JP2004236395A - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP2004236395A
JP2004236395A JP2003019664A JP2003019664A JP2004236395A JP 2004236395 A JP2004236395 A JP 2004236395A JP 2003019664 A JP2003019664 A JP 2003019664A JP 2003019664 A JP2003019664 A JP 2003019664A JP 2004236395 A JP2004236395 A JP 2004236395A
Authority
JP
Japan
Prior art keywords
semiconductor element
filter circuit
resonance
circuit
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003019664A
Other languages
Japanese (ja)
Inventor
Satoshi Inarida
聡 稲荷田
Takashi Kaneko
貴志 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003019664A priority Critical patent/JP2004236395A/en
Publication of JP2004236395A publication Critical patent/JP2004236395A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power converter which suppresses the resonance phenomena of an LC filter circuit which is caused by load ripple or DC aerial cable voltage ripple. <P>SOLUTION: The power converter is composed of a DC voltage source 1, an LC filter circuit 4 consisting of a reactor 2 and a capacitor 3, a damping circuit 7 consisting of a resistor 5 and a semiconductor element 6, and an inverter circuit 8. This converter is provided with a resonance component detecting means 9 which detects the resonance frequency components of the LC filter circuit 4. This controls the conduction state of the semiconductor element 6 of a damping circuit 7, according to the resonance frequency components of the LC filter circuit 4 detected by the resonance components detecting means 9. This can suppress the resonance phenomena of the LC filter circuit 4 which occurs by the load ripple or the DC aerial cable voltage ripple being the cause excepting the time of power interruption finish. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電力変換装置に関し、特に、直流入力端にリアクトルとコンデンサからなるフィルタ回路を有し、直流電源(直流架線電圧)から交流電力を得る電力変換装置における直流入力フィルタ回路の共振現象を抑制する制御技術に関するものである。
【0002】
【従来の技術】
電気車のように直流入力端にリアクトル及びコンデンサからなるLCフィルタ回路を有し、直流架線電圧から電力を得る電力変換装置においては、電力変換装置の負荷容量の変動に伴い直流架線からの入力電力が変動したり、直流架線電圧が変動したり、直流架線電圧から電力を得る集電装置が直流架線から離れることによって、電力が中断したりすると、LCフィルタ回路が共振し、直流架線に共振周波数成分が流れ、通信設備に悪影響を与える、電力変換装置に過大な電圧が印加される、電力変換装置の直流電圧源の電圧が変動するため、安定した交流出力電圧を得ることができない、等の課題が発生する。
【0003】
従来の公知例として特許文献1には、コンデンサ及びリアクトルからなる直流入力LCフィルタ回路を有する電気車制御装置において、電力中断終了時に発生する電圧振動、即ち、LCフィルタ回路の共振現象を抑制する手段についての記載がある。
【0004】
【特許文献1】
特開昭56−19301号公報
【0005】
【発明が解決しようとする課題】
上述した公知例の特許文献1においては、電力中断終了時に発生する異常振動を抑制することはできるが、電力中断終了時以外の原因である直流架線電圧変動,負荷変動によって発生するLCフィルタ回路の共振現象を抑制することはできない。
このため、上記に述べたような課題を解決することはできない。
【0006】
本発明の目的は、半導体素子と抵抗器を並列接続したダンピング回路を挿入し、直流入力フィルタ回路の共振現象を抑制する電力変換装置において、フィルタ回路の共振現象の発生原因に拘らず、電力中断終了時以外の原因である直流架線電圧変動,負荷変動によって発生するフィルタ回路の共振現象を確実に抑制すると共に、必要最小限の電力損失でフィルタ回路の共振現象を抑制することが可能な電力変換装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明の電力変換装置は、直流電力を供給する直流電源と、リアクトル及び前記リアクトルに直列に接続されたコンデンサからなるフィルタ回路と、抵抗器及び前記抵抗器に並列に接続された半導体素子からなるダンピング回路と、前記フィルタ回路及び前記ダンピング回路を介して前記直流電源に接続され、前記直流電源の供給する直流電力を交流電力に変換するインバータ回路とによって構成される電力変換装置であって、前記フィルタ回路の共振周波数成分を検出する共振成分検出手段を設け、前記共振成分検出手段が、検出された前記フィルタ回路の共振周波数成分に応じて、前記ダンピング回路の前記半導体素子の導通状態を制御する機能を備えたことを特徴とする構成を有するものである。
【0008】
本発明の電力変換装置は、上記共振成分検出手段が、上記フィルタ回路の上記コンデンサの電圧を検出する電圧検出手段と、前記電圧検出手段により検出された前記コンデンサの電圧に含まれる前記フィルタ回路の共振周波数成分に応じて、上記ダンピング回路の上記半導体素子の導通状態を制御する制御回路とから構成されている。
【0009】
本発明の電力変換装置は、上記共振成分検出手段が、上記フィルタ回路に流れる入力電流を検出する電流検出手段と、前記電流検出手段により検出された入力電流の共振周波数成分に応じて、上記ダンピング回路の上記半導体素子の導通状態を制御する制御回路とから構成されている。
【0010】
本発明の電力変換装置は、上記共振成分検出手段が、検出された上記フィルタ回路の共振周波数成分の振幅に応じて、上記ダンピング回路の上記半導体素子の通流率を制御する機能を備えている。
【0011】
本発明の電力変換装置は、上記半導体素子の通流率制御におけるスイッチング周波数が、上記直流電源を生成している交流商用電源の電源周波数(50Hz又は60Hz)の3倍ないしは6倍の周波数である。
【0012】
