JP2004238508A - Method for utilizing gas of melting furnace for gasification - Google Patents

Method for utilizing gas of melting furnace for gasification Download PDF

Info

Publication number
JP2004238508A
JP2004238508A JP2003029412A JP2003029412A JP2004238508A JP 2004238508 A JP2004238508 A JP 2004238508A JP 2003029412 A JP2003029412 A JP 2003029412A JP 2003029412 A JP2003029412 A JP 2003029412A JP 2004238508 A JP2004238508 A JP 2004238508A
Authority
JP
Japan
Prior art keywords
gas
gasification
melting furnace
cog
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003029412A
Other languages
Japanese (ja)
Inventor
Yoshimoto Fujii
良基 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003029412A priority Critical patent/JP2004238508A/en
Publication of JP2004238508A publication Critical patent/JP2004238508A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the used amount of a fuel purchased from outside by utilizing a gas of a melting furnace for gasification as flame-stabilizing fuel for a powder boiler to reduce an energy cost. <P>SOLUTION: This method for utilizing the gas of the melting furnace for the gasification comprises mixing a gas 7a generated by the melting furnace 7 for the gasification, for thermally cracking a combustible waste in a high-temperature reducing atmosphere to gasify and melt the waste, with a gas 4a having ≥30 MJ/Nm<SP>3</SP>calorific value such as a natural gas (LNG) and a liquefied petroleum gas (LPG), and utilizing the mixed gas as the fuel in iron works. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば使用済みプラスチックなどの可燃性廃棄物を高温還元雰囲気により熱分解・ガス化溶融するガス化溶融炉で発生するガスを有効に利用する方法に関する。
【0002】
【従来の技術】
製鉄所で発生するコークス炉ガス(COG)は、鋼材加熱炉やコークス炉など製鉄プロセスの燃料として使用される他に、発電ボイラの保炎燃料として利用されている。発電ボイラでは、火炉での安定燃焼を維持するために、ボイラの最大蒸気発生量を維持するのに必要な燃焼熱量のうち、10%以上を常に高カロリ燃料で燃焼させなければならない。この10%相当の燃料を保炎燃料と言う。
【0003】
一般に、COGの発生量に対して製鉄プロセスで必要なCOG量を差し引いた残りのCOGが発電所に供給される。従って、発電所に送られるCOG量が保炎燃料未満となると不足分を補わなくてはならず、従来はこの不足分を全て重油、都市ガス(天然ガス:LNG)、液化石油ガス(LPG)等の高カロリの外部購入燃料により補い、これら外部購入燃料を保炎燃料の一部として発電ボイラで燃焼させ、安定燃焼を維持するようにしている。
【0004】
ところで、従来より高温の炉内において、使用済みプラスチック、建設廃材(紙くず、木くず、繊維くず)、シュレッダーダスト(廃棄家電、廃車)、汚泥、燃えがら、動植物性残さ等の可燃性廃棄物を送風酸素と反応させ、炉上部温度を800〜1000℃とし、高温・還元雰囲気により熱分解・ガス化させ、可燃性のガス化溶融炉ガスとして回収するガス化溶融炉は知られている(例えば特許文献1参照)。
【0005】
【特許文献1】
特開平9−60830号公報
【0006】
【発明が解決しようとする課題】
前述したように、製鉄プロセスで使用するCOG量が増え、相対的に発電所に保炎燃料としてまわすCOGの量が不足すると、保炎燃料をCOGで確保することができなくなるため、従来は高カロリの外部購入燃料により不足分を全て補って製鉄所の操業を行なっている。このため、エネルギコストが上昇する。
【0007】
一方、ガス化溶融炉ガスは、発熱量が10MJ/Nm程度でそのままではCOG代替のガスにはならず、かつ水素、CO主体のガスのため、燃焼速度が速く、COGバーナでガス化溶融炉ガスを燃焼させると、バーナ手前で燃焼反応が完結し、バーナチップ近傍で高温燃焼火炎が形成されるためにバーナが溶損する。
【0008】
したがって、従来はせっかく回収したガス化溶融炉ガスを、有効に利用することなく焼却処理し、無害化して大気に放散していた。また、燃焼させる際には補助燃料の供給が必要であり、ランニングコストも発生していた。
【0009】
本発明の技術的課題は、ガス化溶融炉ガスを発電ボイラの保炎燃料として利用できるようにして、外部購入燃料の使用量を削減し、エネルギコストの低減化を図れるようにすることにある。
【0010】
【課題を解決するための手段】
