JP2004237233A - Concentrator equipped with crystal separating mechanism - Google Patents

Concentrator equipped with crystal separating mechanism Download PDF

Info

Publication number
JP2004237233A
JP2004237233A JP2003030744A JP2003030744A JP2004237233A JP 2004237233 A JP2004237233 A JP 2004237233A JP 2003030744 A JP2003030744 A JP 2003030744A JP 2003030744 A JP2003030744 A JP 2003030744A JP 2004237233 A JP2004237233 A JP 2004237233A
Authority
JP
Japan
Prior art keywords
evaporator
liquid component
liquid
component
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003030744A
Other languages
Japanese (ja)
Inventor
Tetsushi Yamaga
徹志 山賀
Katsuya Yamamoto
勝哉 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okawara Mfg Co Ltd
Original Assignee
Okawara Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okawara Mfg Co Ltd filed Critical Okawara Mfg Co Ltd
Priority to JP2003030744A priority Critical patent/JP2004237233A/en
Publication of JP2004237233A publication Critical patent/JP2004237233A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a concentrator equipped with a new crystal separating mechanism capable of handling a liquid raw material having a high viscosity while preventing the foaming of a liquid component and capable of easily and certainly removing crystals precipitated accompanied by concentration. <P>SOLUTION: The concentrator equipped with the crystal separating mechanism is characterized in that the intake port 50 of a return pipeline 5 is located in the separated liquid component region E, which is formed by separating crystals C from a liquid component L1, provided near the center of an evaporation boiler 2. The foaming of the liquid component L1 can be suppressed by the centrifugal effect of the revolving stream of the liquid component L1 and the separation of the crystals C from the liquid component L1 can be performed easily and certainly. Further, since the liquid component L1 is taken in at a place most separated from the crystals C moved to the vicinity of the inner wall of the evaporation boiler 2, it can effectively be avoided that the crystals C enter the return pipeline 5. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は各種調味料、各種エキス等の液体原料を濃縮するために用いられる蒸発装置に関するものであって、特に発泡しやすい液体原料や、粘度の高い液体原料や各種廃液を取り扱うことができるとともに、濃縮にともなって析出された結晶を容易に且つ確実に除去することのできる結晶分離機構を具えた濃縮装置に係るものである。
【0002】
【発明の背景】
従来より、漢方薬生薬エキス、各種調味料、動物エキス、魚介エキス、植物エキス、醗酵液等の各種液体物質や、アミノ酸、酵母、蛋白質等の水溶液あるいは各種廃液等を液体原料とし、この液体原料の濃縮を行う場合には、種々の蒸発装置が用いられている。
これら蒸発装置の多くは、ほぼ密閉された経路内で原料液を循環させながら水分(溶媒)を蒸発させるものであるため、濃度の上昇にともなって溶質が結晶として析出されることとなる。このような結晶は、放っておくと循環経路の目詰まりを引き起こしてしまうため、種々の手段により結晶の除去が行われている。
しかしながら既存の結晶除去手段は、抜き出しポンプ等の動力源を必要とするためコスト上昇を招いてしまったり、結晶の除去効率が低い等の問題があった。
【0003】
ところで本出願人は、機械的な可動部分が無い簡単な構造であるためイニシャルコストが低く済み、またほとんど故障しないため保守費用を含めたランニングコストが低く済み、更には設置面積が少なく済むといったメリットがある液膜上昇式の蒸発装置について更なる改良を加え、特願2002−135055「高速旋回式蒸発装置」として特許出願に及んでいる。
この発明は、蒸発缶内において生じる液体成分の旋回流を、流速の早いものとすることができ、その遠心効果によって液体成分の発泡を効果的に防ぎ、更に濃縮された状態の液体成分と、新たに投入された液体原料との混合不足による焦げ付き等を防ぎ、発泡しやすい液体原料や、粘度の高い液体原料を取り扱うことができるというものである。
その後本出願人は、前記液膜上昇式の蒸発装置において、コスト上昇を招いてしまうことがなく結晶の除去を効果的に行うことができる機構の開発に取り組んだ。
【0004】
【解決を試みた技術課題】
本発明はこのような背景からなされたものであって、液体成分の発泡を防ぎ、更に濃縮された状態の液体成分と、新たに投入された液体原料との混合不足による焦げ付き等を防ぎ、発泡しやすい液体原料や、粘度の高い液体原料を取り扱うことができるとともに、濃縮にともなって析出された結晶を容易に且つ確実に除去することのできる、新規な結晶分離機構を具えた濃縮装置の開発を技術課題としたものである。
【0005】
【課題を解決するための手段】
すなわち請求項1記載の結晶分離機構を具えた濃縮装置は、加熱缶と蒸発缶との間を吹込管路及び戻り管路によって接続することにより循環経路を形成するとともに、前記加熱缶内に配した長管内に流入した液体原料を、この長管の外側に供給した加熱媒体からの伝導熱によって沸騰させることにより溶媒成分を蒸発させ、濃度の高まった液体成分と蒸気成分とを前記蒸発缶内に吹き込み、この蒸発缶内においてこれら液体成分と蒸気成分とを分離して高濃度の液体成分を得る蒸発装置において、前記蒸発缶は平面視で円形の横断面を有するものであり、この蒸発缶に対して前記吹込管路を接続するにあたっては、円形横断面の接線方向に流路を形成するように接続することにより、蒸発缶内において液体成分の旋回流を生じさせるものであり、且つ前記蒸発缶の中心付近であって、液体成分から結晶が分離されて形成される分離液体成分領域には、前記戻り管路における取込口を位置させたことを特徴とする結晶分離機構を具えた濃縮装置。
この発明によれば、蒸発缶内において生じる液体成分の旋回流を、流速の早いものとすることができ、その遠心効果によって発泡を効果的に抑えることができるとともに、液体成分の上層部において結晶を蒸発缶の内壁付近に移動させるため、液体成分からの結晶の分離を容易に且つ確実に行うことができる。
また蒸発缶の内壁付近に移動させられた結晶から最も離れた個所で液体成分を取り込むため、結晶が戻り管路内に入り込んでしまうのを効果的に回避することができる。
【0006】
更にまた請求項2記載の結晶分離機構を具えた濃縮装置は、前記要件に加え、前記蒸発缶下部を先細り形状としたことを特徴として成るものである。
この発明によれば、結晶を蒸発缶の内壁に沿って下降させるとともに、その中心付近に集中させることができる。
そしてこれら各請求項記載の発明の構成を手段として前記課題の解決が図られる。
【0007】
【発明の実施の形態】
以下本発明について図示の実施の形態に基づいて説明する。図1中符号Dで示すものが本発明の濃縮装置であり、このものは加熱缶1と蒸発缶2との間を吹込管路3によって接続して成るものである。そして前記加熱缶1内に配した長管11内に流入させた液体原料Lを、この長管11の外側に供給した加熱媒体からの伝導熱によって沸騰させることにより溶媒成分を蒸発させ、濃度の高まった状態の液体成分L1と蒸気成分Sとを前記蒸発缶2内に吹き込み、この蒸発缶2内においてこれら液体成分L1と蒸気成分Sとの分離を行う装置である。
【0008】
以下濃縮装置Dを構成する諸部材について詳しく説明する。
まず前記加熱缶1について説明すると、このものは密閉性が確保された筐体10内に、金属等の耐熱素材から成る管路である長管11を複数本具えるものであり、この長管11の下端部を筐体10下部に形成した給液口12と連通状態とし、一方、長管11の上端部を筐体10上部に形成した排出口13に臨ませて成るものである。なお排出口13に対しては後述するように先細り形状のダクト31が接続される。また前記筐体10の側周部分には蒸気口14及びドレン口15が形成される。
