JP2004239595A - Incinerated ash melting furnace - Google Patents

Incinerated ash melting furnace Download PDF

Info

Publication number
JP2004239595A
JP2004239595A JP2003192950A JP2003192950A JP2004239595A JP 2004239595 A JP2004239595 A JP 2004239595A JP 2003192950 A JP2003192950 A JP 2003192950A JP 2003192950 A JP2003192950 A JP 2003192950A JP 2004239595 A JP2004239595 A JP 2004239595A
Authority
JP
Japan
Prior art keywords
furnace
furnace shell
shell
coke
incineration ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003192950A
Other languages
Japanese (ja)
Inventor
Ryota Hidaka
亮太 日高
Kazutake Murahashi
一毅 村橋
Yoshihiro Ishida
吉浩 石田
Yasuhiko Katou
也寸彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003192950A priority Critical patent/JP2004239595A/en
Publication of JP2004239595A publication Critical patent/JP2004239595A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Furnace Details (AREA)
  • General Induction Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an incinerated ash melting furnace capable of melting incinerated ash by suppressing in-furnace synthetic magnetic flux attenuation and heating loss due to an eddy current occurring in a furnace shell while installing a coil on an outside of a metal furnace shell having air tightness, and realizing coke induction heating with high thermal efficiency. <P>SOLUTION: The incinerated ash melting furnace is a coke bed melting furnace inputted with incinerated ash and coke to melt the incinerated ash, and a high frequency current is applied to the coil to carry out induction heating of the coke in a furnace lower part. The furnace shell 15 is composed of a non-magnetic metal with low electric resistance, the induction heating coil 10 is installed outside the furnace shell 15, at least one portion in a circumferential direction of the furnace shell 15 is electrically isolated, the furnace shell 15 is electrically isolated from upper and lower metal furnace bodies by horizontally dividing the furnace shell 15 at positions in upper and lower end neighborhoods of the induction heating coil 10 and providing dividing parts 21, and the dividing parts 21 are used as permeation paths of a magnetic flux into the furnace. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、廃棄物処理設備から排出される焼却灰を溶融処理する焼却灰溶融処理炉に関するものである。
【0002】
【従来の技術】
都市ごみ、産業廃棄物などの焼却灰を溶融処理する方法にシャフト炉型コークスベッド溶融炉が知られている。シャフト炉型コークスベッド溶融炉は、炉上部から炉下部に向かって、乾燥、昇温、燃焼溶融ゾーンを形成しており、溶融炉上部から供給された焼却灰は炉内を下降する過程で、順次乾燥、昇温して、炉底のコークスベッドで溶融される。
【0003】
炉底に吹き込んだ空気又は酸素富化空気は、コークス及び焼却灰中の未燃分を燃焼して、高温の熱ガスを発生し、この高温の熱ガスが炉内を上昇して、炉上部から供給された焼却灰と熱交換することで、焼却灰の乾燥、昇温熱源となる。
【0004】
本出願人は、焼却灰を含む廃棄物の溶融処理に関して、溶融炉本体上部に廃棄物とコークスとを装入し、1段または複数段の羽口から空気又は酸素富化空気を吹き込み溶融処理する方法において、炉底溶融ゾーンのコークスを羽口から吹き込まれた空気又は酸素富化空気により還元燃焼せしめるとともに、該コークスを誘導加熱することにより廃棄物を溶融し、スラグ化する方法を提案した(特許文献1参照)。この方法により、施設の廃熱回収による発電電力を溶融熱源として有効利用し、外部から購入するコークスの使用量を低減することができる。
【0005】
【特許文献1】
特開2002−54810号公報
【0006】
【発明が解決しようとする課題】
従来、シャフト炉型コークスベッド溶融炉では、炉内ガスを漏れないよう気密性を確保する必要性及び炉内の高温を保持する必要性から、炉体は、外面に鉄皮を炉殻として、気密性を確保し、内面に耐火壁を設け、その耐火壁の耐熱性、断熱性により高温を保持している。
【0007】
上記構造の炉で、炉内コークスを誘導加熱するためのコイル設置場所としては、該鉄皮炉殻の内側耐火壁内と外側の2ケースが考えられる。
【0008】
(1)該鉄皮炉殻の内側耐火壁内に設置する場合、