本発明の請求項1に係るガス化溶融炉ガスの利用方法は、可燃性廃棄物を高温還元雰囲気により熱分解・ガス化溶融するガス化溶融炉で発生するガスを、天然ガス(LNG)や液化石油ガス(LPG)など30MJ/Nm以上の発熱量を保有するガスと混合し、製鉄所内燃料として利用することを特徴としている。
【0011】
また、請求項2に係るガス化溶融炉ガスの利用方法は、ガス化溶融炉ガスを、ガスホルダを介在させた配管網を通して30MJ/Nm以上の発熱量を保有するガスと混合することを特徴としている。
【0012】
また、請求項3に係るガス化溶融炉ガスの利用方法は、ガス化溶融炉ガスを、30MJ/Nm以上の発熱量を保有するガスと混合する前に昇圧することを特徴としている。
【0013】
また、請求項4に係るガス化溶融炉ガスの利用方法は、ガス化溶融炉ガスと30MJ/Nm以上の発熱量を保有するガスとの混合によって、コークス炉ガス相当の模擬コークス炉ガスとした後、この模擬コークス炉ガスを、コークス炉ガス配管へ接続することで、製鉄所内燃料として利用することを特徴としている。
【0014】
また、請求項5に係るガス化溶融炉ガスの利用方法は、ガス化溶融炉ガスを30MJ/Nm以上の発熱量を保有するガスと混合する際に、混合後のガスの発熱量がCOG相当の15〜25MJ/Nmとなるように、混合量が調整されてなることを特徴としている。
【0015】
また、請求項6に係るガス化溶融炉ガスの利用方法は、ガス化溶融炉ガスを30MJ/Nm以上の発熱量を保有するガスと混合する際に、混合後のガスの燃焼速度がCOG相当となるように、混合量が調整されてなることを特徴としている。
【0016】
【発明の実施の形態】
以下、図示実施形態に基づき本発明のガス化溶融炉ガスの利用方法を説明する。図1は本発明を適用した製銑・製鋼一貫製鉄所における燃料の流れを示す図である。
【0017】
図において、1は操業時に高炉ガス(BFG)1aを副生する高炉、2は操業時にコークス炉ガス(COG)2aを副生するコークス炉、3は操業時に転炉ガス(LDG)3aを副生する転炉である。高炉ガス(BFG)1aは、鉄鉱石を還元する際に発生するCO,CO,H,Nから成る約3,350kJ/mの可燃性ガスであり、ほぼ連続的に発生する。コークス炉ガス(COG)2aは、石炭を乾留する際に発生するH,CH,COから成る約20,100kJ/mの可燃性ガスであり、ほぼ連続的に発生する。転炉ガス(LDG)3aは、銑鉄を鋼に改質する際に発生するCO,CO から成る約8,400kJ/m の可燃性ガスであり、間欠的に発生する。つまり転炉の吹練によりガスの発生がつねに変動する。
【0018】
4aは30MJ/Nm以上の発熱量を保有するガスすなわち外部購入燃料である都市ガス(天然ガス:LNG)または液化石油ガス(プロパンガス:LPG)、5aは窒素(N) 、6は外部購入燃料である重油6aの供給源である重油タンクである。LNGまたはLPGは、主に後述のガス化溶融炉ガスと共に模擬コークス炉ガスの製造原料ガスとして使用されるが、それ以外にも、ガス化溶融炉ガスが発生・貯蔵がなくかつ発電所に保炎燃料としてまわすCOGの量が不足した場合に不足分を補充する目的で使用される。N は高カロリーのLNGまたはLPGが前記補充目的で使用される場合に希釈用として用いられる。重油は発電所の燃料として供給される。
【0019】
7はガス化溶融炉であって、既述したように高温の炉内において、使用済みプラスチック、建設廃材(紙くず、木くず、繊維くず)、シュレッダーダスト(廃棄家電、廃車)、汚泥、燃えがら、動植物性残さ等の可燃性廃棄物を送風酸素と反応させ、炉上部温度を800〜1000℃とし、高温・還元雰囲気により熱分解・ガス化させ、可燃性のガス化溶融炉ガス7aとして回収するもので、発生ガスの性状は約8,000〜11,000kJ/m であり、炉下部においては、コークス及び炭素の燃焼により、灰分を溶融し、出滓口より排出するものである。回収されたガス化溶融炉ガス7aは、全て模擬コークス炉ガスの製造原料ガスとして使用される。
【0020】
11,12,13,14は各炉で発生する可燃ガス(燃料ガス)を無害化・燃焼放散するための燃焼放散塔すなわちフレアスタックであり、通常は使用しないが、各炉の起動・停止時のガス成分不安定時や、各炉に対応して設けられた後述のホルダの備蓄レベルが上限をオーバーした時などに使用される。
【0021】
21は高炉ガス(BFG)を一時貯蔵しバッファとして機能するBFGホルダ、22はコークス炉ガス(COG)を一時貯蔵しバッファとして機能するCOGホルダ、23は転炉ガス(LDG)を一時貯蔵しバッファとして機能するLDGホルダ、24はガス化溶融炉ガス7aを一時貯蔵しバッファとして機能するガス化溶融炉ガスホルダである。これらホルダ21〜24は内部ガス圧力が65kPa と低圧に保持されている。
【0022】
31,32,33はBFG配管、COG配管、及びLDG配管にそれぞれ配置された昇圧機すなわちブロワで、これらブロワ31〜33は、それぞれのガスの圧力を約65kPaから約120kPaに昇圧して、後述するガスミキサーに供給する機能を有する。34はガス化溶融炉ガス配管網においてガス化溶融炉ガスホルダ24の下流側に直列に配置された昇圧機すなわちブロワである。ブロワ34をガス化溶融炉ガスホルダ24に対して直列に接続したのは、既述したようにガス化溶融炉7では種々の可燃性廃棄物からガス化溶融炉ガス7aを回収するので、ガス発生量が一定でなく圧力変動を生じるため、ガス混合器前に昇圧機を配置して、後述する模擬COGミキサーに供給するガス化溶融炉ガスを安定化させる必要があるからである。
【0023】
LNGまたはLPGの配管は、二股に分かれ、二股の一方の流路が模擬COGミキサー60に接続され、二股の他方の流路がガスミキサー9に接続され、それぞれの流路に流量調整可能な切替弁61,62が設けられている。そして、通常は切替弁61,62によって模擬COGミキサー60側に繋がるLNGまたはLPGの配管網が形成され、かつ後述の演算器の出力に応じて模擬COGミキサー側の切替弁61の開度(流量)が自動調整されるようになっている。いずれにせよ切替弁61,62は遠隔操作可能とすることが望ましい。
【0024】