【0009】
次に前記蒸発缶2について説明すると、このものは図2、3に示すように一例として円筒部20A下部に逆円錐部20Bを接続した形状の中空部材である筐体20の上部に排気口21を形成し、下部に結晶排出口22を形成し、更に側周部に流入口23を形成して成るものである。なお筐体20の形態としては、図4に示すように円筒部20A下部に逆円錐部20Bを接続し、更にこの逆円錐部の下部に小径の円筒部20a及び逆円錐部20bを接続するようにしてもよい。
そして前記結晶排出口22には結晶排出管25が接続され、この結晶排出管25の下部にはバルブ26を介在させて回収容器27を具えるものであり、バルブ26を開放することにより、液体原料L中に析出されて結晶排出管25内に蓄積された結晶Cを外部に排出できるように構成する。
【0010】
そして前記加熱缶1における排出口13と、蒸発缶2における流入口23との間を吹込管路3によって連通状態に接続し、また前記加熱缶1における給液口12と、蒸発缶2内部との間を戻り管路5によって連通状態に接続する。この結果、蒸発缶2、戻り管路5、加熱缶1及び吹込管路3を要素とした循環経路が形成されるものである。
ここで前記戻り管路5について説明すると、このものは図2に示すように前記結晶排出管25の側周部分を貫通して結晶排出管25の内部に至り、その後屈曲して上昇し、筐体20内部にまで至るようにして配置されるものである。そして戻り管路5の上端部である取込口50を、一例として筐体20の下部を構成する逆円錐部20B内に位置させるものであり、液体成分L1から結晶Cが分離された分離済液体成分領域Eに位置させる。
また前記取込口50に対して適宜金網等によって構成されたフィルタを取り付けることにより、戻り管路5への結晶Cの流入を積極的に防ぐようにしてもよい。
なお前記戻り管路5には濃縮液排出口51を形成するものであり、バルブ52を開放することにより、濃縮された状態の液体成分L1を外部に排出できるように構成する。
【0011】
ここで前記吹込管路3及び流入口23の形態について更に詳しく説明するものであり、これらの構成については、一例として本出願人による特許出願である特願2002−135055「高速旋回式蒸発装置」に開示されたものを採用するものである。
まず前記吹込管路3は図3に示すように、蒸発缶2に対して円形横断面の接線方向に流路を形成するように接続することにより、蒸発缶2内において液体成分L1及び蒸気成分Sの旋回流を生じさせるように構成される。そして吹込管路3における加熱缶1との接続部位を、先細り状のダクト31によって構成し、更に吹込管路3における蒸発缶2との接続部位近傍の開口断面積S3が、前記複数本の長管11の開口断面積S11の総和よりも小さくなるように設定した。
また前記流入口23は図3(c)に示すように、垂直辺が水平辺よりも長い長方形状のスリットとするものであり、吹込管路3における蒸発缶2との接続部位の開口断面の形状も、垂直辺が水平辺よりも長い長方形状とし、蒸発缶2内に吹き込む液体成分L1と蒸気成分Sとが薄層状態に成るように構成した。
【0012】
また前記蒸発缶2における排気口21の後段部分にはコンデンサ7を接続し、更にその後段に真空ポンプPを接続する。
更にまたこの実施の形態においては、前記蒸発缶2における筐体20内に液体原料Lを供給するものであり、給液タンク8に貯留された液体原料Lを、バルブ81の開度を調整することにより、筐体20内に配したノズル82から噴出するものである。
【0013】
更にまた前記加熱缶1に形成した蒸気口14には蒸気供給装置9を接続するものであり、ここから筐体10内に供給された蒸気が、長管11内に位置する液体原料L(濃縮後の液体成分L1も含む)に対して熱を伝導し、その結果蒸気は凝集してドレン口15から外部に排出される。
【0014】
本発明の濃縮装置Dは、一例として上述したように構成されるものであり、以下この装置の作動態様について説明する。
まず真空ポンプPを起動して液体原料L及び液体成分L1が循環する経路内の減圧を図り、この状態でバルブ81の開度を調節して、漢方薬生薬エキス、各種調味料、動物エキス、魚介エキス、植物エキス、醗酵液等の各種液体物質や、アミノ酸、酵母、蛋白質等の水溶液あるいは各種廃液等を液体原料Lとしてノズル82から蒸発缶2内に供給する。次いで蒸気供給装置9から加熱缶1内に蒸気を供給するものであり、長管11を加熱した蒸気は凝集し、ドレン口15から外部に排出される。なおこの実施の形態では、真空ポンプPを用いて循環経路内の減圧を行い、液体原料Lの沸点低下を図っているが、液体原料Lの種類等によっては減圧を要さない場合もある。
【0015】
このような状況の下、液体原料Lは、戻り管路5を経由して加熱缶1に至って長管11内に供給され、蒸気から伝導される熱によって長管11内部で沸騰し、発生した蒸気成分Sが長管11内を上昇する際に液体成分L1を引き上げることとなる。
そしてこれら蒸気成分Sと液体成分L1とは長管11内を上昇して排出口13に至りここから吹込管路3内に入り込むものであり、このとき先細り状のダクト31を通過するとともに、蒸発缶2との接続部位近傍の開口断面積S3を複数本の長管11の開口断面積S11の総和よりも小さく設定した吹込管路3を通過するため流速が増すものである。なおこの実施の形態では、吹込管路3内における蒸気成分Sと液体成分L1との流速が、100〜250m/sとなるようにした。
【0016】
次いで蒸気成分Sと液体成分L1とは、蒸発缶2における流入口23から筐体20内に流入する。このとき図3に示すように、蒸発缶2は平面視で円形の横断面を有するものであり、この蒸発缶2に対して吹込管路3が円形横断面の接線方向に流路を形成するように接続されているため、蒸発缶2内において液体成分L1の旋回流を生じさせることができる。
特にこの実施の形態では、前記旋回流の回転数は、小型の装置で20000rpm程度、大型の装置で1000rpm程度と、既存の装置と比べて高い値とすることができるため、遠心効果により液体成分L1の発泡を効果的に抑えることができるものである。またこの実施の形態では、前記吹込管路3における蒸発缶2との接続部位の開口断面を、垂直辺が水平辺よりも長い長方形形状としたため、蒸発缶2内に吹き込む液体成分L1と蒸気成分Sとが薄層状態となり、流入口23から排気口21に向けて移動する蒸気成分Sの流れが、流入口23から排出口22に向けて移動する液体成分L1の流れに干渉してしまうことがない。
そして蒸気成分Sは排気口21からコンデンサ7に至り、凝集液となって外部に排出される。
【0017】
一方、液体成分L1は、旋回流のほぼ中心に位置する取込口50に流入して戻り管路5内に取り込まれることとなる。
このとき、液体原料Lが濃縮されるに伴って析出された結晶Cは前記旋回流の回転によって筐体20の内壁部付近に集中することとなり、図2に示すように筐体20の中心部分には、液体成分L1から結晶Cが分離された分離済液体成分領域Eが形成される。その後結晶Cは、水流とともに徐々に下降してやがて結晶排出管25内に堆積してゆく。このため結晶Cは戻り管路5内に流入してしまうことがない。
このような運転を継続することにより、濃縮された状態の液体成分L1は、前記ノズル82から供給された新たな液体原料Lを伴って再び加熱缶1における長管11内に位置することとなる。なおこの際、濃縮された状態の液体成分L1は、新たに供給された液体原料Lと混ざり合うため、濃度が均一となった状態で加熱缶1に供給されることとなり、複数の長管11での流量が不均一になることが無く、液切れによる過熱や焦げ付きが生じない。また長管11内に結晶Cが入り込まないため、このものを閉塞してしまうことがなく、更に熱伝導を阻害してしまうことがない。
【0018】
そして以上のような操作を継続し、液体成分L1が所望の濃度となった時点でバルブ52を開放し、濃縮された状態の液体成分L1を外部に排出するものである。また結晶排出管25内にある程度の量の結晶Cが溜まった時点でバルブ26を開放し、このものを外部に排出するようにする。
【0019】
【発明の効果】
本発明によれば、液体原料Lを濃縮した液体成分の発泡を防ぎ、更に濃縮された状態の液体成分と、新たに投入された液体原料Lとの混合不足による焦げ付き等を防ぎ、発泡しやすい液体原料Lや、粘度の高い液体原料Lを効率的に濃縮することができるとともに、濃縮にともなって析出された結晶Cを容易に且つ確実に除去することができる。特に蒸発缶2内に位置する全ての液体成分L1から結晶Cの分離を行うため、この分離を極めて高効率で行うことができる。更に結晶Cを除去するために格別動力を必要としないため、装置のコスト上昇を回避することができる。
【図面の簡単な説明】
【図1】本発明の濃縮装置を骨格的に示す側面図である。
【図2】蒸発缶内部の様子を示す縦断側面図である。
【図3】蒸気缶に対する戻り管路の接続の様子を示す斜視図、平面図及び側面図である。
【図4】形態を異ならせた蒸発缶を示す縦断側面図である。
【符号の説明】
D 濃縮装置
1 加熱缶
10 筐体
11 長管
12 給液口
13 排出口
14 蒸気口
15 ドレン口
2 蒸発缶
20 筐体
20A 円筒部
20a 円筒部
20B 逆円錐部
20b 逆円錐部
21 排気口
22 結晶排出口
23 流入口
25 結晶排出管
26 バルブ
27 回収容器
3 吹込管路
31 ダクト
5 戻り管路
50 取込口
51 濃縮液排出口
52 バルブ
7 コンデンサ
8 給液タンク
81 バルブ
82 ノズル
9 蒸気供給装置
C 結晶
E 分離済液体成分領域
L 液体原料
L1 液体成分
P 真空ポンプ
S 蒸気成分
S3 開口断面積
S11 開口断面積
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to an evaporator used for concentrating liquid raw materials such as various seasonings and various extracts, and particularly capable of handling a liquid raw material which is easily foamed, a liquid raw material having a high viscosity and various waste liquids. The present invention relates to a concentrating device provided with a crystal separation mechanism capable of easily and surely removing crystals precipitated due to concentration.
