JP2004237278A - Waste melting furnace - Google Patents

Waste melting furnace Download PDF

Info

Publication number
JP2004237278A
JP2004237278A JP2003196454A JP2003196454A JP2004237278A JP 2004237278 A JP2004237278 A JP 2004237278A JP 2003196454 A JP2003196454 A JP 2003196454A JP 2003196454 A JP2003196454 A JP 2003196454A JP 2004237278 A JP2004237278 A JP 2004237278A
Authority
JP
Japan
Prior art keywords
furnace
furnace shell
waste
induction heating
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003196454A
Other languages
Japanese (ja)
Inventor
Ryota Hidaka
亮太 日高
Kazutake Murahashi
一毅 村橋
Yoshihiro Ishida
吉浩 石田
Yasuhiko Katou
也寸彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003196454A priority Critical patent/JP2004237278A/en
Publication of JP2004237278A publication Critical patent/JP2004237278A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • General Induction Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a waste melting furnace where an induction heating coil is arranged at the outside of a furnace shell which seals gas, and coke in the inside of the furnace can efficiently be subjected to induction heating while arranging the induction heating coil at the electrically and mechanically safe outside of the furnace shell, further, the loss in heat generation caused by the flowing of eddy current into the furnace shell is suppressed, and waste can be subjected to melting treatment. <P>SOLUTION: In the waste melting furnace, coke filled into the furnace is reduced and burnt by the air or oxygen-enriched air, and further, high frequency current is supplied to a heating coil to inductively heat the coke, a furnace shell 15 is composed of nonmagnetic metal having low electric resistance, the induction heating coil 10 is set at the outside of the furnace shell 15, and, at least one place in the circumferential direction of the furnace shell 15 is electrically insulated. Further, division parts 21 are formed in the horizontal direction at the positions in the vicinity of the upper and lower ends of the induction heating coil 10, so that the electrical insulation in the vertical direction of the furnace shell 15 from the upper and lower metallic furnace bodies is attained, and also, each division part 21 is used as a magnetic permeation path of magnetic flux into the furnace. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、都市ごみ、産業廃棄物、汚泥、最終処分場に埋め立てた廃棄物を掘り起こした廃棄物等の廃棄物を直接溶融する廃棄物溶融炉に関するものである。
【0002】
【従来の技術】
都市ごみ、産業廃棄物などの廃棄物を溶融炉で溶融処理することが知られている。溶融炉は炉上部から炉下部に向かって、予熱、乾燥、熱分解、溶融ゾーンが形成されており、溶融炉上部から供給された廃棄物は炉内を下降する過程で、順次予熱、乾燥、熱分解して、炉底部で溶融される。予熱、乾燥、熱分解の加熱源としては、炉本体下部から吹き込まれた空気又は酸素を添加した空気によって、コークス及び廃棄物中の可燃物質が部分的に燃焼して、高温の熱ガスを発生し、この高温の熱ガスが炉内を上昇して、炉上部から供給された廃棄物を予熱、乾燥、熱分解する。
【0003】
本出願人は、廃棄物の溶融処理に関して、溶融炉本体上部に廃棄物とコークスと装入し、1段または複数段の羽口から空気又は酸素富化空気を吹き込み廃棄物を溶融処理する方法において、炉底溶融ゾーンのコークスを羽口から吹き込まれた空気又は酸素富化空気により還元燃焼せしめるとともに、該コークスを誘導加熱することにより廃棄物を溶融し、スラグ化する方法を提案した(特許文献1参照)。
【0004】
この方法により、施設の廃熱回収による発電電力を溶融熱源として有効利用し、外部から購入するコークスの使用量を低減することができる。
【0005】
【特許文献1】
特開2002−54810号公報
【0006】
【発明が解決しようとする課題】
前記の溶融炉では、廃棄物を溶融処理するのに約1000℃以上の高温が必要となるため、一般的には炉体は耐火物で形成され、誘導加熱を行うためにはその耐火物の外側に接して水冷のコイルが設置されている。また、溶融炉内には廃棄物の熱分解ガスである一酸化炭素が充満し、しかも圧力は最大1000mmHO程度あるために炉内ガスが外部に漏れないようにガスシールする必要があるが、耐火物のみで構成された炉は亀裂の発生があるため、炉内が1000mmHO程度の高圧下ではガスシール性は期待出来ない。
【0007】