本発明の電力変換装置は、上記共振成分検出手段が、検出された上記フィルタ回路の共振周波数成分の振幅が規定値以上となった場合、前記フィルタ回路の共振周波数成分の特定の位相でのみ、上記半導体素子がオフ状態となるように前記半導体素子の導通状態を制御、若しくは、上記抵抗器に電流が流れる期間を最小となるように前記半導体素子の通流率を制御する機能を備えている。
【0013】
本発明の電力変換装置は、上記抵抗器及び上記半導体素子の温度を検出する温度検出手段若しくは温度を算出する温度算出手段を設け、上記共振成分検出手段が、前記温度検出手段若しくは前記温度算出手段の出力する前記抵抗器及び前記半導体素子の少なくとも一方の温度が一定値を超えた場合、前記半導体素子のスイッチング周波数を低減させるように制御する機能を備えている。
【0014】
本発明の電力変換装置は、上記共振成分検出手段が、上記温度検出手段若しくは上記温度算出手段の出力する上記抵抗器及び上記半導体素子の少なくとも一方の温度が一定値を超えた場合、前記半導体素子をオフ状態にする期間を、通常の温度の場合よりも短くなるように前記半導体素子の通流率を制御する機能を備えている。
【0015】
本発明の電力変換装置は、上記抵抗器の抵抗値R、上記半導体素子の耐圧Vmax、前記抵抗器に流れる許容可能な最大入力電流値Ismaxが、下記式[1]の関係を満たしていることが好ましい。
Vmax≧R×Ismax [1]
【0016】
本発明の電力変換装置は、上記直流電源と上記リアクトルとの間に電流遮断機能を有する遮断器を設け、上記共振成分検出手段が、下記式[2]の関係となった場合、前記半導体素子をオン状態に保つと共に、前記遮断器により前記直流電源と前記リアクトルとを電気的に切り離す機能を備えている。
Vmax<R×Ismax [2]
【0017】
直流架線と電力変換装置との間に挿入されるLCフィルタ回路のリアクトルと直列に、半導体素子と抵抗器を並列接続したダンピング回路を挿入すると共に、前記LCフィルタ回路の共振周波数成分を検出する共振成分検出手段を備え、前記共振成分検出手段が前記LCフィルタ回路の共振周波数成分を検出した場合、前記ダンピング回路の半導体素子をターンオフ状態にし、前記半導体素子の導通状態を制御して、LCフィルタ回路に抵抗器を挿入し、LCフィルタ回路の共振現象を抑制する。
【0018】
また、共振成分検出手段は、検出されたLCフィルタ回路の共振周波数成分の振幅に応じて、ダンピング回路の半導体素子の通流率を制御しても上記と同様の効果が得られる。
【0019】
また、共振成分検出手段により検出されたフィルタ回路の共振周波数成分の振幅が規定値以上となった場合、前記LCフィルタ回路の共振周波数成分の特定の位相でのみ、ダンピング回路の半導体素子がオフ状態となるように前記半導体素子の導通状態を制御、若しくは、抵抗器に電流が流れる期間を最小となるように前記半導体素子の通流率を制御することによって、前記LCフィルタ回路の共振現象を抑制する時に発生する前記抵抗器が消費する電力損失を最小限にすることができる。
【0020】
さらに、上記半導体素子及び上記抵抗器の温度を検出する温度検出手段、ないしは、これらの温度を算出する温度算出手段を設け、前記温度検出手段ないしは前記温度算出手段の出力する前記半導体素子及び前記抵抗器の少なくとも一方の温度が一定値を超えた場合、前記半導体素子のスイッチング周波数を低減させることによって、前記半導体素子及び前記抵抗器の加熱による素子破壊を防止することができる。
【0021】
勿論、ダンピング回路の半導体素子の通流率に制限を加えることでも、半導体素子及び抵抗器の加熱による素子破壊を防止することができる。
【0022】
【発明の実施の形態】
以下、本発明の実施の一形態について図面を参照して詳細に説明する。
図1は、本発明に係る電力変換装置の一実施形態を示す回路構成図である。
本発明の電力変換装置は、直流電力を供給する直流電源である直流電圧源1と、リアクトル2及びリアクトル2に直列に接続されたコンデンサ3からなるLCフィルタ回路4と、抵抗器5及び抵抗器5に並列に接続された半導体素子6からなるダンピング回路7と、LCフィルタ回路4及びダンピング回路7を介して直流電圧源1に接続され、直流電圧源1の供給する直流電力を交流電力に変換するインバータ回路8とによって構成されている。
【0023】
本発明の電力変換装置は、LCフィルタ回路4の共振周波数成分を検出する共振成分検出手段9を設け、共振成分検出手段9が、検出されたLCフィルタ回路4の共振周波数成分に応じて、ダンピング回路7の半導体素子6の導通状態を制御する機能を備えている。
【0024】
本発明の電力変換装置は、共振成分検出手段9が、検出されたLCフィルタ回路4の共振周波数成分の振幅に応じて、ダンピング回路7の半導体素子6の通流率を制御する機能を備えている。
【0025】
本発明の電力変換装置は、共振成分検出手段9が、LCフィルタ回路4のコンデンサ3の電圧を検出する電圧検出手段10と、電圧検出手段10により検出されたコンデンサ3の電圧に含まれるLCフィルタ回路4の共振周波数成分に応じて、ダンピング回路7の半導体素子6の導通状態を制御する制御回路11とから構成されている。
【0026】
電力変換装置は、図1に示すように、直流架線電圧を示す直流電圧源1と、リアクトル2及びリアクトル2に直列に接続されたコンデンサ3からなり、直流入力電力を平滑するLCフィルタ回路4と、直流電圧源1とリアクトル2との間に接続される半導体素子6及び半導体素子6に並列に接続される抵抗器5からなるダンピング回路7と、コンデンサ3を直流電圧源とし、直流電力を交流電力に変換して交流負荷12に交流電力を供給するインバータ回路8と、コンデンサ3の電圧を検出する電圧検出手段10と、電圧検出手段10の出力に応じて半導体素子6の導通状態を制御する制御回路11から構成される。
【0027】
図1において、通常、半導体素子6はオン状態としておく。
電力変換装置において、負荷変動,直流架線電圧変動が発生すると、LCフィルタ回路4の共振現象が発生する。
【0028】
制御回路11は、電圧検出手段10からコンデンサ3の電圧に含まれるLCフィルタ回路4の共振周波数成分を検出する共振成分検出機能を有し、LCフィルタ回路4の共振周波数成分を検出した場合、半導体素子6をオン状態からオフ状態にし、LCフィルタ回路4に抵抗器5が挿入されるようにし、LCフィルタ回路4の共振現象を抑制する。
そして、LCフィルタ回路4の共振周波数成分が抑制されたことが検出されたら、再び、半導体素子6をオフ状態からオン状態にする。
【0029】
LCフィルタ回路4の共振現象が発生している期間のみ、LCフィルタ回路4に抵抗器5を挿入することで、必要最小限の電力損失でLCフィルタ回路4の共振現象を抑制することができる。
【0030】
また、制御回路11は、電圧検出手段10により検出されたコンデンサ3の電圧に含まれるLCフィルタ回路4の共振周波数成分の振幅に応じて、LCフィルタ回路4の半導体素子6の通流率を制御しても良い。
即ち、制御回路11は、LCフィルタ回路4の共振周波数成分の振幅が大きい時には、抵抗器5に電流が流れる期間が長くなるように半導体素子6の通流率を低く制御し、LCフィルタ回路4の共振周波数成分の振幅が小さい時には、抵抗器5に電流が流れる期間が短くなるように半導体素子6の通流率を高く制御する。
これにより、抵抗器5で発生する電力損失を不必要に増加させることなく、LCフィルタ回路4の共振周波数成分を効率良く抑制することができる。
【0031】
本発明の電力変換装置は、半導体素子6の通流率制御におけるスイッチング周波数が、直流電圧源1を生成している交流商用電源の電源周波数(50Hz又は60Hz)の3倍ないしは6倍の周波数である。
【0032】
なお、通流率制御を行う場合における半導体素子6のスイッチング周波数は、直流架線電圧を生成している交流商用電源の電源周波数(50/60Hz)の3倍ないしは6倍に設定する。
【0033】
通常、直流架線電圧は、交流商用電源を三相全波整流して得ている。
このため、直流架線電圧は、交流商用電源の電源周波数の6倍及び3倍(相不平衡によって発生)の成分を含んでおり、通常、これらの周波数は、信号設備や通信設備で使用していないので、信号設備や通信設備に障害を与えることなく、LCフィルタ回路4の共振現象を抑制することができる。