コークスを効率的に誘導加熱できる30kHz程度の高周波数で、実用スケール炉の必要発熱量を確保できる電流を流すと、コイルのターン間電圧が数千Vオーダーと高くなる。
【0009】
一方、炉内ガスに含まれる水蒸気や微量酸性ガスは耐火物を介して水冷されたコイル近傍に浸透して結露する。その結果、コイルの絶縁性が低下し、放電・短絡等が発生するので、安定した通電条件を確保することが出来ない。
【0010】
(2)該鉄皮炉殻の外側に設置する場合、
円筒形の鉄皮炉殻に沿って周回する渦電流が鉄皮に流れる結果、炉内合成磁束が大幅に減衰してコークス誘導加熱量が減る事に加え、渦電流による鉄製炉殻発熱が大きなロスとなり、熱効率が極端に低いという問題があった。
【0011】
そこで本発明は、気密性を有する金属製炉殻の外側にコイルを設置しながら、該炉殻に発生する渦電流による炉内合成磁束減衰と発熱ロスを抑制して、熱効率の高いコークス誘導加熱を実現し、それにより、焼却灰を溶融処理できる焼却灰溶融炉を提供するものである。
【0012】
【課題を解決するための手段】
本発明は、焼却灰とコークスを装入して、焼却灰を溶融処理するコークスベッド溶融炉であって、コイルに高周波電流を通電して炉下部のコークスを誘導加熱する焼却灰溶融処理炉において、電気抵抗が低く且つ非磁性の金属で炉殼を構成し、該炉殻の外側に誘導加熱コイルを設置し、前記炉殻の周方向の少なくとも一箇所を電気的に絶縁するとともに、前記炉殻を前記誘導加熱コイルの上下端近傍の位置で水平方向に分割部を形成して前記炉殼を上下の金属製炉体と垂直方向の電気的絶縁を図るとともに、前記分割部を炉内への磁束の透磁路としたことを特徴とする。
【0013】
【発明の実施の形態】
以下、図に基づいて、本発明を詳細に説明する。
【0014】
図1は本発明の焼却灰溶融処理炉の全体図である。図1において、焼却灰溶融処理炉は、溶融炉本体1、焼却灰ホッパ2、シャフト部5、朝顔部6、炉底部7、ガス排出管8、溶融物出湯口9、誘導加熱コイル10、高周波電源11、コークスホッパ12で構成され、コークス13が導電性物質として炉底部に挿入されている。
【0015】
図2は本発明の焼却灰溶融処理炉の炉底部を示す縦断面図、図3は同斜視図、図4は炉殻の隙間にフェライトあるいは絶縁スペーサを挟んだ状態を示す図である。
【0016】
図2及び図3において、焼却灰溶融処理炉の炉底部7の耐火壁14の外面は、電気抵抗が低く非磁性の銅で覆われ、炉殻15も銅製である。炉殻15は、周方向の分割部16により、周方向に電気的に絶縁されている。炉殼15の外側には、水冷の誘導加熱コイル10を配置する。該コイル10の作る磁束を効率的に炉内に導くために、炉殻15の上端の上部近傍、下端の下部近傍にそれぞれすきまを形成して分割部21を設ける。
【0017】
図4に示すように、分割部21にはリング状の絶縁スペーサ21aあるいはフェライト17を挟み込む。この分割部21は、誘導加熱コイル10により発生した磁束が、炉側面を貫いて、炉殻15内側に到達する時の磁路となる。
【0018】
図4(b)に示すように、リング状の絶縁スペーサ21aは炉殻15のフランジ15aの間に数枚重ねて挟む。
【0019】
さらに、分割部21のすきま幅を小さくする等の工夫のために、図4(c)に示すように、分割部21に絶縁スペーサ21aとフェライト17を挿入して、磁路を形成することもできる。フェライト17の形状は、図4(a)に示すようにリング状もしくは図4(d)に示すように直方体とし、直方体のフェライト17を使用するときは、三角形の絶縁スペーサー21bで空隙を埋める。フェライト17を使用するときは、分割部21は、該炉殼15と上の金属製炉体15bの間及び 該炉殼15と下の金属製炉体15cの間が電気的に絶縁できるように、炉殻のフランジ15aとフェライト17の間に絶縁材21aを挿入する。
【0020】
図2にもどって、炉殻15の表面に水冷パイプ18を配設し、炉殻15及び上下の金属製炉体を冷却する。水冷パイプ18は、上下の金属製炉体に設けたヘッダ19から分岐し、炉底部の金属製炉体を縦断している。但し、分割部21を縦断する部分は、分割部21での電気的絶縁を確保するために、ゴム等の絶縁ホース20で接続する。
【0021】
炉殻15内の耐火壁は2層構造とし、炉殻に隣接する外層14aを高熱伝導率のSiCキャスタとし、炉内に隣接する内層14bを、外層14aより熱伝導率の低い高アルミナ系キャスタもしくはアルミア/クロミア系キャスタで構成する。
【0022】
本発明では、炉頂部に配置された焼却灰ホッパ2とコークスホッパ12から焼却灰とコークス13が炉内部に装入され、焼却灰は炉内を下降する過程で、順次乾燥、昇温して、炉底のコークスベッドで溶融される。炉底のコークスベッドは、コークスが誘導加熱されるため、殆ど燃焼しなくても溶融機能を発揮できる。
【0023】
また、焼却灰の溶融熱源として、廃熱回収による発電電力を利用するので、コークスの燃焼量が殆ど無くても溶融機能を維持でき、コークス使用量を低減することが可能となる。
【0024】
そのとき、コークスを効率的に誘導加熱できる30kHz程度の高周波数で、実用スケール炉の必要発熱量を確保できる電流を流すと、コイルのターン間電圧が数千Vオーダーと高くなるが、本発明によれば、コイルを炉外の清浄雰囲気に配置できるので、漏電、短絡等の不都合を回避できる。
【0025】
図5は炉殻に発生するうず電流の説明図である。図5(a)において、本発明の構成によれば、炉殻15を周方向の分割部16により周方向に絶縁することにより、渦電流は小さくなり、又、その渦電流による磁束は、炉内コークス充填部の合成磁束をほとんど減衰しない。その結果、効率的にコークスを誘導加熱させることができる。この場合、炉殻15の周方向の分割部16は、理論的には1箇所でも良いが、絶縁の確実性をあげるためには複数箇所が良い。周方向の分割部16は、マイカや耐火キャスタ、繊維強化樹脂等の絶縁スペーサー16aでガスシールを確保する。
【0026】
もし、図5(b)に示すように、周方向の絶縁がない場合、うず電流は炉殻15外周に沿って周回するとともに大きな電流となる。その渦電流の作る磁束は誘導加熱コイル10の作る磁束を炉殻15内側で打ち消し、殆ど減衰してしまう。その結果、コークス充填部の合成磁束が小さく、効率的にコークスを誘導加熱できない。
【0027】
周方向の分割部16加えて分割部21も同時に必要である。図5(c)に示すように、誘導加熱コイル10が発生し、炉殻15内側に到達する磁束は、必ず炉側面を2回貫き、出入りする。しかしながら、分割部21が無い場合、炉側面は金属製炉殼となり、炉殻面に発生する渦電流によって、磁束の打ち消しが発生して、炉内コークス充填部の合成磁束を殆ど減衰してしまう。
【0028】
そこで本発明は、図5(d)に示すように、周方向の絶縁に加えて、誘導加熱コイル10の上下端近傍の位置で、分割部21を形成することにより、炉内コークス充填部の合成磁束がほとんど減衰しないものとできることを見い出した。
【0029】
分割部21は、誘導加熱コイル10の近傍で、誘導加熱コイル10の上下に2カ所必要である。この場合、誘導加熱コイル10で発生させ、炉殻等に到達する磁束は、渦電流とその磁束合成により、合成磁束は結果的にフランジ15aの間の分割部21のすきまに集中して炉側面を貫通し、炉内コークス充填部の合成磁束はほとんど減衰しないものとなる。