そこで、耐火物からなる炉体を金属製の炉殻で覆うことになる。その際、誘導加熱コイルの設置場所としては、金属の誘導加熱溶解炉では通常該炉殼の内側がとられる。ところが、高周波数の誘導加熱においては、誘導加熱コイルのターン間の電圧が数千オーダVと高くなり、耐火物を介して炉内の高温雰囲気に影響されて、誘導加熱コイルが放電し、安定した運転条件を確保することが出来ない。
【0008】
また、誘導加熱コイルは、渦電流による発熱、温度上昇防止及び炉内高温雰囲気から守るため通常水冷されるが、耐火物の亀裂等を通じて、誘導加熱コイルが損傷した時に漏れた水が炉内の溶融物に混入して水蒸気爆発の危険性がある。そのため、誘導加熱コイルを炉殼の外側に設置することが考えられるが、溶融炉内のガスをシールすることは可能だが、金属製の炉殼に渦電流が流れて、ジュール損により炉殼を加熱して熱損失を生じるとともに、炉内の被加熱物を効率よく加熱できないという問題があった。
【0009】
そこで本発明は、ガスをシールする炉殻の外側に誘導加熱コイルを配置し、誘導加熱コイルを電気的、機械的に安全な炉殻の外に配置しながら、炉内のコークスを効率よく誘導加熱するとともに、その炉殻に渦電流が流れることによる発熱ロスを抑制して、廃棄物を溶融処理できる廃棄物溶融炉を提供するものである。
【0010】
【課題を解決するための手段】
本発明の廃棄物溶融炉は、溶融炉本体上部に廃棄物とコークスを装入し、1段または複数段の羽口から空気又は酸素富化空気を吹き込み、廃棄物を溶融処理する廃棄物溶融炉であって、炉内に充填されたコークスを羽口から吹き込まれた空気又は酸素富化空気により還元燃焼せしめるとともに、炉下部に配置された誘導加熱コイルにより該コークスに高周波電流を通電して誘導加熱する廃棄物溶融炉において、電気抵抗が低く且つ非磁性の金属で炉殼を構成し、該炉殻の外側に誘導加熱コイルを設置し、前記炉殻の周方向の少なくとも一箇所を電気的に絶縁するとともに、前記炉殻を前記誘導加熱コイルの上下端近傍の位置で水平方向に分割部を形成して前記炉殼を上下の金属製炉体と垂直方向の電気的絶縁を図るとともに、前記分割部を炉内への磁束の透磁路としたことを特徴とする。
【0011】
【発明の実施の形態】
以下、図に基づいて、本発明を詳細に説明する。
【0012】
図1は、本発明の廃棄物溶融炉の全体図である。図1において、廃棄物溶融炉は、シャフト炉1、廃棄物装入装置2、上段羽口3、下段羽口4、シャフト部5、朝顔部6、炉底部7、ガス排出管8、出湯ノズル9、誘導加熱コイル10、高周波電源11、導電性物質装入装置12で構成され、導電性物質13として例えばコークスが炉底部に装入されている。
【0013】
図2は本発明の廃棄物溶融炉の炉底部を示す縦断面図、図3は同斜視図、図4は炉殻の隙間にフェライトあるいは絶縁スペーサを挟んだ状態を示す図である。
【0014】
図2及び図3において、廃棄物溶融炉の炉底部7の耐火壁14aの外面は、電気抵抗が低く非磁性の銅で覆われ、炉殻15も銅製である。炉殻15は、周方向の分割部16により、周方向に電気的に絶縁されている。炉殼15の外側には、水冷の誘導加熱コイル10を配置する。
【0015】
該コイル10の作る磁束を効率的に炉内に導くために、炉殻15の上端の上部近傍、下端の下部近傍にそれぞれすきまを形成して分割部21を設ける。
【0016】
図4に示すように、分割部21にはリング状の絶縁スペーサ21aあるいはフェライト17を挟み込む。この分割部21は、誘導加熱コイル10により発生した磁束が、炉側面を貫いて、炉殻15内側に到達する時の磁路となる。
【0017】
図4(b)に示すように、リング状の絶縁スペーサ21aは炉殻15のフランジ15aの間に数枚重ねて挟む。
【0018】
さらに、分割部21のすきま幅を小さくする等の工夫のために、図4(c)に示すように、分割部21に絶縁スペーサ21aとフェライト17を挿入して、磁路を形成することもできる。フェライト17の形状は、図4(a)に示すようにリング状もしくは図4(d)に示すように直方体とし、直方体のフェライト17を使用するときは、三角形の絶縁スペーサー21bで空隙を埋める。フェライト17を使用するときは、分割部21は、該炉殼15と上の金属製炉体15bの間及び該炉殼15と下の金属製炉体15cの間が電気的に絶縁できるように、炉殻のフランジ15aとフェライト17の間に絶縁材21aを挿入する。
【0019】
図2にもどって、炉殻15の表面に水冷パイプ18を配設し、炉殻15及び上下の金属製炉体を冷却する。水冷パイプは18は、上下の金属製炉体に設けたヘッダ19から分岐し、炉底部の金属製炉体を縦断している。但し、分割部21を縦断する部分は、分割部21での電気的絶縁を確保するために、ゴム等の絶縁ホース20で接続する。
【0020】
炉殻15内の耐火壁は2層構造とし、炉殻に隣接する外層14aを高熱伝導率のSiCキャスタとし、炉内に隣接する内層14bを、外層14aより熱伝導率の低い高アルミナ系キャスタもしくはアルミア/クロミア系キャスタで構成する。
【0021】
本発明では、溶融炉1の頂部に配置された廃棄物装入装置2と導電性物質装入装置12から廃棄物と導電性物質13が炉内部に装入され、廃棄物は炉内を下降する過程で順次予熱、乾燥、熱分解する。予熱、乾燥、熱分解は、羽口3,4から吹き込まれた空気又は酸素富化空気によって廃棄物中の可燃物質及びコークスが部分的に燃焼して高温のガスを発生し、この高温ガスが炉内を上昇することにより行われ、熱分解残渣は、溶融ゾーンでコークスを還元燃焼せしめると共に誘導加熱コイル10により誘導加熱することによって溶融する。
【0022】
また、廃棄物の溶融熱源として、廃熱回収による発電電力を利用するので、コークスの燃焼量が殆ど無くても溶融機能を維持でき、コークス使用量を低減することが可能となる。
【0023】
そのとき、コークスを効率的に誘導加熱できる30kHz程度の高周波数で、実用スケール炉の必要発熱量を確保できる電流を流すと、コイルのターン間電圧が数千Vオーダーと高くなるが、本発明によれば、コイルを炉外の清浄雰囲気に配置できるので、漏電、短絡等の不都合を回避できる。
【0024】
図5は炉殻に発生するうず電流の説明図である。図5(a)において、本発明の構成によれば、炉殻15を周方向の分割部16により周方向に絶縁することにより、渦電流は小さくなり、又、その渦電流による磁束は、炉内コークス充填部の合成磁束をほとんど減衰しない。その結果、効率的にコークスを誘導加熱させることができる。この場合、炉殻15の周方向の分割部16は、理論的には1箇所でも良いが、絶縁の確実性をあげるためには複数箇所が良い。周方向の分割部16は、マイカや耐火キャスタ、繊維強化樹脂等の絶縁スペーサー16aでガスシールを確保する。
【0025】
もし、図5(b)に示すように、周方向の絶縁がない場合、うず電流は炉殻15外周に沿って周回するとともに大きな電流となる。その渦電流の作る磁束は誘導加熱コイル10の作る磁束を炉殻15内側で打ち消し、殆ど減衰してしまう。その結果、コークス充填部の合成磁束が小さく、効率的にコークスを誘導加熱できない。
【0026】
周方向の分割部16に加えて分割部21も同時に必要である。図5(c)に示すように、誘導加熱コイル10で発生し、炉殻15内側に到達する磁束は、必ず炉側面を2回貫き、出入りする。しかしながら、分割部21が無い場合、炉側面は金属製炉殼となり、炉殻面に発生する渦電流によって、磁束の打ち消しが発生して、炉内コークス充填部の合成磁束を殆ど減衰してしまう。
【0027】
そこで本発明は、図5(d)に示すように、周方向の絶縁に加えて、誘導加熱コイル10の上下端近傍の位置で、分割部21を形成することにより、炉内コークス充填部の合成磁束がほとんど減衰しないことを見い出した。