【0034】
本発明の電力変換装置は、共振成分検出手段9が、検出されたLCフィルタ回路4の共振周波数成分の振幅が規定値以上となった場合、LCフィルタ回路4の共振周波数成分の特定の位相でのみ、半導体素子6がオフ状態となるように半導体素子6の導通状態を制御、若しくは、抵抗器5に電流が流れる期間が最小となるように半導体素子6の通流率を制御する機能を備えている。
【0035】
さらに、制御回路11は、LCフィルタ回路4の共振周波数成分の振幅が規定値以上となった場合、LCフィルタ回路4の共振周波数成分の特定の位相でのみ、半導体素子6をオフ状態にするように半導体素子6の導通状態を制御、若しくは、抵抗器5に電流が流れる期間を最小にするように半導体素子6の通流率を制御することで、抵抗器5で消費される電力を最小にすることができる。
これにより、最小限の電力損失でLCフィルタ回路4の高い共振を低減することができる。
また、小容量の抵抗器5を使用することができ、装置を小型・軽量化することができる。
【0036】
本発明の電力変換装置は、抵抗器5及び半導体素子6の温度を検出する温度検出手段(図示せず)若しくは温度を算出する温度算出手段(図示せず)を設け、共振成分検出手段9が、温度検出手段若しくは温度算出手段の出力する抵抗器5及び半導体素子6の少なくとも一方の温度が一定値を超えた場合、半導体素子6のスイッチング周波数を低減させるように制御する機能を備えている。
【0037】
本発明の電力変換装置は、共振成分検出手段9が、温度検出手段若しくは温度算出手段の出力する抵抗器5及び半導体素子6の少なくとも一方の温度が一定値を超えた場合、半導体素子6をオフ状態にする期間を、通常の温度の場合よりも短くなるように半導体素子6の通流率を制御する機能を備えている。
【0038】
半導体素子6及び抵抗器5の温度を計測して検出する温度検出手段ないしは温度を予測して算出する温度算出手段を設け、制御回路11は、これらの出力する半導体素子6及び抵抗器5の少なくとも一方の温度が一定値を超えた場合、半導体素子6のスイッチング周波数を低減させるか、若しくは、半導体素子6をオフ状態にする期間を、通常の温度の場合よりも短くなるように半導体素子6の通流率に制限を加え、半導体素子6及び抵抗器5で発生する電力損失を低減することで、半導体素子6及び抵抗器5の加熱による破壊を防止する。
これにより、装置の信頼性を向上することができる。
【0039】
本発明の電力変換装置は、抵抗器5の抵抗値R、半導体素子6の耐圧Vmax、抵抗器5に流れる許容可能な最大入力電流値Ismaxが、下記式[1]の関係を満たしていることが条件となる。
Vmax≧R×Ismax [1]
【0040】
ところで、半導体素子6をオフ状態にした時には、抵抗器5に入力電流が流れ、抵抗器5の両端には、入力電流をIs、抵抗器5の抵抗値をRとした時、Is×Rの電圧が発生する。
【0041】
抵抗器5の両端に発生した電圧Is×Rが、半導体素子6の耐圧Vmaxを超えると、半導体素子6は破壊してしまう。
このような事態を防止するべく、抵抗器5に流れる入力電流Isの許容値、即ち、入力電流の流れ得る最大入力電流値Ismaxに対して、上記式[1]のVmax≧R×Ismaxの関係を満たしているように、半導体素子6の耐圧Vmax、抵抗器5の抵抗値R、及び最大入力電流値Ismaxを設定する。
これにより、抵抗器5が発生する電圧は、半導体素子6の耐圧Vmax以下となるので、半導体素子6の破壊を防止することができる。
【0042】
本発明の電力変換装置は、直流電圧源1とリアクトル2との間に電流遮断機能を有する遮断器(図示せず)を設け、共振成分検出手段9が、下記式[2]の関係となった場合、半導体素子6をオン状態に保つと共に、遮断器により直流電圧源1とリアクトル2とを電気的に切り離す機能を備えている。
Vmax<R×Ismax [2]
【0043】
一方、制御回路11は、下記式[2]のVmax<R×Ismaxの関係になった場合には、半導体素子6をオフ状態にしないようにオン状態に保持すると共に、直流架線とリアクトル2との間に電流遮断機能を有する遮断器を設け、この遮断器によって直流架線と本電力変換装置とを切り離すことで、半導体素子6を含む本電力変換装置を安全に直流架線から切り離すことができる。
【0044】
図2は、本発明に係る電力変換装置の他の実施形態を示す回路構成図である。
本発明の電力変換装置は、共振成分検出手段9が、LCフィルタ回路4に流れる入力電流を検出する電流検出手段13と、電流検出手段13により検出された入力電流の共振周波数成分に応じて、ダンピング回路7の半導体素子6の導通状態を制御する制御回路11とから構成されている。
【0045】
図2に示す電力変換装置は、コンデンサ3の電圧に含まれるLCフィルタ回路4の共振周波数成分に基づいてダンピング回路7の半導体素子6の導通状態を制御する代わりに、電流検出手段13によりLCフィルタ回路4に流れる入力電流を検出し、制御回路11が検出した入力電流の共振周波数成分に基づいてダンピング回路7の半導体素子6の導通状態を制御する構成である。
図2に示した電力変換装置の他の構成は、図1に示す一実施形態の電力変換装置と全く同様のため、同一部位に同一符号を付して説明を省略する。
【0046】
なお、図2に示す電力変換装置の構成によっても、図1に示す電力変換装置と同様の効果が得られることは言うまでもない。
【0047】
【発明の効果】
以上に述べたように、本発明の電力変換装置によれば、共振成分検出手段がフィルタ回路の共振周波数成分を検出すると、共振成分検出手段により検出されたフィルタ回路の共振周波数成分に応じて、ダンピング回路の半導体素子の導通状態を制御するので、半導体素子をオン状態からオフ状態にすることができ、ダンピング回路の抵抗器をフィルタ回路に挿入し、ダンピング回路の抵抗器に入力電流が流れるので、フィルタ回路の共振現象の発生原因に拘らず、電力中断終了時以外の原因である直流架線電圧変動,負荷変動によって発生するフィルタ回路の共振現象を確実に抑制することができ、フィルタ回路の共振現象が発生している期間のみ、フィルタ回路に抵抗器を挿入することで、必要最小限の電力損失でフィルタ回路の共振現象を抑制することができる。
【0048】
また、共振成分検出手段により検出されたフィルタ回路の共振周波数成分の振幅に応じて、ダンピング回路の半導体素子の通流率を制御すれば、フィルタ回路の共振現象を抑制する時に、抵抗器で発生する電力損失を低減することができ、フィルタ回路の共振周波数成分を効率良く抑制するので、装置の効率を向上することができる。
【0049】
さらに、ダンピング回路の抵抗器で消費される電力を最小にすることにより、抵抗器の容量を低減することができ、小型の抵抗器を使用することができるので、装置の小型・軽量化にも寄与する。
【図面の簡単な説明】
【図1】本発明に係る電力変換装置の一実施形態を示す回路構成図。
【図2】本発明に係る電力変換装置の他の実施形態を示す回路構成図。
【符号の説明】
1 直流電圧源
2 リアクトル
3 コンデンサ
4 LCフィルタ回路
5 抵抗器
6 半導体素子
7 ダンピング回路
8 インバータ回路
9 共振成分検出手段
10 電圧検出手段
11 制御回路
12 交流負荷
13 電流検出手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power conversion device, and more particularly to a power conversion device that has a filter circuit including a reactor and a capacitor at a DC input terminal and obtains AC power from a DC power supply (DC overhead line voltage). The present invention relates to a control technique for suppressing.