【0030】
本発明においては、金属製の炉殻15には、電気抵抗が低く且つ非磁性の金属を使用する。電気抵抗の大きな金属を用いれば、渦電流は小さく抑えられ、渦電流による内部磁束の減衰は小さくなるが、前述のとおり、本発明では炉殻15の周方向に絶縁しており、渦電流による内部磁束の減衰はほとんど生じない。そこで、渦電流による炉殻の発熱ロスの大小が問題となる。
【0031】
炉の外側を覆う炉殻15には、渦電流が流れるが、その発熱量は炉内の溶解等には寄与しない熱ロスとなる。そのため、その発熱ロスを抑えるためには、この1kHz以上の高周波数帯では、非磁性で電気抵抗の低い金属を使用した方が良い。非磁性で電気抵抗の低い金属としては、銀及び銅があるが、コスト面から銅が適している。
【0032】
また、銅炉殻には、絶縁性の塗料または絶縁ワニスを塗っても良いし、電気抵抗を下げるために銀メッキをしたあと、上記絶縁処理を行っても良い。さらに、銅炉殻と内部耐火物との隙間には、絶縁性、耐高温性のあるマイカを挟んでも良い。
【0033】
また、本発明では炉殻15の分割部21に、絶縁スペーサ21aを挟み込む。該分割部21は、電気的絶縁性と気密性が必要であり、それらを確保するために、フランジ構造にして、そのフランジ間に、マイカや耐火キャスタ、繊維強化樹脂等の絶縁スペーサ21aを挟み込む。
【0034】
また、本発明は、炉殻の分割部21に、高透磁率材料17を挟み込んでもよい。分割部21に高透磁率材料17を挟むことにより、炉内の発熱効率を上昇させ、さらに炉殻15に発生する渦電流による発熱ロスを低減させることができる。なお、高透磁率材料17としては、特にフェライトが適している。高透磁率材料としては、電磁鋼板も考えられるが、コークス誘導加熱のような高周波数では、電磁鋼板は高透磁率を維持できず、しかも発熱損失が大なため、非効率である。一方、フェライトの場合には、高周波数でも、高透磁率を維持し、しかも発熱損失も少ないため、効率が良い。
【0035】
本発明では、図2のA−A断面図である図4(d)に示すように、炉殻15を垂直方向に絶縁したフランジ15a間に高透磁率材料、例えば、フェライトを挟み込む場合、その位置は、炉殻外部では少なくともフランジ外面より長く、例えば20mm長くし、炉内側でも、炉殻内面よりも長く、例えば少なくとも20mm長くしたものを配置する。これは、フェライトの角部分には、磁束が集中するため、該磁束が金属製の炉殻15もしくはフランジ15aを貫通する様な配置とすると、貫通部に無用な渦電流を発生させ、発熱,熱効率低下の要因になると共に、磁束の打ち消しにより、コークス充填部の合成磁束が減衰し、効率的にコークスを誘導加熱できない。
【0036】
そこで、フェライトをフランジ15a及び炉殻15の内面から内側に設置すれば、そのような無駄を発生させることなく、効率的にコークスを誘導加熱できると共に、誘導炉の効率も向上する。
【0037】
フェライト長さについて、長い方が効率向上に寄与するが、コスト面からフランジ15aつら面及び炉殻15の内面から20mm程度長いものが最適となる。また、本発明では、炉殻15を水冷ジャケット構造にするか、もしくは炉殻外部に水冷管を密着させ、炉殻、フェライト、炉内耐火物を水冷するものである。
【0038】
炉殻15は、金属で構成されるが、金属は高温で電気抵抗が高いので、温度上昇が電気抵抗上昇と発熱量上昇を招き、そのことが、さらなる温度上昇を招くという悪循環におちいるため、炉殻15は何らかの冷却手段で冷却することが必要である。
【0039】
また、フェライトは、キュリー点(温度)を越えると、透磁率が急速に減少するため、適度な冷却が必要である。そのため、炉殻を水冷することにより、炉殻金属の熱暴走を防ぐとともに、フェライトをキュリー温度に上昇することを防ぐことが可能となる。
【0040】
また本発明では、炉内の耐火物14の構造を、2層に分け、炉殻15に隣接する外層14aを高熱伝導率のSiC耐火キャスタ(不定形耐火物)とし、炉内に隣接する内層14bを、高アルミナ系や耐火度の高いアルミア/クロミア系耐火物で構成する。
【0041】
フェライトは、前述のようにキュリー温度があるので低温に維持する必要があり、しかも磁路形成の効率上、炉殻15内面から、高温側の耐火物内に20mm以上突き入れる必要がある。
【0042】
水冷炉殻15に隣接する外層14aを、高熱伝導率として冷却能を高くすることで、外層14aとフェライトの温度を低温に保たれる。又、もし内層14bの耐火物がある程度溶損しても、水冷した炉殻15と外層14aの高伝熱によって外層14aとフェライトの温度を低温に保つことが可能である。
【0043】
また、水冷した炉殻15と外層14aの高伝熱能によって、内層14bの背面が冷却されるので、伝熱上バランスする厚みで、溶損が止まり、表面にスラグコーティング層を形成する。熱伝導率の高い耐火物としては、SiC系のキャスタ材などが有効である。
【0044】
本発明では、側面同様、炉底面の金属炉殻を水冷構造にするとともに、耐火物構成を2層構造にし、下層14aを高熱伝導率の耐火物とし、上層14bをその下層より熱伝導率の低い耐火物とするとともに、図6の炉底部の断面図に示すように、分割部21に挟み込む高透磁率材料17を、炉底側においては、下層の高熱伝導率の耐火物層内に配置し、その炉内側先端を炉中心近傍とする。
【0045】
炉底面のフェライトを下層の高熱伝導率の耐火物層内に配置すれば、キュリー温度以下に抑えつつ、炉内近傍までフェライトの炉内側先端位置を炉内方向に伸ばすことが可能になり、このことにより、コークス誘導加熱に寄与する磁束が増加し、側面の耐火物層を通る無駄磁束を減少できる。
【0046】
また、本発明は、図7の2次コイルの断面図に示すように、炉殻15の内面に、電気抵抗の低い金属で構成した複数個の2次コイル22(図7(b)のA−A断面参照)を円周方向に接続する。前述のように、フェライトを伸ばして内部に突き入れることで、耐火物層を通る無駄磁束を減少できるが、ゼロにはならない。そこで、耐火物層を通る無駄磁束を2次コイル22と鎖交させ、2次コイル22に発生する渦電流により、無駄磁束を有効にして、炉内のコークス充填部の合成磁束増加と、それによるコークス誘導加熱量増加を図る。図7(b)に示すようにこのとき2次コイル22の幅と位置は、コークスの誘導加熱が必要な領域にあわせて、その幅と高さ方向の位置を設定する。
【0047】
また、図8に示されるように炉殻15と耐火壁14の間に絶縁テープもしくは絶縁性塗料、マイカシート等の絶縁物23を配置させることにより、炉殻15に発生する誘導起電力に基づく漏電を未然に防止することができる。
【0048】
また、図9に示すとおり、下側の分割部21の位置より上方の磁束経路に出湯ノズル9を設け、出湯ノズル9にカーボン成分を有するレンガもしくは力一ボンを使用することにより、出湯ノズル9を誘導加熱させることが出来る。
【0049】
実施例
図1において、シャフト炉型コークスベッド溶融炉本体1の炉上部から、焼却灰及びコークス,石灰石が装入される。表1に溶融処理する焼却灰の成分例を示す。
【0050】
【表1】

