JP2004237168A - Exhaust gas purification catalyst carrier, exhaust gas purification catalyst, and its production method - Google Patents

Exhaust gas purification catalyst carrier, exhaust gas purification catalyst, and its production method Download PDF

Info

Publication number
JP2004237168A
JP2004237168A JP2003027260A JP2003027260A JP2004237168A JP 2004237168 A JP2004237168 A JP 2004237168A JP 2003027260 A JP2003027260 A JP 2003027260A JP 2003027260 A JP2003027260 A JP 2003027260A JP 2004237168 A JP2004237168 A JP 2004237168A
Authority
JP
Japan
Prior art keywords
composite oxide
oxide powder
exhaust gas
catalyst
catalyst carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003027260A
Other languages
Japanese (ja)
Other versions
JP3882757B2 (en
Inventor
Mitsuru Minami
充 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003027260A priority Critical patent/JP3882757B2/en
Publication of JP2004237168A publication Critical patent/JP2004237168A/en
Application granted granted Critical
Publication of JP3882757B2 publication Critical patent/JP3882757B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To selectively produce an exhaust gas purification catalyst carrier comprising a ceria-zirconia multiple oxide or a catalyst and a catalyst product which is excellent in initial characteristics and durability and in which the dispersion of characteristics is reduced. <P>SOLUTION: In a method for producing the exhaust gas purification catalyst carrier, the ceria-zirconia catalyst carrier whose X-ray diffraction pattern obtained by X-ray diffraction measurement shows the structure of a cubic system crystal is selected by judging whether a peak exists in the vicinity of about 300 cm<SP>-1</SP>of a Raman spectrum or not and produced, and the catalyst is produced by making the selected carrier support a noble metal selected from Pt, Pd, Rh, etc. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は自動車エンジンからの排気系などに用いられる排ガス浄化用触媒、担体及びその製造方法に関する。
【0002】
【従来の技術】
排ガス浄化用触媒(三元触媒)は、例えばコージェライト等の耐熱性セラミックスからなる担体基材と、この担体基材上に形成された活性アルミナ等からなる触媒担持層と、この触媒担持層に担持されたPt等の触媒金属と、から構成されている。この三元触媒は、内燃機関の排ガス中の炭化水素(HC)及び一酸化炭素(CO)を酸化浄化し、窒素酸化物(NO)を還元浄化する。
【0003】
ところが、内燃機関の運転条件などによって排ガス中の酸素濃度が大きく変動するため、三元触媒においては酸化と還元の浄化活性が不安定となる場合がある。そこで、触媒担持層にセリア(CeO)を添加することが行われている。セリアは酸化雰囲気下で酸素を貯蔵し、還元雰囲気下で酸素を放出する酸素ストレージ能(以下、OSCという)をもち、これにより排ガス中の酸素濃度が変動しても安定した浄化活性が得られる。
【0004】
また、触媒金属とセリアを含む三元触媒は、800℃以上の高温下で使用されると、セリアの結晶成長により、OSCが低下しやすいと言われている。そこでセリアの結晶成長を抑制して高いOSCを維持するため、セリアにジルコニア(ZrO)を添加する手段も開発されている(特開昭63−116741号公報、特開平3−131343号公報)。また、特開昭63−116741号公報には、セリアとジルコニアとを少なくとも一部で複合酸化物又は固溶体とすることが開示されている。このようにジルコニアを添加することで耐熱性が向上し、高温下で使用によるOSCの低下は抑制される。
【0005】
このようなセリア−ジルコニア系の触媒担体の製造方法として、これまでに次のような製造方法が開示されている。
【0006】
特開平3−131343号公報には、セリウムとジルコニウムのイオンを含む水溶液から沈澱生成反応(共沈法)を用いて製造されたセリウムとジルコニウムを含む酸化物粉末と貴金属を含むかまたは含まないアルミナ粉末とを用いて水性スラリーを調整し、モノリス担体に塗布する工程を経て触媒を製造する製造方法が開示されている。この製造方法によれば、セリウムとジルコニウムは触媒のコート層中において、それぞれの酸化物粉末を混合するだけでは得られない強い相互作用を有し、酸化セリウムが本来持っているOSCおよびその耐熱性が改善される。
【0007】
特開平6−226094号公報には、セリウム、ジルコニウム及び必要に応じてイットリウムの複合酸化物をベースにし、比表面積が少なくとも80m /gを有することを特徴とする組成物の製造方法として、セリウム、ジルコニウム及び必要に応じてイットリウムの可溶性化合物を、所望の生成物の化学量論に一致する割合で含有する水性混合物を調製し、次いで、該混合物を加熱し、このようにして得られた反応生成物を回収し、最後に、回収された反応生成物を焼成する組成物の製造方法が開示されている。
【0008】
また、特開平8−215569号公報には、金属アルコキシドから調整されたCe−Zr複合酸化物を用いる技術が開示されている。金属アルコキシドからゾルゲル法により調整されたCe−Zr複合酸化物は、硝酸塩から調整されたCe−Zr複合酸化物に比べ、CeとZrとが原子又は分子レベルで複合化されて固溶体となっているため、耐熱性が向上し初期から高温下での使用後まで高いOSCが確保される。
【0009】
このような様々な方法により製造されたセリア−ジルコニア系の触媒担体は、その製造方法の違いにより、特性が異なる。この異なる特性の優劣の判断は、特開平6−226094号公報でセリウム及びジルコニウムの複合酸化物がCeOタイプの立方晶を有することをX線回折にて同定しているように、X線回折分析結果と触媒の特性との関連付けによりなされてきた。
【0010】
ところが、X線回折では同一のものとみなされるセリア−ジルコニア系の触媒担体であっても、これらの担体を用いた触媒の初期特性や高温下での使用後の特性には大きなバラツキが生じ、均一な特性を持つ触媒製品を製造することは困難であった。
【0011】
【特許文献1】特開昭63−116741号
【0012】
【特許文献2】特開平03−131343号
【0013】
【特許文献3】特開平06−226094号
【0014】
【特許文献4】特開平08−215569号
【0015】
【発明が解決しようとする課題】
本発明はこのような事情に鑑みてなされたものであり、セリア−ジルコニア系複合酸化物からなる排ガス浄化触媒担体若しくは触媒を選別製造し、触媒製品の特性バラツキを低減することを目的とする。
【0016】
【課題を解決するための手段】
本発明の排ガス浄化用触媒担体の第1の製造方法の特徴は、セリウム及びジルコニウムを含む複合酸化物粉末を準備する複合酸化物粉末準備工程と、該複合酸化物粉末にX線回折測定及びラマン測定を行って、該複合酸化物粉末から、X線回折パターンが立方晶構造を示し、かつ、ラマンスペクトルの約300cm−1付近にピークが存在しない複合酸化物粉末を選別する選別工程を含むことにある。
【0017】
本発明の排ガス浄化用触媒担体の第2の製造方法の特徴は、セリウム及びジルコニウムを含む複合酸化物粉末を準備する複合酸化物粉末準備工程と、該複合酸化物粉末にラマン測定を行って、該複合酸化物粉末から、ラマンスペクトルの約450cm−1付近にピークが存在し、約300cm−1付近にピークが存在しない複合酸化物粉末を選別する選別工程を含むことにある。
【0018】
本発明の排ガス浄化用触媒担体の第3の製造方法の特徴は、セリウム及びジルコニウムを含む複合酸化物粉末を準備する複合酸化物粉末準備工程と、該複合酸化物粉末にラマン測定を行って、該複合酸化物粉末から、ラマンスペクトルの、約450cm−1付近におけるピークのピーク強度(I450)と、約300cm−1付近におけるピークのピーク強度(I300)との比(I300/I450)が所定値以下である複合酸化物粉末を選別する選別工程を含むことにある。
【0019】
本発明の排ガス浄化用触媒担体の第4の製造方法の特徴は、セリウム及びジルコニウムを含む複合酸化物粉末を準備する複合酸化物粉末準備工程と、該複合酸化物粉末にX線回折測定及びラマン測定を行って、該複合酸化物粉末から、X線回折パターンが立方晶構造を示し、かつ、ラマンスペクトルの約300cm−1付近にピークが存在する複合酸化物粉末を選別する選別工程を含むことにある。
【0020】
本発明の排ガス浄化用触媒担体の第5の製造方法の特徴は、セリウム及びジルコニウムを含む複合酸化物粉末を準備する複合酸化物粉末準備工程と、該複合酸化物粉末にラマン測定を行って、該複合酸化物粉末から、ラマンスペクトルの約450cm−1付近にピークが存在し、約300cm−1付近にピークが存在する複合酸化物粉末を選別する選別工程を含むことにある。
【0021】
本発明の第1の排ガス浄化用触媒担体は、上記本発明の排ガス浄化用触媒担体第1から第3の製造方法にて製造された、セリウム及びジルコニウムを含む複合酸化物からなる排ガス浄化触媒担体である。
【0022】
本発明の第2の排ガス浄化用触媒担体は、上記本発明の排ガス浄化用触媒担体の第4又は第5の製造方法にて製造された、セリウム及びジルコニウムを含む複合酸化物からなる排ガス浄化触媒担体である。
【0023】
本発明の第1の排ガス浄化用触媒担体の特徴は、上記本発明の第1の排ガス浄化用触媒担体と貴金属を含んでなることにある。
【0024】
本発明の第2の排ガス浄化用触媒担体の特徴は、上記本発明の第2の排ガス浄化用触媒担体と貴金属を含んでなることにある。
【0025】
【発明の実施の形態】
