JP2004236353A - Television receiver - Google Patents

Television receiver Download PDF

Info

Publication number
JP2004236353A
JP2004236353A JP2004110648A JP2004110648A JP2004236353A JP 2004236353 A JP2004236353 A JP 2004236353A JP 2004110648 A JP2004110648 A JP 2004110648A JP 2004110648 A JP2004110648 A JP 2004110648A JP 2004236353 A JP2004236353 A JP 2004236353A
Authority
JP
Japan
Prior art keywords
signal
interpolation
motion
motion compensation
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004110648A
Other languages
Japanese (ja)
Inventor
Yasuhiro Hirano
裕弘 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004110648A priority Critical patent/JP2004236353A/en
Publication of JP2004236353A publication Critical patent/JP2004236353A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To receive both an existing television method television signal and a digital broadcasting method television signal in a high-quality and high-resolution image without an interlace interference. <P>SOLUTION: A demodulated picture signal S3 of the existing television method is subjected to an interpolation process of motion adjustment in a MA scan converter 3 and a demodulated picture signal SV of the digital broadcasting method is subjected to an interpolation process of motion compensation with an motion information data S12 in a MC scan converter 6 to convert an interlace signal into a noninterlace signal and display it in the noninterlace mode on an image display 9. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明はテレビジョン受像機に関する。   The present invention relates to a television receiver.

近年、高能率符号化技術の進展に伴い、数メガ〜数十メガのビットレートで高品質な画像を伝送することが可能になり、これをデジタル放送やデジタルCATVに適用する研究が進められている。   In recent years, with the development of high-efficiency coding technology, it has become possible to transmit high-quality images at bit rates of several mega to several tens of mega, and research on applying this to digital broadcasting and digital CATV has been advanced. I have.

デジタル放送やデジタルCATVでは、現行方式と比較してS/N比の良好な画像が受像でき、テレビ画像の高画質化を図ることができる。また、アスペクト比も現行テレビ方式の4対3とは異なり、アスペクト比を16対9に採用して、テレビ画像のワイド化も実現する。   In digital broadcasting and digital CATV, an image having a better S / N ratio can be received as compared with the current system, and high quality television images can be achieved. In addition, the aspect ratio is different from the current television system of 4: 3, and the aspect ratio is adopted to 16: 9, thereby realizing a wide TV image.

しかし、伝送効率などを考慮して、画像の走査形態は、現行テレビ方式と同様、二対一のインタレース走査を採用する。このため、再生画像では、現行テレビ方式と同様、インタレース走査に伴う画質妨害、例えば、ラインフリッカやペアリング等のインタレース妨害が発生する。そして、これらインタレース妨害によって、デジタル放送やデジタルCATVの特長である高画質化が損なわれてしまうという問題がある。   However, in consideration of transmission efficiency and the like, the image is scanned in a two-to-one interlaced manner, as in the current television system. For this reason, in the reproduced image, similarly to the current television system, image quality disturbance due to interlace scanning, for example, interlace disturbance such as line flicker and pairing occurs. Then, there is a problem that the high image quality, which is a feature of digital broadcasting and digital CATV, is impaired by these interlace interferences.

特開平6-165128JP-A-6-165128

本発明の目的は、デジタル放送やデジタルCATVなどのテレビジョン信号を高品質,高精細な画像で受像でき、また、現行テレビ方式のテレビジョン信号も高画質化して受像できるテレビジョン受像機を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a television receiver capable of receiving television signals such as digital broadcasting and digital CATV in high quality and high definition images, and capable of receiving television signals of the current television system with high image quality. Is to do.

本発明では、上記目的を達成するため、画像表示部では順次走査の走査形態で画像表示を行う。そして、インタレース走査から順次走査への走査変換は、デジタル放送やデジタルCATVなどのテレビジョン信号では、ビデオ符号化信号を復号して得る動きベクトル信号を使用してインタレース走査で抜けた走査線の信号を動き補償の補間処理で生成する。また、現行テレビ方式のテレビジョン信号では、従来技術と同様、動き適応の補間処理で補間信号を生成する。   According to the present invention, in order to achieve the above object, the image display unit performs image display in a sequential scanning form. Scan conversion from interlaced scanning to progressive scanning is performed using a motion vector signal obtained by decoding a video coded signal in a television signal such as a digital broadcast or a digital CATV. Are generated by motion compensation interpolation processing. In addition, in the case of a television signal of the current television system, an interpolation signal is generated by motion-adaptive interpolation processing as in the related art.