【0028】
分割部21は、誘導加熱コイル10の近傍で、誘導加熱コイル10の上下に2カ所必要である。この場合、誘導加熱コイル10で発生させ、炉殻等に到達する磁束は、渦電流とその磁束合成により、合成磁束は結果的にフランジ15aの間の分割部21のすきまに集中して炉側面を貫通し、炉内コークス充填部の合成磁束はほとんど減衰しないものとなる。
【0029】
本発明においては、金属製の炉殻15には、電気抵抗が低く且つ非磁性の金属を使用する。電気抵抗の大きな金属を用いれば、渦電流は小さく抑えられ、渦電流による内部磁束の減衰は小さくなるが、前述のとおり、本発明では炉殻15の周方向に絶縁しており、渦電流による内部磁束の減衰はほとんど生じない。そこで、渦電流による炉殻の発熱ロスの大小が問題となる。炉の外側を覆う炉殻15には、渦電流が流れるが、その発熱量は炉内の溶解等には寄与しない熱ロスとなる。そのため、その発熱ロスを抑えるためには、この1kHz以上の高周波数帯では、非磁性で電気抵抗の低い金属を使用した方が良い。非磁性で電気抵抗の低い金属としては、銀及び銅があるが、コスト面から銅が適している。
【0030】
また、銅炉殻には、絶縁性の塗料または絶縁ワニスを塗っても良いし、電気抵抗を下げるために銀メッキをしたあと、上記絶縁処理を行っても良い。さらに、銅炉殻と内部耐火物との隙間には、絶縁性、耐高温性のあるマイカを挟んでも良い。
【0031】
また、本発明では炉殻15の分割部21に、絶縁スペーサ21aを挟み込む。該分割部21は、電気的絶縁性と気密性が必要であり、それらを確保するために、フランジ構造にして、そのフランジ間に、マイカや耐火キャスタ、繊維強化樹脂等の絶縁スペーサ21aを挟み込む。
【0032】
また、本発明は、炉殻の分割部21に、高透磁率材料17を挟み込んでもよい。分割部21に高透磁率材料17を挟むことにより、炉内の発熱効率を上昇させ、さらに炉殻15に発生する渦電流による発熱ロスを低減させることができる。なお、高透磁率材料17としては、特にフェライトが適している。高透磁率材料としては、電磁鋼板も考えられるが、コークス誘導加熱のような高周波数では、電磁鋼板は高透磁率を維持できず、しかも発熱損失が大なため、非効率である。一方、フェライトの場合には、高周波数でも、高透磁率を維持し、しかも発熱損失も少ないため、効率が良い。
【0033】
本発明では、図2のA−A断面図である図4(d)に示すように、炉殻15を垂直方向に絶縁したフランジ15a間に高透磁率材料、例えば、フェライトを挟み込む場合、その位置は、炉殻外部では少なくともフランジ外面より長く、例えば20mm長くし、炉内側でも、炉殻内面よりも長く、例えば少なくとも20mm長くしたものを配置する。これは、フェライトの角部分には、磁束が集中するため、該磁束が金属製の炉殻15もしくはフランジ15aにを貫通する様な配置とすると、貫通部に無用な渦電流を発生させ、発熱,熱効率低下の要因になると共に、磁束の打ち消しにより、コークス充填部の合成磁束が減衰し、効率的にコークスを誘導加熱できない。
【0034】
そこで、フェライトをフランジ15a及び炉殻15の内面から内側に設置すれば、そのような無駄を発生させることなく、効率的にコークスを誘導加熱できると共に、誘導炉の効率も向上する。
【0035】
フェライト長さについて、長い方が効率向上に寄与するが、コスト面からフランジ15aつら面及び炉殻15の内面から20mm程度長いものが最適となる。また、本発明では、炉殻15を水冷ジャケット構造にするか、もしくは炉殻外部に水冷管を密着させ、炉殻、フェライト、炉内耐火物を水冷するものである。
【0036】
炉殻15は、金属で構成されるが、金属は高温で電気抵抗が高いので、温度上昇が電気抵抗上昇と発熱量上昇を招き、そのことが、さらなる温度上昇を招くという悪循環におちいるため、炉殻15は何らかの冷却手段で冷却することが必要である。
【0037】
また、フェライトは、キュリー点(温度)を越えると、透磁率が急速に減少するため、適度な冷却が必要である。そのため、炉殻を水冷することにより、炉殻金属の熱暴走を防ぐとともに、フェライトをキュリー温度に上昇することを防ぐことが可能となる。
【0038】
また本発明では、炉内の耐火物14の構造を、2層に分け、炉殻15に隣接する外層14aを高熱伝導率のSiC耐火キャスタ(不定形耐火物)とし、炉内に隣接する内層14bを、高アルミナ系や耐火度の高いアルミア/クロミア系耐火物で構成する。
【0039】
フェライトは、前述のようにキュリー温度があるので低温に維持する必要があり、しかも磁路形成の効率上、炉殻15内面から、高温側の耐火物内に20mm以上突き入れる必要がある。
【0040】
水冷炉殻15に隣接する外層14aを、高熱伝導率として冷却能を高くすることで、外層14aとフェライトの温度を低温に保たれる。又、もし内層14bの耐火物がある程度溶損しても、水冷した炉殻15と外層14aの高伝熱によって外層14aとフェライトの温度を低温に保つことが可能である。
【0041】
また、水冷した炉殻15と外層14aの高伝熱能によって、内層14bの背面が冷却されるので、伝熱上バランスする厚みで、溶損が止まり、表面にスラグコーティング層を形成する。熱伝導率の高い耐火物としては、SiC系のキャスタ材などが有効である。
【0042】
本発明では、側面同様、炉底面の金属炉殻を水冷構造にするとともに、耐火物構成を2層構造にし、下層14aを高熱伝導率の耐火物とし、上層14bをその下層より熱伝導率の低い耐火物とするとともに、図6の炉底部の断面図に示すように、分割部21に挟み込む高透磁率材料17を、炉底側においては、下層の高熱伝導率の耐火物層内に配置し、その炉内側先端を炉中心近傍とする。
【0043】
炉底面のフェライトを下層の高熱伝導率の耐火物層内に配置すれば、キュリー温度以下に抑えつつ、炉内近傍までフェライトの炉内側先端位置を炉内方向に伸ばすことが可能になり、このことにより、コークス誘導加熱に寄与する磁束が増加し、側面の耐火物層を通る無駄磁束を減少できる。
【0044】
また、本発明は、図7の2次コイルの断面図に示すように、炉殻15の内面に、電気抵抗の低い金属で構成した複数個の2次コイル22(図7(b)のA−A断面参照)を円周方向に接続する。前述のように、フェライトを伸ばして内部に突き入れることで、耐火物層を通る無駄磁束を減少できるが、ゼロにはならない。そこで、耐火物層を通る無駄磁束を2次コイル22と鎖交させ、2次コイル22に発生する渦電流により、無駄磁束を有効にして、炉内のコークス充填部の合成磁束増加と、それによるコークス誘導加熱量増加を図る。図7(b)に示すようにこのとき2次コイル22の幅と位置は、コークスの誘導加熱が必要な領域にあわせて、その幅と高さ方向の位置を設定する。
【0045】
また、図8に示されるように炉殻15と耐火物14の間に絶縁テープもしくは絶縁性塗料、マイカシート等の絶縁物23を配置させることにより、炉殻15に発生する誘導起電力に基づく漏電を未然に防止することができる。
【0046】
また、図9に示すとおり、下側の分割部21の位置より上方の磁束経路に出湯ノズル9を設け、出湯ノズル9にカーボン成分を有するレンガもしくは力一ボンを使用することにより、出湯ノズル9を誘導加熱させることが出来る。
【0047】
実施例
図1において、シャフト炉1の炉上部から、廃棄物及び副原料としてコークスおよび石灰石が装入装置2から装入される。廃棄物としては都市ごみを処理した。表1に溶融処理した都市ごみの性状を示す。
【0048】
【表1】