本発明者らによるこれまでの研究結果から、蛍石型結晶構造をしたセリア−ジルコニア系触媒担体が触媒性能に対して有利であることがわかってきた。なお、蛍石型結晶構造は、図8に示すように組成がAB(A:金属元素、B:非金属元素)で表される無機化合物に見られる典型的な立方晶系の結晶構造の一種で、A原子は面心立方格子の各格子点(以下、A原子位置と言う)を占め、B原子は単位格子を8等分した小さな立方体の中心(以下、B原子位置と言う)に位置している結晶構造である。さらに、研究を進めた結果、本発明者は、セリア−ジルコニア系触媒担体の構造とこの担体を用いた触媒特性の関係について、セリア−ジルコニア系触媒担体を用いた排ガス浄化用触媒の初期特性及び高温下での使用後の特性(以下、耐久特性と言う)には、従来用いられているX線回折法では解析困難なセリア−ジルコニア系触媒担体の酸素構造が大きな影響を与えており、特に、酸素が蛍石型結晶構造のB原子位置のみに位置する場合と、そのB原子位置から僅かにずれた位置(以下、B原子ズレ位置と言う)にも位置する場合とで、触媒の初期特性と耐久特性が大きく変化することをつきとめた。すなわち、酸素がB原子位置のみに位置するセリア−ジルコニア系触媒担体を用いた触媒は、その位置から僅かにずれたB原子ズレ位置にも酸素が位置するものを用いた触媒よりも耐久性に優れ、逆に、B原子ズレ位置にも酸素が位置するものも含んだセリア−ジルコニア系触媒担体を用いた触媒は、B原子位置のみに位置するものを用いた触媒よりも初期特性に優れることを見出して、本発明を完成するに至った。
【0026】
このように酸素構造の違いによって触媒の初期特性及び耐久特性に違いが生じる理由は必ずしも明らかではないが、酸素がB原子ズレ位置にも位置するものは酸素配置の乱れにより担体の酸素が触媒反応に関与するようになるため触媒の初期特性が向上するものと思われる。逆に、B原子位置のみに酸素が位置するものは、構造に乱れが無く、安定しているために耐久特性に優れるものと思われる。
【0027】
従来用いられている触媒担体の評価は、先にも述べたようにX線回折法により行われている。X線回折法は、X線を物質に照射して、主に原子を構成する電子により散乱したX線の回折パターンを解析する方法である。したがって、X線回折では、セリア−ジルコニア系触媒担体のセリウムやジルコニウムが蛍石型結晶構造のA原子位置に位置にし、立方晶を形成しているか否かについては判別可能であるが、原子を構成する電子の数が少なくX線の散乱能が低い酸素については、蛍石型結晶構造のB原子ズレ位置にも酸素が位置しているか否かについては判別することは困難である。
【0028】
そこで本発明ではラマン測定をして得られるスペクトルにより触媒担体を選別している。ラマン分析では、結晶の格子振動により散乱したラマン散乱光により解析するので、物質の酸素構造を反映した情報を得ることができる。
【0029】
ラマン測定では、セリア−ジルコニア系触媒担体の酸素がB原子位置に位置する酸素構造は、ラマンスペクトルの約450cm−1付近のピークとして、また、セリア−ジルコニア系触媒担体の酸素がB原子ズレ位置に位置する酸素構造は、ラマンスペクトルの約300cm−1付近のピークとして表れる。
【0030】
したがって、X線回折測定により得られるX線回折パターンが蛍石型結晶構造のA原子位置からなる立方晶構造を示すセリア−ジルコニア系触媒担体を、B原子位置に相当するラマンスペクトルの約300cm−1付近にピークが存在するか否かを判断して選別して製造し、選別された担体に、Pt、Pd、Rh等の貴金属を担持して触媒を製造することによって、ラマンスペクトルの約300cm−1付近にピークが存在するものを選別した場合には、初期特性に優れ、かつ、特性バラツキの少ない触媒製品を製造することができ、また、ラマンスペクトルの約300cm−1付近にピークが存在しないものを選別した場合には、耐久特性に優れ、かつ、特性バラツキの少ない触媒製品を製造することができる。
【0031】
また、セリア−ジルコニア系触媒担体を、蛍石型結晶構造のA原子位置に相当するラマンスペクトルの約450cm−1付近とB原子位置に相当する約300cm−1付近にそれぞれピークが存在するか否かを判断して選別して製造し、選別された担体に、Pt、Pd、Rh等の貴金属を担持して触媒を製造しても良い。この場合においても、ラマンスペクトルの約300cm−1付近にピークが存在するものを選別した場合には、初期特性に優れ、かつ、特性バラツキの少ない触媒製品を製造することができ、また、ラマンスペクトルの約300cm−1付近にピークが存在しないものを選別した場合には、耐久特性に優れ、かつ、特性バラツキの少ない触媒製品を製造することができる。
【0032】
また、セリア−ジルコニア系触媒担体をラマン測定して得られるラマンスペクトルの、約450cm−1付近におけるピークのピーク強度(I450)と、約300cm−1付近におけるピークのピーク強度(I300)との比(I300/I450)を所定値と比較することによって選別して製造し、選別された担体に、Pt、Pd、Rh等の貴金属を担持して触媒を製造すれば、触媒製品の特性を所定値に応じた特性バラツキ範囲内とすることができる。ここで、ピーク強度とは、図9に示すとおりピークの両端の終点を結ぶベースラインを強度の基準(ベースライン上では強度が0)としたピークの頂点の強度のことであり、所定値の値は触媒性能のバラツキが許容される程度に応じて任意の値に設定することができるが、0.01以下に設定することが好ましい。
【0033】
なお、本発明では、セリア−ジルコニア系触媒担体に貴金属を担持した後に、上述のような、X線回折測定やラマン測定を行って、ピークの有無の確認やピーク強度比と所定値との比較を行うことにより、触媒を選別して製造してもよい。また、本発明におけるセリア−ジルコニア系触媒担体とは、セリウム及びジルコニウムを含む複合酸化物のことであり、複合酸化物とは固溶体を含む概念である。
【0034】
【実施例】
Ce(NH(NOを10.83g、ZrO(NO・2HOを2.26g、Pr(NO・6HOを1.11gを約50ccの水に溶解させた。この溶液は遊離酸性を示すが、これを中和するため、pHメータでチェックしながら、28%NH水を添加し、中和した。これを加圧容器にいれ、150℃で2時間加熱した。その後、さらに、28%NH水を加え、pHを約8.5にした。この過程で沈殿した水酸化物を、吸引ろ過し、120℃で一晩乾燥した後、500℃で2時間加熱焼成し、Ce−Zr−Pr複合酸化物担体を調製した。このCe−Zr−Pr複合酸化物担体に白金ジニトロジアンミン薬液を用いて、Ptが1wt%となるようにPtを担持し、120℃×2時間、500℃×2時間の乾燥・焼成工程を経て、触媒粉末を得た。この調製を6回行い、6ロットの触媒粉末をつくった。
【0035】
この触媒のX線回折分析結果を図1に示す。図1では、Pt以外のピークがCe−Zr−Pr複合酸化物(立方晶)の回折ピークであることが確認できた。また、このCe−Zr−Pr複合酸化物(立方晶)を精密測定し、格子定数 a を測定した結果、ZrO立方晶、CeO立方晶の格子定数の間にあり、ほぼ、ZrOに対して、Ce、Prが仕込み量通り固溶していることが確認できた。
【0036】
この触媒を分散ラマン(レーザー光:532.20nm)により、分析した。結果を図2及び図3に示す。X線回折測定結果はすべての触媒で同じであったが、ラマン分析では若干のバラツキがあり、6ロットの内、2ロットは、図2に示す様に約300cm−1にピークがあるタイプ(タイプ1)のスペクトルを示し、他の4ロットは、図3に示す様に約300cm−1にピークがないタイプ(タイプ2)のスペクトルを示した。尚、Ptを担持する前のCe−Zr−Pr複合酸化物担体だけのラマンスペクトルもPtを担持後のものと同じであったので、担体自体の構造差が約300cm−1に現れていることが確認できた。
【0037】
ここで、タイプ1のスペクトルを示した2ロットを触媒Aとし、タイプ2のスペクトルを示した4ロットを触媒Bとして選別を行った。
【0038】
触媒A及び触媒Bを、それぞれペレット化し、ストイキモデルガスにて、昇温評価を行い、CO浄化率が50%に達した時の温度であるCO50%浄化温度を求めた結果を図4に示す。このように、初期特性に関しては、約300cm−1にピークのある触媒Aが低温活性に優れることがわかる。
【0039】
次に、触媒A及び触媒Bそれぞれ3ccに、2%COを含有するNガスからなるモデルガスと5%Oを含有するNガスからなるモデルガスを1分間毎に切り替えながら、流量20L/分で流通させて、1000℃で3時間処理するR−L耐久(Rich−Lean耐久)をそれぞれ行い、再度、CO50%浄化温度を求めた結果を図5に示す。このように、R−L耐久後では触媒Bの方が優れた低温活性を示した。
【0040】
図4及び図5から、触媒A及び触媒Bに選別することにより、初期特性に優れ、かつ、特性バラツキが低減された触媒Aを得ることができ、また、耐久特性に優れ、かつ、特性バラツキが低減された触媒Bを得ることができることが明らかである。
【0041】
触媒A及び触媒BのR−L耐久後のラマンスペクトルを図6及び図7に示す。図7に示す触媒Bは初期と全く変わらないが、図6に示す触媒Aでは450cm−1付近のピークが弱まり、300cm−1付近のピークがさらに強くなっている。しかし、両者のX線回折パターンには違いは見られなかった。300cm−1付近のピークはB原子ズレ位置の酸素を表すため、触媒AではCe−Zr等の金属原子の配置はA原子位置に存在するが、酸素の位置は本来のB原子位置からずれてB原子ズレ位置に位置するものが増加していると考えられる。これは、CeOの価数変化により酸素欠陥ができ、酸素の配置が乱れているためであると思われる。この乱れが僅かな場合、初期特性はプラス側に働くと推定される。また、触媒Bは構造が安定しているため、耐久特性に優れると考えられる。
【0042】
【発明の効果】
本発明によれば、触媒の初期特性又は耐久特性に応じて、セリア−ジルコニア系複合酸化物からなる排ガス浄化触媒担体若しくは触媒を選別製造することにより、特性バラツキが低減された触媒製品を得ることができる。
【図面の簡単な説明】
【図1】X線回折分析結果を示す図。
【図2】ラマン分析結果(タイプ1)を示す図。
【図3】ラマン分析結果(タイプ2)を示す図。
【図4】初期のCO50%浄化温度を示すグラフ。
【図5】R−L耐久後のCO50%浄化温度を示すグラフ。
【図6】R−L耐久後の触媒A(タイプ1)のラマン分析結果を示す図。
【図7】R−L耐久後の触媒B(タイプ2)のラマン分析結果を示す図。
【図8】蛍石型結晶構造を示す図
【図9】ピーク強度の一例を示す図
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas purifying catalyst used in an exhaust system from an automobile engine, a carrier, and a method for producing the same.
[0002]
[Prior art]
The exhaust gas purifying catalyst (three-way catalyst) includes, for example, a carrier substrate made of a heat-resistant ceramic such as cordierite, a catalyst carrier layer made of activated alumina or the like formed on the carrier substrate, and a catalyst carrier layer made of this material. And a supported catalytic metal such as Pt. The three-way catalyst, the hydrocarbons in the exhaust gas of an internal combustion engine (HC) and carbon monoxide (CO) was oxidized and purified, nitrogen oxides (NO X) is reduced and purified.
[0003]