従来、インタレース妨害を回避するための技術として、インタレース走査で抜けた走査線の信号を補間処理で生成してインタレース走査から順次走査に走査変換し、この順次走査の信号を画像表示部に表示することが知られている。そして、現行テレビ方式のテレビジョン信号に適用した例は、動き適応の補間処理がある。これは、静止画に適した補間信号と、動画に適した補間信号とを、画像の動きに応じて混合比率を変化させて補間信号を生成する。ただ受信テレビジョン信号で動きの検出を行わねばならず、動きによっては誤検出や検出もれが発生し、これに起因した画質の劣化も発生する。   Conventionally, as a technique for avoiding interlace interference, a signal of a scanning line lost in interlace scanning is generated by interpolation processing, scan conversion is performed from interlace scanning to progressive scanning, and the signal of the progressive scanning is displayed on an image display unit. Is known. An example in which the present invention is applied to a television signal of the current television system includes a motion adaptive interpolation process. In this method, an interpolation signal is generated by changing a mixing ratio of an interpolation signal suitable for a still image and an interpolation signal suitable for a moving image in accordance with the motion of the image. However, motion must be detected from the received television signal. Depending on the motion, erroneous detection or omission of detection may occur, which may cause deterioration in image quality.

一方、デジタル放送やデジタルCATVなどのテレビジョン信号では、動き補償のフレーム間予測符号化を採用する。このため、ビデオ符号化信号には、動きベクトル信号,予測誤差信号など、画像の動きの情報が含まれている。したがって、これら信号を用いる動き補償の補間処理で、インタレース走査から順次走査への走査変換を行うことが可能になる。   On the other hand, in television signals such as digital broadcasting and digital CATV, inter-frame predictive coding for motion compensation is employed. For this reason, the video coded signal includes information on image motion such as a motion vector signal and a prediction error signal. Therefore, it is possible to perform scan conversion from interlaced scanning to sequential scanning by interpolation processing of motion compensation using these signals.

このため、本発明では、同一フィールドの信号から補間信号を生成するフィールド内補間部と、隣接フィールドの信号を動き補償処理して補間信号を生成する動き補償補間部とを設ける。そして、復号した動きベクトル信号が動き補償補間処理に適合する場合は、予測誤差信号の大小に応じて、フィールド内補間部と動き補償補間部の出力信号の混合比率を変化させて、補間信号を生成する。一方、動きベクトル信号が動き補償補間処理に不適当な場合は、動きベクトル信号の大小に応じて、補間動きベクトル信号が零で生成した動き補償補間部の出力信号とフィールド内補間部の出力信号の混合比率を変化させて補間信号を生成する。   For this reason, the present invention includes an intra-field interpolation unit that generates an interpolation signal from a signal of the same field, and a motion compensation interpolation unit that generates an interpolation signal by performing motion compensation processing on a signal of an adjacent field. If the decoded motion vector signal is suitable for the motion compensation interpolation process, the interpolation signal is changed by changing the mixing ratio of the output signals of the intra-field interpolation unit and the motion compensation interpolation unit according to the magnitude of the prediction error signal. Generate. On the other hand, if the motion vector signal is inappropriate for the motion compensation interpolation processing, the output signal of the motion compensation interpolation unit and the output signal of the intra-field interpolation unit generated with the interpolated motion vector signal being zero according to the magnitude of the motion vector signal. To generate an interpolation signal.

本発明によれば、従来の動き適応の補間処理と比較して、動き補償の補間処理では画像の動きにより合致した理想的な補間信号を生成することができる。また、動きベクトル信号の大小で画像の動きの速度を検出し、これに応じて混合比率を変化させて補間信号を生成するため、人間の視覚特性に合致する動きの速度に応じた補間処理ができる。この結果、従来の動き適応の補間処理では達成が極めて困難な、高品質,高精細な画質でインタレース走査から順次走査への走査変換を行うことができる。そして、インタレース妨害を解消した高画質な画像を受像できる。   According to the present invention, compared with the conventional motion-adaptive interpolation processing, the motion-compensation interpolation processing can generate an ideal interpolation signal that more closely matches the motion of an image. Also, since the speed of the motion of the image is detected based on the magnitude of the motion vector signal and the interpolated signal is generated by changing the mixture ratio in accordance with the detected motion vector signal, the interpolation process according to the speed of the motion that matches the human visual characteristics is performed. it can. As a result, it is possible to perform scan conversion from interlaced scanning to sequential scanning with high quality and high definition image quality, which is extremely difficult to achieve with conventional motion adaptive interpolation processing. Then, a high-quality image in which interlace interference is eliminated can be received.