Figure 2004237278
廃棄物の処理量は560kg/h、コークスおよび石灰石は廃棄物の各々約1%および6%であり、空気は羽口3.4から400Nm/hを供給した。
【0049】
溶融炉1に装入された廃棄物およびコークス等は炉内で充填層を形成し、上段羽口3および下段羽口4から吹き込まれた空気により、廃棄物の可燃物及びコークスが各々還元燃焼する。発生したガスは溶融炉内を炉底床部7から上昇し、ガスの顕熱により廃棄物を予熱、乾燥、熱分解する。廃棄物の乾燥、熱分解の過程で発生した水蒸気、熱分解ガスおよび微細なダストはガス排出管8から排出される。一方、廃棄物の灰分および非燃焼物とコークス、石灰石は高温に加熱され炉床部7へと下りていく。
【0050】
炉床部の外周に配置した誘導加熱コイル10に高周波電源11から交番電流を通電して、炉床部7に堆積したコークス12を誘導加熱し、高温状態のコークス12に廃棄物中の灰分および不燃物を接触させて溶融する。灰分および非燃焼物は1450℃から1550℃に加熱され溶融状態となって、スラグ排出口9から炉外へ排出される。石灰石はスラグの塩基度すなわちスラグ中の石灰分CaOと珪素分SiOの比率を0.7以上とし、溶融状態のスラグの流動性の調整のために添加する。
【0051】
また、誘導加熱の電力としては、ガス排出管8から排出された排ガスを燃焼させ、その熱でボイラーで蒸気を発生させて発電したものを利用した。すなわち、ガス排出管8から排出された排ガスは、公知の廃棄物処理設備の排ガス処理系において、二次燃焼室で排ガス中の可燃分を燃焼した後、この熱でボイラーで蒸気を発生させて発電機で発電した電気を誘導加熱の電力として使用する。ボイラーを通過した後の排ガスは、排ガス冷却器で排ガス温度を下げた後、集じん機で集じんして煙突から排出する。誘導加熱用の電力は60kWを使用した。
【0052】
スラグ排出口9から排出された溶融状態のスラグは水冷されて、砂状の細かい粒子となる。また、溶融状態のスラグ中には溶融メタルが含まれているが、メタルもスラグと同様に細かい粒子状となる。スラグはインターロッキングブロック等のコンクリート2次製品の骨材や土木資材などとして利用する。
【0053】
従来の方式では、誘導加熱コイルの放電等により安定運転は不可能であったが、本発明により安定した誘導加熱が達成できた。
【0054】
【発明の効果】
本発明により、誘導加熱コイルを電気的・機械的に安定な炉外に置きながら、高周波電流で炉床部に充填された導電性物質を効率よく誘導加熱することが可能となり、従来に比べて、コークスの消費量、羽口から送風する酸素の使用量を大幅に減少させることができる。
【図面の簡単な説明】
【図1】本発明の廃棄物溶融炉の全体図である。
【図2】本発明の廃棄物溶融炉の炉底部を示す縦断面図である。
【図3】本発明の廃棄物溶融炉の炉底部を示す斜視図である。
【図4】炉殻の隙間にフェライトあるいは絶縁スペーサを挟んだ状態を示す図である。
【図5】炉殻に発生するうず電流の説明図である。
【図6】高透磁率材料の配置の別実施例を示す断面図である。
【図7】2次コイルを示す図2のB−B断面図である。
【図8】炉殻と耐火物の間に絶縁物を配置させた実施例を示す断面図である。
【図9】下側の垂直方向分割の位置より上方の磁束経路に出湯ノズルを設けた実施例を示す断面図である。
【符号の説明】
1:シャフト炉 2:廃棄物装入装置 3:上段羽口 4:下段羽口 5:シャフト部 6:朝顔部 7:炉床部 8:ガス排出管 9:スラグ排出 10:誘導加熱コイル 11:高周波電源 12:導電性物質装入装置 13:導電性物質 14:耐火物 14a:外層 14b:内層 15:炉殼 15a:フランジ 16:周方向の分割部 17:高透磁率材 18:導電性の水冷パイプ 19:ヘッダ 20:絶縁性の水冷パイプ 21:分割部 21a:絶縁スペーサ
22:2次コイル 23:絶縁物[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a waste melting furnace for directly melting waste such as municipal solid waste, industrial waste, sludge, and waste buried in landfills.
[0002]
[Prior art]
It is known that waste such as municipal solid waste and industrial waste is melted in a melting furnace. The melting furnace has a preheating, drying, pyrolysis and melting zone formed from the upper part of the furnace toward the lower part of the furnace, and the waste supplied from the upper part of the melting furnace is sequentially preheated, dried, It is pyrolyzed and melted at the furnace bottom. As a heating source for preheating, drying, and pyrolysis, combustible substances in coke and waste are partially burned by air blown from the lower part of the furnace body or air added with oxygen to generate hot gas. Then, the high-temperature hot gas rises in the furnace, and preheats, dries, and thermally decomposes waste supplied from the upper part of the furnace.
[0003]
The present applicant relates to a method of melting waste by charging waste and coke into the upper portion of a melting furnace body and blowing air or oxygen-enriched air from one or more stages of tuyeres. Proposed a method in which coke in the furnace bottom melting zone is reduced and combusted by air or oxygen-enriched air blown from tuyeres, and the coke is induction-heated to melt waste to form slag (Patent Reference 1).
[0004]
According to this method, the power generated by the waste heat recovery of the facility can be effectively used as a melting heat source, and the amount of coke purchased from outside can be reduced.
[0005]
[Patent Document 1]
JP-A-2002-54810
[Problems to be solved by the invention]
In the above-mentioned melting furnace, a high temperature of about 1000 ° C. or more is required for melting and processing the waste. Therefore, generally, the furnace body is formed of a refractory material. A water-cooled coil is installed in contact with the outside. Further, since the melting furnace is filled with carbon monoxide, which is a pyrolysis gas of waste, and the pressure is at most about 1000 mmH 2 O, it is necessary to seal the gas so that the furnace gas does not leak outside. Since a furnace made of only refractories has cracks, gas sealing properties cannot be expected when the inside of the furnace is under a high pressure of about 1000 mmH 2 O.
[0007]
Therefore, the furnace body made of refractory is covered with a metal furnace shell. At that time, the installation place of the induction heating coil is usually set inside the furnace shell in the metal induction heating melting furnace. However, in high-frequency induction heating, the voltage between turns of the induction heating coil increases to several thousands of volts, and is affected by the high-temperature atmosphere in the furnace via the refractory, and the induction heating coil discharges and becomes stable. Operating conditions can not be secured.
[0008]
The induction heating coil is usually water-cooled to prevent heat generation due to eddy currents, to prevent temperature rise, and to protect it from the high-temperature atmosphere in the furnace.However, water leaked when the induction heating coil is damaged through cracks in the refractory, etc. There is a danger of steam explosion when mixed into the melt. Therefore, it is conceivable to install an induction heating coil outside the furnace shell.However, it is possible to seal the gas in the melting furnace, but eddy currents flow in the metal furnace shell and Joule loss causes the furnace shell to be damaged. There has been a problem that heating causes heat loss and that an object to be heated in the furnace cannot be efficiently heated.
[0009]
Therefore, the present invention efficiently arranges an induction heating coil outside a furnace shell for sealing gas, and arranges the induction heating coil outside an electrically and mechanically safe furnace shell to efficiently induce coke in the furnace. An object of the present invention is to provide a waste melting furnace capable of melting and processing waste by heating and suppressing heat loss due to eddy current flowing through the furnace shell.
[0010]
[Means for Solving the Problems]
In the waste melting furnace of the present invention, waste and coke are charged into the upper part of the melting furnace main body, and air or oxygen-enriched air is blown from one or a plurality of tuyeres to melt the waste. A furnace, in which coke filled in the furnace is reduced and burned by air or oxygen-enriched air blown from a tuyere, and a high-frequency current is supplied to the coke by an induction heating coil arranged at a lower part of the furnace. In a waste melting furnace for induction heating, a furnace shell is formed of a low electric resistance and non-magnetic metal, an induction heating coil is installed outside the furnace shell, and at least one portion of the furnace shell in the circumferential direction is electrically operated. While electrically insulating, the furnace shell is formed at a position near the upper and lower ends of the induction heating coil in the horizontal direction, thereby vertically insulating the furnace shell from the upper and lower metal furnace bodies. , The divided part is furnace And characterized in that a magnetic flux path of the magnetic flux to.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
[0012]
FIG. 1 is an overall view of a waste melting furnace according to the present invention. In FIG. 1, a waste melting furnace includes a shaft furnace 1, a waste charging device 2, an upper tuyere 3, a lower tuyere 4, a shaft 5, a bosh section 6, a furnace bottom 7, a gas discharge pipe 8, and a tapping nozzle. 9, an induction heating coil 10, a high-frequency power supply 11, and a conductive substance charging device 12, in which, for example, coke as a conductive substance 13 is charged in the furnace bottom.
[0013]
FIG. 2 is a longitudinal sectional view showing the furnace bottom of the waste melting furnace of the present invention, FIG. 3 is a perspective view of the same, and FIG. 4 is a view showing a state in which ferrite or an insulating spacer is sandwiched in a gap between the furnace shells.
[0014]
2 and 3, the outer surface of the refractory wall 14a of the furnace bottom 7 of the waste melting furnace is covered with non-magnetic copper having low electric resistance, and the furnace shell 15 is also made of copper. The furnace shell 15 is electrically insulated in the circumferential direction by a circumferential division 16. A water-cooled induction heating coil 10 is arranged outside the furnace shell 15.
[0015]
In order to efficiently guide the magnetic flux generated by the coil 10 into the furnace, a gap 21 is formed near the upper end of the upper end of the furnace shell 15 and near the lower end of the lower end of the furnace shell 15 to provide the dividing portion 21.
[0016]
As shown in FIG. 4, a ring-shaped insulating spacer 21 a or ferrite 17 is sandwiched between the divided portions 21. The divided portion 21 serves as a magnetic path when the magnetic flux generated by the induction heating coil 10 passes through the furnace side surface and reaches the inside of the furnace shell 15.
[0017]
As shown in FIG. 4B, several ring-shaped insulating spacers 21 a are sandwiched between flanges 15 a of the furnace shell 15.
[0018]
Further, in order to reduce the gap width of the divided portion 21 or the like, as shown in FIG. 4C, an insulating spacer 21a and a ferrite 17 may be inserted into the divided portion 21 to form a magnetic path. it can. The shape of the ferrite 17 is a ring shape as shown in FIG. 4A or a rectangular parallelepiped as shown in FIG. 4D. When the rectangular ferrite 17 is used, the gap is filled with a triangular insulating spacer 21b. When the ferrite 17 is used, the dividing portion 21 is provided so that the furnace shell 15 and the upper metal furnace body 15b and the furnace shell 15 and the lower metal furnace body 15c can be electrically insulated. The insulating material 21a is inserted between the furnace shell flange 15a and the ferrite 17.