However, since the oxygen concentration in the exhaust gas fluctuates greatly depending on the operating conditions of the internal combustion engine, the purification activity of oxidation and reduction may become unstable in the three-way catalyst. Therefore, ceria (CeO 2 ) is added to the catalyst supporting layer. Ceria has an oxygen storage capacity (hereinafter referred to as OSC) for storing oxygen in an oxidizing atmosphere and releasing oxygen in a reducing atmosphere, so that a stable purification activity can be obtained even if the oxygen concentration in the exhaust gas fluctuates. .
[0004]
Also, it is said that a three-way catalyst containing a catalyst metal and ceria is likely to reduce OSC due to ceria crystal growth when used at a high temperature of 800 ° C. or higher. Therefore, means for adding zirconia (ZrO 2 ) to ceria has been developed in order to suppress the crystal growth of ceria and maintain a high OSC (JP-A-63-116741, JP-A-3-131343). . JP-A-63-116741 discloses that at least a part of ceria and zirconia is formed into a composite oxide or a solid solution. By adding zirconia in this manner, heat resistance is improved, and a decrease in OSC due to use at high temperatures is suppressed.
[0005]
As a method for producing such a ceria-zirconia catalyst carrier, the following production method has been disclosed.
[0006]
JP-A-3-131343 discloses an oxide powder containing cerium and zirconium produced from an aqueous solution containing ions of cerium and zirconium by a precipitation reaction (coprecipitation method) and an alumina containing or not containing a noble metal. A production method is disclosed in which an aqueous slurry is prepared using a powder and applied to a monolithic carrier to produce a catalyst. According to this manufacturing method, cerium and zirconium have a strong interaction in the catalyst coating layer that cannot be obtained by simply mixing the respective oxide powders, and the OSC inherent in cerium oxide and its heat resistance Is improved.
[0007]
JP-A-6-226094 discloses a method for producing a composition based on a composite oxide of cerium, zirconium and, if necessary, yttrium and having a specific surface area of at least 80 m 2 / g. , An aqueous mixture containing soluble compounds of zirconium and, optionally, yttrium, in proportions consistent with the stoichiometry of the desired product, and then heating the mixture to obtain the reaction thus obtained. A method is disclosed for producing a composition that collects the product and, finally, calcines the recovered reaction product.
[0008]
Japanese Patent Application Laid-Open No. Hei 8-215569 discloses a technique using a Ce-Zr composite oxide prepared from a metal alkoxide. The Ce-Zr composite oxide prepared from a metal alkoxide by a sol-gel method is a solid solution in which Ce and Zr are compounded at the atomic or molecular level as compared with the Ce-Zr composite oxide prepared from a nitrate. Therefore, heat resistance is improved, and a high OSC is secured from the initial stage to after use at a high temperature.
[0009]
The ceria-zirconia-based catalyst carriers produced by such various methods have different characteristics due to the difference in the production method. The determination of the superiority of the different characteristics is based on the fact that the composite oxide of cerium and zirconium has a CeO 2 type cubic crystal as identified by X-ray diffraction in JP-A-6-226094. This has been done by associating the analytical results with the properties of the catalyst.
[0010]
However, even in the case of ceria-zirconia-based catalyst carriers considered to be the same in X-ray diffraction, large variations occur in the initial characteristics of the catalyst using these carriers and the characteristics after use at high temperatures, It has been difficult to produce catalyst products with uniform properties.
[0011]
[Patent Document 1] JP-A-63-116741
[Patent Document 2] Japanese Patent Application Laid-Open No. 03-131343
[Patent Document 3] JP-A-06-226094
[Patent Document 4] JP-A-08-215569
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and it is an object of the present invention to selectively manufacture an exhaust gas purifying catalyst carrier or a catalyst comprising a ceria-zirconia-based composite oxide to reduce the variation in the characteristics of a catalyst product.
[0016]
[Means for Solving the Problems]
The first manufacturing method of the exhaust gas-purifying catalyst carrier of the present invention is characterized by a composite oxide powder preparing step of preparing a composite oxide powder containing cerium and zirconium, X-ray diffraction measurement and Raman Performing a measurement, including a sorting step of sorting, from the complex oxide powder, a complex oxide powder having an X-ray diffraction pattern showing a cubic structure and having no peak near about 300 cm -1 in a Raman spectrum. It is in.
[0017]
The feature of the second manufacturing method of the exhaust gas purifying catalyst carrier of the present invention is that a composite oxide powder preparing step of preparing a composite oxide powder containing cerium and zirconium, and a Raman measurement is performed on the composite oxide powder, It is intended to include a selection step of selecting a composite oxide powder having a peak at about 450 cm -1 in the Raman spectrum and having no peak at about 300 cm -1 from the composite oxide powder.