[0002]
BACKGROUND OF THE INVENTION
Conventionally, various liquid substances such as herbal medicine herbal extracts, various seasonings, animal extracts, seafood extracts, plant extracts, fermentation liquids, and aqueous solutions or various waste liquids of amino acids, yeasts, proteins, and the like have been used as liquid raw materials. When performing concentration, various evaporators are used.
Many of these evaporators evaporate water (solvent) while circulating the raw material liquid in a substantially closed path, so that the solute is deposited as crystals as the concentration increases. Such crystals cause clogging of the circulation path if left unchecked. Therefore, the crystals are removed by various means.
However, the existing crystal removing means requires a power source such as a drawing pump or the like, resulting in an increase in cost and a low efficiency of removing crystals.
[0003]
By the way, the applicant has the advantage that the initial cost is low because of a simple structure having no mechanical moving parts, the running cost including the maintenance cost is low because there is almost no failure, and the installation area is further reduced. A further improvement has been made to a certain liquid film elevating type evaporator, and a patent application has been filed as Japanese Patent Application No. 2002-135055 "High-speed revolving evaporator".
According to the present invention, the swirling flow of the liquid component generated in the evaporator can be made to have a high flow velocity, the foaming of the liquid component is effectively prevented by the centrifugal effect, and the liquid component in a further concentrated state is provided. This prevents sticking or the like due to insufficient mixing with the newly introduced liquid material, and enables the liquid material which is easily foamed or the liquid material having a high viscosity to be handled.
Subsequently, the present applicant worked on the development of a mechanism capable of effectively removing crystals without increasing the cost in the liquid film rising type evaporating apparatus.
[0004]
[Technical issues to be solved]
The present invention has been made in view of such a background, and prevents foaming of a liquid component, and further prevents burning due to insufficient mixing of a liquid component in a concentrated state and a newly introduced liquid material, and foaming. Development of a concentrator equipped with a new crystal separation mechanism that can handle liquid raw materials that are easy to process and liquid raw materials with high viscosity, and that can easily and reliably remove crystals precipitated during concentration. Is a technical issue.
[0005]
[Means for Solving the Problems]
That is, in the concentrating apparatus having the crystal separation mechanism according to the first aspect, a circulation path is formed by connecting the heating can and the evaporator with a blowing pipe and a return pipe, and the heating vessel and the evaporating vessel are arranged in the heating can. The liquid component that has flowed into the elongated tube is boiled by conduction heat from the heating medium supplied to the outside of the elongated tube to evaporate the solvent component, and the concentrated liquid component and the vapor component are separated into the evaporator. In the evaporator, the liquid component and the vapor component are separated in the evaporator to obtain a high-concentration liquid component. In the evaporator, the evaporator has a circular cross section in plan view. In connection with the above-mentioned blowing pipe, the connection is made so as to form a flow path in the tangential direction of the circular cross section, thereby generating a swirling flow of the liquid component in the evaporator. A crystal separation mechanism, wherein an intake in the return line is located in a separated liquid component region near the center of the evaporator where crystals are separated from the liquid component. Concentrator with a.
According to the present invention, the swirling flow of the liquid component generated in the evaporator can be made to have a high flow velocity, the foaming can be effectively suppressed by the centrifugal effect, and the crystal is formed in the upper layer of the liquid component. Is moved to the vicinity of the inner wall of the evaporator, so that crystals can be easily and reliably separated from the liquid component.