また、模擬COGミキサー60には、ガス化溶融炉ガス配管が接続され、ブロワ34により昇圧されたガス化溶融炉ガスが供給されるようになっている。つまり、模擬COGミキサー60は、ガス化溶融炉ガスを、30MJ/Nm以上の発熱量を保有するガス(LNGやLPG)4aと混合することで、COG相当のガスにするために設けられたもので、混合後のガスの発熱量が15〜25MJ/Nmとなるように混合量を調整し、あるいは混合後のガスの燃焼速度がCOG相当となるように混合量を調整する機能を有する。例えば、天然ガス(LNG)は、メタンガス主体のガスであり燃焼速度が遅く、ガス化溶融炉ガスに混合することで、ガス化溶融炉ガス単独で燃焼する場合に比べて燃焼速度を低下させることができる。また、LPGは、プロパンまたはブタン主体のガスであり、どちらも燃焼速度が遅く、ガス化溶融炉ガスに混合することで、ガス化溶融炉ガス単独で燃焼する場合に比べて燃焼速度を低下させることができる。そして、このようにCOG相当のガスに調整された混合ガスである模擬COG60aは、COG配管におけるCOGホルダ22よりも下流側に戻されて、製鉄所内燃料として、あるいは後述のミックスガス(MXG)製造原料ガスとして利用されるようになっている。なお、安定的にCOG(COG単独やCOG+模擬COGを含む)2aが供給可能な熱量に相当する鋼材加熱炉のある鋼管や条鋼の工場41へは、COG2aを直接供給し、ガス搬送動力費用を削減できるようにしている。
【0025】
また、模擬COG配管に、混合ガス(模擬COG)の発熱量を計測可能な発熱量計やガスクロマトグラフィ等からなる模擬COGセンサ65を配置するとともに、COG配管における模擬COG配管との接続部よりも上流側に、COGの発熱量を計測可能な発熱量計やガスクロマトグラフィ等からなるCOGセンサ66を配置し、さらにこれらセンサ65,66の検出値から模擬COGの発熱量がCOGと等価になるようにLNGまたはLPGの混合量を演算する演算器67を設け、演算器67にてLNGまたはLPGの混合量を演算し図示しないドライバを介して切替弁61の開度(流量)を調整するようになっている。また演算器67は、模擬COGセンサ65とCOGセンサ66の検出値からガス化溶融炉ガスの発生・貯蔵がなくかつ発電所に保炎燃料としてまわすCOGの量が不足していると判断すると、そのことをオペレータに通知するとともに切替弁61を閉じさせる機能も有する。
【0026】
9は各ブロワ31〜33により昇圧されたBFG1a、COG(COG単独やCOG+模擬COGを含む)2a、LDG3aや、外部購入燃料(LNGまたはLPG)4a、及び窒素(N)5a が送り込まれるガスミキサーである。このガスミキサー9は、送り込まれた各種ガスによる発熱量変動を吸収し、燃料性状を安定させたミックスガス(MXG)9aとして製鉄所内の各工場、つまり製銑工場42、製鋼工場43、鋼板工場44や発電所45へ供給する機能を有している。
【0027】
発電所45には、ミックスガス(MXG)9a以外に、高炉ガス(BFG)1a、コークス炉ガス(COG単独やCOG+模擬COGを含む)2a、及び転炉ガス(LDG)3aが直接供給可能になっている。これは各ガスの発生量の変動を吸収するためのもので、ガスミキサー9への供給後に余剰のガスがあった場合、これを発電燃料として使用している。また、外部購入燃料である重油6aも供給可能になっている。そして、各燃料種に応じたバーナを有するボイラ及びタービンが設置されている。つまり、発電所45では、ミックスガス(MXG)の他に、高炉ガス(BFG)、コークス炉ガス(COG単独やCOG+模擬COGを含む)、及び転炉ガス(LDG)を燃料ガスとしているが、通常は不足分として重油を供給して発電している。なお、バーナとして燃料の発熱量変動に耐用性がある管状火炎バーナを採用すれば、使用するバーナの数を減らせることは言うまでもない。
【0028】
本実施形態のように、ガス化溶融炉ガス7aを模擬コークス炉ガスの製造原料ガスとして使用することにより、外部購入燃料であるLNGまたはLPGの使用量を削減することができ、エネルギコスト削減が可能となる。
【0029】
なお、前述の実施形態では模擬COGミキサー60にて混合させるガスは、LNGまたはLPGのいずれか一方であるものを例に挙げて説明したが、LNGまたはLPGの両方を使用してガスの混合量を調整することもできる。その場合は、どちらかのガスを一定量流して、他方の流量を調整することで混合ガスの発熱量をCOG相当にする。
【0030】
【発明の効果】
以上述べたように、本発明によれば、可燃性廃棄物を高温還元雰囲気により熱分解・ガス化溶融するガス化溶融炉で発生するガスを、天然ガス(LNG)や液化石油ガス(LPG)など30MJ/Nm以上の発熱量を保有するガスと混合し、製鉄所内燃料として利用するようにしたので、外部購入燃料の使用量を削減できて、エネルギコストの低減化を図ることができた。
【図面の簡単な説明】
【図1】本発明のガス化溶融炉ガスの利用方法を適用した製銑・製鋼一貫製鉄所における燃料の流れを示す図である。
【符号の説明】
2 コークス炉
2a コークス炉ガス(COG)
4a LNGやLPG(30MJ/Nm以上の発熱量を保有するガス)
7 ガス化溶融炉
7a ガス化溶融炉ガス
24 ガス化溶融炉ガスホルダ(ガスホルダ)
34 ブロワ(昇圧手段)
60 模擬COGミキサー
60a 模擬COG(混合後のガス)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for effectively utilizing gas generated in a gasification and melting furnace for pyrolyzing and gasifying and melting combustible waste such as used plastics in a high-temperature reducing atmosphere.
[0002]
[Prior art]
BACKGROUND ART Coke oven gas (COG) generated in an ironworks is used not only as a fuel for an iron making process such as a steel heating furnace or a coke oven, but also as a flame holding fuel for a power generation boiler. In a power generation boiler, in order to maintain stable combustion in a furnace, 10% or more of the heat of combustion required to maintain the maximum steam generation amount of the boiler must always be burned with high calorie fuel. The fuel equivalent to 10% is called flame holding fuel.