[0018]
The feature of the third manufacturing method of the exhaust gas purifying catalyst carrier of the present invention is that a composite oxide powder preparing step of preparing a composite oxide powder containing cerium and zirconium, and a Raman measurement is performed on the composite oxide powder, From the composite oxide powder, the ratio (I 300 / I 450 ) of the peak intensity (I 450 ) of the peak near about 450 cm −1 and the peak intensity (I 300 ) near about 300 cm −1 in the Raman spectrum. ) Includes a sorting step of sorting a composite oxide powder having a predetermined value or less.
[0019]
The fourth manufacturing method of the exhaust gas purifying catalyst carrier of the present invention is characterized by a composite oxide powder preparing step of preparing a composite oxide powder containing cerium and zirconium, an X-ray diffraction measurement and Raman Performing a measurement, including a sorting step of sorting, from the complex oxide powder, a complex oxide powder having an X-ray diffraction pattern showing a cubic structure and having a peak near about 300 cm -1 in a Raman spectrum. It is in.
[0020]
The feature of the fifth manufacturing method of the exhaust gas purifying catalyst carrier of the present invention is that a composite oxide powder preparing step of preparing a composite oxide powder containing cerium and zirconium, and a Raman measurement is performed on the composite oxide powder, from the composite oxide powder is to include a selection step of peak exists in the vicinity of about 450 cm -1 of the Raman spectrum, selecting a composite oxide powder peak is present at around 300 cm -1.
[0021]
The first exhaust gas purifying catalyst carrier of the present invention is an exhaust gas purifying catalyst carrier comprising a composite oxide containing cerium and zirconium, which is produced by the above-described first to third production methods of the exhaust gas purifying catalyst carrier of the present invention. It is.
[0022]
A second exhaust gas purifying catalyst carrier of the present invention is an exhaust gas purifying catalyst comprising a composite oxide containing cerium and zirconium, which is produced by the fourth or fifth method for producing the exhaust gas purifying catalyst carrier of the present invention. Carrier.
[0023]
The feature of the first exhaust gas purifying catalyst carrier of the present invention resides in that the first exhaust gas purifying catalyst carrier of the present invention includes the noble metal.
[0024]
The feature of the second exhaust gas purifying catalyst carrier of the present invention resides in that the second exhaust gas purifying catalyst carrier of the present invention contains the noble metal.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
From the results of previous studies by the present inventors, it has been found that a ceria-zirconia-based catalyst carrier having a fluorite-type crystal structure is advantageous in terms of catalytic performance. As shown in FIG. 8, the fluorite-type crystal structure has a typical cubic crystal structure found in an inorganic compound whose composition is represented by AB 2 (A: metal element, B: nonmetal element). As a kind, A atom occupies each lattice point of the face-centered cubic lattice (hereinafter, referred to as A atom position), and B atom is located at the center of a small cube obtained by dividing the unit cell into eight (hereinafter, referred to as B atom position). The crystal structure that is located. Further, as a result of further research, the present inventor found that the relationship between the structure of the ceria-zirconia-based catalyst carrier and the catalytic characteristics using this carrier was as follows: the initial characteristics of the exhaust gas purifying catalyst using the ceria-zirconia-based catalyst carrier and Characteristics after use at high temperatures (hereinafter referred to as durability characteristics) are greatly affected by the oxygen structure of the ceria-zirconia-based catalyst carrier, which is difficult to analyze by the conventional X-ray diffraction method. In the case where oxygen is located only at the B atom position of the fluorite-type crystal structure and the case where oxygen is also located at a position slightly displaced from the B atom position (hereinafter, referred to as a B atom shift position), the initial state of the catalyst is determined. It has been found that the characteristics and the durability characteristics change greatly. That is, a catalyst using a ceria-zirconia catalyst carrier in which oxygen is located only at the B atom position is more durable than a catalyst using oxygen at a B atom shift position slightly deviated from that position. Excellent, conversely, a catalyst using a ceria-zirconia-based catalyst carrier including one in which oxygen is also located at a B atom shift position has better initial characteristics than a catalyst using only a B atom position. And completed the present invention.
[0026]