[0019]
Returning to FIG. 2, a water cooling pipe 18 is provided on the surface of the furnace shell 15 to cool the furnace shell 15 and the upper and lower metal furnace bodies. The water-cooled pipe 18 branches off from a header 19 provided on the upper and lower metal furnace bodies, and extends longitudinally through the metal furnace body at the bottom of the furnace. However, the portion that traverses the divided portion 21 is connected by an insulating hose 20 made of rubber or the like in order to secure electrical insulation at the divided portion 21.
[0020]
The refractory wall in the furnace shell 15 has a two-layer structure, the outer layer 14a adjacent to the furnace shell is a high thermal conductivity SiC caster, and the inner layer 14b adjacent to the furnace is a high alumina caster having a lower thermal conductivity than the outer layer 14a. Or, it is composed of aluminum / chromia casters.
[0021]
In the present invention, the waste and the conductive substance 13 are charged into the furnace from the waste charging apparatus 2 and the conductive substance charging apparatus 12 arranged at the top of the melting furnace 1, and the waste descends in the furnace. Preheating, drying, and pyrolysis sequentially. In preheating, drying, and pyrolysis, combustible substances and coke in waste are partially burned by air or oxygen-enriched air blown from tuyeres 3, 4 to generate high-temperature gas. The pyrolysis residue is melted by raising the inside of the furnace and causing the coke to undergo reduction combustion in the melting zone and induction heating by the induction heating coil 10.
[0022]
In addition, since the power generated by waste heat recovery is used as a heat source for melting the waste, the melting function can be maintained even when the amount of coke burned is almost zero, and the amount of coke used can be reduced.
[0023]
At this time, when a current is supplied at a high frequency of about 30 kHz at which the coke can be efficiently induction-heated and the required heat generation of the practical scale furnace is applied, the turn-to-turn voltage of the coil becomes as high as several thousands of volts. According to the method, the coil can be arranged in a clean atmosphere outside the furnace, so that inconveniences such as a short circuit and a short circuit can be avoided.
[0024]
FIG. 5 is an explanatory diagram of the eddy current generated in the furnace shell. In FIG. 5A, according to the configuration of the present invention, the furnace shell 15 is insulated in the circumferential direction by the circumferential dividing portion 16, so that the eddy current is reduced. It hardly attenuates the synthetic magnetic flux in the inner coke filling section. As a result, the coke can be efficiently heated by induction. In this case, the circumferential dividing portion 16 of the furnace shell 15 may be theoretically provided at one place, but a plurality of places are preferable in order to increase the reliability of insulation. The circumferential division 16 secures a gas seal with an insulating spacer 16a such as mica, a refractory caster, or a fiber reinforced resin.
[0025]
As shown in FIG. 5B, when there is no insulation in the circumferential direction, the eddy current circulates along the outer periphery of the furnace shell 15 and becomes a large current. The magnetic flux generated by the eddy current cancels the magnetic flux generated by the induction heating coil 10 inside the furnace shell 15 and is almost attenuated. As a result, the resultant magnetic flux of the coke filling portion is small, and the coke cannot be efficiently induction-heated.
[0026]
In addition to the circumferential division 16, a division 21 is required at the same time. As shown in FIG. 5C, the magnetic flux generated by the induction heating coil 10 and reaching the inside of the furnace shell 15 always passes through the furnace side twice and enters and exits. However, when there is no dividing portion 21, the furnace side surface becomes a metal furnace shell, and the eddy current generated on the furnace shell surface causes cancellation of magnetic flux, thereby almost attenuating the synthetic magnetic flux of the coke filling portion in the furnace. .
[0027]
In view of this, the present invention, as shown in FIG. 5 (d), forms a division 21 at a position near the upper and lower ends of the induction heating coil 10 in addition to the insulation in the circumferential direction, so that the coke filling portion in the furnace can be formed. It has been found that the synthesized magnetic flux hardly attenuates.
[0028]
The dividing part 21 is required in two places near the induction heating coil 10 and above and below the induction heating coil 10. In this case, the magnetic flux generated by the induction heating coil 10 and reaching the furnace shell and the like is synthesized by the eddy current and its magnetic flux. As a result, the synthesized magnetic flux concentrates on the gap of the divided portion 21 between the flanges 15a and the furnace side. And the resultant magnetic flux of the coke filling portion in the furnace hardly attenuates.
[0029]
In the present invention, a non-magnetic metal having a low electric resistance is used for the metal furnace shell 15. If a metal having a large electric resistance is used, the eddy current is suppressed to be small and the attenuation of the internal magnetic flux due to the eddy current is reduced. However, as described above, in the present invention, the furnace shell 15 is insulated in the circumferential direction, and There is almost no attenuation of the internal magnetic flux. Therefore, the magnitude of the heat loss of the furnace shell caused by the eddy current becomes a problem. An eddy current flows in the furnace shell 15 that covers the outside of the furnace, but the calorific value thereof becomes a heat loss that does not contribute to melting in the furnace. Therefore, in order to suppress the heat loss, it is better to use a non-magnetic metal having a low electric resistance in the high frequency band of 1 kHz or more. Silver and copper are non-magnetic and low electric resistance metals, but copper is suitable from the viewpoint of cost.
[0030]
Further, the copper furnace shell may be coated with an insulating paint or an insulating varnish, or may be subjected to the above-mentioned insulating treatment after being plated with silver to reduce the electric resistance. Further, in the gap between the copper furnace shell and the internal refractory, mica having insulation and high temperature resistance may be interposed.
[0031]
In the present invention, the insulating spacer 21a is sandwiched between the divided portions 21 of the furnace shell 15. The divided portion 21 needs to have electrical insulation and airtightness. To ensure these, a flange structure is used, and an insulating spacer 21a such as a mica, a refractory caster, or a fiber reinforced resin is sandwiched between the flanges. .
[0032]
Further, in the present invention, the high magnetic permeability material 17 may be interposed between the divided portions 21 of the furnace shell. By sandwiching the high magnetic permeability material 17 between the divided portions 21, the heat generation efficiency in the furnace can be increased, and the heat loss due to the eddy current generated in the furnace shell 15 can be reduced. Note that ferrite is particularly suitable as the high magnetic permeability material 17. As a material having a high magnetic permeability, an electromagnetic steel sheet can be considered. However, at a high frequency such as coke induction heating, the electromagnetic steel sheet cannot maintain a high magnetic permeability and has a large heat loss, which is inefficient. On the other hand, in the case of ferrite, efficiency is good because high magnetic permeability is maintained even at a high frequency and heat loss is small.
[0033]
In the present invention, as shown in FIG. 4D, which is a cross-sectional view taken along the line AA of FIG. 2, when a high permeability material, for example, ferrite is inserted between the flanges 15a that insulate the furnace shell 15 in the vertical direction. The position is set to be longer than the outer surface of the flange, for example, 20 mm longer outside the furnace shell, and longer than the inner surface of the furnace shell, for example, at least 20 mm inside the furnace. This is because the magnetic flux concentrates on the corners of the ferrite, and if the magnetic flux penetrates through the metal furnace shell 15 or the flange 15a, an unnecessary eddy current is generated in the penetrating portion and heat is generated. In addition, this causes a reduction in thermal efficiency, and the cancellation of the magnetic flux attenuates the synthetic magnetic flux in the coke filling portion, so that the coke cannot be efficiently induction-heated.
[0034]
Therefore, if the ferrite is installed inside the inner surface of the flange 15a and the furnace shell 15, the coke can be efficiently induction-heated without such waste, and the efficiency of the induction furnace is improved.
[0035]
As for the length of the ferrite, a longer ferrite contributes to the improvement of the efficiency. However, from the viewpoint of cost, a ferrite having a length longer by about 20 mm from the flat surface of the flange 15a and the inner surface of the furnace shell 15 is optimal. Further, in the present invention, the furnace shell 15 has a water-cooled jacket structure, or a water-cooled tube is closely attached to the outside of the furnace shell to water-cool the furnace shell, ferrite, and refractory in the furnace.
[0036]