また、動きベクトル信号によって、従来の動きの検出に比較して、誤検出や検出もれがなく、かつ、より正確な画像の動きを検出することができる。そして、この動きの情報を使用することによって、従来の動き適応の補間処理でも、静止部と動画部との解像度のバラツキが良く、違和感の少ない、人間の視覚特性に整合した補間信号を生成することができる。この結果、高品質,高精細な画質で、インタレース走査から順次走査への走査変換が実現でき、インタレース妨害を解消した高画質な画像を受像できる。   In addition, the motion vector signal enables more accurate image motion detection without erroneous detection or omission in comparison with conventional motion detection. By using this motion information, even in the conventional motion-adaptive interpolation processing, an interpolated signal that has a good variation in resolution between the still part and the moving image part, has less discomfort, and matches the human visual characteristics is generated. be able to. As a result, it is possible to realize scan conversion from interlaced scanning to progressive scanning with high quality and high definition image quality, and to receive a high quality image in which interlace interference is eliminated.

本発明によれば、現行テレビ方式、および、高能率符号化したビデオ符号化信号のデジタル放送やデジタルCATVなどのデジタル方式の双方のテレビジョン信号を、インタレース妨害のない高品質,高精細な画像で受像するテレビジョン受像機ができる。   According to the present invention, high-quality, high-definition television signals without interlace interference can be transmitted by using both the current television system and digital broadcasting such as digital broadcasting of a video coding signal with high efficiency coding or digital CATV. A television receiver that receives images can be obtained.

本発明の第1の実施例について、図1のブロック図で説明する。   A first embodiment of the present invention will be described with reference to the block diagram of FIG.

第1のテレビジョン信号S1は、ベースバンド復調部1で所定の復調処理を行い、ベースバンド帯域の複合カラーテレビジョン信号S2を復調する。ビデオ復調部2は、YC分離,色復調などの所定の復調処理を行う。また、アスペクト比が16対9の画面に画像を表示するための信号処理を行う。例えば、現行のNTSC方式のテレビジョン信号に対しては、画面の左右に無画部領域を設けてアスペクト比が4対3の画像を表示するために、水平方向に時間軸を3/4倍圧縮する処理を行う。また、レターボックス型のEDTV方式のテレビジョン信号に対しては、主画部領域の画像をフルに表示するために、垂直方向に4/3倍伸長する処理を行う。そして、インタレース走査の画像信号S3(輝度信号と二つの色差信号)を復調する。   The first television signal S1 undergoes a predetermined demodulation process in the baseband demodulation unit 1 to demodulate the composite color television signal S2 in the baseband. The video demodulation unit 2 performs predetermined demodulation processing such as YC separation and color demodulation. Further, signal processing for displaying an image on a screen having an aspect ratio of 16 to 9 is performed. For example, with respect to the current NTSC television signal, in order to display an image with an aspect ratio of 4 to 3 by providing a non-image area on the left and right sides of the screen, the time axis in the horizontal direction is increased by 3/4. Perform compression processing. In addition, with respect to a TV signal of the letterbox type EDTV system, a process of expanding the image in the main image area by 4/3 times in the vertical direction is performed in order to fully display the image. Then, the image signal S3 (the luminance signal and the two color difference signals) of the interlaced scanning is demodulated.

MA走査変換部3は、インタレース走査で抜けた走査線の信号を、従来の動き適応の補間処理で生成する。そして、画像信号S3と補間信号を、水平方向に時間軸を1/2に圧縮し、時系列に多重して、順次走査の画像信号S4(輝度信号と二つの色差信号)を生成する。   The MA scan conversion unit 3 generates a signal of a scanning line that has been omitted in interlaced scanning by a conventional motion adaptive interpolation process. Then, the image signal S3 and the interpolation signal are compressed in the horizontal direction on the time axis to に and multiplexed in a time series to generate a sequentially scanned image signal S4 (a luminance signal and two color difference signals).