In addition, since the liquid component is taken in at a position farthest from the crystal moved near the inner wall of the evaporator, it is possible to effectively prevent the crystal from entering the return pipe.
[0006]
Furthermore, a concentrating device having a crystal separation mechanism according to claim 2 is characterized in that, in addition to the above requirements, the lower portion of the evaporator is tapered.
According to the present invention, the crystal can be lowered along the inner wall of the evaporator and concentrated near the center thereof.
The above object is achieved by using the configuration of the invention described in each of the claims.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on the illustrated embodiments. The reference numeral D in FIG. 1 denotes a concentrator according to the present invention, which is constituted by connecting a heating can 1 and an evaporating can 2 by a blowing line 3. Then, the liquid material L flowing into the long tube 11 disposed in the heating can 1 is boiled by conduction heat from the heating medium supplied to the outside of the long tube 11 to evaporate the solvent component, thereby evaporating the concentration of the solvent. This is an apparatus that blows the elevated liquid component L1 and vapor component S into the evaporator 2 and separates the liquid component L1 from the vapor component S in the evaporator 2.
[0008]
Hereinafter, various members constituting the concentration device D will be described in detail.
First, the heating can 1 will be described. This heating can 1 is provided with a plurality of long pipes 11 which are pipes made of a heat-resistant material such as a metal in a casing 10 having a sealed property. The lower end of the long tube 11 communicates with a liquid supply port 12 formed at the lower part of the housing 10, while the upper end of the long tube 11 faces the discharge port 13 formed at the upper part of the housing 10. A tapered duct 31 is connected to the outlet 13 as described later. Further, a steam port 14 and a drain port 15 are formed in a side peripheral portion of the housing 10.
[0009]
Next, the evaporator 2 will be described. As shown in FIGS. 2 and 3, for example, an evacuation port 21 is provided at an upper portion of a housing 20 which is a hollow member having a shape in which an inverted conical portion 20B is connected to a lower portion of a cylindrical portion 20A. Is formed, a crystal discharge port 22 is formed in the lower part, and an inflow port 23 is formed in a side peripheral part. As a form of the housing 20, as shown in FIG. 4, an inverted conical portion 20B is connected to a lower portion of the cylindrical portion 20A, and a small diameter cylindrical portion 20a and an inverted conical portion 20b are further connected to a lower portion of the inverted conical portion. It may be.
A crystal discharge pipe 25 is connected to the crystal discharge port 22. A recovery vessel 27 is provided below the crystal discharge pipe 25 with a valve 26 interposed therebetween. The crystal C deposited in the raw material L and accumulated in the crystal discharge pipe 25 can be discharged to the outside.
[0010]
The discharge port 13 of the heating can 1 and the inflow port 23 of the evaporating vessel 2 are connected to each other by the blowing line 3. The liquid supply port 12 of the heating can 1 and the inside of the evaporating vessel 2 are connected to each other. Are connected to each other by a return line 5. As a result, a circulation path including the evaporator 2, the return pipe 5, the heating can 1, and the blow pipe 3 is formed.
Here, the return line 5 will be described. As shown in FIG. 2, the return line 5 penetrates the peripheral portion of the crystal discharge tube 25 to reach the inside of the crystal discharge tube 25, and then bends and rises to form a casing. It is arranged so as to reach the inside of the body 20. The intake port 50, which is the upper end of the return pipe 5, is located, for example, in the inverted conical portion 20B that forms the lower part of the housing 20, and the separated crystal C is separated from the liquid component L1. It is located in the liquid component region E.
By attaching a filter made of a wire mesh or the like to the intake port 50 appropriately, the inflow of the crystal C into the return line 5 may be positively prevented.
The return pipe 5 is provided with a concentrated liquid discharge port 51, and the valve 52 is opened so that the concentrated liquid component L1 can be discharged to the outside.
[0011]