The furnace shell 15 is made of a metal. Since the metal has a high temperature and a high electric resistance, an increase in the temperature leads to an increase in the electric resistance and an increase in the calorific value. The furnace shell 15 needs to be cooled by some cooling means.
[0037]
Further, ferrite requires a proper cooling because the magnetic permeability rapidly decreases when the temperature exceeds the Curie point (temperature). Therefore, by cooling the furnace shell with water, it is possible to prevent thermal runaway of the furnace shell metal and to prevent the ferrite from rising to the Curie temperature.
[0038]
Further, in the present invention, the structure of the refractory 14 in the furnace is divided into two layers, the outer layer 14a adjacent to the furnace shell 15 is made of a SiC refractory caster (amorphous refractory) having a high thermal conductivity, and the inner layer 14b is made of a high-alumina or high-alumina / chromia refractory.
[0039]
Ferrite needs to be maintained at a low temperature because of its Curie temperature as described above, and it is necessary to penetrate 20 mm or more from the inner surface of the furnace shell 15 into the high-temperature side refractory due to the efficiency of magnetic path formation.
[0040]
The temperature of the outer layer 14a and the ferrite can be kept low by increasing the cooling capacity of the outer layer 14a adjacent to the water-cooled furnace shell 15 with high thermal conductivity. Even if the refractory of the inner layer 14b is melted to some extent, the temperature of the outer layer 14a and the ferrite can be kept low by the high heat transfer between the water-cooled furnace shell 15 and the outer layer 14a.
[0041]
In addition, the back surface of the inner layer 14b is cooled by the high heat transfer capability of the water-cooled furnace shell 15 and the outer layer 14a, so that erosion is stopped at a thickness that balances heat transfer, and a slag coating layer is formed on the surface. As a refractory having a high thermal conductivity, an SiC caster material or the like is effective.
[0042]
In the present invention, similarly to the side surface, the metal furnace shell at the bottom of the furnace has a water-cooled structure, the refractory structure has a two-layer structure, the lower layer 14a has a high thermal conductivity refractory, and the upper layer 14b has a higher thermal conductivity than the lower layer. As shown in the cross-sectional view of the furnace bottom in FIG. 6, the high magnetic permeability material 17 sandwiched between the divided portions 21 is disposed in the lower refractory layer having a high thermal conductivity on the furnace bottom side. Then, the tip inside the furnace is set near the center of the furnace.
[0043]
If the ferrite on the bottom of the furnace is placed in the lower refractory layer with high thermal conductivity, it is possible to extend the inside of the ferrite tip in the furnace direction to the vicinity of the furnace while keeping the temperature below the Curie temperature. Thereby, the magnetic flux contributing to the coke induction heating increases, and the useless magnetic flux passing through the refractory layer on the side surface can be reduced.
[0044]
As shown in the cross-sectional view of the secondary coil in FIG. 7, the present invention provides a plurality of secondary coils 22 (A in FIG. -A cross section) in the circumferential direction. As described above, by extending the ferrite and inserting it inside, the useless magnetic flux passing through the refractory layer can be reduced, but it does not become zero. Therefore, the wasted magnetic flux passing through the refractory layer is linked with the secondary coil 22, and the eddy current generated in the secondary coil 22 makes the wasted magnetic flux effective, thereby increasing the combined magnetic flux of the coke filling portion in the furnace, and To increase the amount of coke induction heating. As shown in FIG. 7B, at this time, the width and the position of the secondary coil 22 are set in the width and the height direction in accordance with the area where the coke requires induction heating.
[0045]
In addition, as shown in FIG. 8, by placing an insulating material 23 such as an insulating tape, an insulating paint, or a mica sheet between the furnace shell 15 and the refractory 14, it is based on the induced electromotive force generated in the furnace shell 15. Electric leakage can be prevented beforehand.
[0046]
As shown in FIG. 9, the tapping nozzle 9 is provided in the magnetic flux path above the position of the lower division 21, and the tapping nozzle 9 is made of brick or carbon steel having a carbon component. Can be heated by induction.
[0047]
EXAMPLE In FIG. 1, coke and limestone are charged from a charging device 2 as waste and by-products from a furnace upper portion of a shaft furnace 1. Municipal waste was disposed of as waste. Table 1 shows the properties of the melted municipal solid waste.
[0048]
[Table 1]
Figure 2004237278
The waste throughput was 560 kg / h, coke and limestone were about 1% and 6% of the waste, respectively, and the air supplied from tuyere 3.4 to 400 Nm 3 / h.
[0049]
The waste, coke, and the like charged into the melting furnace 1 form a packed bed in the furnace, and the combustible waste and coke are reduced and combusted by the air blown from the upper tuyere 3 and the lower tuyere 4, respectively. I do. The generated gas rises from the bottom floor 7 in the melting furnace, and the waste is preheated, dried and thermally decomposed by the sensible heat of the gas. Steam, pyrolysis gas and fine dust generated in the process of drying and pyrolysis of waste are discharged from the gas discharge pipe 8. On the other hand, the ash and non-combustibles of the waste, coke, and limestone are heated to a high temperature and descend to the hearth 7.
[0050]
Alternating current is supplied from a high-frequency power supply 11 to the induction heating coil 10 arranged on the outer periphery of the hearth to inductively heat the coke 12 deposited on the hearth 7, and the coke 12 in the high-temperature state has ash and Melts incombustibles in contact. The ash and the non-combustibles are heated from 1450 ° C. to 1550 ° C. to be in a molten state and discharged from the slag discharge port 9 to the outside of the furnace. Limestone basicity namely lime CaO and the ratio of the silicon content of SiO 2 in the slag of the slag to 0.7 or more, it is added in order to adjust the fluidity of the slag in the molten state.
[0051]
As the electric power for induction heating, electric power generated by burning exhaust gas discharged from the gas discharge pipe 8 and generating steam by a boiler using the heat was used. That is, the exhaust gas discharged from the gas discharge pipe 8 is used to burn combustible components in the exhaust gas in a secondary combustion chamber in an exhaust gas treatment system of a known waste treatment facility and then generate steam in a boiler with this heat. The electricity generated by the generator is used as power for induction heating. After passing through the boiler, the exhaust gas is cooled by an exhaust gas cooler, collected by a dust collector, and discharged from a chimney. The electric power for induction heating used 60 kW.
[0052]
The molten slag discharged from the slag discharge port 9 is water-cooled to be fine sand-like particles. The molten slag contains molten metal, and the metal is also in fine particles like the slag. Slag is used as aggregate or civil engineering material for secondary concrete products such as interlocking blocks.
[0053]
In the conventional method, stable operation was not possible due to discharge of the induction heating coil or the like, but stable induction heating was achieved by the present invention.
[0054]
【The invention's effect】
According to the present invention, it is possible to efficiently conduct induction heating of a conductive substance filled in a hearth with a high-frequency current while placing an induction heating coil outside an electrically and mechanically stable furnace. In addition, the coke consumption and the amount of oxygen blown from the tuyere can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is an overall view of a waste melting furnace of the present invention.
FIG. 2 is a longitudinal sectional view showing a furnace bottom part of the waste melting furnace of the present invention.
FIG. 3 is a perspective view showing a furnace bottom of the waste melting furnace of the present invention.
FIG. 4 is a diagram showing a state in which a ferrite or an insulating spacer is sandwiched in a gap of a furnace shell.
FIG. 5 is an explanatory diagram of an eddy current generated in a furnace shell.
FIG. 6 is a sectional view showing another embodiment of the arrangement of the high magnetic permeability material.
FIG. 7 is a sectional view taken along the line BB of FIG. 2 showing the secondary coil.
FIG. 8 is a sectional view showing an embodiment in which an insulator is arranged between a furnace shell and a refractory.
FIG. 9 is a cross-sectional view showing an embodiment in which a tapping nozzle is provided in a magnetic flux path above a lower vertical division position.
[Explanation of symbols]
1: Shaft furnace 2: Waste charging device 3: Upper tuyere 4: Lower tuyere 5: Shaft section 6: Bosh section 7: Furnace floor section 8: Gas discharge pipe 9: Slag discharge 10: Induction heating coil 11: High frequency power supply 12: Conductive substance charging device 13: Conductive substance 14: Refractory 14a: Outer layer 14b: Inner layer 15: Furnace shell 15a: Flange 16: Circumferential section 17: High permeability material 18: Conductive Water-cooled pipe 19: Header 20: Insulated water-cooled pipe 21: Dividing part 21a: Insulating spacer 22: Secondary coil 23: Insulator

