]
Figure 2004240058
[0066]
As is clear from the results in Table 1 above, the photoconductors of Examples 1 to 6 of the present invention using the phosphoric ester compound represented by the aforementioned chemical formula (1) in the charge transport layer, Compared with the photoconductors in Comparative Examples 1 and 2 and Comparative Examples 3 to 6 which do not belong to the present invention and which are not added to the charge transport layer and which have a residual potential lowering effect, and It can be seen that the image quality such as resolution and gradation is excellent.
[0067]
Further, the electrophotographic photoreceptor according to the present invention containing the various phosphoric ester derivatives shown in each of the above Examples is not only a photoreceptor for a laser beam printer, but also an analog copier, a digital copier, a facsimile machine. Excellent effects were also obtained with the photoreceptor for use. Further, since the present invention is excellent in image quality such as resolution and gradation, an excellent image can be obtained even in a color image.
[0068]
【The invention's effect】
According to the present invention, in the electrophotographic photosensitive member having the photosensitive layer on the conductive substrate, the photosensitive layer contains the phosphoric ester derivative represented by the chemical formula (1). Thus, it is possible to provide an electrophotographic photoreceptor having low image quality and good image quality.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of an electrophotographic photosensitive member according to the present invention. FIG. 2 is a schematic sectional view of a different electrophotographic photosensitive member according to the present invention. FIG. 3 is a schematic configuration diagram of a process arrangement for evaluating a photosensitive member. [Explanation of symbols]
REFERENCE SIGNS LIST 1 conductive substrate 2, 6 undercoat layer 3 photosensitive layer 4 charge generation layer 5 charge transport layer 7 single-layer photosensitive layer 10 charger 11 exposure 111 optical filter (R63 / KL78)
112 Exposure source (tungsten lamp)
113 Case 114 Surface potential probe 12 Static elimination light source (630 nm)
13 Photoconductor drum

Claims (2)

導電性基体上に感光層を備えた電子写真感光体において、感光層が下記化学式(1)で示されるリン酸エステル誘導体を含有することを特徴とする電子写真感光体。
Figure 2004240058
(式中、R、Rは、同一または異なる置換基を有してもよい芳香族環基を表し、Xは水素原子、ハロゲン原子またはOYを表し、YはOと結合したスクシンイミドを表す。)
An electrophotographic photoreceptor having a photosensitive layer on a conductive substrate, wherein the photosensitive layer contains a phosphate derivative represented by the following chemical formula (1).
Figure 2004240058
(Wherein, R 1 and R 2 represent aromatic ring groups which may have the same or different substituents, X represents a hydrogen atom, a halogen atom or OY, and Y represents a succinimide bonded to O .)
感光層が電荷発生層、電荷輸送層を順次積層した層を有し、前記電荷輸送層が請求項1記載の化学式(1)で示されるリン酸エステル誘導体を含有することを特徴とする請求項1記載の電子写真感光体。The photosensitive layer has a layer in which a charge generation layer and a charge transport layer are sequentially laminated, and the charge transport layer contains the phosphate derivative represented by the chemical formula (1) according to claim 1. 2. The electrophotographic photosensitive member according to 1.
JP2003027472A 2003-02-04 2003-02-04 Electrophotographic photoreceptor Pending JP2004240058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003027472A JP2004240058A (en) 2003-02-04 2003-02-04 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003027472A JP2004240058A (en) 2003-02-04 2003-02-04 Electrophotographic photoreceptor

Publications (1)

Publication Number Publication Date
JP2004240058A true JP2004240058A (en) 2004-08-26

Family

ID=32955193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003027472A Pending JP2004240058A (en) 2003-02-04 2003-02-04 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2004240058A (en)

Similar Documents

Publication Publication Date Title
TWI416285B (en) Electrophotographic photoconductor and a method of manufacturing the same
JP2005115091A (en) Electrophotographic photoreceptor and method for manufacturing the same
US7291432B2 (en) Imaging members
JP3666262B2 (en) Electrophotographic photoreceptor
JP5719886B2 (en) Electrophotographic photosensitive member and image forming apparatus using the same
TW201832025A (en) Electrophotographic photoreceptor, method for manufacturing same, and electrophotographic device using same
JP2012163758A (en) Electrophotographic apparatus
JPH1073937A (en) Electrophotographic photoreceptor
JP2991150B2 (en) Electrophotographic photoreceptor
JP2001066805A (en) Electrophotographic photoreceptor
JP2000147806A (en) Electrophotographic photoreceptor and electrophotographic apparatus
JP2004240058A (en) Electrophotographic photoreceptor
JP2001249471A (en) Electrophotographic photoreceptor
JP5718413B2 (en) Electrophotographic photosensitive member and image forming apparatus using the same
JP2000056488A (en) Electrophotographic photoreceptor
JP2010250174A (en) Electrophotographic photoreceptor and image forming apparatus using the same
JP2008250079A (en) Electrophotographic photoreceptor
JP3788923B2 (en) Electrophotographic photosensitive member and electrophotographic apparatus using the same
JP3577001B2 (en) Electrophotographic photoreceptor and electrophotographic apparatus using the same
JPH1184695A (en) Electrophotographic photoreceptor
JP2001215742A (en) Electrophotographic photoreceptor
TWI595333B (en) Electrophotographic photoreceptor
JP2003215824A (en) Electrophotographic image forming device
JPH11282182A (en) Electrophotographic photoreceptor
JPH10282699A (en) Electrophotographic photoreceptor