JP2004238722A - High-strength steel strip excellent in plasma weldability and formability - Google Patents

High-strength steel strip excellent in plasma weldability and formability Download PDF

Info

Publication number
JP2004238722A
JP2004238722A JP2003031903A JP2003031903A JP2004238722A JP 2004238722 A JP2004238722 A JP 2004238722A JP 2003031903 A JP2003031903 A JP 2003031903A JP 2003031903 A JP2003031903 A JP 2003031903A JP 2004238722 A JP2004238722 A JP 2004238722A
Authority
JP
Japan
Prior art keywords
strength steel
steel sheet
plasma
formability
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003031903A
Other languages
Japanese (ja)
Inventor
Junji Haji
純治 土師
Yasutomo Ichiyama
靖友 一山
Shinji Kodama
真二 児玉
Kaoru Kawasaki
薫 川崎
Takashi Sawai
隆 澤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003031903A priority Critical patent/JP2004238722A/en
Publication of JP2004238722A publication Critical patent/JP2004238722A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength steel strip which is used for automobiles, industrial machines, etc., can be stably welded by plasma welding without causing burn through or high-temperature cracking even at a high welding rate, and is excellent in formability, such as hole-enlarging property or ductility. <P>SOLUTION: The high-strength steel strip excellent in plasma weldability and formability contains 0.05-0.10 mass% C, 0.5-2.0 mass% Mn, at most 0.02 mass% P, 0.0015-0.004 mass% S, 0.005-0.1 mass% Al, at most 0.005 mass% N, X to (1.2-X) mass% Si [wherein X=1.75×(10,000×S amount)<SP>-1/2</SP>], and the balance being iron and unavoidable impurities. The steel strip has a structure comprising at least 90% polygonal ferrite and the balance being a rigid phase such as pearlite or bainitic ferrite and has a hole-enlarging ratio of 80% or higher. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、自動車、産業用機械等に使用し、特にプラズマ溶接をはじめとする融接を施す用途の高強度鋼板に関するものである。
【0002】
【従来の技術】
近年、自動車の車体を製造する手段としてテーラードブランクが多用されている。これは、素材を切断後、先に溶接してからプレスする方法であり、素材を適材適所に使うことにより自動車の軽量化・衝突安全性向上・低コスト化を達成することを可能とする。テーラードブランクの溶接方法としては、レーザー溶接とマッシュシーム溶接が主流であるが、前者は突き合わせ面に高い精度が必要で設備費が高い、後者は溶接部に段差があるため外観形状が悪く、接合材の機械的特性が突き合わせ溶接法と比べて劣るなどの欠点がある。
【0003】
これに対し、レーザー溶接よりも設備費が大幅に安価で、溶接部の形状が比較的良好な溶接方法としてプラズマ溶接がある。この方法は、TIGと同様にタングステン電極を用いた非消耗式アーク溶接であるが、溶接トーチノズル中心部の小さな穴にプラズマガス流を流し、高エネルギー密度のプラズマアークを利用するものであり、非消耗式アーク溶接の中では最も高速溶接性に優れる。ただし、レーザー溶接と比較すると溶接速度が遅いため、レーザー溶接と同等以上の生産性を確保するためには、溶接機の台数を増やす必要がある。その上でレーザー溶接に対するトータルコストを抑えるには、極力溶接速度を上げなければならない。少なくとも80cm/分以上の溶接速度が必要である。