[0003]
Generally, the remaining COG obtained by subtracting the amount of COG required in the iron making process from the amount of generated COG is supplied to the power plant. Therefore, if the amount of COG sent to the power plant is less than the flame-holding fuel, it is necessary to make up for the shortage. Conventionally, all of this shortage has been compensated for by heavy oil, city gas (natural gas: LNG), and liquefied petroleum gas (LPG). Such fuels are supplemented with high-calorie externally purchased fuels, and these externally purchased fuels are burned as part of the flame-holding fuel in a power generation boiler to maintain stable combustion.
[0004]
By the way, flammable waste such as used plastic, construction waste (paper waste, wood waste, fiber waste), shredder dust (waste electrical appliances, waste vehicles), sludge, cinders, animal and plant residues, etc. is blown in a furnace at a higher temperature than before. A gasification and melting furnace is known in which a furnace upper temperature is set to 800 to 1000 ° C., pyrolyzed and gasified in a high-temperature and reducing atmosphere, and recovered as a flammable gasification and melting furnace gas (for example, Patent Document 1). 1).
[0005]
[Patent Document 1]
JP-A-9-60830
[Problems to be solved by the invention]
As described above, if the amount of COG used in the steelmaking process increases and the amount of COG passed to the power plant as flame holding fuel becomes relatively short, it becomes impossible to secure the flame holding fuel with COG. The company operates the steel mill to make up for the shortfall with fuel purchased from outside calories. For this reason, energy costs increase.
[0007]
On the other hand, the gasification melting furnace gases, in an intact heating value 10 MJ / Nm 3 about not become a COG alternative gas, and hydrogen, for CO main gas, fast burning rate, gasification melting at COG burner When the furnace gas is burned, the combustion reaction is completed before the burner, and a high-temperature combustion flame is formed near the burner tip, so that the burner is melted.
[0008]
Therefore, conventionally, the gasification and melting furnace gas collected with great care was incinerated without being effectively used, rendered harmless, and released to the atmosphere. In addition, when burning, it is necessary to supply auxiliary fuel, and running costs have also been incurred.
[0009]
A technical object of the present invention is to make it possible to use gasification and melting furnace gas as a flame holding fuel of a power generation boiler, to reduce the amount of fuel purchased from outside, and to reduce energy costs. .