The reason why the difference in the oxygen structure causes the difference in the initial characteristics and durability characteristics of the catalyst is not always clear, but in the case where oxygen is also located at the position where the B atom is displaced, the oxygen of the carrier is catalyzed by the dislocation of oxygen. It is thought that the initial characteristics of the catalyst are improved because the catalyst becomes involved. Conversely, the case where oxygen is located only at the B atom position is considered to have excellent durability characteristics because the structure is stable and stable.
[0027]
Evaluation of a conventionally used catalyst carrier is performed by the X-ray diffraction method as described above. The X-ray diffraction method is a method of irradiating a substance with X-rays and analyzing a diffraction pattern of X-rays mainly scattered by electrons constituting atoms. Therefore, in X-ray diffraction, it is possible to determine whether cerium or zirconium of the ceria-zirconia catalyst support is located at the position of the A atom of the fluorite-type crystal structure and whether or not it forms a cubic crystal. With respect to oxygen having a small number of constituent electrons and low X-ray scattering ability, it is difficult to determine whether oxygen is also located at a B atom shift position in the fluorite-type crystal structure.
[0028]
Therefore, in the present invention, the catalyst carrier is selected based on a spectrum obtained by performing Raman measurement. In the Raman analysis, since the analysis is performed using Raman scattered light scattered by the lattice vibration of the crystal, information reflecting the oxygen structure of the substance can be obtained.
[0029]
In the Raman measurement, the oxygen structure in which the oxygen of the ceria-zirconia catalyst support is located at the B atom position is a peak near about 450 cm -1 in the Raman spectrum, and the oxygen of the ceria-zirconia catalyst support is shifted to the B atom position. Appears as a peak near about 300 cm -1 in the Raman spectrum.
[0030]
Therefore, the ceria-zirconia-based catalyst support whose X-ray diffraction pattern obtained by the X-ray diffraction measurement shows a cubic structure composed of the A atom position of the fluorite-type crystal structure was converted to a Raman spectrum corresponding to the B atom position of about 300 cm By determining whether there is a peak near 1 or not and producing a catalyst, and carrying a noble metal such as Pt, Pd and Rh on the selected carrier to produce a catalyst, the Raman spectrum is about 300 cm. When a peak having a peak near -1 is selected, a catalyst product having excellent initial characteristics and a small variation in characteristics can be produced, and a peak exists at about 300 cm- 1 in the Raman spectrum. When those which are not used are selected, it is possible to produce a catalyst product having excellent durability characteristics and little variation in characteristics.
[0031]
In addition, the ceria-zirconia-based catalyst support has a peak at about 450 cm -1 in the Raman spectrum corresponding to the A atom position and about 300 cm -1 in the B atom position in the fluorite-type crystal structure. A catalyst may be produced by carrying out sorting and producing a noble metal such as Pt, Pd and Rh on the selected carrier. Also in this case, when a product having a peak near about 300 cm -1 in the Raman spectrum is selected, a catalyst product having excellent initial characteristics and small variation in characteristics can be produced. In the case where those having no peak at about 300 cm -1 are selected, it is possible to produce a catalyst product having excellent durability characteristics and little characteristic variation.
[0032]
In addition, the peak intensity (I 450 ) of the peak near about 450 cm −1 and the peak intensity (I 300 ) of the peak near about 300 cm −1 in the Raman spectrum obtained by Raman measurement of the ceria-zirconia catalyst support are shown. By comparing the ratio (I 300 / I 450 ) with a predetermined value, and producing a catalyst by supporting a noble metal such as Pt, Pd, and Rh on the selected carrier. The characteristic can be set within a characteristic variation range corresponding to a predetermined value. Here, as shown in FIG. 9, the peak intensity is the intensity of the peak apex using the baseline connecting the end points at both ends of the peak as the intensity reference (the intensity is 0 on the baseline). The value can be set to any value according to the degree to which the variation in catalyst performance is allowed, but it is preferable to set the value to 0.01 or less.
[0033]
In the present invention, after the noble metal is supported on the ceria-zirconia-based catalyst carrier, X-ray diffraction measurement or Raman measurement is performed as described above to confirm the presence or absence of a peak and to compare the peak intensity ratio with a predetermined value. , The catalyst may be selectively manufactured. Further, the ceria-zirconia-based catalyst carrier in the present invention is a composite oxide containing cerium and zirconium, and the composite oxide is a concept including a solid solution.
[0034]
【Example】