Here, the configuration of the blow-in pipe 3 and the inlet 23 will be described in more detail. For example, the configuration of these is described in Japanese Patent Application No. 2002-135055 “High-speed swirling evaporator” which is a patent application by the present applicant. Is adopted.
First, as shown in FIG. 3, the blowing line 3 is connected to the evaporator 2 so as to form a flow path in a tangential direction of a circular cross section, so that the liquid component L1 and the vapor component It is configured to generate a swirling flow of S. A connecting portion of the blowing line 3 with the heating can 1 is constituted by a tapered duct 31. Further, an opening cross-sectional area S3 near a connecting portion of the blowing line 3 with the evaporating can 2 is the same as that of the plurality of long lines. It was set so as to be smaller than the total sum of the opening cross-sectional areas S11 of the tubes 11.
As shown in FIG. 3 (c), the inlet 23 is a rectangular slit whose vertical side is longer than the horizontal side. The shape is also rectangular so that the vertical side is longer than the horizontal side, and the liquid component L1 and the vapor component S blown into the evaporator 2 are formed in a thin layer state.
[0012]
Further, the condenser 7 is connected to a portion of the evaporator 2 after the exhaust port 21, and a vacuum pump P is further connected to a portion after the exhaust port 21.
Furthermore, in this embodiment, the liquid raw material L is supplied into the casing 20 of the evaporator 2, and the opening degree of the valve 81 is adjusted by using the liquid raw material L stored in the liquid supply tank 8. Thus, the fuel is ejected from the nozzle 82 provided in the housing 20.
[0013]
Furthermore, a steam supply device 9 is connected to a steam port 14 formed in the heating can 1, and steam supplied from the steam supply device 9 into the housing 10 is supplied to the liquid raw material L (condensate) located in the long pipe 11. The heat is conducted to the liquid component L1 (which will be described later), and as a result, the vapor condenses and is discharged from the drain port 15 to the outside.
[0014]
The concentrating device D of the present invention is configured as described above as an example, and an operation mode of this device will be described below.
First, the vacuum pump P is started to reduce the pressure in the path in which the liquid raw material L and the liquid component L1 circulate, and in this state, the opening of the valve 81 is adjusted, and the herbal medicine extract, various seasonings, animal extracts, fish and shellfish are extracted. Various liquid substances such as extracts, plant extracts, and fermentation liquids, aqueous solutions of amino acids, yeasts, proteins, and various waste liquids are supplied as liquid raw materials L from the nozzle 82 into the evaporator 2. Next, the steam is supplied from the steam supply device 9 into the heating can 1, and the steam that has heated the long tube 11 aggregates and is discharged from the drain port 15 to the outside. In this embodiment, the pressure in the circulation path is reduced by using the vacuum pump P to reduce the boiling point of the liquid raw material L. However, depending on the type of the liquid raw material L, the pressure may not be required in some cases.
[0015]
Under such circumstances, the liquid raw material L was supplied to the heating pipe 1 via the return pipe 5 and was supplied into the long pipe 11, and was boiled inside the long pipe 11 by heat conducted from the steam and generated. When the vapor component S rises inside the long tube 11, the liquid component L1 is pulled up.
The vapor component S and the liquid component L1 rise in the long pipe 11 to reach the discharge port 13 and enter the blowing pipe 3 from here. At this time, the vapor component S and the liquid component L1 pass through the tapered duct 31 and evaporate. The flow velocity increases because the gas flows through the blowing conduit 3 in which the opening cross-sectional area S3 near the connection portion with the can 2 is set smaller than the sum of the opening cross-sectional areas S11 of the plurality of long tubes 11. In this embodiment, the flow rates of the vapor component S and the liquid component L1 in the blowing line 3 are set to 100 to 250 m / s.
[0016]
Next, the vapor component S and the liquid component L1 flow into the housing 20 from the inflow port 23 in the evaporator 2. At this time, as shown in FIG. 3, the evaporator 2 has a circular cross section in a plan view, and the blowing pipe 3 forms a flow path in the tangential direction of the circular cross section with respect to the evaporator 2. Thus, a swirling flow of the liquid component L1 can be generated in the evaporator 2.