[0010]
[Means for Solving the Problems]
The method of using a gasification and melting furnace gas according to claim 1 of the present invention is characterized in that a gas generated in a gasification and melting furnace for pyrolyzing and gasifying and melting combustible waste in a high-temperature reducing atmosphere is converted into natural gas (LNG) or the like. It is characterized by being mixed with a gas having a calorific value of 30 MJ / Nm3 or more, such as liquefied petroleum gas (LPG), and used as fuel in steelworks.
[0011]
Further, the method of using the gasification / melting furnace gas according to claim 2 is characterized in that the gasification / melting furnace gas is mixed with a gas having a calorific value of 30 MJ / Nm3 or more through a piping network having a gas holder interposed. And
[0012]
The method of using the gasification / melting furnace gas according to claim 3 is characterized in that the gasification / melting furnace gas is pressurized before being mixed with a gas having a calorific value of 30 MJ / Nm3 or more.
[0013]
Further, the method of using the gasification and melting furnace gas according to claim 4 is that the gasification and melting furnace gas is mixed with a simulated coke oven gas equivalent to a coke oven gas by mixing the gasification melting furnace gas and a gas having a calorific value of 30 MJ / Nm3 or more. After that, the simulated coke oven gas is connected to a coke oven gas pipe to be used as fuel in a steelworks.
[0014]
Further, in the method of using the gasification and melting furnace gas according to claim 5, when the gasification and melting furnace gas is mixed with a gas having a heating value of 30 MJ / Nm3 or more, the calorific value of the gas after mixing is COG. It is characterized in that the mixing amount is adjusted so as to be considerably 15 to 25 MJ / Nm 3 .
[0015]
Further, in the method of using the gasification / melting furnace gas according to claim 6, when the gasification / melting furnace gas is mixed with a gas having a calorific value of 30 MJ / Nm3 or more, the combustion speed of the mixed gas is COG. It is characterized in that the mixing amount is adjusted so as to be considerable.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a method of using the gasification and melting furnace gas of the present invention will be described based on the illustrated embodiment. FIG. 1 is a diagram showing the flow of fuel in an integrated iron and steelmaking steelworks to which the present invention is applied.
[0017]
In the figure, reference numeral 1 denotes a blast furnace that produces by-product blast furnace gas (BFG) 1a during operation, 2 denotes a coke oven that produces by-product coke oven gas (COG) 2a during operation, and 3 denotes a converter furnace that produces converter gas (LDG) 3a during operation. It is a converter that produces. The blast furnace gas (BFG) 1a is a flammable gas of about 3,350 kJ / m 3 composed of CO, CO 2 , H 2 , and N 2 generated when reducing iron ore, and is generated almost continuously. The coke oven gas (COG) 2a is a flammable gas of about 20,100 kJ / m 3 composed of H 2 , CH 4 , and CO generated when carbonizing coal, and is generated almost continuously. The converter gas (LDG) 3a is a combustible gas of about 8,400 kJ / m 3 composed of CO and CO 2 generated when pig iron is reformed into steel, and is generated intermittently. That is, the gas generation always fluctuates due to the blowing of the converter.
[0018]
4a is a gas having a calorific value of 30 MJ / Nm 3 or more, that is, city gas (natural gas: LNG) or liquefied petroleum gas (propane gas: LPG) which is an externally purchased fuel, 5a is nitrogen (N 2 ), and 6 is external It is a heavy oil tank that is a supply source of the heavy oil 6a that is the purchased fuel. LNG or LPG is mainly used as a raw material gas for producing a simulated coke oven gas together with the gasification / melting furnace gas described below, but other than that, no gasification / melting furnace gas is generated / stored and stored in the power plant. It is used for the purpose of supplementing the shortage when the amount of COG used as flame fuel is insufficient. N 2 is used as a diluent if the LNG or LPG high-calorie is used in the replenishment purposes. Fuel oil is supplied as fuel for the power plant.
[0019]
Reference numeral 7 denotes a gasification and melting furnace. As described above, in a high-temperature furnace, used plastic, construction waste (paper waste, wood waste, textile waste), shredder dust (waste electrical appliances, waste vehicles), sludge, cinders, animals and plants. Reacts combustible waste such as flammable residues with blast oxygen, raises the furnace upper temperature to 800 to 1000 ° C, pyrolyzes and gasifies it in a high-temperature, reducing atmosphere, and recovers it as combustible gasification and melting furnace gas 7a. in the properties of the generated gas is about 8,000~11,000kJ / m 3, in the lower part of the furnace, the combustion of coke and carbon, melting the ash, is intended to discharge from Dekasuguchi. The recovered gasification and melting furnace gas 7a is all used as a raw material gas for producing a simulated coke oven gas.
[0020]
Numerals 11, 12, 13, and 14 denote combustion stripping towers or flare stacks for detoxifying and burning off combustible gas (fuel gas) generated in each furnace, which is not normally used, but is used when starting and stopping each furnace. It is used when the gas component is unstable or when the stock level of a holder, which will be described later, provided for each furnace exceeds the upper limit.