Ce (NH 4) 2 (NO 3) 2 and 10.83g, ZrO (NO 3) 2 · 2H 2 O and 2.26g, Pr (NO 3) water 3 · 6H 2 O for about a 1.11 g 50 cc Was dissolved. Although this solution showed free acidity, it was neutralized by adding 28% aqueous NH 3 while checking with a pH meter to neutralize the acidity. This was placed in a pressure vessel and heated at 150 ° C. for 2 hours. Thereafter, 28% aqueous NH 3 was further added to adjust the pH to about 8.5. The hydroxide precipitated in this process was subjected to suction filtration, dried at 120 ° C. overnight, and calcined at 500 ° C. for 2 hours to prepare a Ce—Zr—Pr composite oxide carrier. Pt is supported on this Ce-Zr-Pr composite oxide carrier using a platinum dinitrodiammine chemical solution so that Pt becomes 1 wt%, and subjected to a drying and baking step at 120 ° C. × 2 hours and 500 ° C. × 2 hours. Thus, a catalyst powder was obtained. This preparation was performed six times to produce six lots of catalyst powder.
[0035]
FIG. 1 shows the results of X-ray diffraction analysis of this catalyst. In FIG. 1, it was confirmed that the peaks other than Pt were diffraction peaks of the Ce—Zr—Pr composite oxide (cubic system). Also, the Ce-Zr-Pr composite oxide (cubic) and precision measurement and the measurement results of the lattice constants a, ZrO 2 cubic, located between the lattice constant of CeO 2 cubic, approximately, the ZrO 2 On the other hand, it was confirmed that Ce and Pr were dissolved in the same amount as the charged amount.
[0036]
This catalyst was analyzed by dispersion Raman (laser light: 532.20 nm). The results are shown in FIGS. The X-ray diffraction measurement results were the same for all catalysts, but there was some variation in Raman analysis, and of the 6 lots, 2 lots had a peak at about 300 cm -1 as shown in FIG. The other four lots showed a type (type 2) spectrum having no peak at about 300 cm −1 as shown in FIG. 3. Since the Raman spectrum of the Ce-Zr-Pr composite oxide carrier before supporting Pt alone was the same as that after supporting Pt, the structural difference of the carrier itself appeared at about 300 cm -1. Was confirmed.
[0037]
Here, two lots showing the type 1 spectrum were used as the catalyst A, and four lots showing the type 2 spectrum were used as the catalyst B.
[0038]
Catalyst A and catalyst B were each pelletized, subjected to a temperature rise evaluation with a stoichiometric model gas, and the CO 50% purification temperature, which is the temperature when the CO purification rate reached 50%, is shown in FIG. . Thus, regarding the initial characteristics, it can be seen that the catalyst A having a peak at about 300 cm -1 has excellent low-temperature activity.
[0039]
Next, the catalyst A and catalyst B respectively 3 cc, while switching 2% N 2 model gas consisting of a gas containing CO and model gas consisting of 5% N 2 gas containing O 2 for every minute, flow rate 20L RL endurance (Rich-Lean endurance) of treating at 1000 ° C. for 3 hours at a flow rate of 1 hour / minute, and again obtaining the CO 50% purification temperature is shown in FIG. Thus, after RL durability, catalyst B exhibited better low-temperature activity.
[0040]
From FIGS. 4 and 5, by selecting the catalyst A and the catalyst B, it is possible to obtain the catalyst A having excellent initial characteristics and reduced characteristic variation, and has excellent durability characteristics and characteristic variation. It is clear that catalyst B with reduced amount can be obtained.
[0041]
FIGS. 6 and 7 show Raman spectra of Catalyst A and Catalyst B after RL durability. Although the catalyst B shown in FIG. 7 is not different from the initial stage, the peak near 450 cm −1 is weakened and the peak near 300 cm −1 is further increased in the catalyst A shown in FIG. However, no difference was observed between the X-ray diffraction patterns of the two. Since the peak near 300 cm -1 represents oxygen at a B atom shift position, the arrangement of metal atoms such as Ce-Zr is present at the A atom position in the catalyst A, but the oxygen position is shifted from the original B atom position. It is considered that those located at the B atom shift position have increased. This is presumably because oxygen vacancies were formed due to the change in valence of CeO 2 , and the arrangement of oxygen was disturbed. If this disturbance is slight, the initial characteristics are presumed to work on the plus side. Further, since the structure of the catalyst B is stable, it is considered that the catalyst B has excellent durability characteristics.
[0042]
【The invention's effect】
According to the present invention, it is possible to obtain a catalyst product with reduced characteristic variation by selectively producing an exhaust gas purifying catalyst carrier or a catalyst comprising a ceria-zirconia-based composite oxide according to the initial characteristics or durability characteristics of the catalyst. Can be.
[Brief description of the drawings]
FIG. 1 is a diagram showing the results of X-ray diffraction analysis.
FIG. 2 is a diagram showing a Raman analysis result (type 1).
FIG. 3 is a diagram showing a Raman analysis result (type 2).
FIG. 4 is a graph showing an initial CO 50% purification temperature.
FIG. 5 is a graph showing a 50% CO purification temperature after RL durability.
FIG. 6 is a diagram showing a Raman analysis result of a catalyst A (type 1) after RL durability.
FIG. 7 is a diagram showing a Raman analysis result of catalyst B (type 2) after RL durability.
FIG. 8 shows a fluorite crystal structure. FIG. 9 shows an example of peak intensity.