[0002]
[Prior art]
In a power converter that has an LC filter circuit composed of a reactor and a capacitor at the DC input end like an electric car and obtains power from the DC overhead line voltage, the input power from the DC overhead line accompanying the fluctuation of the load capacity of the power converter Fluctuates, the DC overhead line voltage fluctuates, or when the power is interrupted by the power collector that obtains power from the DC overhead line voltage moving away from the DC overhead line, the LC filter circuit resonates and the DC overhead line has a resonance frequency. The components flow, adversely affect the communication equipment, an excessive voltage is applied to the power converter, and the voltage of the DC voltage source of the power converter fluctuates, so that a stable AC output voltage cannot be obtained. Challenges arise.
[0003]
As a conventional known example, Patent Document 1 discloses a means for suppressing a voltage oscillation occurring at the end of power interruption, that is, a resonance phenomenon of an LC filter circuit, in an electric vehicle control device having a DC input LC filter circuit including a capacitor and a reactor. There is a description about.
[0004]
[Patent Document 1]
JP-A-56-19301
[Problems to be solved by the invention]
In the above-described Patent Document 1 described above, abnormal vibration generated at the end of the power interruption can be suppressed, but the LC filter circuit generated by the DC overhead line voltage fluctuation and the load fluctuation other than at the end of the power interruption. The resonance phenomenon cannot be suppressed.
For this reason, the above-mentioned problem cannot be solved.
[0006]
An object of the present invention is to provide a power converter that inserts a damping circuit in which a semiconductor element and a resistor are connected in parallel and suppresses the resonance phenomenon of a DC input filter circuit, regardless of the cause of the resonance phenomenon of the filter circuit. Power conversion that can reliably suppress filter circuit resonance phenomena caused by DC overhead line voltage fluctuations and load fluctuations, which are causes other than the termination, and can also suppress filter circuit resonance phenomena with minimum power loss. It is to provide a device.
[0007]
[Means for Solving the Problems]
The power conversion device of the present invention includes a DC power supply that supplies DC power, a filter circuit including a reactor and a capacitor connected in series to the reactor, a resistor, and a semiconductor element connected in parallel to the resistor. A power converter configured by a damping circuit and an inverter circuit that is connected to the DC power supply via the filter circuit and the damping circuit and converts DC power supplied by the DC power supply into AC power. A resonance component detection unit configured to detect a resonance frequency component of the filter circuit, wherein the resonance component detection unit controls a conduction state of the semiconductor element of the damping circuit according to the detected resonance frequency component of the filter circuit. It has a configuration characterized by having a function.
[0008]
In the power conversion device according to the present invention, the resonance component detection unit may include a voltage detection unit configured to detect a voltage of the capacitor of the filter circuit, and a filter circuit included in the voltage of the capacitor detected by the voltage detection unit. And a control circuit for controlling a conduction state of the semiconductor element of the damping circuit according to a resonance frequency component.
[0009]
In the power conversion device according to the present invention, the resonance component detection unit may include a current detection unit configured to detect an input current flowing through the filter circuit, and the damping according to a resonance frequency component of the input current detected by the current detection unit. And a control circuit for controlling the conduction state of the semiconductor element of the circuit.
[0010]
The power conversion device of the present invention has a function in which the resonance component detection means controls the conduction ratio of the semiconductor element of the damping circuit according to the detected amplitude of the resonance frequency component of the filter circuit. .
[0011]
In the power converter according to the present invention, the switching frequency in the duty ratio control of the semiconductor element is three to six times the power supply frequency (50 Hz or 60 Hz) of the AC commercial power supply generating the DC power supply. .
[0012]
The power conversion device of the present invention is such that, when the resonance component detection unit detects the amplitude of the resonance frequency component of the filter circuit that is equal to or greater than a specified value, only at a specific phase of the resonance frequency component of the filter circuit, The semiconductor device has a function of controlling the conduction state of the semiconductor element so that the semiconductor element is turned off, or controlling the conduction ratio of the semiconductor element so as to minimize the period during which current flows through the resistor. .
[0013]
The power converter of the present invention is provided with temperature detecting means for detecting the temperature of the resistor and the semiconductor element or temperature calculating means for calculating the temperature, wherein the resonance component detecting means is the temperature detecting means or the temperature calculating means. When the temperature of at least one of the resistor and the semiconductor element, which is output by the controller, exceeds a certain value, the semiconductor device has a function of reducing the switching frequency of the semiconductor element.
[0014]
The power conversion device according to the present invention is configured such that, when the temperature of at least one of the resistor and the semiconductor element output by the temperature detection means or the temperature calculation means exceeds a predetermined value, Is provided with a function of controlling the conduction ratio of the semiconductor element so that the period during which the semiconductor device is turned off is shorter than that at a normal temperature.
[0015]
In the power converter according to the present invention, the resistance value R of the resistor, the withstand voltage Vmax of the semiconductor element, and the maximum allowable input current value Ismax flowing through the resistor satisfy the relationship of the following expression [1]. Is preferred.
Vmax ≧ R × Ismax [1]
[0016]
The power converter according to the present invention is provided with a circuit breaker having a current cutoff function between the DC power supply and the reactor, wherein the resonance component detecting means satisfies the following equation [2]. And a function of electrically disconnecting the DC power supply from the reactor by the circuit breaker.