[0021]
21 is a BFG holder that temporarily stores blast furnace gas (BFG) and functions as a buffer, 22 is a COG holder that temporarily stores coke oven gas (COG) and functions as a buffer, and 23 is a buffer that temporarily stores converter gas (LDG). The LDG holder 24 functions as a gasification melting furnace gas holder that temporarily stores the gasification melting furnace gas 7a and functions as a buffer. The holders 21 to 24 are maintained at a low internal gas pressure of 65 kPa.
[0022]
Reference numerals 31, 32, and 33 denote boosters or blowers arranged in the BFG pipe, the COG pipe, and the LDG pipe, respectively. These blowers 31 to 33 increase the pressure of each gas from about 65 kPa to about 120 kPa. It has a function of supplying to a gas mixer. Reference numeral 34 denotes a pressure booster or blower arranged in series in the gasification and melting furnace gas piping network downstream of the gasification and melting furnace gas holder 24. The reason why the blower 34 is connected in series to the gasification / melting furnace gas holder 24 is that the gasification / melting furnace 7 recovers the gasification / melting furnace gas 7a from various combustible wastes as described above. This is because, since the amount is not constant and pressure fluctuation occurs, it is necessary to arrange a pressure booster in front of the gas mixer to stabilize the gasification and melting furnace gas supplied to the simulated COG mixer described later.
[0023]
The LNG or LPG pipe is divided into two branches, one of the two branches is connected to the simulated COG mixer 60, the other of the two branches is connected to the gas mixer 9, and the flow rate of each of the flow paths can be adjusted. Valves 61 and 62 are provided. Normally, an LNG or LPG piping network connected to the simulated COG mixer 60 is formed by the switching valves 61 and 62, and the opening (flow rate) of the simulated COG mixer-side switching valve 61 is determined according to the output of a computing unit described later. ) Is automatically adjusted. In any case, it is desirable that the switching valves 61 and 62 can be remotely operated.
[0024]
Further, a gasification / melting furnace gas pipe is connected to the simulated COG mixer 60 so that the gasification / melting furnace gas pressurized by the blower 34 is supplied. In other words, the simulated COG mixer 60 is provided for mixing the gasification and melting furnace gas with a gas (LNG or LPG) 4a having a calorific value of 30 MJ / Nm 3 or more, thereby obtaining a COG equivalent gas. It has a function of adjusting the mixing amount so that the calorific value of the mixed gas becomes 15 to 25 MJ / Nm 3 or adjusting the mixing amount so that the combustion speed of the mixed gas becomes equivalent to COG. . For example, natural gas (LNG) is a gas mainly composed of methane gas and has a low combustion rate. By mixing with natural gas for gasification and melting, the combustion rate is reduced as compared with the case of burning with gasification and melting furnace gas alone. Can be. Further, LPG is a gas mainly composed of propane or butane, and both have a low combustion rate, and when mixed with the gasification and melting furnace gas, lower the combustion rate as compared with the case where the gasification and melting furnace gas is used alone. be able to. Then, the simulated COG 60a, which is a mixed gas adjusted to a gas equivalent to COG, is returned to the COG pipe downstream of the COG holder 22, and is used as fuel in a steel mill or a mixed gas (MXG) described later. It is used as a source gas. In addition, COG 2a is directly supplied to a steel pipe or steel bar factory 41 having a steel heating furnace corresponding to the amount of heat that can be stably supplied by COG (including COG alone or COG + simulated COG) 2a, and the gas transfer power cost is reduced. We are trying to reduce it.
[0025]
In addition, a simulated COG sensor 65 composed of a calorimeter or gas chromatography capable of measuring the calorific value of the mixed gas (simulated COG) is arranged in the simulated COG pipe, and the simulated COG pipe is connected to the simulated COG pipe at a position closer to the simulated COG pipe. A COG sensor 66 composed of a calorimeter or gas chromatography capable of measuring the calorific value of COG is arranged on the upstream side, and the calorific value of the simulated COG is equivalent to COG based on the detection values of these sensors 65 and 66. Is provided with a calculator 67 for calculating the mixture amount of LNG or LPG, the calculator 67 calculates the mixture amount of LNG or LPG, and adjusts the opening degree (flow rate) of the switching valve 61 via a driver (not shown). Has become. When the arithmetic unit 67 determines from the detection values of the simulated COG sensor 65 and the COG sensor 66 that there is no generation and storage of gasification and melting furnace gas and that the amount of COG to be passed to the power plant as flame holding fuel is insufficient, It also has a function of notifying the operator of this and closing the switching valve 61.