【0004】
プラズマ溶接において溶接速度を上げた場合、従来の高強度鋼板においては、C≦0.1%では溶け落ちや高温割れが発生し易いことが判明した。高C化により溶け落ちが生じにくくなり溶接速度を上げやすいが、特に穴拡げ性が低下し、伸びフランジ加工のあるような部品に於いてはプレス時に割れが発生する。
【0005】
【発明が解決しようとする課題】
そこで、本発明は上記の現状に鑑み、プラズマ溶接を施した際に、溶接速度を上げても溶け落ちや高温割れがなく安定して溶接することが可能で、かつ、穴拡げ性や延性に代表される成形性に優れた高強度鋼板を提供することを課題とする。なお、テーラードブランク以外でプラズマ溶接を施す場合にも適用できるものとする。
【0006】
【課題を解決するための手段】
本発明者らは、上記課題を解決するため、種々の成分の高強度鋼板を用いて、プラズマ溶接性と穴拡げ性を調査した結果、以下の知見を得た。
プラズマ溶接性に関しては、C≦0.1%の低炭素鋼において、SiとSが最も重要である。C:0.07%、S:25ppmでSi量を変化させてプラズマ溶接の適正電流範囲を調べた。
【0007】
図1は、Si量とS量をかえた場合のプラズマ溶接の適正電流範囲の変化を示す。この場合のCは0.07%であり、その他の成分は本発明の範囲内であり、溶接条件は後述べる表3と同じである。この図に示すように、Si:0.6%程度の場合にピークをもつことが判明した。ここでの適正電流範囲は、鋼板間ギャップ0.2mmで突き合わせ溶接した場合の裏ビードが1.5mm以上確保でき、かつ溶け落ちの生じない電流範囲とした。さらに、Sが多い方が適正電流範囲は拡大する。しかし、Sの増大は高温割れを発生し易くし、Siはその発生を抑制する。
【0008】
図2は、S量とSi量をかえた場合のプラズマ溶接での高温割れ発生率の変化を示す。この場合のCは0.07%であり、その他の成分は本発明の範囲内であり、溶接条件は後述べる表3と同じである。すなわち、高温割れ発生率に対する成分の影響を示している。この図1または図2の結果を元に、実機溶接にて80cm/分以上の溶接速度で問題なく溶接できるSiとSの範囲を検討した結果、図3のようになった。すなわち、図3は、Si量とS量の適正範囲を示す図である。なお、この場合の他の成分は本発明の範囲内であり、溶接条件は後述べる表3と同じである。
【0009】
図3に示すように、S:15〜40ppm(0.0015〜0.004%)において、Si量の範囲はS量に依存する。その範囲を定式化したところ、X=1.75×(10000×S量)−1/2とした場合(ここでS量は質量%とする)、Si:X〜(1.2−X)%となった。Sに関しては、穴拡げ率にも影響するが、低い方がよく、この成分範囲であれば穴拡げ率を悪化させることはない。
【0010】
Mg添加あるいはTi・REM(CeあるいはLa)複合添加により凝固組織が微細化するため、高温割れが発生しにくくなる。そのため、Sの上限を60ppmまで緩和できる。その効果を発揮させるには、Mg:0.0005〜0.02%、Ti:0.01〜0.2%、REM:0.0005〜0.02%が必要である。また、これらの添加により介在物が微細化するため、穴拡げ率も向上し非常に好ましい。
【0011】
その他の元素については、以下の理由で限定した。
Cは、前述のようにプラズマ溶接性を向上させるが、穴拡げ率を劣化させる。プラズマ溶接性に対するSiとSの効果を発揮させるには、0.05%以上が必要であり、穴拡げ率の劣化を抑えるには0.1%以下とする必要がある。
Mnは、プラズマ溶接性や穴拡げ率にはあまり影響せず、主に必要な強度を得るためにその量を調整する。ただし、過度の添加は延性の劣化を招くため、2%を上限とする。一方、Sによる熱間脆性の改善と強度確保のためには0.5%以上の添加が必要である。
【0012】
PはSと同様に凝固時に偏析して高温割れを誘発する。高温割れ防止の観点から、上限を0.02%とする。
Alは、脱酸元素として必要である。その効果を発揮させるには、0.005%以上必要であり、過度の添加は酸化物として鋼中に残存し延性低下を招くため、0.1%を上限とする。
【0013】
Nは、延性の劣化を招くため少ない方が好ましいが、過度の低下は製鋼でのコストを大幅に増加させるため、0.005%を上限とする。
Nb、V、Mo、CrおよびTiは強度の確保に寄与するが、過度の添加は延性の低下を招き、高温割れを発生し易くする。高温割れ抑制の観点から、各々の量を0.2%以下とする。
【0014】
Bは焼き入れ性を上げて強度を上げる。その効果を発揮するには0.0005%以上必要である。しかし、過度の添加は硬質相の増加を招き、穴拡げ率を低下させる。よって、上限を0.005%とする。
Caは鋼中に形成されるMnSの形態制御のために添加される。穴拡げ率の向上をもたらすが、その効果を発揮するには0.0005%以上必要である。過剰の添加はかえって鋼中に介在物を残存させることになるため、0.005%を上限とする。
【0015】
なお、スクラップの利用による微量のCu、Ni、Snなどの混入は、本発明における効果を損なうものではない。製鋼工程でのスクラップ利用はリサイクルの観点からは好ましい。