Figure 2004239595
焼却灰の処理速度は560kg/h、コークスおよび石灰石は焼却灰の各々約1%および6%で供給した。シャフト炉型コークスベッド溶融炉本体1は、炉内で充填層を形成し、ガスとの熱交換で昇温されながら炉底部7へと下りていく。
【0051】
炉底部の外周に配置した誘導加熱コイル10に高周波電源11から交番電流を通電して、炉底部7に堆積したコークス12を誘導加熱し、高温状態のコークス12と焼却灰との接触により溶融する。焼却灰は溶流温度以上に昇温され溶融スラグ状態となって、出湯ノズル9から炉外へ排出される。石灰石は、スラグの塩基度(CaOとSiO2の比率)が0.7〜1になるよう添加量を調整して、スラグの流動性を確保する。
【0052】
また、誘導加熱の電力としては、ガス排出管8から排出された排ガスを燃焼させ、その廃熱をボイラーで蒸気回収して発電したものを利用した。すなわち、ガス排出管8から排出された排ガスは、公知の焼却灰処理設備の排ガス処理系において、二次燃焼室で排ガス中の可燃分を燃焼した後、この廃熱をボイラーで回収し、蒸気を発生させて発電機で発電した電力を誘導加熱電力として使用する。ボイラーを通過した後の排ガスは、排ガス冷却器で排ガス温度を下げた後、集じん機で集じんして煙突から排出する。誘導加熱用の電力は60KW使用した。
【0053】
出湯ノズル9から排出された溶融物は水砕されて、メタル層とスラグ層が別々の砂状粒子となる。スラグはインターロッキングブロック等のコンクリート2次製品の骨材や土木資材などとして資源利用され、メタルはカウンターウェイト等として資源利用される。
【0054】
従来の方式では、誘導加熱コイルの放電等により安定運転は不可能であったが、本発明により安定した誘導加熱が達成できた。
【0055】
【癸明の効果】
本発明により、焼却灰溶融処理炉の溶融熱源を誘導加熱で賄うことが可能となり、従来に比べて、コークスの燃焼消費量が低減できる。また、溶融物温度を確保するための酸素富化量も低減できる。
【図面の簡単な説明】
【図1】本発明の焼却灰溶融処理炉の全体図である。
【図2】本発明の焼却灰溶融処理炉の炉底部を示す縦断面図である。
【図3】本発明の焼却灰溶融処理炉の炉底部を示す斜視図である。
【図4】炉殻の隙間にフェライトあるいは絶縁スペーサを挟んだ状態を示す図である。
【図5】炉殻に発生するうず電流の説明図である。
【図6】高透磁率材料の配置の別実施例を示す断面図である。
【図7】2次コイルを示す図2のB−B断面図である。
【図8】炉殻と耐火物の間に絶縁物を配置させた実施例を示す断面図である。
【図9】下側の垂直方向分割の位置より上方の磁束経路に出湯ノズルを設けた実施例を示す断面図である。
【符号の説明】
1:溶融炉本体 2:焼却灰ホッパ 5:シャフト部 6:朝顔部 7:炉底部8:ガス排出管 9:溶融物出湯口 10:誘導加熱コイル 11:高周波電源12:コークスホッパ 13:コークス 14:耐火壁 14a:外層 14b:内層 15:炉殻 15a:フランジ 15b:上の金属製炉体 15c:下の金属製炉体 16:周方向の分割部 16a:絶縁スペーサー 17:高透磁率材料(フェライト)18:水冷パイプ 19:ヘッダ 20:絶縁ホース 21:垂直方向の分割部 21a:絶縁スペーサ 22:2次コイル 23:絶縁物[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to an incineration ash melting furnace for melting and processing incineration ash discharged from a waste treatment facility.
[0002]
[Prior art]
BACKGROUND ART A shaft furnace type coke bed melting furnace is known as a method for melting incinerated ash such as municipal waste and industrial waste. The shaft furnace type coke bed melting furnace forms a drying, heating, combustion melting zone from the upper part of the furnace toward the lower part of the furnace, and the incineration ash supplied from the upper part of the melting furnace descends in the furnace, It is dried and heated in sequence, and is melted in the coke bed at the bottom of the furnace.
[0003]
The air or oxygen-enriched air blown into the furnace bottom burns unburned components in coke and incinerated ash to generate high-temperature hot gas, which rises inside the furnace and rises The heat exchange with the incineration ash supplied from the plant provides a heat source for drying and heating the incineration ash.
[0004]
Regarding the melting treatment of waste containing incinerated ash, the present applicant charges waste and coke into the upper part of the melting furnace body and blows air or oxygen-enriched air from one or more stages of tuyeres to perform melting treatment. In the method, the coke in the furnace bottom melting zone is reduced and burned by air or oxygen-enriched air blown from the tuyere, and waste is melted by induction heating of the coke to form a slag. (See Patent Document 1). According to this method, the power generated by the waste heat recovery of the facility can be effectively used as a melting heat source, and the amount of coke purchased from outside can be reduced.
[0005]
[Patent Document 1]
JP-A-2002-54810
[Problems to be solved by the invention]
Conventionally, in a shaft furnace type coke bed melting furnace, the furnace body has a steel shell on the outer surface, because of the necessity of ensuring airtightness so as to prevent gas in the furnace and maintaining the high temperature in the furnace. Airtightness is ensured, and a fire-resistant wall is provided on the inner surface, and the high temperature is maintained by the heat resistance and heat insulation of the fire-resistant wall.
[0007]
In the furnace having the above-described structure, two cases are conceivable as a coil installation place for induction heating of the coke in the furnace, inside and outside the refractory wall of the iron shell.
[0008]
(1) When installing inside the refractory wall inside the iron shell,
When a current is supplied at a high frequency of about 30 kHz at which coke can be efficiently induction-heated to secure a necessary heat generation amount of a practical scale furnace, the turn-to-turn voltage of the coil becomes as high as several thousand volts.
[0009]
On the other hand, water vapor and a trace amount of acidic gas contained in the furnace gas penetrate into the vicinity of the water-cooled coil via the refractory and form dew. As a result, the insulation of the coil is reduced, and a discharge, a short circuit or the like occurs, so that it is impossible to secure a stable energizing condition.
[0010]
(2) When installed outside the steel shell,
As a result of the eddy current circulating along the cylindrical iron shell flowing through the iron shell, the resultant magnetic flux in the furnace is greatly attenuated, and the amount of coke induction heating is reduced. There was a problem that the heat efficiency was extremely low.
[0011]
Accordingly, the present invention provides a coke induction heating with high thermal efficiency, in which a coil is provided outside a hermetic metal furnace shell, and the combined magnetic flux attenuation and heat loss in the furnace due to eddy current generated in the furnace shell are suppressed. Thus, an incineration ash melting furnace capable of melting and processing incineration ash is provided.
[0012]
[Means for Solving the Problems]
The present invention relates to a coke bed melting furnace for charging incineration ash and coke to melt the incineration ash, in which a high frequency current is applied to a coil to inductively heat coke at a lower portion of the furnace. A furnace shell made of a non-magnetic metal having a low electric resistance, an induction heating coil is installed outside the furnace shell, and at least one circumferential portion of the furnace shell is electrically insulated; The shell is formed at a position near the upper and lower ends of the induction heating coil in a horizontal direction so as to vertically electrically insulate the furnace shell from upper and lower metal furnace bodies and move the split part into the furnace. Characterized by a magnetic flux transmission path.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
[0014]
FIG. 1 is an overall view of an incineration ash melting furnace of the present invention. In FIG. 1, the incineration ash melting treatment furnace includes a melting furnace main body 1, an incineration ash hopper 2, a shaft section 5, a bosh section 6, a furnace bottom 7, a gas discharge pipe 8, a melt tap hole 9, an induction heating coil 10, a high frequency It comprises a power source 11 and a coke hopper 12, and coke 13 is inserted into the furnace bottom as a conductive substance.
[0015]
FIG. 2 is a longitudinal sectional view showing a furnace bottom of the incineration ash melting furnace of the present invention, FIG. 3 is a perspective view of the furnace bottom, and FIG. 4 is a view showing a state in which a ferrite or an insulating spacer is sandwiched in a gap of the furnace shell.
[0016]
2 and 3, the outer surface of the refractory wall 14 of the furnace bottom 7 of the incineration ash melting furnace is covered with non-magnetic copper having low electric resistance, and the furnace shell 15 is also made of copper. The furnace shell 15 is electrically insulated in the circumferential direction by a circumferential division 16. A water-cooled induction heating coil 10 is arranged outside the furnace shell 15. In order to efficiently guide the magnetic flux generated by the coil 10 into the furnace, a gap 21 is formed near the upper end of the upper end of the furnace shell 15 and near the lower end of the lower end of the furnace shell 15 to provide the dividing portion 21.
[0017]
As shown in FIG. 4, a ring-shaped insulating spacer 21 a or ferrite 17 is sandwiched between the divided portions 21. The divided portion 21 serves as a magnetic path when the magnetic flux generated by the induction heating coil 10 passes through the furnace side surface and reaches the inside of the furnace shell 15.
[0018]
As shown in FIG. 4B, several ring-shaped insulating spacers 21 a are sandwiched between flanges 15 a of the furnace shell 15.
[0019]
Further, in order to reduce the gap width of the divided portion 21 or the like, as shown in FIG. 4C, an insulating spacer 21a and a ferrite 17 may be inserted into the divided portion 21 to form a magnetic path. it can. The shape of the ferrite 17 is a ring shape as shown in FIG. 4A or a rectangular parallelepiped as shown in FIG. 4D. When the rectangular ferrite 17 is used, the gap is filled with a triangular insulating spacer 21b. When the ferrite 17 is used, the dividing portion 21 is provided so that the furnace shell 15 and the upper metal furnace body 15b and the furnace shell 15 and the lower metal furnace body 15c can be electrically insulated. The insulating material 21a is inserted between the furnace shell flange 15a and the ferrite 17.
[0020]
Returning to FIG. 2, a water cooling pipe 18 is provided on the surface of the furnace shell 15 to cool the furnace shell 15 and the upper and lower metal furnace bodies. The water-cooled pipe 18 branches off from the headers 19 provided on the upper and lower metal furnace bodies, and vertically cuts through the metal furnace body at the furnace bottom. However, the portion that traverses the divided portion 21 is connected by an insulating hose 20 made of rubber or the like in order to secure electrical insulation at the divided portion 21.