Vmax <R × Ismax [2]
[0017]
A damping circuit in which a semiconductor element and a resistor are connected in parallel is inserted in series with the reactor of the LC filter circuit inserted between the DC overhead line and the power converter, and a resonance for detecting a resonance frequency component of the LC filter circuit is provided. When the resonance component detection means detects a resonance frequency component of the LC filter circuit, the semiconductor element of the damping circuit is turned off, and the conduction state of the semiconductor element is controlled to control the LC filter circuit. To suppress the resonance phenomenon of the LC filter circuit.
[0018]
Further, the same effect as described above can be obtained even if the resonance component detection means controls the conduction ratio of the semiconductor element of the damping circuit according to the detected amplitude of the resonance frequency component of the LC filter circuit.
[0019]
When the amplitude of the resonance frequency component of the filter circuit detected by the resonance component detection means is equal to or greater than a specified value, the semiconductor element of the damping circuit is turned off only at a specific phase of the resonance frequency component of the LC filter circuit. The resonance phenomenon of the LC filter circuit is suppressed by controlling the conduction state of the semiconductor element so that the current flowing through the semiconductor element is controlled so as to minimize the period during which a current flows through a resistor. The power loss that occurs when the resistor is consumed can be minimized.
[0020]
Further, a temperature detecting means for detecting the temperature of the semiconductor element and the resistor, or a temperature calculating means for calculating the temperature of the semiconductor element and the resistor, wherein the temperature detecting means or the semiconductor element and the resistor output from the temperature calculating means are provided. When the temperature of at least one of the devices exceeds a certain value, the switching frequency of the semiconductor device is reduced, so that device destruction due to heating of the semiconductor device and the resistor can be prevented.
[0021]
Of course, by limiting the flow rate of the semiconductor element of the damping circuit, the element can be prevented from being destroyed due to heating of the semiconductor element and the resistor.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a circuit configuration diagram showing an embodiment of a power conversion device according to the present invention.
The power converter of the present invention includes a DC voltage source 1 that is a DC power supply that supplies DC power, an LC filter circuit 4 including a reactor 2 and a capacitor 3 connected in series to the reactor 2, a resistor 5 and a resistor. 5 is connected to the DC voltage source 1 via the LC filter circuit 4 and the damping circuit 7, and converts the DC power supplied from the DC voltage source 1 into AC power. And an inverter circuit 8.
[0023]
The power conversion device according to the present invention includes a resonance component detection unit 9 for detecting a resonance frequency component of the LC filter circuit 4, and the resonance component detection unit 9 performs damping according to the detected resonance frequency component of the LC filter circuit 4. It has a function of controlling the conduction state of the semiconductor element 6 of the circuit 7.
[0024]
The power conversion device of the present invention has a function in which the resonance component detection means 9 controls the conduction ratio of the semiconductor element 6 of the damping circuit 7 according to the detected amplitude of the resonance frequency component of the LC filter circuit 4. I have.
[0025]
In the power conversion device according to the present invention, the resonance component detecting means 9 detects the voltage of the capacitor 3 of the LC filter circuit 4, and the LC filter included in the voltage of the capacitor 3 detected by the voltage detecting means 10. The control circuit 11 controls the conduction state of the semiconductor element 6 of the damping circuit 7 according to the resonance frequency component of the circuit 4.
[0026]
As shown in FIG. 1, the power converter includes a DC voltage source 1 indicating a DC overhead line voltage, a reactor 2 and a capacitor 3 connected in series to the reactor 2, and an LC filter circuit 4 for smoothing DC input power. And a damping circuit 7 including a semiconductor element 6 connected between the DC voltage source 1 and the reactor 2 and a resistor 5 connected in parallel with the semiconductor element 6, and a capacitor 3 as a DC voltage source. Inverter circuit 8 that converts the power into power and supplies AC power to AC load 12, voltage detection means 10 for detecting the voltage of capacitor 3, and controls the conduction state of semiconductor element 6 according to the output of voltage detection means 10. It comprises a control circuit 11.
[0027]
In FIG. 1, the semiconductor element 6 is normally kept on.
In the power converter, when a load change and a DC overhead line voltage change occur, a resonance phenomenon of the LC filter circuit 4 occurs.
[0028]
The control circuit 11 has a resonance component detection function of detecting the resonance frequency component of the LC filter circuit 4 included in the voltage of the capacitor 3 from the voltage detection means 10. When the resonance frequency component of the LC filter circuit 4 is detected, The element 6 is turned off from the on state, and the resistor 5 is inserted into the LC filter circuit 4 to suppress the resonance phenomenon of the LC filter circuit 4.
Then, when it is detected that the resonance frequency component of the LC filter circuit 4 is suppressed, the semiconductor element 6 is turned on again from the off state.
[0029]
By inserting the resistor 5 into the LC filter circuit 4 only during the period when the resonance phenomenon of the LC filter circuit 4 is occurring, the resonance phenomenon of the LC filter circuit 4 can be suppressed with a necessary minimum power loss.
[0030]
Further, the control circuit 11 controls the conduction ratio of the semiconductor element 6 of the LC filter circuit 4 according to the amplitude of the resonance frequency component of the LC filter circuit 4 included in the voltage of the capacitor 3 detected by the voltage detection means 10. You may.
That is, when the amplitude of the resonance frequency component of the LC filter circuit 4 is large, the control circuit 11 controls the conduction ratio of the semiconductor element 6 to be low so that the period in which the current flows through the resistor 5 is long, and the LC filter circuit 4 When the amplitude of the resonance frequency component is small, the conduction ratio of the semiconductor element 6 is controlled to be high so that the period during which the current flows through the resistor 5 becomes short.
Thereby, the resonance frequency component of the LC filter circuit 4 can be efficiently suppressed without unnecessarily increasing the power loss generated in the resistor 5.
[0031]
In the power conversion device of the present invention, the switching frequency in the duty ratio control of the semiconductor element 6 is three to six times the power supply frequency (50 Hz or 60 Hz) of the AC commercial power supply generating the DC voltage source 1. is there.
[0032]
The switching frequency of the semiconductor element 6 in the case where the conduction ratio control is performed is set to be three to six times the power supply frequency (50/60 Hz) of the AC commercial power supply that generates the DC overhead line voltage.
[0033]
Usually, the DC overhead line voltage is obtained by three-phase full-wave rectification of an AC commercial power supply.
For this reason, the DC overhead line voltage contains components that are 6 times and 3 times (generated by phase imbalance) the power supply frequency of the AC commercial power supply, and these frequencies are usually used in signal equipment and communication equipment. Therefore, the resonance phenomenon of the LC filter circuit 4 can be suppressed without impairing the signal equipment and the communication equipment.