組織に関しては、穴拡げ率を向上させるためには、ポリゴナルフェライトの単相組織が理想である。ただし、強度確保のためには、パーライトやベイニティックフェライトなどの硬質相が混入することも幾分許容する必要がある。実際の自動車部品のプレス実績などから穴拡げ率80%以上を確保することを目標とし、そのためには、ポリゴナルフェライトを90%以上確保することが必要であることを見出した。
【0016】
以上のような知見を元に本発明を完成させた。その主旨は、
質量%で、C:0.05〜0.10%、Mn:0.5〜2.0%、P:0.02%以下、S:0.0015〜0.004%、Al:0.005〜0.1%、N:0.005%以下、X=1.75×(10000×S量)−1/2とすると、
Si:X〜(1.2−X)%を含有し、残部が不可避的不純物と鉄から成り、組織が90%以上のポリゴナルフェライトと残部のパーライトやベイニティックフェライトなどの硬質相から成り、穴拡げ率が80%以上であることを特徴とするプラズマ溶接性と成形性に優れた高強度鋼板。
(2)前記(1)に記載の高強度鋼板に対し、更にTiを0.2%以下含むプラズマ溶接性と成形性に優れた高強度鋼板。
【0017】
(3)質量%で、C:0.05〜0.10%、Mn:0.5〜2.0%、P:0.02%以下、S:0.0015〜0.006%、Al:0.005〜0.1%、N:0.005%以下、X=1.75×(10000×S量)−1/2とすると、Si:X〜(1.2−X)%を含有し、更に、次の▲1▼▲2▼のうち、単独あるいは両方を満たし、▲1▼Mg:0.0005〜0.02%を含有する、▲2▼Ti:0.01〜0.2%を含有し、更にCeとLaのうち一種あるいは二種を合計で0.0005〜0.02%含有する、残部が不可避的不純物と鉄から成り、組織が90%以上のポリゴナルフェライトと残部のパーライトやベイニティックフェライトなどの硬質相から成り、穴拡げ率が80%以上であることを特徴とするプラズマ溶接性と成形性に優れた高強度鋼板。
【0018】
(4)前記(1)乃至(3)のいずれかに記載の高強度鋼板に対し、更にNb、V、Mo、Crのうち1種または2種以上をそれぞれ0.2%以下含むプラズマ溶接性と成形性に優れた高強度鋼板。
(5)前記(1)乃至(4)のいずれかに記載の高強度鋼板に対し、更にBを0.0005〜0.005%含むプラズマ溶接性と成形性に優れた高強度鋼板。
【0019】
(6)前記(1)乃至(5)のいずれかに記載の高強度鋼板に対し、更にCa:0.0005〜0.005%含むプラズマ溶接性と成形性に優れた高強度鋼板。
(7)前記(1)乃至(6)のいずれかに記載の高強度鋼板の表面に、めっき層を有することを特徴とするプラズマ溶接性と成形性に優れた高強度鋼板である。
【0020】
【発明の実施の形態】
本発明は、基本的に通常の連続熱間圧延ラインでの熱延鋼板製造プロセスまたは更に酸洗・冷間圧延・連続焼鈍・スキンパスを経る冷延鋼板製造プロセスにて実施される。本発明の要件を満たしていれば、熱延鋼板、冷延鋼板のどちらでもよい。溶鋼は通常の高炉法で溶製されたものの他、電炉法のようにスクラップを多量に使用したものでもよい。スラブは、通常の連続鋳造プロセスで製造されたものでもよいし、薄スラブ鋳造で製造されたものでもよい。
【0021】
また、連続熱間圧延ラインは通常ラインの他、粗圧延後に粗バーを巻き取って保持するコイルボックス使用や更に巻き取った粗バーを巻き戻す際に先行する粗バーと接合して圧延する、いわゆる熱延連続化プロセスは材質ばらつき低減の観点から好ましい。また、酸洗・冷延・連続焼鈍・スキンパスは2工程以上連続化されているラインでもよいし、各々が単独処理のラインでもよい。
【0022】
熱延鋼板または冷延鋼板にめっきをしても本発明の効果を損なうものではない。めっきは、Zn、Al、Sn、Ni単独あるいは各々の複合成分でもよく、溶融めっき、電気めっきなどめっきする方法は問わない。更に、表面にボンデ皮膜や樹脂などを被覆してもよい。溶接については、特にプラズマ溶接を対象としている。しかし、プラズマ溶接以外でもそれと同様に鋼板を溶かしながら溶接する通常のアーク溶接、レーザー溶接、電子ビーム溶接、ガス溶接などのいわゆる融接において溶接速度を限界まで高める場合にも有効な発明である。
【0023】
【実施例】
表1に示す成分の鋼片を用いて、表4に示すような熱延鋼板または冷延鋼板を製造した。製造条件範囲を表2、プラズマ溶接試験条件を表3に示した。表4には材質調査結果及びプラズマ溶接試験での評価結果も示している。なお、熱延めっき鋼板は溶融亜鉛メッキ、冷延めっき鋼板は電気亜鉛めっきを施している。
また、表4に示す穴拡げ率は、穴拡げ試験にて測定する。150mm角の鋼板の中心に直径10mmの穴をクリアランス12%で打ち抜き、バリが外側になるよう頂角60度の円錐ポンチで押し広げ、割れが全厚に至った段階での内側の穴径を測定する。すなわち、(破断後穴径−初期穴径)/初期穴径×100にて穴拡げ率を求める。
【0024】
表1に示す本発明の成分範囲を外れるL〜Sの鋼種を用いて製造した比較例No.12〜19、本発明で規定する成分範囲の鋼種を用いているが組織が要件を外れている比較例No.20では、伸び・穴拡げ率・適正溶接電流範囲評価・高温割れ評価のうちいずれかが不良である。
それに対して、本発明例のNo.1〜11では穴拡げ率が80%以上と良好で伸びも良く、適正溶接電流範囲評価・高温割れ評価ともに良好である。
【0025】
【表1】