In particular, in this embodiment, the rotation speed of the swirling flow can be set to about 20,000 rpm for a small apparatus and about 1000 rpm for a large apparatus, which is higher than that of an existing apparatus. L1 foaming can be effectively suppressed. Further, in this embodiment, since the opening cross section of the connecting portion of the blowing line 3 with the evaporator 2 is formed in a rectangular shape whose vertical side is longer than the horizontal side, the liquid component L1 and the vapor component blown into the evaporator 2 are formed. S is in a thin layer state, and the flow of the vapor component S moving from the inlet 23 toward the outlet 21 interferes with the flow of the liquid component L1 moving from the inlet 23 toward the outlet 22. There is no.
Then, the vapor component S reaches the condenser 7 from the exhaust port 21 and is discharged to the outside as a flocculant.
[0017]
On the other hand, the liquid component L <b> 1 flows into the intake port 50 located substantially at the center of the swirling flow, and is taken into the return pipe 5.
At this time, the crystals C precipitated as the liquid raw material L is concentrated are concentrated near the inner wall of the housing 20 by the rotation of the swirling flow, and as shown in FIG. A separated liquid component region E in which the crystal C is separated from the liquid component L1 is formed. Thereafter, the crystal C gradually descends with the water flow, and eventually accumulates in the crystal discharge pipe 25. Therefore, the crystal C does not flow into the return pipe 5.
By continuing such an operation, the concentrated liquid component L <b> 1 is again located in the long pipe 11 of the heating can 1 with the new liquid raw material L supplied from the nozzle 82. . At this time, since the concentrated liquid component L1 is mixed with the newly supplied liquid raw material L, the concentrated liquid component L1 is supplied to the heating can 1 in a state in which the concentration is uniform, and the plurality of long tubes 11 The flow rate of the liquid does not become non-uniform, and overheating and scorching due to running out of liquid do not occur. Further, since the crystal C does not enter the long tube 11, the crystal C is not blocked, and the heat conduction is not hindered.
[0018]
The above operation is continued, and when the liquid component L1 reaches a desired concentration, the valve 52 is opened to discharge the concentrated liquid component L1 to the outside. When a certain amount of crystals C have accumulated in the crystal discharge pipe 25, the valve 26 is opened to discharge the crystals to the outside.
[0019]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, foaming of the liquid component which concentrated the liquid raw material L is prevented, and the sticking etc. by insufficient mixing of the liquid component L and the newly added liquid raw material L are prevented, and it is easy to foam. The liquid raw material L and the high-viscosity liquid raw material L can be efficiently concentrated, and the crystals C precipitated due to the concentration can be easily and reliably removed. Particularly, since the crystal C is separated from all the liquid components L1 located in the evaporator 2, this separation can be performed with extremely high efficiency. Further, since no special power is required to remove the crystal C, an increase in the cost of the apparatus can be avoided.
[Brief description of the drawings]
FIG. 1 is a side view schematically showing a concentration device of the present invention.
FIG. 2 is a vertical sectional side view showing the inside of the evaporator.
FIG. 3 is a perspective view, a plan view, and a side view showing how a return pipe is connected to a steam can.
FIG. 4 is a longitudinal sectional side view showing an evaporator having a different form.
[Explanation of symbols]
D Concentrator 1 Heating can 10 Casing 11 Long pipe 12 Supply port 13 Outlet 14 Steam port 15 Drain port 2 Evaporating can 20 Casing 20A Cylindrical section 20a Cylindrical section 20B Inverted conical section 20b Inverted conical section 21 Exhaust port 22 Crystal Outlet 23 Inlet 25 Crystal discharge pipe 26 Valve 27 Recovery container 3 Blowing line 31 Duct 5 Return line 50 Inlet 51 Concentrated liquid outlet 52 Valve 7 Capacitor 8 Supply tank 81 Valve 82 Nozzle 9 Steam supply device C Crystal E Separated liquid component region L Liquid raw material L1 Liquid component P Vacuum pump S Vapor component S3 Open sectional area S11 Open sectional area