[0034]
In the power conversion device according to the present invention, when the detected resonance frequency component of the LC filter circuit 4 has an amplitude equal to or greater than a specified value, the resonance component detection means 9 detects the resonance frequency component of the LC filter circuit 4 at a specific phase. Only a function is provided to control the conduction state of the semiconductor element 6 so that the semiconductor element 6 is turned off, or to control the conduction ratio of the semiconductor element 6 so that the period during which current flows through the resistor 5 is minimized. ing.
[0035]
Further, when the amplitude of the resonance frequency component of the LC filter circuit 4 is equal to or larger than the specified value, the control circuit 11 turns off the semiconductor element 6 only at a specific phase of the resonance frequency component of the LC filter circuit 4. By controlling the conduction state of the semiconductor element 6 or controlling the conduction rate of the semiconductor element 6 so as to minimize the period during which the current flows through the resistor 5, the power consumed by the resistor 5 is minimized. can do.
Thereby, high resonance of the LC filter circuit 4 can be reduced with a minimum power loss.
Further, the resistor 5 having a small capacity can be used, and the device can be reduced in size and weight.
[0036]
The power converter according to the present invention includes a temperature detector (not shown) for detecting the temperatures of the resistor 5 and the semiconductor element 6 or a temperature calculator (not shown) for calculating the temperature. When the temperature of at least one of the resistor 5 and the semiconductor element 6 output from the temperature detecting means or the temperature calculating means exceeds a certain value, the switching frequency of the semiconductor element 6 is controlled to be reduced.
[0037]
In the power converter according to the present invention, when the temperature of at least one of the resistor 5 and the semiconductor element 6 output by the temperature detecting means or the temperature calculating means exceeds a certain value, the semiconductor element 6 is turned off. It has a function of controlling the conduction ratio of the semiconductor element 6 so that the period during which the state is set is shorter than that at a normal temperature.
[0038]
A temperature detecting means for measuring and detecting the temperature of the semiconductor element 6 and the resistor 5 or a temperature calculating means for predicting and calculating the temperature is provided, and the control circuit 11 controls at least the semiconductor element 6 and the resistor 5 to output these. If one of the temperatures exceeds a certain value, the switching frequency of the semiconductor element 6 is reduced, or the period during which the semiconductor element 6 is turned off is set to be shorter than at a normal temperature. By limiting the conduction ratio and reducing the power loss generated in the semiconductor element 6 and the resistor 5, the semiconductor element 6 and the resistor 5 are prevented from being damaged by heating.
Thereby, the reliability of the device can be improved.
[0039]
In the power converter according to the present invention, the resistance value R of the resistor 5, the withstand voltage Vmax of the semiconductor element 6, and the maximum allowable input current value Ismax flowing through the resistor 5 satisfy the relationship of the following equation [1]. Is a condition.
Vmax ≧ R × Ismax [1]
[0040]
By the way, when the semiconductor element 6 is turned off, an input current flows through the resistor 5, and when the input current is Is at both ends of the resistor 5 and the resistance value of the resistor 5 is R, Is × R Voltage is generated.
[0041]
When the voltage Is × R generated at both ends of the resistor 5 exceeds the withstand voltage Vmax of the semiconductor element 6, the semiconductor element 6 is broken.
In order to prevent such a situation, the relation of Vmax ≧ R × Ismax in the above equation [1] with respect to the allowable value of the input current Is flowing through the resistor 5, that is, the maximum input current value Ismax through which the input current can flow. Are set, the withstand voltage Vmax of the semiconductor element 6, the resistance value R of the resistor 5, and the maximum input current value Ismax are set.
As a result, the voltage generated by the resistor 5 becomes equal to or lower than the breakdown voltage Vmax of the semiconductor element 6, so that the semiconductor element 6 can be prevented from being broken.
[0042]
In the power converter of the present invention, a circuit breaker (not shown) having a current cutoff function is provided between the DC voltage source 1 and the reactor 2, and the resonance component detecting means 9 has a relationship represented by the following equation [2]. In this case, the semiconductor device 6 has a function of keeping the semiconductor element 6 in the ON state and a function of electrically disconnecting the DC voltage source 1 and the reactor 2 by a circuit breaker.
Vmax <R × Ismax [2]
[0043]
On the other hand, when the relation of Vmax <R × Ismax in the following equation [2] is satisfied, the control circuit 11 holds the semiconductor element 6 in the on state so as not to be in the off state, and connects the DC overhead wire and the reactor 2 with each other. The power converter including the semiconductor element 6 can be safely separated from the DC overhead line by providing a circuit breaker having a current interrupting function between the DC overhead line and the DC overhead line.
[0044]
FIG. 2 is a circuit configuration diagram showing another embodiment of the power converter according to the present invention.
In the power conversion device of the present invention, the resonance component detection unit 9 detects a current detection unit 13 that detects an input current flowing through the LC filter circuit 4 and a resonance frequency component of the input current detected by the current detection unit 13. The control circuit 11 controls the conduction state of the semiconductor element 6 of the damping circuit 7.
[0045]
The power converter shown in FIG. 2 uses an LC filter by current detection means 13 instead of controlling the conduction state of the semiconductor element 6 of the damping circuit 7 based on the resonance frequency component of the LC filter circuit 4 included in the voltage of the capacitor 3. The configuration is such that the input current flowing through the circuit 4 is detected, and the conduction state of the semiconductor element 6 of the damping circuit 7 is controlled based on the resonance frequency component of the input current detected by the control circuit 11.
Since the other configuration of the power converter illustrated in FIG. 2 is completely the same as that of the power converter according to the embodiment illustrated in FIG. 1, the same portions are denoted by the same reference numerals and description thereof is omitted.
[0046]
It is needless to say that the same effect as the power conversion device shown in FIG. 1 can be obtained by the configuration of the power conversion device shown in FIG.
[0047]
【The invention's effect】
As described above, according to the power converter of the present invention, when the resonance component detection unit detects the resonance frequency component of the filter circuit, the resonance component detection unit detects the resonance frequency component of the filter circuit according to the resonance frequency component detected by the resonance component detection unit. Since the conduction state of the semiconductor element of the damping circuit is controlled, the semiconductor element can be turned from the on state to the off state. Regardless of the cause of the filter circuit resonance phenomenon, the filter circuit resonance phenomenon caused by the DC overhead line voltage fluctuation and the load fluctuation, which are causes other than the end of the power interruption, can be surely suppressed. By inserting a resistor in the filter circuit only during the period in which the phenomenon occurs, the resonance phenomenon of the filter circuit with the minimum power It can be suppressed.
[0048]
In addition, if the duty ratio of the semiconductor element of the damping circuit is controlled in accordance with the amplitude of the resonance frequency component of the filter circuit detected by the resonance component detection means, when a resonance phenomenon of the filter circuit is suppressed, a resistor is generated. Power loss can be reduced, and the resonance frequency component of the filter circuit can be efficiently suppressed, so that the efficiency of the device can be improved.