Figure 2004238722
【0026】
【表2】
Figure 2004238722
【0027】
【表3】
Figure 2004238722
【0028】
【表4】
Figure 2004238722
【0029】
【発明の効果】
以上のように、本発明の方法に従えば、プラズマ溶接を施した際に、溶接速度を上げても溶け落ちや高温割れがなく安定して溶接することが可能で、かつ、穴拡げ性や延性に代表される成形性に優れた高強度鋼板を提供することができる。また、プラズマ溶接以外の融接を施す場合にも同様に適用できる。この鋼板を使用すれば、自動車や産業用機械などの分野でそれぞれがもつべき機能を向上させながら軽量化を図ることができ、産業上、非常に大きな効果を有する。
【図面の簡単な説明】
【図1】Si量とS量をかえた場合のプラズマ溶接の適正電流範囲の変化を示す図である。
【図2】S量とSi量をかえた場合のプラズマ溶接での高温割れ発生率の変化を示す図である。
【図3】Si量とS量の適正範囲を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-strength steel sheet used for automobiles, industrial machines, and the like, and particularly for use in performing fusion welding such as plasma welding.
[0002]
[Prior art]
2. Description of the Related Art In recent years, tailored blanks have been frequently used as a means for manufacturing a vehicle body. This is a method in which the material is cut and then welded first and then pressed. By using the material in the right place at the right place, it is possible to achieve weight reduction, collision safety improvement and cost reduction of the automobile. Laser welding and mash seam welding are the mainstream welding methods for tailored blanks, but the former requires high precision in the mating surface and requires high equipment costs. There is a disadvantage that the mechanical properties of the material are inferior to the butt welding method.
[0003]
On the other hand, there is plasma welding as a welding method in which the equipment cost is significantly lower than that of laser welding and the shape of the welded portion is relatively good. This method is a non-consumable arc welding using a tungsten electrode like the TIG, but uses a high energy density plasma arc by flowing a plasma gas flow through a small hole in the center of the welding torch nozzle. It has the best high-speed weldability among consumable arc welding. However, since the welding speed is lower than that of laser welding, it is necessary to increase the number of welding machines in order to secure productivity equal to or higher than that of laser welding. In addition, to reduce the total cost of laser welding, the welding speed must be increased as much as possible. A welding speed of at least 80 cm / min or more is required.
[0004]
When the welding speed was increased in plasma welding, it was found that in conventional high-strength steel sheets, when C ≦ 0.1%, burn-through and high-temperature cracking were likely to occur. Although the burn-through hardly occurs due to the increase in C, the welding speed is easy to increase, but the hole expandability is particularly deteriorated, and cracks are generated at the time of pressing in a part having stretch flange processing.
[0005]
[Problems to be solved by the invention]
In view of the above situation, the present invention provides stable welding without burn-through or high-temperature cracking even when the welding speed is increased when plasma welding is performed. It is an object to provide a high-strength steel sheet excellent in typical formability. It should be noted that the present invention can be applied to a case where plasma welding is performed on a material other than a tailored blank.
[0006]
[Means for Solving the Problems]
The present inventors have investigated the plasma weldability and hole expandability using high-strength steel sheets of various components in order to solve the above problems, and have obtained the following findings.
Regarding plasma weldability, Si and S are most important in low carbon steels with C ≦ 0.1%. The appropriate current range of plasma welding was examined by changing the amount of Si at C: 0.07% and S: 25 ppm.
[0007]
FIG. 1 shows a change in the appropriate current range of plasma welding when the amount of Si and the amount of S are changed. In this case, C is 0.07%, the other components are within the scope of the present invention, and the welding conditions are the same as those in Table 3 described later. As shown in this figure, it was found that there was a peak when Si: about 0.6%. The appropriate current range here is a current range in which a back bead of 1.5 mm or more when butt-welding with a gap between steel plates of 0.2 mm can be secured and no burn-through occurs. Further, the more S is, the more the appropriate current range is expanded. However, an increase in S facilitates hot cracking, and Si suppresses the occurrence.
[0008]
FIG. 2 shows a change in the hot crack occurrence rate in plasma welding when the S amount and the Si amount are changed. In this case, C is 0.07%, the other components are within the scope of the present invention, and the welding conditions are the same as those in Table 3 described later. That is, it shows the effect of the component on the hot crack occurrence rate. Based on the results of FIG. 1 or FIG. 2, the range of Si and S that can be welded without any problem at a welding speed of 80 cm / min or more in actual welding is shown in FIG. That is, FIG. 3 is a diagram illustrating an appropriate range of the Si amount and the S amount. The other components in this case are within the scope of the present invention, and the welding conditions are the same as in Table 3 described later.
[0009]