[0021]
The refractory wall in the furnace shell 15 has a two-layer structure, the outer layer 14a adjacent to the furnace shell is a high thermal conductivity SiC caster, and the inner layer 14b adjacent to the furnace is a high alumina caster having a lower thermal conductivity than the outer layer 14a. Or, it is composed of aluminum / chromia casters.
[0022]
In the present invention, incineration ash and coke 13 are charged into the furnace from the incineration ash hopper 2 and the coke hopper 12 arranged at the furnace top, and the incineration ash is sequentially dried and heated in the process of descending in the furnace. Is melted in the coke bed at the bottom of the furnace. The coke bed at the bottom of the furnace can exhibit a melting function without substantially burning because coke is induction-heated.
[0023]
In addition, since the power generated by waste heat recovery is used as the heat source for melting the incinerated ash, the melting function can be maintained even when the amount of coke burned is almost nil, and the amount of coke used can be reduced.
[0024]
At this time, when a current is supplied at a high frequency of about 30 kHz at which the coke can be efficiently induction-heated and the required heat generation of the practical scale furnace is applied, the turn-to-turn voltage of the coil becomes as high as several thousands of volts. According to the method, the coil can be arranged in a clean atmosphere outside the furnace, so that inconveniences such as a short circuit and a short circuit can be avoided.
[0025]
FIG. 5 is an explanatory diagram of the eddy current generated in the furnace shell. In FIG. 5A, according to the configuration of the present invention, the furnace shell 15 is insulated in the circumferential direction by the circumferential dividing portion 16, so that the eddy current is reduced. It hardly attenuates the synthetic magnetic flux in the inner coke filling section. As a result, the coke can be efficiently heated by induction. In this case, the circumferential dividing portion 16 of the furnace shell 15 may be theoretically provided at one place, but a plurality of places are preferable in order to increase the reliability of insulation. The circumferential division 16 secures a gas seal with an insulating spacer 16a such as mica, a refractory caster, or a fiber reinforced resin.
[0026]
As shown in FIG. 5B, when there is no insulation in the circumferential direction, the eddy current circulates along the outer periphery of the furnace shell 15 and becomes a large current. The magnetic flux generated by the eddy current cancels the magnetic flux generated by the induction heating coil 10 inside the furnace shell 15 and is almost attenuated. As a result, the resultant magnetic flux of the coke filling portion is small, and the coke cannot be efficiently induction-heated.
[0027]
A dividing part 21 is also required in addition to the dividing part 16 in the circumferential direction. As shown in FIG. 5C, the magnetic flux generated by the induction heating coil 10 and reaching the inside of the furnace shell 15 always penetrates the furnace side surface twice and enters and exits. However, when there is no dividing portion 21, the furnace side surface becomes a metal furnace shell, and the eddy current generated on the furnace shell surface causes cancellation of magnetic flux, thereby almost attenuating the synthetic magnetic flux of the coke filling portion in the furnace. .
[0028]
In view of this, the present invention, as shown in FIG. 5 (d), forms a division 21 at a position near the upper and lower ends of the induction heating coil 10 in addition to the insulation in the circumferential direction, so that the coke filling portion in the furnace can be formed. It has been found that the synthesized magnetic flux can be made to be hardly attenuated.
[0029]
The dividing part 21 is required in two places near the induction heating coil 10 and above and below the induction heating coil 10. In this case, the magnetic flux generated by the induction heating coil 10 and reaching the furnace shell and the like is synthesized by the eddy current and its magnetic flux. As a result, the synthesized magnetic flux concentrates on the gap of the divided portion 21 between the flanges 15a and the furnace side. And the resultant magnetic flux of the coke filling portion in the furnace hardly attenuates.
[0030]
In the present invention, a non-magnetic metal having a low electric resistance is used for the metal furnace shell 15. If a metal having a large electric resistance is used, the eddy current is suppressed to be small and the attenuation of the internal magnetic flux due to the eddy current is reduced. However, as described above, in the present invention, the furnace shell 15 is insulated in the circumferential direction, and There is almost no attenuation of the internal magnetic flux. Therefore, the magnitude of the heat loss of the furnace shell caused by the eddy current becomes a problem.
[0031]
An eddy current flows in the furnace shell 15 that covers the outside of the furnace, but the calorific value thereof becomes a heat loss that does not contribute to melting in the furnace. Therefore, in order to suppress the heat loss, it is better to use a non-magnetic metal having a low electric resistance in the high frequency band of 1 kHz or more. Silver and copper are non-magnetic and low electric resistance metals, but copper is suitable from the viewpoint of cost.
[0032]
Further, the copper furnace shell may be coated with an insulating paint or an insulating varnish, or may be subjected to the above-mentioned insulating treatment after being plated with silver to reduce the electric resistance. Further, in the gap between the copper furnace shell and the internal refractory, mica having insulation and high temperature resistance may be interposed.
[0033]
In the present invention, the insulating spacer 21a is sandwiched between the divided portions 21 of the furnace shell 15. The divided portion 21 needs to have electrical insulation and airtightness. To ensure these, a flange structure is used, and an insulating spacer 21a such as a mica, a refractory caster, or a fiber reinforced resin is sandwiched between the flanges. .
[0034]
Further, in the present invention, the high magnetic permeability material 17 may be interposed between the divided portions 21 of the furnace shell. By sandwiching the high magnetic permeability material 17 between the divided portions 21, the heat generation efficiency in the furnace can be increased, and the heat loss due to the eddy current generated in the furnace shell 15 can be reduced. Note that ferrite is particularly suitable as the high magnetic permeability material 17. As a material having a high magnetic permeability, an electromagnetic steel sheet can be considered. However, at a high frequency such as coke induction heating, the electromagnetic steel sheet cannot maintain a high magnetic permeability and has a large heat loss, which is inefficient. On the other hand, in the case of ferrite, efficiency is good because high magnetic permeability is maintained even at a high frequency and heat loss is small.
[0035]
In the present invention, as shown in FIG. 4D, which is a cross-sectional view taken along the line AA of FIG. 2, when a high permeability material, for example, ferrite is inserted between the flanges 15a that insulate the furnace shell 15 in the vertical direction. The position is set to be longer than the outer surface of the flange, for example, 20 mm longer outside the furnace shell, and longer than the inner surface of the furnace shell, for example, at least 20 mm inside the furnace. This is because the magnetic flux concentrates at the corners of the ferrite, and if the magnetic flux penetrates through the metal furnace shell 15 or the flange 15a, an unnecessary eddy current is generated in the penetrating portion, thereby generating heat. In addition to causing a decrease in thermal efficiency, the cancellation of the magnetic flux attenuates the synthetic magnetic flux in the coke-filled portion, making it impossible to efficiently heat the coke by induction.
[0036]
Therefore, if the ferrite is installed inside the inner surface of the flange 15a and the furnace shell 15, the coke can be efficiently induction-heated without such waste, and the efficiency of the induction furnace is improved.
[0037]
As for the length of the ferrite, a longer ferrite contributes to the improvement of the efficiency. However, from the viewpoint of cost, a ferrite having a length longer by about 20 mm from the flat surface of the flange 15a and the inner surface of the furnace shell 15 is optimal. Further, in the present invention, the furnace shell 15 has a water-cooled jacket structure, or a water-cooled tube is closely attached to the outside of the furnace shell to water-cool the furnace shell, ferrite, and refractory in the furnace.
[0038]