Claims (11)

溶融炉本体上部に廃棄物とコークスを装入し、1段または複数段の羽口から空気又は酸素富化空気を吹き込み、廃棄物を溶融処理する廃棄物溶融炉であって、炉内に充填されたコークスを羽口から吹き込まれた空気又は酸素富化空気により還元燃焼せしめるとともに、炉下部に配置された誘導加熱コイルにより該コークスに高周波電流を通電して誘導加熱する廃棄物溶融炉において、
電気抵抗が低く且つ非磁性の金属で炉殼を構成し、該炉殻の外側に誘導加熱コイルを設置し、前記炉殻の周方向の少なくとも一箇所を電気的に絶縁するとともに、前記炉殻を前記誘導加熱コイルの上下端近傍の位置で水平方向に分割部を形成して前記炉殼を上下の金属製炉体と垂直方向の電気的絶縁を図るとともに、前記分割部を炉内への磁束の透磁路としたことを特徴とする廃棄物溶融炉。
A waste melting furnace in which waste and coke are charged into the upper part of the melting furnace body and air or oxygen-enriched air is blown in from one or more tuyeres to melt and process the waste. In the waste melting furnace, the reduced coke is reduced and burned by air or oxygen-enriched air blown from the tuyere, and high-frequency current is supplied to the coke by induction heating coil arranged at the lower part of the furnace for induction heating.
A furnace shell is formed of a non-magnetic metal having a low electric resistance, an induction heating coil is provided outside the furnace shell, and at least one portion in a circumferential direction of the furnace shell is electrically insulated. A horizontal dividing part is formed at a position near the upper and lower ends of the induction heating coil, and the furnace shell is vertically electrically insulated from the upper and lower metal furnace bodies, and the dividing part is inserted into the furnace. A waste melting furnace characterized by a magnetic flux path.
前記分割部に絶縁スペーサーを挟み込むことを特徴とする請求項1記載の廃棄物溶融炉。The waste melting furnace according to claim 1, wherein an insulating spacer is sandwiched between the divided portions. 前記分割部に高透磁率材料を挟み込むことを特徴とする請求項1記載の廃棄物溶融炉。The waste melting furnace according to claim 1, wherein a high permeability material is sandwiched between the divided portions. 挟み込む高透磁率材料がフェライトであることを特徴とする請求項3記載の廃棄物溶融炉。The waste melting furnace according to claim 3, wherein the high permeability material to be sandwiched is ferrite. 挟み込む高透磁率材料又はフェライトの長さが、半径方向に見て、炉殼外部では、少なくともフランジ外周面より20mm外側に突出し、炉内側では、炉殻内周面より少なくとも20mm内側に突出したものを配置したことを特徴とする請求項3又は4記載の廃棄物溶融炉。When viewed in the radial direction, the length of the high permeability material or ferrite to be inserted protrudes at least 20 mm outside the outer peripheral surface of the flange outside the furnace shell, and protrudes at least 20 mm inside the inner peripheral surface of the furnace shell inside the furnace. The waste melting furnace according to claim 3, wherein a waste melting furnace is arranged. 炉殼を水冷構造とすることを特徴とする請求項1〜5のいずれか1項に記載の廃棄物溶融炉。The waste melting furnace according to any one of claims 1 to 5, wherein the furnace shell has a water-cooled structure. 炉底部の耐火壁は2層構造にし、炉殻に隣接する外層を高熱伝導率の耐火物とし、炉内に隣接する内層を、その外層より熱伝導率の低い耐火物で構成したことを特徴とする請求項1〜6のいずれか1項に記載の廃棄物溶融炉。The refractory wall at the bottom of the furnace has a two-layer structure, the outer layer adjacent to the furnace shell is made of refractory with high thermal conductivity, and the inner layer adjacent to the furnace is made of refractory having lower thermal conductivity than the outer layer. The waste melting furnace according to any one of claims 1 to 6. 炉殻を水冷構造にし、炉底部の耐火物構成を2層構造にし、下層は高熱伝導率の耐火物、上層はその下層より熱伝導率の低い耐火物とするとともに、炉底側分割部に挟み込む高透磁率材料又はフェライトを、該下層部の高熱伝導率の耐火物層内に配置し、その炉内側の先端を炉中心近傍とした請求項1〜5のいずれか1項に記載の廃棄物溶融炉。The furnace shell has a water-cooled structure, the refractory structure at the bottom of the furnace has a two-layer structure, the lower layer has a high thermal conductivity refractory, the upper layer has a lower thermal conductivity than the lower layer, and the furnace bottom side divided part The disposal according to any one of claims 1 to 5, wherein the high permeability material or ferrite to be sandwiched is disposed in the refractory layer having a high thermal conductivity in the lower layer portion, and a tip inside the furnace is set near the center of the furnace. Material melting furnace. 炉殻の内側に、炉殻を一部とする2次コイルを円周方向に複数個配置したことを特徴とする請求項1〜8のいずれか1項に記載の廃棄物溶融炉。The waste melting furnace according to any one of claims 1 to 8, wherein a plurality of secondary coils each including a part of the furnace shell are arranged in the circumferential direction inside the furnace shell. 炉殻と耐火物の間にテープ、塗料、マイカシート等の絶縁材を挟み込むことで絶縁したことを特徴とする請求項1〜9のいずれか1項に記載の廃棄物溶融炉。The waste melting furnace according to any one of claims 1 to 9, wherein insulation is provided by sandwiching an insulating material such as tape, paint, or mica sheet between the furnace shell and the refractory. 出湯ノズルに炭素成分を含有する耐火物もしくは黒鉛材料を使用し、該出湯ノズルを炉底側分割部の上方炉殻に配置することを特徴とする請求項1〜10のいずれか1項に記載の廃棄物溶融炉。The refractory or a graphite material containing a carbon component is used for a tapping nozzle, and the tapping nozzle is arranged in an upper furnace shell of a furnace bottom side split part, The statement in any one of Claims 1-10 characterized by the above-mentioned. Waste melting furnace.
JP2003196454A 2002-12-09 2003-07-14 Waste melting furnace Withdrawn JP2004237278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003196454A JP2004237278A (en) 2002-12-09 2003-07-14 Waste melting furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002356874 2002-12-09
JP2003196454A JP2004237278A (en) 2002-12-09 2003-07-14 Waste melting furnace