As shown in FIG. 3, in the range of S: 15 to 40 ppm (0.0015 to 0.004%), the range of the amount of Si depends on the amount of S. When the range is formulated, when X = 1.75 × (10000 × S amount) −1/2 (where the S amount is mass%), Si: X〜 (1.2−X) %. Regarding S, the hole expansion rate is also affected, but the lower the better, the better the hole expansion rate is in this component range.
[0010]
The addition of Mg or the addition of Ti / REM (Ce or La) makes the solidified structure finer, so that hot cracking is less likely to occur. Therefore, the upper limit of S can be reduced to 60 ppm. In order to exert the effect, Mg: 0.0005 to 0.02%, Ti: 0.01 to 0.2%, and REM: 0.0005 to 0.02% are required. In addition, since the inclusions become finer due to the addition of these elements, the hole expansion rate is also improved, which is very preferable.
[0011]
Other elements were limited for the following reasons.
C improves the plasma weldability as described above, but deteriorates the hole expansion rate. In order to exert the effect of Si and S on the plasma weldability, 0.05% or more is necessary, and in order to suppress the deterioration of the hole expansion rate, it is necessary to be 0.1% or less.
Mn does not significantly affect the plasma weldability and the hole expansion rate, and its amount is adjusted mainly to obtain the required strength. However, since excessive addition causes deterioration of ductility, the upper limit is 2%. On the other hand, in order to improve hot brittleness by S and secure the strength, it is necessary to add 0.5% or more.
[0012]
P segregates at the time of solidification similarly to S and induces hot cracking. From the viewpoint of preventing hot cracking, the upper limit is made 0.02%.
Al is required as a deoxidizing element. In order to exhibit the effect, 0.005% or more is required. Since excessive addition remains in the steel as an oxide and lowers ductility, the upper limit is set to 0.1%.
[0013]
N is preferably small in order to cause deterioration of ductility, but an excessive decrease greatly increases steelmaking costs, so the upper limit is 0.005%.
Nb, V, Mo, Cr and Ti contribute to securing the strength, but excessive addition causes a decrease in ductility and easily causes hot cracking. From the viewpoint of suppressing hot cracking, the respective amounts are set to 0.2% or less.
[0014]
B increases the hardenability and the strength. To achieve the effect, 0.0005% or more is required. However, excessive addition leads to an increase in the hard phase and lowers the hole expansion rate. Therefore, the upper limit is made 0.005%.
Ca is added for controlling the form of MnS formed in the steel. Although the hole expansion rate is improved, 0.0005% or more is required to exhibit the effect. Excessive addition causes inclusions to remain in the steel, so the upper limit is 0.005%.
[0015]
It should be noted that the inclusion of trace amounts of Cu, Ni, Sn, etc. due to the use of scrap does not impair the effects of the present invention. Use of scrap in the steelmaking process is preferable from the viewpoint of recycling.
Regarding the structure, a single-phase structure of polygonal ferrite is ideal for improving the hole expansion ratio. However, in order to secure the strength, it is necessary to allow a hard phase such as pearlite and bainitic ferrite to be mixed. The goal was to secure a hole expansion rate of 80% or more based on actual automotive parts pressing results and the like, and found that it is necessary to secure 90% or more of polygonal ferrite for that purpose.
[0016]
The present invention has been completed based on the above findings. The gist is:
In mass%, C: 0.05 to 0.10%, Mn: 0.5 to 2.0%, P: 0.02% or less, S: 0.0015 to 0.004%, Al: 0.005 0.10.1%, N: 0.005% or less, X = 1.75 × (10000 × S amount) −1/2
Si: contains X to (1.2-X)%, the balance consists of unavoidable impurities and iron, and the structure consists of 90% or more of polygonal ferrite and the balance consists of hard phases such as pearlite and bainitic ferrite. A high-strength steel sheet excellent in plasma weldability and formability, having a hole expansion ratio of 80% or more.
(2) A high-strength steel sheet excellent in plasma weldability and formability further containing 0.2% or less of Ti with respect to the high-strength steel sheet according to (1).
[0017]
(3) In mass%, C: 0.05 to 0.10%, Mn: 0.5 to 2.0%, P: 0.02% or less, S: 0.0015 to 0.006%, Al: When 0.005 to 0.1%, N: 0.005% or less, and X = 1.75 × (10000 × S amount) −1/2 , Si: X to (1.2−X)% is contained. Further, one or both of the following (1) and (2) are satisfied, and (1) Mg: 0.0005 to 0.02% is contained; (2) Ti: 0.01 to 0.2 % And one or two of Ce and La in a total amount of 0.0005 to 0.02%. The balance is composed of unavoidable impurities and iron, and the structure is 90% or more of polygonal ferrite and the balance. Characterized by a hard phase such as pearlite or bainitic ferrite having a hole expansion ratio of 80% or more. High-strength steel sheet having excellent formability and contact resistance.
[0018]
(4) Plasma weldability of the high-strength steel sheet according to any one of (1) to (3), further containing 0.2% or less of one or more of Nb, V, Mo, and Cr, respectively. High strength steel sheet with excellent formability.
(5) A high-strength steel sheet excellent in plasma weldability and formability further containing 0.0005 to 0.005% of B with respect to the high-strength steel sheet according to any of (1) to (4).