The furnace shell 15 is made of a metal. Since the metal has a high temperature and a high electric resistance, an increase in the temperature leads to an increase in the electric resistance and an increase in the calorific value. The furnace shell 15 needs to be cooled by some cooling means.
[0039]
Further, ferrite requires a proper cooling because the magnetic permeability rapidly decreases when the temperature exceeds the Curie point (temperature). Therefore, by cooling the furnace shell with water, it is possible to prevent thermal runaway of the furnace shell metal and to prevent the ferrite from rising to the Curie temperature.
[0040]
Further, in the present invention, the structure of the refractory 14 in the furnace is divided into two layers, the outer layer 14a adjacent to the furnace shell 15 is made of a SiC refractory caster (amorphous refractory) having a high thermal conductivity, and the inner layer 14b is made of a high-alumina or high-alumina / chromia refractory.
[0041]
Ferrite needs to be maintained at a low temperature because of its Curie temperature as described above, and it is necessary to penetrate 20 mm or more from the inner surface of the furnace shell 15 into the high-temperature side refractory due to the efficiency of magnetic path formation.
[0042]
The temperature of the outer layer 14a and the ferrite can be kept low by increasing the cooling capacity of the outer layer 14a adjacent to the water-cooled furnace shell 15 with high thermal conductivity. Even if the refractory of the inner layer 14b is melted to some extent, the temperature of the outer layer 14a and the ferrite can be kept low by the high heat transfer between the water-cooled furnace shell 15 and the outer layer 14a.
[0043]
In addition, the back surface of the inner layer 14b is cooled by the high heat transfer capability of the water-cooled furnace shell 15 and the outer layer 14a, so that erosion is stopped at a thickness that balances heat transfer, and a slag coating layer is formed on the surface. As a refractory having a high thermal conductivity, an SiC caster material or the like is effective.
[0044]
In the present invention, similarly to the side surface, the metal furnace shell at the bottom of the furnace has a water-cooled structure, the refractory structure has a two-layer structure, the lower layer 14a has a high thermal conductivity refractory, and the upper layer 14b has a higher thermal conductivity than the lower layer. As shown in the cross-sectional view of the furnace bottom in FIG. 6, the high magnetic permeability material 17 sandwiched between the divided portions 21 is disposed in the lower refractory layer having a high thermal conductivity on the furnace bottom side. Then, the tip inside the furnace is set near the center of the furnace.
[0045]
If the ferrite on the bottom of the furnace is placed in the lower refractory layer with high thermal conductivity, it is possible to extend the inside of the ferrite tip in the furnace direction to the vicinity of the furnace while keeping the temperature below the Curie temperature. Thereby, the magnetic flux contributing to the coke induction heating increases, and the useless magnetic flux passing through the refractory layer on the side surface can be reduced.
[0046]
As shown in the cross-sectional view of the secondary coil in FIG. 7, the present invention provides a plurality of secondary coils 22 (A in FIG. -A cross section) in the circumferential direction. As described above, by extending the ferrite and inserting it inside, the useless magnetic flux passing through the refractory layer can be reduced, but it does not become zero. Therefore, the wasted magnetic flux passing through the refractory layer is linked with the secondary coil 22, and the eddy current generated in the secondary coil 22 makes the wasted magnetic flux effective, thereby increasing the combined magnetic flux of the coke filling portion in the furnace, and To increase the amount of coke induction heating. As shown in FIG. 7B, at this time, the width and the position of the secondary coil 22 are set in the width and the height direction in accordance with the area where the coke requires induction heating.
[0047]
In addition, as shown in FIG. 8, by placing an insulating material 23 such as an insulating tape, an insulating paint, or a mica sheet between the furnace shell 15 and the refractory wall 14, it is based on the induced electromotive force generated in the furnace shell 15. Electric leakage can be prevented beforehand.
[0048]
As shown in FIG. 9, the tapping nozzle 9 is provided in the magnetic flux path above the position of the lower division 21, and the tapping nozzle 9 is made of brick or carbon steel having a carbon component. Can be heated by induction.
[0049]
EXAMPLE In FIG. 1, incineration ash, coke, and limestone are charged from the upper part of the shaft furnace type coke bed melting furnace main body 1. Table 1 shows an example of the components of the incineration ash to be melted.
[0050]
[Table 1]
Figure 2004239595
The incineration ash treatment rate was 560 kg / h, and coke and limestone were supplied at about 1% and 6% of the incineration ash, respectively. The shaft furnace type coke bed melting furnace main body 1 forms a packed bed in the furnace and descends to the furnace bottom 7 while being heated by heat exchange with gas.
[0051]
An alternating current is passed from a high-frequency power supply 11 to an induction heating coil 10 arranged on the outer periphery of the furnace bottom, thereby inductively heating the coke 12 deposited on the furnace bottom 7 and melting by contact between the high temperature coke 12 and the incinerated ash. . The incinerated ash is heated to a temperature equal to or higher than the melt temperature to be in a molten slag state and discharged from the tapping nozzle 9 to the outside of the furnace. Limestone adjusts the amount of slag to be added so that the basicity of slag (ratio of CaO and SiO2) is 0.7 to 1, thereby ensuring fluidity of slag.
[0052]
Further, as the electric power for the induction heating, the electric power generated by burning the exhaust gas discharged from the gas discharge pipe 8 and recovering the waste heat with steam in a boiler was used. That is, the exhaust gas discharged from the gas discharge pipe 8 is burned in a secondary combustion chamber in a flue gas treatment system of a known incineration ash treatment facility, and then combustible components in the exhaust gas are collected by a boiler. And the electric power generated by the generator is used as induction heating electric power. After passing through the boiler, the exhaust gas is cooled by an exhaust gas cooler, collected by a dust collector, and discharged from a chimney. The electric power for induction heating was 60 KW.
[0053]
The melt discharged from the tapping nozzle 9 is granulated by water, and the metal layer and the slag layer are separated into sandy particles. Slag is used as an aggregate or civil engineering material for secondary concrete products such as interlocking blocks, and metal is used as a counterweight or the like.
[0054]
In the conventional method, stable operation was not possible due to discharge of the induction heating coil or the like, but stable induction heating was achieved by the present invention.
[0055]
[Effect of Kishiake]
According to the present invention, the melting heat source of the incineration ash melting treatment furnace can be covered by induction heating, and the combustion consumption of coke can be reduced as compared with the related art. Further, the amount of oxygen enrichment for securing the melt temperature can be reduced.
[Brief description of the drawings]
FIG. 1 is an overall view of an incineration ash melting furnace of the present invention.
FIG. 2 is a vertical sectional view showing a furnace bottom of the incineration ash melting furnace of the present invention.
FIG. 3 is a perspective view showing a furnace bottom of the incineration ash melting furnace of the present invention.
FIG. 4 is a diagram showing a state in which a ferrite or an insulating spacer is sandwiched in a gap of a furnace shell.
FIG. 5 is an explanatory diagram of an eddy current generated in a furnace shell.
FIG. 6 is a sectional view showing another embodiment of the arrangement of the high magnetic permeability material.
FIG. 7 is a sectional view taken along the line BB of FIG. 2 showing the secondary coil.
FIG. 8 is a sectional view showing an embodiment in which an insulator is arranged between a furnace shell and a refractory.
FIG. 9 is a cross-sectional view showing an embodiment in which a tapping nozzle is provided in a magnetic flux path above a lower vertical division position.
[Explanation of symbols]
1: Melting furnace main body 2: Incineration ash hopper 5: Shaft 6: Bosh section 7: Furnace bottom 8: Gas exhaust pipe 9: Melt tap hole 10: Induction heating coil 11: High frequency power supply 12: Coke hopper 13: Coke 14 : Fireproof wall 14a: Outer layer 14b: Inner layer 15: Furnace shell 15a: Flange 15b: Upper metal furnace body 15c: Lower metal furnace body 16: Circumferential division 16a: Insulating spacer 17: High permeability material ( Ferrite) 18: Water-cooled pipe 19: Header 20: Insulated hose 21: Vertical split part 21a: Insulated spacer 22: Secondary coil 23: Insulator