[0049]
Furthermore, by minimizing the power consumed by the resistors in the damping circuit, the capacity of the resistors can be reduced, and a smaller resistor can be used, thus reducing the size and weight of the device. Contribute.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram showing an embodiment of a power conversion device according to the present invention.
FIG. 2 is a circuit configuration diagram showing another embodiment of the power converter according to the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 DC voltage source 2 Reactor 3 Capacitor 4 LC filter circuit 5 Resistor 6 Semiconductor element 7 Damping circuit 8 Inverter circuit 9 Resonance component detecting means 10 Voltage detecting means 11 Control circuit 12 AC load 13 Current detecting means

Claims (10)

直流電力を供給する直流電源と、リアクトル及び前記リアクトルに直列に接続されたコンデンサからなるフィルタ回路と、抵抗器及び前記抵抗器に並列に接続された半導体素子からなるダンピング回路と、前記フィルタ回路及び前記ダンピング回路を介して前記直流電源に接続され、前記直流電源の供給する直流電力を交流電力に変換するインバータ回路とによって構成される電力変換装置であって、
前記フィルタ回路の共振周波数成分を検出する共振成分検出手段を設け、前記共振成分検出手段は、検出された前記フィルタ回路の共振周波数成分に応じて、前記ダンピング回路の前記半導体素子の導通状態を制御する機能を備えたことを特徴とする電力変換装置。
A DC power supply that supplies DC power, a filter circuit including a reactor and a capacitor connected in series to the reactor, a damping circuit including a resistor and a semiconductor element connected in parallel to the resistor, the filter circuit, An inverter circuit connected to the DC power supply via the damping circuit and converting DC power supplied by the DC power supply into AC power,
A resonance component detection unit configured to detect a resonance frequency component of the filter circuit, wherein the resonance component detection unit controls a conduction state of the semiconductor element of the damping circuit according to the detected resonance frequency component of the filter circuit. A power conversion device having a function of performing
上記共振成分検出手段は、上記フィルタ回路の上記コンデンサの電圧を検出する電圧検出手段と、前記電圧検出手段により検出された前記コンデンサの電圧に含まれる前記フィルタ回路の共振周波数成分に応じて、上記ダンピング回路の上記半導体素子の導通状態を制御する制御回路とから構成されていることを特徴とする請求項1に記載の電力変換装置。The resonance component detection unit includes a voltage detection unit that detects a voltage of the capacitor of the filter circuit, and a resonance frequency component of the filter circuit included in the voltage of the capacitor that is detected by the voltage detection unit. The power converter according to claim 1, further comprising a control circuit that controls a conduction state of the semiconductor element of the damping circuit. 上記共振成分検出手段は、上記フィルタ回路に流れる入力電流を検出する電流検出手段と、前記電流検出手段により検出された入力電流の共振周波数成分に応じて、上記ダンピング回路の上記半導体素子の導通状態を制御する制御回路とから構成されていることを特徴とする請求項1に記載の電力変換装置。The resonance component detection unit includes a current detection unit that detects an input current flowing through the filter circuit, and a conduction state of the semiconductor element of the damping circuit according to a resonance frequency component of the input current detected by the current detection unit. 2. The power converter according to claim 1, further comprising a control circuit for controlling the power conversion. 上記共振成分検出手段は、検出された上記フィルタ回路の共振周波数成分の振幅に応じて、上記ダンピング回路の上記半導体素子の通流率を制御する機能を備えていることを特徴とする請求項1乃至3のいずれかに記載の電力変換装置。2. The device according to claim 1, wherein the resonance component detection means has a function of controlling the duty ratio of the semiconductor element of the damping circuit in accordance with the detected amplitude of the resonance frequency component of the filter circuit. The power converter according to any one of claims 1 to 3. 上記半導体素子の通流率制御におけるスイッチング周波数は、上記直流電源を生成している交流商用電源の電源周波数(50Hz又は60Hz)の3倍ないしは6倍の周波数であることを特徴とする請求項4に記載の電力変換装置。The switching frequency in the duty ratio control of the semiconductor element is three to six times the power supply frequency (50 Hz or 60 Hz) of the AC commercial power supply generating the DC power supply. 3. The power converter according to claim 1. 上記共振成分検出手段は、検出された上記フィルタ回路の共振周波数成分の振幅が規定値以上となった場合、前記フィルタ回路の共振周波数成分の特定の位相でのみ、上記半導体素子がオフ状態となるように前記半導体素子の導通状態を制御、若しくは、上記抵抗器に電流が流れる期間を最小となるように前記半導体素子の通流率を制御する機能を備えていることを特徴とする請求項1乃至5のいずれかに記載の電力変換装置。When the detected amplitude of the resonance frequency component of the filter circuit is equal to or greater than a specified value, the resonance element detection unit turns off the semiconductor element only at a specific phase of the resonance frequency component of the filter circuit. And a function of controlling a conduction state of the semiconductor element or controlling a conduction ratio of the semiconductor element so as to minimize a period during which a current flows through the resistor. 6. The power converter according to any one of claims 5 to 5. 上記抵抗器及び上記半導体素子の温度を検出する温度検出手段若しくは温度を算出する温度算出手段を設け、上記共振成分検出手段は、前記温度検出手段若しくは前記温度算出手段の出力する前記抵抗器及び前記半導体素子の少なくとも一方の温度が一定値を超えた場合、前記半導体素子のスイッチング周波数を低減させるように制御する機能を備えていることを特徴とする請求項1乃至6のいずれかに記載の電力変換装置。Temperature detecting means for detecting the temperature of the resistor and the semiconductor element or temperature calculating means for calculating the temperature, wherein the resonance component detecting means includes the resistor output by the temperature detecting means or the temperature calculating means; The power supply according to any one of claims 1 to 6, further comprising a function of controlling a switching frequency of the semiconductor element to be reduced when at least one temperature of the semiconductor element exceeds a certain value. Conversion device. 上記共振成分検出手段は、上記温度検出手段若しくは上記温度算出手段の出力する上記抵抗器及び上記半導体素子の少なくとも一方の温度が一定値を超えた場合、前記半導体素子をオフ状態にする期間を、通常の温度の場合よりも短くなるように前記半導体素子の通流率を制御する機能を備えていることを特徴とする請求項1乃至6のいずれかに記載の電力変換装置。The resonance component detection means, when the temperature of at least one of the resistor and the semiconductor element output from the temperature detection means or the temperature calculation means exceeds a certain value, a period during which the semiconductor element is turned off, The power converter according to any one of claims 1 to 6, further comprising a function of controlling a conduction ratio of the semiconductor element so as to be shorter than a normal temperature. 上記抵抗器の抵抗値R、上記半導体素子の耐圧Vmax、前記抵抗器に流れる許容可能な最大入力電流値Ismaxは、下記式[1]の関係を満たしていることを特徴とする請求項1乃至6のいずれかに記載の電力変換装置。
Vmax≧R×Ismax [1]
The resistance value R of the resistor, the withstand voltage Vmax of the semiconductor element, and the maximum allowable input current value Ismax flowing through the resistor satisfy a relationship represented by the following expression [1]. 7. The power converter according to any one of 6.