[0019]
(6) A high-strength steel sheet excellent in plasma weldability and formability, further containing Ca: 0.0005 to 0.005% with respect to the high-strength steel sheet according to any of (1) to (5).
(7) A high-strength steel sheet excellent in plasma weldability and formability, characterized by having a plating layer on the surface of the high-strength steel sheet according to any of (1) to (6).
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention is basically carried out by a hot rolled steel sheet manufacturing process in a normal continuous hot rolling line or a cold rolled steel sheet manufacturing process through pickling, cold rolling, continuous annealing, and skin pass. As long as the requirements of the present invention are satisfied, either a hot-rolled steel sheet or a cold-rolled steel sheet may be used. The molten steel may be produced by a usual blast furnace method, or may be one using a large amount of scrap as in the electric furnace method. The slab may be manufactured by a normal continuous casting process or may be manufactured by thin slab casting.
[0021]
In addition, the continuous hot rolling line is a normal line, other than the use of a coil box for winding and holding the coarse bar after the rough rolling and further rewinding of the coarse bar that has been rolled and joined with the preceding coarse bar for rolling, The so-called hot-rolling continuous process is preferable from the viewpoint of reducing material variation. Further, the pickling, cold rolling, continuous annealing, and skin pass may be a line in which two or more processes are continuously performed, or may be a line in which each is processed independently.
[0022]
Even if plating is performed on a hot-rolled steel sheet or a cold-rolled steel sheet, the effect of the present invention is not impaired. The plating may be Zn, Al, Sn, Ni alone or a composite component thereof, and any plating method such as hot-dip plating or electroplating may be used. Further, the surface may be covered with a bond coat, a resin, or the like. Regarding welding, it is particularly intended for plasma welding. However, in addition to plasma welding, the invention is also effective when the welding speed is increased to the limit in so-called fusion welding such as ordinary arc welding, laser welding, electron beam welding, and gas welding in which a steel sheet is welded while melting.
[0023]
【Example】
A hot-rolled steel sheet or a cold-rolled steel sheet as shown in Table 4 was manufactured using the steel slabs having the components shown in Table 1. Table 2 shows the range of the manufacturing conditions, and Table 3 shows the plasma welding test conditions. Table 4 also shows the results of the material inspection and the results of the evaluation in the plasma welding test. The hot-rolled steel sheet is hot-dip galvanized, and the cold-rolled steel sheet is electrogalvanized.
The hole expansion ratio shown in Table 4 is measured by a hole expansion test. A hole with a diameter of 10 mm is punched out at the center of a 150 mm square steel plate with a clearance of 12%, and pushed out with a conical punch with a vertical angle of 60 degrees so that the burrs are on the outside. Measure. That is, the hole expansion rate is calculated by (hole diameter after fracture−initial hole diameter) / initial hole diameter × 100.
[0024]
Table 1 shows Comparative Example Nos. Produced using steel grades L to S out of the component range of the present invention. Comparative Examples Nos. 12 to 19, in which a steel type having a component range defined by the present invention was used, but the structure was out of the requirement. In No. 20, any one of elongation, hole expansion rate, appropriate welding current range evaluation, and hot crack evaluation was poor.
On the other hand, in the example of the present invention, no. In Nos. 1 to 11, the hole expansion ratio was as good as 80% or more and the elongation was good.
[0025]
[Table 1]
Figure 2004238722
[0026]
[Table 2]
Figure 2004238722
[0027]
[Table 3]
Figure 2004238722
[0028]
[Table 4]
Figure 2004238722
[0029]
【The invention's effect】
As described above, according to the method of the present invention, when plasma welding is performed, it is possible to perform stable welding without burn-through or high-temperature cracking even when the welding speed is increased, and to increase the hole expandability. A high-strength steel sheet excellent in formability represented by ductility can be provided. Further, the present invention can be similarly applied to a case where fusion welding other than plasma welding is performed. If this steel sheet is used, it is possible to reduce the weight while improving the functions that each should have in the field of automobiles, industrial machines, and the like, which has a great industrial effect.
[Brief description of the drawings]
FIG. 1 is a diagram showing a change in an appropriate current range for plasma welding when the amount of Si and the amount of S are changed.
FIG. 2 is a diagram showing a change in a hot crack occurrence rate in plasma welding when the amount of S and the amount of Si are changed.
FIG. 3 is a diagram showing an appropriate range of Si amount and S amount.