Claims (11)

焼却灰とコークスを装入して、焼却灰を溶融処理するコークスベッド溶融炉であって、コイルに高周波電流を通電して炉下部のコークスを誘導加熱する焼却灰溶融処理炉において、
電気抵抗が低く且つ非磁性の金属で炉殼を構成し、該炉殻の外側に誘導加熱コイルを設置し、前記炉殻の周方向の少なくとも一箇所を電気的に絶縁するとともに、前記炉殻を前記誘導加熱コイルの上下端近傍の位置で水平方向に分割部を形成して前記炉殼を上下の金属製炉体と垂直方向の電気的絶縁を図るとともに、前記分割部を炉内への磁束の透磁路としたことを特徴とする焼却灰溶融処理炉。
In a coke bed melting furnace for charging incineration ash and coke, and melting the incineration ash, a high frequency current is applied to the coil to inductively heat the coke at the bottom of the furnace.
A furnace shell is formed of a non-magnetic metal having a low electric resistance, an induction heating coil is provided outside the furnace shell, and at least one portion in a circumferential direction of the furnace shell is electrically insulated. A horizontal dividing part is formed at a position near the upper and lower ends of the induction heating coil, and the furnace shell is vertically electrically insulated from the upper and lower metal furnace bodies, and the dividing part is inserted into the furnace. An incineration ash melting furnace characterized by a magnetic flux path.
前記分割部に絶縁スペーサーを挟み込むことを特徴とする請求項1記載の焼却灰溶融処理炉。The incineration ash melting furnace according to claim 1, wherein an insulating spacer is sandwiched between the divided portions. 前記分割部に高透磁率材料を挟み込むことを特徴とする請求項1記載の焼却灰溶融処理炉。2. The incineration ash melting furnace according to claim 1, wherein a high permeability material is sandwiched between the divided portions. 挟み込む高透磁率材料がフェライトであることを特徴とする請求項3記載の焼却灰溶融処理炉。4. The incineration ash melting furnace according to claim 3, wherein the high permeability material to be sandwiched is ferrite. 挟み込む高透磁率材料又はフェライトの長さが、半径方向に見て、炉殼外部では、少なくともフランジ外周面より20mm外側に突出し、炉内側では、炉殻内周面より少なくとも20mm内側に突出したものを配置したことを特徴とする請求項3又は4記載の焼却灰溶融処理炉。When viewed in the radial direction, the length of the high permeability material or ferrite to be inserted protrudes at least 20 mm outside the outer peripheral surface of the flange outside the furnace shell and at least 20 mm inside the inner peripheral surface of the furnace shell inside the furnace. The incineration ash melting treatment furnace according to claim 3 or 4, wherein a furnace is disposed. 炉殼を水冷構造とすることを特徴とする請求項1〜5のいずれか1項に記載の焼却灰溶融処理炉。The incineration ash melting furnace according to any one of claims 1 to 5, wherein the furnace shell has a water-cooled structure. 炉底部の耐火壁は2層構造にし、炉殻に隣接する外層を高熱伝導率の耐火物とし、炉内に隣接する内層を、その外層より熱伝導率の低い耐火物で構成したことを特徴とする請求項1〜6のいずれか1項に記載の焼却灰溶融処理炉。The refractory wall at the bottom of the furnace has a two-layer structure, the outer layer adjacent to the furnace shell is made of refractory with high thermal conductivity, and the inner layer adjacent to the furnace is made of refractory having lower thermal conductivity than the outer layer. The incineration ash melting furnace according to any one of claims 1 to 6. 炉殻を水冷構造にし、炉底部の耐火物構成を2層構造にし、下層は高熱伝導率の耐火物、上層はその下層より熱伝導率の低い耐火物とするとともに、炉底側分割部に挟み込む高透磁率材料又はフェライトを、該下層部の高熱伝導率の耐火物層内に配置し、その炉内側の先端を炉中心近傍とした請求項1〜5のいずれか1項に記載の焼却灰溶融処理炉。The furnace shell has a water-cooled structure, the refractory structure at the bottom of the furnace has a two-layer structure, the lower layer has a high thermal conductivity refractory, the upper layer has a lower thermal conductivity than the lower layer, and the furnace bottom side divided part The incineration according to any one of claims 1 to 5, wherein the high magnetic permeability material or ferrite to be sandwiched is disposed in the refractory layer having a high thermal conductivity in the lower layer, and a tip inside the furnace is set near the furnace center. Ash melting furnace. 炉殻の内側に、炉殻を一部とする2次コイルを円周方向に複数個配置したことを特徴とする請求項1〜8のいずれか1項に記載の焼却灰溶融処理炉。The incinerated ash melting furnace according to any one of claims 1 to 8, wherein a plurality of secondary coils each including a part of the furnace shell are arranged in the circumferential direction inside the furnace shell. 炉殻と耐火物の間にテープ、塗料、マイカシート等の絶縁材を挟み込むことで絶縁したことを特徴とする請求項1〜9のいずれか1項に記載の焼却灰溶融処理炉。The incineration ash melting furnace according to any one of claims 1 to 9, wherein insulation is provided by sandwiching an insulating material such as a tape, a paint, and a mica sheet between the furnace shell and the refractory. 出湯ノズルに炭素成分を含有する耐火物もしくは黒鉛材料を使用し、該出湯ノズルを炉底側分割部の上方炉殻に配置することを特徴とする請求項1〜10のいずれか1項に記載の焼却灰溶融処理炉。The refractory or a graphite material containing a carbon component is used for a tapping nozzle, and the tapping nozzle is arranged in an upper furnace shell of a furnace bottom side split part, The statement in any one of Claims 1-10 characterized by the above-mentioned. Ash melting furnace.
JP2003192950A 2002-12-09 2003-07-07 Incinerated ash melting furnace Withdrawn JP2004239595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003192950A JP2004239595A (en) 2002-12-09 2003-07-07 Incinerated ash melting furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002356888 2002-12-09
JP2003192950A JP2004239595A (en) 2002-12-09 2003-07-07 Incinerated ash melting furnace