Vmax ≧ R × Ismax [1]
上記直流電源と上記リアクトルとの間に電流遮断機能を有する遮断器を設け、上記共振成分検出手段は、下記式[2]の関係となった場合、前記半導体素子をオン状態に保つと共に、前記遮断器により前記直流電源と前記リアクトルとを電気的に切り離す機能を備えていることを特徴とする請求項9に記載の電力変換装置。
Vmax<R×Ismax [2]
A circuit breaker having a current cutoff function is provided between the DC power supply and the reactor, and the resonance component detecting means keeps the semiconductor element in an ON state when the relationship of the following equation [2] is satisfied, and The power converter according to claim 9, further comprising a function of electrically separating the DC power supply and the reactor by a circuit breaker.
Vmax <R × Ismax [2]
JP2003019664A 2003-01-29 2003-01-29 Power converter Pending JP2004236395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003019664A JP2004236395A (en) 2003-01-29 2003-01-29 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003019664A JP2004236395A (en) 2003-01-29 2003-01-29 Power converter

Publications (1)

Publication Number Publication Date
JP2004236395A true JP2004236395A (en) 2004-08-19

Family

ID=32949477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003019664A Pending JP2004236395A (en) 2003-01-29 2003-01-29 Power converter

Country Status (1)

Country Link
JP (1) JP2004236395A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006271083A (en) * 2005-03-23 2006-10-05 Toshiba Mitsubishi-Electric Industrial System Corp Motor controller
JP2006288161A (en) * 2005-04-05 2006-10-19 Fuji Electric Fa Components & Systems Co Ltd Power conversion equipment
WO2007094161A1 (en) * 2006-02-15 2007-08-23 Kabushiki Kaisha Yaskawa Denki Matrix converter apparatus
CN103683882A (en) * 2013-12-03 2014-03-26 天津航空机电有限公司 Input starting current limiting circuit for switch power supply
EP2747261A2 (en) 2012-12-18 2014-06-25 Hitachi, Ltd. Power conversion equipment
JP6079878B2 (en) * 2013-06-14 2017-02-15 株式会社Ihi Power feeding device and non-contact power feeding system
US9590491B2 (en) 2014-08-19 2017-03-07 Denso Corporation Resonant current limiting device
US9806512B2 (en) 2012-08-29 2017-10-31 Kabushiki Kaisha Toyota Jidoshokki Protective device for LC filter
JP2020108328A (en) * 2018-12-27 2020-07-09 株式会社日立製作所 Power conversion apparatus and current control method in power conversion apparatus
WO2022085187A1 (en) * 2020-10-23 2022-04-28 東芝三菱電機産業システム株式会社 Control device for power conversion apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006271083A (en) * 2005-03-23 2006-10-05 Toshiba Mitsubishi-Electric Industrial System Corp Motor controller
JP4669723B2 (en) * 2005-03-23 2011-04-13 東芝三菱電機産業システム株式会社 Electric motor control device
JP2006288161A (en) * 2005-04-05 2006-10-19 Fuji Electric Fa Components & Systems Co Ltd Power conversion equipment
WO2007094161A1 (en) * 2006-02-15 2007-08-23 Kabushiki Kaisha Yaskawa Denki Matrix converter apparatus
US9806512B2 (en) 2012-08-29 2017-10-31 Kabushiki Kaisha Toyota Jidoshokki Protective device for LC filter
EP2747261A2 (en) 2012-12-18 2014-06-25 Hitachi, Ltd. Power conversion equipment
JP6079878B2 (en) * 2013-06-14 2017-02-15 株式会社Ihi Power feeding device and non-contact power feeding system
JPWO2014199691A1 (en) * 2013-06-14 2017-02-23 株式会社Ihi Power feeding device and non-contact power feeding system
US10148128B2 (en) 2013-06-14 2018-12-04 Ihi Corporation Power-supplying device, and wireless power-supplying system
CN103683882A (en) * 2013-12-03 2014-03-26 天津航空机电有限公司 Input starting current limiting circuit for switch power supply
US9590491B2 (en) 2014-08-19 2017-03-07 Denso Corporation Resonant current limiting device
JP2020108328A (en) * 2018-12-27 2020-07-09 株式会社日立製作所 Power conversion apparatus and current control method in power conversion apparatus
WO2022085187A1 (en) * 2020-10-23 2022-04-28 東芝三菱電機産業システム株式会社 Control device for power conversion apparatus
JPWO2022085187A1 (en) * 2020-10-23 2022-04-28
JP7260071B2 (en) 2020-10-23 2023-04-18 東芝三菱電機産業システム株式会社 Control device for power converter

Similar Documents

Publication Publication Date Title
US7054173B2 (en) Circuit with DC filter having a link fuse serially connected between a pair of capacitors
EP1811645B1 (en) Power supply circuit protecting method and apparatus for the same
KR101582090B1 (en) Apparatus and method for supplying power to image forming apparatus
EP2731230A1 (en) Techniques for improving operation of static transfer switches during voltage disturbances
US20040201937A1 (en) Overcurrent protection circuit for switching power supply
JP2010239736A (en) Power conversion apparatus
JP2004236395A (en) Power converter
KR101498978B1 (en) Power supply apparatus by transforming magnetic field
KR101611010B1 (en) Pre-charging circuit of inverter
JP2004112929A (en) Ac-dc converter
JP5259941B2 (en) Inverter device and air conditioner
JP2006340532A (en) Inrush current prevention circuit and power conversion device
JP2020058123A (en) Controller for high voltage apparatus
JP2011160517A (en) Overcurrent protection circuit, and switching power supply device
JP6106981B2 (en) Electronic circuit equipment
JP4851183B2 (en) Capacitor input type rectifier circuit having overcurrent detection function and inverter device using the same
KR101321427B1 (en) 3 phase converter system for protecting open phase problem and control method thereof
JP2004056893A (en) Fault detection method for power converter
JPH10136675A (en) Overheat protection equipment for regenerative breaking equipment
JP2007252170A (en) Motor drive device
KR101498981B1 (en) Bus bar connecting power supply apparatus by transforming magnetic field
JP2006141142A (en) Power supply device
JPS60190191A (en) Controller of inverter
JP2006020394A (en) Auxiliary power supply for vehicle
KR100549081B1 (en) power supply for a motor