Claims (7)

質量%で、
C :0.05〜0.10%、
Mn:0.5〜2.0%、
P :0.02%以下、
S :0.0015〜0.004%、
Al:0.005〜0.1%、
N :0.005%以下、
X=1.75×(10000×S量)−1/2とすると、
Si:X〜(1.2−X)%を含有し、
残部が不可避的不純物と鉄から成り、組織が90%以上のポリゴナルフェライトと残部のパーライトやベイニティックフェライトなどの硬質相から成り、穴拡げ率が80%以上であることを特徴とするプラズマ溶接性と成形性に優れた高強度鋼板。
In mass%,
C: 0.05 to 0.10%,
Mn: 0.5 to 2.0%,
P: 0.02% or less,
S: 0.0015 to 0.004%,
Al: 0.005 to 0.1%,
N: 0.005% or less,
X = 1.75 × (10000 × S amount) −1/2
Si: containing X to (1.2-X)%,
The plasma is characterized in that the balance is composed of unavoidable impurities and iron, the structure is composed of polygonal ferrite with 90% or more and the hard phase such as pearlite and bainitic ferrite, and the hole expansion ratio is 80% or more. High strength steel sheet with excellent weldability and formability.
請求項1に記載の高強度鋼板に対し、更にTiを0.2%以下含むプラズマ溶接性と成形性に優れた高強度鋼板。2. A high-strength steel sheet according to claim 1, which further contains 0.2% or less of Ti and has excellent plasma weldability and formability. 質量%で、
C :0.05〜0.10%、
Mn:0.5〜2.0%、
P :0.02%以下、
S :0.0015〜0.006%、
Al:0.005〜0.1%、
N :0.005%以下、
X=1.75×(10000×S量)−1/2とすると、
Si:X〜(1.2−X)%を含有し、
更に、次の▲1▼▲2▼のうち、単独あるいは両方を満たし、
▲1▼Mg:0.0005〜0.02%を含有する
▲2▼Ti:0.01〜0.2%
を含有し、更にCeとLaのうち一種あるいは二種を合計で0.0005〜0.02%含有する、残部が不可避的不純物と鉄から成り、組織が90%以上のポリゴナルフェライトと残部のパーライトやベイニティックフェライトなどの硬質相から成り、穴拡げ率が80%以上であることを特徴とするプラズマ溶接性と成形性に優れた高強度鋼板。
In mass%,
C: 0.05 to 0.10%,
Mn: 0.5 to 2.0%,
P: 0.02% or less,
S: 0.0015 to 0.006%,
Al: 0.005 to 0.1%,
N: 0.005% or less,
X = 1.75 × (10000 × S amount) −1/2
Si: containing X to (1.2-X)%,
Furthermore, one or both of the following (1) and (2) are satisfied,
(1) Mg: 0.0005 to 0.02% is contained (2) Ti: 0.01 to 0.2%
And further contains one or two of Ce and La in a total amount of 0.0005 to 0.02%. The balance is made of unavoidable impurities and iron, and the structure is 90% or more of polygonal ferrite and the remainder is iron. A high-strength steel sheet made of a hard phase such as pearlite or bainitic ferrite and having a hole expansion ratio of 80% or more and excellent in plasma weldability and formability.
請求項1乃至3のいずれかに記載の高強度鋼板に対し、更にNb、V、Mo、Crのうち1種または2種以上をそれぞれ0.2%以下含むプラズマ溶接性と成形性に優れた高強度鋼板。The high-strength steel sheet according to any one of claims 1 to 3, which further includes one or more of Nb, V, Mo, and Cr, each containing 0.2% or less, and is excellent in plasma weldability and formability. High strength steel plate. 請求項1乃至4のいずれかに記載の高強度鋼板に対し、更にBを0.0005〜0.005%含むプラズマ溶接性と成形性に優れた高強度鋼板。The high-strength steel sheet according to any one of claims 1 to 4, further containing B by 0.0005 to 0.005% and having excellent plasma weldability and formability. 請求項1乃至5のいずれかに記載の高強度鋼板に対し、更にCa:0.0005〜0.005%含むプラズマ溶接性と成形性に優れた高強度鋼板。A high-strength steel sheet excellent in plasma weldability and formability further containing Ca: 0.0005 to 0.005% with respect to the high-strength steel sheet according to any one of claims 1 to 5. 請求項1乃至6のいずれかに記載の高強度鋼板の表面に、めっき層を有することを特徴とするプラズマ溶接性と成形性に優れた高強度鋼板。A high-strength steel sheet excellent in plasma weldability and formability, comprising a plating layer on the surface of the high-strength steel sheet according to any one of claims 1 to 6.
JP2003031903A 2003-02-10 2003-02-10 High-strength steel strip excellent in plasma weldability and formability Withdrawn JP2004238722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003031903A JP2004238722A (en) 2003-02-10 2003-02-10 High-strength steel strip excellent in plasma weldability and formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003031903A JP2004238722A (en) 2003-02-10 2003-02-10 High-strength steel strip excellent in plasma weldability and formability