[0026]
Reference numeral 9 denotes a gas into which BFG 1a, COG (including COG alone or COG + simulated COG) 2a, LDG 3a, externally purchased fuel (LNG or LPG) 4a, and nitrogen (N 2 ) 5a which are pressurized by the blowers 31 to 33 are sent. It is a mixer. The gas mixer 9 absorbs fluctuations in the calorific value due to the various gases sent in, and as a mixed gas (MXG) 9a in which the fuel properties are stabilized, the various factories in the steel mill, that is, the pig iron factory 42, the steel factory 43, and the steel sheet factory. It has a function of supplying the power to the power plant 44 and the power plant 45.
[0027]
In addition to the mixed gas (MXG) 9a, blast furnace gas (BFG) 1a, coke oven gas (including COG alone or COG + simulated COG) 2a, and converter gas (LDG) 3a can be directly supplied to the power plant 45. Has become. This is to absorb fluctuations in the generation amount of each gas, and when there is excess gas after being supplied to the gas mixer 9, this gas is used as power generation fuel. Also, heavy oil 6a, which is an externally purchased fuel, can be supplied. A boiler and a turbine having a burner corresponding to each fuel type are installed. That is, in the power plant 45, in addition to the mixed gas (MXG), the blast furnace gas (BFG), the coke oven gas (including COG alone or COG + simulated COG), and the converter gas (LDG) are used as fuel gas. Normally, heavy oil is supplied as a shortage to generate electricity. It is needless to say that the number of burners to be used can be reduced by adopting a tubular flame burner that is durable against fluctuations in the calorific value of the fuel.
[0028]
As in the present embodiment, by using the gasification and melting furnace gas 7a as a raw material gas for producing a simulated coke oven gas, it is possible to reduce the amount of LNG or LPG that is an externally purchased fuel, thereby reducing energy costs. It becomes possible.
[0029]
In the above-described embodiment, the gas to be mixed by the simulated COG mixer 60 is described as an example of one of LNG and LPG. However, the mixing amount of the gas using both LNG and LPG is described. Can also be adjusted. In that case, the calorific value of the mixed gas is made to correspond to COG by adjusting the flow rate of one of the gases and adjusting the flow rate of the other gas.
[0030]
【The invention's effect】
As described above, according to the present invention, natural gas (LNG) or liquefied petroleum gas (LPG) is generated by a gasification and melting furnace that thermally decomposes and gasifies combustible waste in a high-temperature reducing atmosphere. For example, by mixing with a gas having a calorific value of 30 MJ / Nm 3 or more and using it as fuel in steelworks, it was possible to reduce the amount of externally purchased fuel and reduce energy costs. .
[Brief description of the drawings]
FIG. 1 is a diagram showing the flow of fuel in an integrated iron and steelmaking steelworks to which a method for utilizing gasification and melting furnace gas of the present invention is applied.
[Explanation of symbols]
2 Coke oven 2a Coke oven gas (COG)
4a LNG and LPG (gas with a calorific value of 30 MJ / Nm 3 or more)
7 Gasification and melting furnace 7a Gasification and melting furnace gas 24 Gasification and melting furnace gas holder (gas holder)
34 blower (pressurizing means)
60 Simulated COG mixer 60a Simulated COG (gas after mixing)

Claims (6)

可燃性廃棄物を高温還元雰囲気により熱分解・ガス化溶融するガス化溶融炉で発生するガスを、天然ガス(LNG)や液化石油ガス(LPG)など30MJ/Nm以上の発熱量を保有するガスと混合し、製鉄所内燃料として利用することを特徴とするガス化溶融炉ガスの利用方法。The gas generated in a gasification and melting furnace that thermally decomposes and gasifies combustible waste in a high-temperature reducing atmosphere has a heating value of 30 MJ / Nm3 or more, such as natural gas (LNG) or liquefied petroleum gas (LPG). A method for using a gasification and melting furnace gas, which is mixed with a gas and used as a fuel in an ironworks. ガス化溶融炉ガスを、ガスホルダを介在させた配管網を通して30MJ/Nm以上の発熱量を保有するガスと混合することを特徴とする請求項1記載のガス化溶融炉ガスの利用方法。2. The method according to claim 1, wherein the gasification furnace gas is mixed with a gas having a calorific value of 30 MJ / Nm3 or more through a piping network having a gas holder interposed therebetween. ガス化溶融炉ガスを、30MJ/Nm以上の発熱量を保有するガスと混合する前に昇圧することを特徴とする請求項2記載のガス化溶融炉ガスの利用方法。The method according to claim 2, wherein the pressure of the gasification and melting furnace gas is increased before mixing with the gas having a calorific value of 30 MJ / Nm3 or more. ガス化溶融炉ガスと30MJ/Nm以上の発熱量を保有するガスとの混合によって、コークス炉ガス相当の模擬コークス炉ガスとした後、該模擬コークス炉ガスを、コークス炉ガス配管へ接続することで、製鉄所内燃料として利用することを特徴とする請求項1乃至請求項3のいずれかに記載のガス化溶融炉ガスの利用方法。A simulated coke oven gas equivalent to a coke oven gas is obtained by mixing the gasification melting furnace gas and a gas having a calorific value of 30 MJ / Nm 3 or more, and the simulated coke oven gas is connected to a coke oven gas pipe. The method according to any one of claims 1 to 3, wherein the gas is used as fuel in an ironworks. ガス化溶融炉ガスを30MJ/Nm以上の発熱量を保有するガスと混合する際に、混合後のガスの発熱量がCOG相当の15〜25MJ/Nmとなるように、混合量が調整されてなることを特徴とする請求項4記載のガス化溶融炉ガスの利用方法。When mixing the gasification melting furnace gas with a gas having a calorific value of 30 MJ / Nm 3 or more, the mixing amount is adjusted so that the calorific value of the mixed gas becomes 15 to 25 MJ / Nm 3 equivalent to COG. The method of using a gasification and melting furnace gas according to claim 4, wherein the gasification and melting furnace gas is used. ガス化溶融炉ガスを30MJ/Nm以上の発熱量を保有するガスと混合する際に、混合後のガスの燃焼速度がCOG相当となるように、混合量が調整されてなることを特徴とする請求項4記載のガス化溶融炉ガスの利用方法。When the gasification melting furnace gas is mixed with a gas having a calorific value of 30 MJ / Nm 3 or more, the mixing amount is adjusted so that the combustion speed of the mixed gas becomes equivalent to COG. The method for utilizing the gasification and melting furnace gas according to claim 4.