Claims (2)

加熱缶と蒸発缶との間を吹込管路及び戻り管路によって接続することにより循環経路を形成するとともに、前記加熱缶内に配した長管内に流入した液体原料を、この長管の外側に供給した加熱媒体からの伝導熱によって沸騰させることにより溶媒成分を蒸発させ、濃度の高まった液体成分と蒸気成分とを前記蒸発缶内に吹き込み、この蒸発缶内においてこれら液体成分と蒸気成分とを分離して高濃度の液体成分を得る蒸発装置において、前記蒸発缶は平面視で円形の横断面を有するものであり、この蒸発缶に対して前記吹込管路を接続するにあたっては、円形横断面の接線方向に流路を形成するように接続することにより、蒸発缶内において液体成分の旋回流を生じさせるものであり、且つ前記蒸発缶の中心付近であって、液体成分から結晶が分離されて形成される分離液体成分領域には、前記戻り管路における取込口を位置させたことを特徴とする結晶分離機構を具えた濃縮装置。A circulation path is formed by connecting the heating can and the evaporator with a blowing pipe and a return pipe, and the liquid raw material flowing into the long pipe arranged in the heating can is supplied to the outside of the long pipe. The solvent component is evaporated by boiling due to the conduction heat from the supplied heating medium, and the liquid component and the vapor component having the increased concentration are blown into the evaporator, and the liquid component and the vapor component are separated in the evaporator. In an evaporator for separating and obtaining a high-concentration liquid component, the evaporator has a circular cross section in plan view, and a circular cross section is used for connecting the blowing pipe to the evaporator. Are connected so as to form a flow path in the tangential direction of the evaporator, thereby generating a swirling flow of the liquid component in the evaporator. The isolation liquid component region which is formed separately, the concentrator equipped with crystals separating mechanism, characterized in that positions the inlet of the return line. 前記蒸発缶下部を先細り形状としたことを特徴とする請求項1記載の結晶分離機構を具えた濃縮装置。2. The concentrator according to claim 1, wherein the lower portion of the evaporator is tapered.
JP2003030744A 2003-02-07 2003-02-07 Concentrator equipped with crystal separating mechanism Pending JP2004237233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003030744A JP2004237233A (en) 2003-02-07 2003-02-07 Concentrator equipped with crystal separating mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003030744A JP2004237233A (en) 2003-02-07 2003-02-07 Concentrator equipped with crystal separating mechanism