Publications (1)

Publication Number Publication Date
JP2004238722A true JP2004238722A (en) 2004-08-26

Family

ID=32958318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003031903A Withdrawn JP2004238722A (en) 2003-02-10 2003-02-10 High-strength steel strip excellent in plasma weldability and formability

Country Status (1)

Country Link
JP (1) JP2004238722A (en)

Similar Documents

Publication Publication Date Title
JP6787466B2 (en) Manufacturing method of high-strength galvanized steel sheet and manufacturing method of high-strength member
KR101805284B1 (en) Spot welded joint and spot welding method
JP7343603B2 (en) Welded parts made of steel with aluminum or aluminum alloy plating layer that have different strengths and their manufacturing method
KR20210145726A (en) Manufacturing method of steel thin-wall welded iso-strength member with aluminum or aluminum alloy plating layer
GB2433746A (en) Steel sheet with excellent weldability
JP2013220431A (en) Welded joint excellent in fatigue strength, mag welding method for hot rolled steel sheet, mig welding method for hot rolled steel sheet, and flux-cored wire
JP4930048B2 (en) Plasma arc hybrid welding method to improve joint fatigue strength of lap fillet welded joint
JP2022513664A (en) Martensitic steel manufacturing method and its martensitic steel
CN114340828B (en) Steel wire for gas shielded arc welding, gas shielded arc welding method, and method for manufacturing gas shielded arc welding head
JP4341395B2 (en) High strength steel and weld metal for high heat input welding
JP5549618B2 (en) High strength steel plate for spot welding with a tensile strength of 980 MPa or more
KR101335826B1 (en) High-strength cold-rolled steel sheet excellent in weldability and process for production of same
JP6777249B1 (en) Manufacturing method of steel plate, tailored blank, hot press molded product, steel pipe, hollow hardened molded product, and steel plate
JP3450959B2 (en) Ferritic stainless steel with excellent weldability
JP7099330B2 (en) Steel Sheet, Tailored Blank, Hot Press Formed Product, Steel Tubular Tailored Blank, Hollow Hot Press Formed Product, and Steel Sheet Manufacturing Method
JP2004269905A (en) H-section steel for multilayer welding in high interpass temperature having high toughness in fillet part, and manufacturing method therefor
KR101949025B1 (en) Cold rolled steel sheet for flux cored wire and method of manufacturing the same
JP2004238722A (en) High-strength steel strip excellent in plasma weldability and formability
JP3943754B2 (en) High-strength cold-rolled steel sheet and high-strength surface-treated steel sheet that have excellent fatigue properties of the base metal and formability after welding, and are difficult to soften the heat affected zone.
JP3933020B2 (en) Stainless steel with excellent fatigue characteristics and toughness of fillet welded joints when forming fillet welded joints
US20240198447A1 (en) Arc welded joint and arc welding method
JP5888119B2 (en) Thick steel plate with excellent HAZ toughness
JP5078264B2 (en) Arc welding method of steel sheet
JP2023515843A (en) Welding wire capable of obtaining giga-class welds, welded structure manufactured using the same, and welding method thereof
WO2020202474A1 (en) Steel sheet, tailored blank, hot-pressed molded product, steel pipe, and hollow quenched molded product

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509