Publications (1)

Publication Number Publication Date
JP2004239595A true JP2004239595A (en) 2004-08-26

Family

ID=32964459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003192950A Withdrawn JP2004239595A (en) 2002-12-09 2003-07-07 Incinerated ash melting furnace

Country Status (1)

Country Link
JP (1) JP2004239595A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102927811A (en) * 2012-11-15 2013-02-13 株洲弗拉德科技有限公司 Vertical induction heating continuous carbonization furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102927811A (en) * 2012-11-15 2013-02-13 株洲弗拉德科技有限公司 Vertical induction heating continuous carbonization furnace
CN102927811B (en) * 2012-11-15 2014-04-23 株洲弗拉德科技有限公司 Vertical induction heating continuous carbonization furnace

Similar Documents

Publication Publication Date Title
KR100811953B1 (en) High efficiency induction melting system and method
US3948640A (en) Method of carrying out heat-requiring chemical and/or physical processes
SU1825369A3 (en) Process for manufacturing form coke and shaft furnace for effecting same
JP2009280910A (en) Process for producing molten metal
KR20150135261A (en) Induction furnace and method for treating metal waste to be stored
JP2004237278A (en) Waste melting furnace
JPH0749179A (en) Operating method of two furnace device
GB1453821A (en) Method fo and a furnace for manufacturing a carbonaceous metal melt by melt reduction
JP2004239595A (en) Incinerated ash melting furnace
CN105018740B (en) Vacuum reduction furnace for electromagnetic induction heating melting reduction of magnesium metal
JP2004239596A (en) Waste melting furnace
CN101646621B (en) Silicon refining equipment
FI62232C (en) FOERFARANDE FOER ELEKTROINDUKTIV VAERMNING AV STYCKEFORMIGT MAERIAL I EN REAKTORKAMMARE
CN113429115B (en) Crucible, induction coil for cavity of crucible and material processing equipment
US4247732A (en) Method and apparatus for electrically firing an iron blast furnace
CA3171717A1 (en) A method and system for heating direct reduced iron (dri) between a dri source and processing equipment for the dri
CN216925121U (en) Induction type melting furnace for vitrification treatment of solid waste
RU2447384C2 (en) Method and device for feeding dusts to metal melt at pyrometallurgical plant
US2123158A (en) Electric furnace structure for making abrasive metal carbides
JP2004116980A (en) Induction heated melting furnace
CN109128122A (en) A kind of channel-type induction heating ladle device and heating means
US7976771B2 (en) Method for reducing oxidic slags and dusts and inductively heatable furnance for carrying out this method
CN110749193A (en) Closed heating furnace for smelting aluminum
US3869560A (en) Induction furnace for melt reduction
US5719897A (en) Furnace vessel for a direct current arc furnace

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003