JP2003029412A 2003-02-06 2003-02-06 Method for utilizing gas of melting furnace for gasification Pending JP2004238508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003029412A JP2004238508A (en) 2003-02-06 2003-02-06 Method for utilizing gas of melting furnace for gasification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003029412A JP2004238508A (en) 2003-02-06 2003-02-06 Method for utilizing gas of melting furnace for gasification

Publications (1)

Publication Number Publication Date
JP2004238508A true JP2004238508A (en) 2004-08-26

Family

ID=32956597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003029412A Pending JP2004238508A (en) 2003-02-06 2003-02-06 Method for utilizing gas of melting furnace for gasification

Country Status (1)

Country Link
JP (1) JP2004238508A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101419880B1 (en) * 2012-12-21 2014-07-16 주식회사 포스코 Apparatus for manufacturing wire rod having gas booster
CN104745257A (en) * 2015-03-10 2015-07-01 华南理工大学 System and process for producing natural gas through combined supply of coal and coke-oven gas
JP2018108540A (en) * 2016-12-28 2018-07-12 株式会社神鋼環境ソリューション Waste treatment system and waste treatment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101419880B1 (en) * 2012-12-21 2014-07-16 주식회사 포스코 Apparatus for manufacturing wire rod having gas booster
CN104745257A (en) * 2015-03-10 2015-07-01 华南理工大学 System and process for producing natural gas through combined supply of coal and coke-oven gas
CN104745257B (en) * 2015-03-10 2017-10-20 华南理工大学 A kind of system and technique of coal and oven gas alliance preparing natural gas
JP2018108540A (en) * 2016-12-28 2018-07-12 株式会社神鋼環境ソリューション Waste treatment system and waste treatment method

Similar Documents

Publication Publication Date Title
JP4337354B2 (en) How to use by-product gas at steelworks
JP5130459B2 (en) Operation method of coal pyrolysis gasifier
JP2008291081A (en) Gasification plant
JPH11241109A (en) Method for injecting pulverized fine coal and reducing gas into blast furnace
JP2004238508A (en) Method for utilizing gas of melting furnace for gasification
JP4720260B2 (en) Method and apparatus for injecting reducing material into blast furnace
JP2015048840A (en) Gasification power generation system control method
JP2004239515A (en) Utilization method of gasification fusion furnace gas
KR101735989B1 (en) Gasification power plant control device, gasification power plant, and gasification power plant control method
JP6637797B2 (en) Carbon-containing raw material gasification system and method for setting oxidizing agent distribution ratio
JP4243764B2 (en) Pyrolysis gasification melting system and its heating method
JP3997524B2 (en) Gasification method and gas conversion apparatus for organic waste
CN102147110B (en) Method for combustion of a low-grade fuel
KR101886916B1 (en) Integrated Gasification Combined Cycle System
JP2012031470A (en) Method of reforming exhaust gas generated from arc furnace, reforming device, and method of manufacturing reformed gas
JP5762109B2 (en) Tar decomposition method and tar decomposition equipment
JP2004115786A (en) Method for utilizing gasifing-melting furnace gas
JP2005283072A (en) Method of using gasification melting furnace gas
JP2004224926A (en) Method for utilizing by-product gas of iron mill
KR101590120B1 (en) Gasification system for fuel substitution of industrial fired boiler
JP2004099685A (en) Method for utilizing gasification fusion furnace gas
JPH11241108A (en) Method for injecting pulverized fine coal into blast furnace
JP2000248284A (en) Method and apparatus for operating rapid thermal decomposition facility
JP2005283074A (en) Utilizing method of gasification melting furnace gas
JP2005283073A (en) Utilizing method of gasification melting furnace gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081021