Claims (9)

セリウム及びジルコニウムを含む複合酸化物粉末を準備する複合酸化物粉末準備工程と、該複合酸化物粉末にX線回折測定及びラマン測定を行って、該複合酸化物粉末から、X線回折パターンが立方晶構造を示し、かつ、ラマンスペクトルの約300cm−1付近にピークが存在しない複合酸化物粉末を選別する選別工程を含むことを特徴とする排ガス浄化触媒担体の製造方法。A composite oxide powder preparing step of preparing a composite oxide powder containing cerium and zirconium, and performing an X-ray diffraction measurement and a Raman measurement on the composite oxide powder. From the composite oxide powder, an X-ray diffraction pattern is obtained. A method for producing an exhaust gas purifying catalyst carrier, comprising a selecting step of selecting a composite oxide powder having a crystal structure and having no peak near about 300 cm -1 in a Raman spectrum. セリウム及びジルコニウムを含む複合酸化物粉末を準備する複合酸化物粉末準備工程と、該複合酸化物粉末にラマン測定を行って、該複合酸化物粉末から、ラマンスペクトルの約450cm−1付近にピークが存在し、約300cm−1付近にピークが存在しない複合酸化物粉末を選別する選別工程を含むことを特徴とする排ガス浄化触媒担体の製造方法。A composite oxide powder preparing step of preparing a composite oxide powder containing cerium and zirconium, and Raman measurement is performed on the composite oxide powder. From the composite oxide powder, a peak is observed at about 450 cm −1 in a Raman spectrum. A method for producing an exhaust gas purifying catalyst carrier, comprising a screening step of screening a composite oxide powder that is present and has no peak near about 300 cm −1 . セリウム及びジルコニウムを含む複合酸化物粉末を準備する複合酸化物粉末準備工程と、該複合酸化物粉末にラマン測定を行って、該複合酸化物粉末から、ラマンスペクトルの、約450cm−1付近におけるピークのピーク強度(I450)と、約300cm−1付近におけるピークのピーク強度(I300)との比(I300/I450)が所定値以下である複合酸化物粉末を選別する選別工程を含むことを特徴とする排ガス浄化触媒担体の製造方法。A composite oxide powder preparing step of preparing a composite oxide powder containing cerium and zirconium, and performing a Raman measurement on the composite oxide powder to obtain a Raman spectrum peak at about 450 cm −1 from the composite oxide powder. And the ratio (I 300 / I 450 ) of the peak intensity (I 450 ) of the peak at about 300 cm −1 to the peak intensity (I 300 ) of about 300 cm −1 is not more than a predetermined value. A method for producing an exhaust gas purifying catalyst carrier, comprising: 請求項1乃至請求項3のいずれかに記載された排ガス浄化触媒担体の製造方法により製造された、セリウム及びジルコニウムを含む複合酸化物からなる排ガス浄化触媒担体。An exhaust gas purifying catalyst carrier comprising a composite oxide containing cerium and zirconium, produced by the method for producing an exhaust gas purifying catalyst carrier according to any one of claims 1 to 3. 請求項4に記載の排ガス浄化触媒担体と貴金属を含んでなることを特徴とする排ガス浄化触媒。An exhaust gas purifying catalyst comprising the exhaust gas purifying catalyst carrier according to claim 4 and a noble metal. セリウム及びジルコニウムを含む複合酸化物粉末を準備する複合酸化物粉末準備工程と、該複合酸化物粉末にX線回折測定及びラマン測定を行って、該複合酸化物粉末から、X線回折パターンが立方晶構造を示し、かつ、ラマンスペクトルの約300cm−1付近にピークが存在する複合酸化物粉末を選別する選別工程を含むことを特徴とする排ガス浄化触媒担体の製造方法。A composite oxide powder preparing step of preparing a composite oxide powder containing cerium and zirconium, and performing an X-ray diffraction measurement and a Raman measurement on the composite oxide powder. From the composite oxide powder, an X-ray diffraction pattern is obtained. A method for producing an exhaust gas purifying catalyst carrier, comprising a selecting step of selecting a composite oxide powder having a crystal structure and having a peak near about 300 cm -1 in a Raman spectrum. セリウム及びジルコニウムを含む複合酸化物粉末を準備する複合酸化物粉末準備工程と、該複合酸化物粉末にラマン測定を行って、該複合酸化物粉末から、ラマンスペクトルの約450cm−1付近にピークが存在し、約300cm−1付近にピークが存在する複合酸化物粉末を選別する選別工程を含むことを特徴とする排ガス浄化触媒担体の製造方法。A composite oxide powder preparing step of preparing a composite oxide powder containing cerium and zirconium, and Raman measurement is performed on the composite oxide powder. From the composite oxide powder, a peak is observed at about 450 cm −1 in a Raman spectrum. A method for producing an exhaust gas purifying catalyst carrier, comprising a selecting step of selecting a composite oxide powder that is present and has a peak at about 300 cm -1 . 請求項6又は請求項7に記載された排ガス浄化触媒担体の製造方法により製造された、セリウム及びジルコニウムを含む複合酸化物からなる排ガス浄化触媒担体。An exhaust gas purifying catalyst carrier comprising a composite oxide containing cerium and zirconium, produced by the method for producing an exhaust gas purifying catalyst carrier according to claim 6 or 7. 請求項8に記載の排ガス浄化触媒担体と貴金属を含んでなることを特徴とする排ガス浄化触媒。An exhaust gas purifying catalyst comprising the exhaust gas purifying catalyst carrier according to claim 8 and a noble metal.
JP2003027260A 2003-02-04 2003-02-04 Method for producing exhaust gas purification catalyst carrier Expired - Fee Related JP3882757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003027260A JP3882757B2 (en) 2003-02-04 2003-02-04 Method for producing exhaust gas purification catalyst carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003027260A JP3882757B2 (en) 2003-02-04 2003-02-04 Method for producing exhaust gas purification catalyst carrier