Publications (1)

Publication Number Publication Date
JP2004237233A true JP2004237233A (en) 2004-08-26

Family

ID=32957553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003030744A Pending JP2004237233A (en) 2003-02-07 2003-02-07 Concentrator equipped with crystal separating mechanism

Country Status (1)

Country Link
JP (1) JP2004237233A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010214375A (en) * 2010-07-05 2010-09-30 Shionogi & Co Ltd Crystallizer, crystallization method, and concentration crystallization system
KR101165813B1 (en) * 2011-12-23 2012-07-16 주식회사 에이치엔 Evaporator for removing bubble
JP5170304B2 (en) * 2009-03-31 2013-03-27 株式会社島津製作所 Preparative purification equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5170304B2 (en) * 2009-03-31 2013-03-27 株式会社島津製作所 Preparative purification equipment
JP2010214375A (en) * 2010-07-05 2010-09-30 Shionogi & Co Ltd Crystallizer, crystallization method, and concentration crystallization system
KR101165813B1 (en) * 2011-12-23 2012-07-16 주식회사 에이치엔 Evaporator for removing bubble

Similar Documents

Publication Publication Date Title
US8741101B2 (en) Liquid concentrator
DK170563B1 (en) Method and apparatus for reducing the gas content of a liquid
WO2022142183A1 (en) Evaporation and concentration device simulating meteorological environment
US20160250563A1 (en) Compact mechanical vapor recompression evaporator system
BR112019024101A2 (en) ROTATIONAL ABSORBING DEVICE FOR THE PURIFICATION OF A GAS ABSORBATE, VESSEL AND METHOD FOR THE PURIFICATION OF A GAS ABSORBATE
CN107686141A (en) A kind of desulfurization wastewater low-temperature evaporation concentration systems
JP2006175428A (en) Mist removal structure in high speed rotary evaporating device, and method for treating oil-containing waste water using the same
JP4440593B2 (en) Operation method of heat pump type concentrator
CN106621431A (en) Organic waste liquid evaporation separator and method for treating organic waste liquid
CN108339789A (en) A kind of cooling tower water-collecting tray automatic cleaning system and its cleaning method
CN208943502U (en) A kind of Chinese medical crop extraction device that utilization rate is high
CN112316467B (en) Negative pressure type molecular distiller
JP2004237233A (en) Concentrator equipped with crystal separating mechanism
JP4330308B2 (en) High speed swivel evaporator
JP4155460B2 (en) Method and apparatus for concentrating liquid raw material
JP5004479B2 (en) Operation method of high-speed swivel evaporator
CN207845196U (en) A kind of desulfurization wastewater low-temperature evaporation concentration systems
CN209816056U (en) Distillation device for regeneration of waste lubricating oil
CN206652261U (en) A kind of forced-circulation evaporation vapour liquid separator
CN203874480U (en) Separator vortex-prevention device
CN206355612U (en) One kind injection flash distillation circulation enrichment facility
JP4583583B2 (en) Steam heating device
CN205690382U (en) A kind of rotating-film deaerator
CN205796568U (en) A kind of concentration and evaporation separator
CN104014148B (en) The anti-whirlpool device of separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050804

A977 Report on retrieval

Effective date: 20070806

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071218