Publications (1)

Publication Number Publication Date
JP2004237278A true JP2004237278A (en) 2004-08-26

Family

ID=32964457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003196454A Withdrawn JP2004237278A (en) 2002-12-09 2003-07-14 Waste melting furnace

Country Status (1)

Country Link
JP (1) JP2004237278A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013086742A1 (en) * 2011-12-16 2013-06-20 Lin Xiumei Sludge magnetization pyrolyzing treatment device and sludge treatment method
CN106556248A (en) * 2015-09-25 2017-04-05 周晓航 A kind of method and its electromagnetic induction calciner of mineral calcination process
WO2019226135A3 (en) * 2018-02-01 2020-01-23 M-D2 Muhendislik Danismanlik Insaat Taahhut Ic Ve Dis Ticaret Limited Sirketi Pyrolysis reactor
CN115011817A (en) * 2022-06-07 2022-09-06 中国恩菲工程技术有限公司 Titanium carbide production equipment and method
CN116354572A (en) * 2023-04-27 2023-06-30 上海开鸿环保科技有限公司 High-temperature melting treatment method for hazardous waste sludge based on heavy metal component recovery
CN116555571A (en) * 2023-04-27 2023-08-08 上海开鸿环保科技有限公司 Dangerous waste sludge electrothermal melting recycling treatment device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013086742A1 (en) * 2011-12-16 2013-06-20 Lin Xiumei Sludge magnetization pyrolyzing treatment device and sludge treatment method
CN106556248A (en) * 2015-09-25 2017-04-05 周晓航 A kind of method and its electromagnetic induction calciner of mineral calcination process
WO2019226135A3 (en) * 2018-02-01 2020-01-23 M-D2 Muhendislik Danismanlik Insaat Taahhut Ic Ve Dis Ticaret Limited Sirketi Pyrolysis reactor
CN115011817A (en) * 2022-06-07 2022-09-06 中国恩菲工程技术有限公司 Titanium carbide production equipment and method
CN115011817B (en) * 2022-06-07 2024-01-26 中国恩菲工程技术有限公司 Titanium carbide production equipment and method
CN116354572A (en) * 2023-04-27 2023-06-30 上海开鸿环保科技有限公司 High-temperature melting treatment method for hazardous waste sludge based on heavy metal component recovery
CN116555571A (en) * 2023-04-27 2023-08-08 上海开鸿环保科技有限公司 Dangerous waste sludge electrothermal melting recycling treatment device
CN116555571B (en) * 2023-04-27 2024-05-10 上海开鸿环保科技有限公司 Dangerous waste sludge electrothermal melting recycling treatment device
CN116354572B (en) * 2023-04-27 2024-05-17 上海开鸿环保科技有限公司 High-temperature melting treatment method for hazardous waste sludge based on heavy metal component recovery

Similar Documents

Publication Publication Date Title
US3948640A (en) Method of carrying out heat-requiring chemical and/or physical processes
SU1825369A3 (en) Process for manufacturing form coke and shaft furnace for effecting same
JP3819298B2 (en) Method and apparatus for treating waste
JP2009280910A (en) Process for producing molten metal
KR20150135261A (en) Induction furnace and method for treating metal waste to be stored
JP2004237278A (en) Waste melting furnace
US5490869A (en) Process and device for treating pollutant, fusible materials
CA2678169A1 (en) Method and apparatus for preparing a slag melt in a medium frequency induction furnace for producing slag wool fiber materials
JP2004239596A (en) Waste melting furnace
CN211170604U (en) Melting bath induction heating auxiliary melting plasma gasification reaction furnace
JPH0749179A (en) Operating method of two furnace device
JP2004239595A (en) Incinerated ash melting furnace
FI62232B (en) FOERFARANDE FOER ELEKTROINDUKTIV VAERMNING AV STYCKEFORMIGT MAERIAL I EN REAKTORKAMMARE
JP3590243B2 (en) Furnace wall cooling structure of electric melting furnace
JPS6056963B2 (en) Melting treatment method and melting furnace for municipal waste incineration ash, sewage sludge, etc.
US7976771B2 (en) Method for reducing oxidic slags and dusts and inductively heatable furnance for carrying out this method
KR20110012301A (en) Apparatus for melting treatment of asbestos wastes
JP2004116980A (en) Induction heated melting furnace
CN216925121U (en) Induction type melting furnace for vitrification treatment of solid waste
RU2447384C2 (en) Method and device for feeding dusts to metal melt at pyrometallurgical plant
CN109128122A (en) A kind of channel-type induction heating ladle device and heating means
RU2249774C2 (en) Arc steel-melting furnace with heating of a charge in the furnace stack and a method of realization of a melt in the furnace
JP7469832B1 (en) Electrically heated cupola system
CN220230011U (en) High-frequency electromagnetic induction heating rotary furnace
US1513754A (en) Electric furnace

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003