Publications (2)

Publication Number Publication Date
JP2004237168A true JP2004237168A (en) 2004-08-26
JP3882757B2 JP3882757B2 (en) 2007-02-21

Family

ID=32955051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003027260A Expired - Fee Related JP3882757B2 (en) 2003-02-04 2003-02-04 Method for producing exhaust gas purification catalyst carrier

Country Status (1)

Country Link
JP (1) JP3882757B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093471A1 (en) 2007-02-01 2008-08-07 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Catalyst system for use in exhaust gas purification apparatus for automobiles, exhaust gas purification apparatus using the catalyst system, and exhaust gas purification method
WO2012137682A1 (en) * 2011-04-01 2012-10-11 Toto株式会社 Method for producing cerium complex oxide, solid oxide fuel cell, and fuel cell system
CN114433060A (en) * 2020-10-16 2022-05-06 中国石油化工股份有限公司 Catalyst for treating bromine-containing petrochemical organic waste gas and preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093471A1 (en) 2007-02-01 2008-08-07 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Catalyst system for use in exhaust gas purification apparatus for automobiles, exhaust gas purification apparatus using the catalyst system, and exhaust gas purification method
WO2012137682A1 (en) * 2011-04-01 2012-10-11 Toto株式会社 Method for producing cerium complex oxide, solid oxide fuel cell, and fuel cell system
CN103460476A (en) * 2011-04-01 2013-12-18 Toto株式会社 Method for producing cerium complex oxide, solid oxide fuel cell, and fuel cell system
CN114433060A (en) * 2020-10-16 2022-05-06 中国石油化工股份有限公司 Catalyst for treating bromine-containing petrochemical organic waste gas and preparation method and application thereof
CN114433060B (en) * 2020-10-16 2024-02-02 中国石油化工股份有限公司 Bromated organic waste gas treatment catalyst and preparation method and application thereof

Also Published As

Publication number Publication date
JP3882757B2 (en) 2007-02-21

Similar Documents

Publication Publication Date Title
JP3498453B2 (en) Exhaust gas purification catalyst and method for producing the same
US7202194B2 (en) Oxygen storage material, process for its preparation and its application in a catalyst
JP5240275B2 (en) Exhaust gas purification catalyst
CN108883398B (en) Exhaust gas purification catalyst, exhaust gas purification method, and exhaust gas purification system
US20040186016A1 (en) Oxygen storage material, process for its preparation and its application in a catalyst
US20150051067A1 (en) Oxygen storage material without rare earth metals
JP5864444B2 (en) Exhaust gas purification catalyst and exhaust gas purification catalyst structure
US20190126248A1 (en) Exhaust gas purifying catalyst
WO2014041984A1 (en) Exhaust-gas-purification catalyst carrier
JP2006043654A (en) Exhaust gas purifying catalyst and production method therefor
WO2012093599A1 (en) Exhaust gas purifying catalyst
US20190111389A1 (en) Twc catalysts for gasoline exhaust gas applications with improved thermal durability
JP2013252465A (en) Exhaust gas-purifying catalyst carrier and exhaust gas-purifying catalyst
KR20200067216A (en) Niobium oxide-doped material as rhodium support for three-way catalyst application
WO2019088302A1 (en) Oxygen absorbing and releasing material, catalyst, exhaust gas purifying system, and exhaust gas treatment method
CN113396014A (en) Mixed oxides comprising ceria for oxygen storage
JPH10286462A (en) Catalyst of purifying exhaust gas
KR20140011312A (en) Denitration catalyst composition and method of denitration using same
JP5538391B2 (en) Exhaust gas purification catalyst
JP2007098200A (en) Exhaust gas purification catalyst and manufacturing method of the same
EP2752241B1 (en) Catalyst
JP3799466B2 (en) Exhaust gas purification catalyst
JP2010227799A (en) Exhaust gas purifying catalyst
JP4859100B2 (en) Exhaust gas purification catalyst
JP3882757B2 (en) Method for producing exhaust gas purification catalyst carrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061106

LAPS Cancellation because of no payment of annual fees