一方、第2のテレビジョン信号S10は、チャネル復号化部4で所定のデジタル復調処理を行い、符号化ビットストリーム信号を復合する。また、符号誤りの訂正処理および修正処理(訂正が不能な符号誤りを相関の高い信号で置換)を行い、ビデオ符号化信号S11を復号する。ビデオ復号化部5は、所定の復号化処理、例えば、可変長符号復号化,逆量子化,変換係数復号化などを行い、符号化フレームの画像データを復号する。そして、所定の画像フォーマットの変換処理を行い、インタレース走査の画像信号SV(輝度信号と二つの色差信号)と、動き情報データS12(動きベクトル信号と予測誤差信号)とを出力する。MC走査変換部6は、インタレース走査で抜けた走査線の信号を、動き情報データS12を用いた動き補償の補間処理で生成する。なお、この詳細については後述する。
そして、画像信号SVと補間信号を、水平方向に時間軸を1/2に圧縮し、時系列に多重して、順次走査の画像信号S13(輝度信号と二つの像差信号)を生成する。
On the other hand, the second television signal S10 is subjected to a predetermined digital demodulation process in the channel decoding unit 4 to decode an encoded bit stream signal. Further, it performs a code error correction process and a correction process (replace a code error that cannot be corrected with a signal having a high correlation) to decode the video encoded signal S11. The video decoding unit 5 performs predetermined decoding processing, for example, variable-length code decoding, inverse quantization, transform coefficient decoding, and the like, and decodes image data of an encoded frame. Then, a conversion process of a predetermined image format is performed, and an interlaced scanning image signal SV (a luminance signal and two color difference signals) and motion information data S12 (a motion vector signal and a prediction error signal) are output. The MC scan conversion unit 6 generates a signal of a scanning line that has been dropped by interlaced scanning by interpolation processing for motion compensation using the motion information data S12. The details will be described later.
Then, the image signal SV and the interpolation signal are compressed in the horizontal direction on the time axis to に and multiplexed in a time series to generate a sequentially scanned image signal S13 (a luminance signal and two image difference signals).

選択部7は、第1のテレビジョン信号の受信では画像信号S4,第2のテレビジョン信号の受信では画像信号S13を選択して、出力信号S5に出力する。ビデオプロセス部8は、所定のマトリクス演算の信号処理を行い、三原色RGB系の信号に変換する。そして、三原色画像信号S6(R,G,B信号)を生成する。この信号は、画像表示部9でアスペクト比が16対9、順次走査の形態で表示し、高品質,高精細なテレビ画像を受像する。   The selection unit 7 selects the image signal S4 for receiving the first television signal and the image signal S13 for receiving the second television signal, and outputs the selected signal to the output signal S5. The video processing unit 8 performs signal processing of a predetermined matrix operation, and converts the signals into RGB signals of three primary colors. Then, three primary color image signals S6 (R, G, B signals) are generated. This signal is displayed on the image display section 9 in an aspect ratio of 16: 9 in the form of sequential scanning, and a high-quality and high-definition television image is received.

以下、本実施例におけるMC走査変換部6について詳述する。   Hereinafter, the MC scan conversion unit 6 in the present embodiment will be described in detail.

図2は、この第1のブロック図である。フィールド内補間部10,動き補償補間部11,係数加重部12,加算部13,遅延部14,時系列多重部15、および、MC制御部16で構成し、動き補償の補間処理でインタレース走査から順次走査への走査変換を行う。   FIG. 2 is this first block diagram. It is composed of an intra-field interpolation unit 10, a motion compensation interpolation unit 11, a coefficient weighting unit 12, an addition unit 13, a delay unit 14, a time series multiplexing unit 15, and an MC control unit 16. Scan conversion is performed.

フィールド内補間部10は、インタレース走査で抜けた走査線の信号を、画像信号SVの同一フィールド内の走査線の信号の演算処理(例えば隣接する上下の走査線の信号の平均値)で、補間信号S20を生成する。   The intra-field interpolation unit 10 converts the signal of the scanning line missing in the interlaced scanning into an arithmetic processing of the signal of the scanning line in the same field of the image signal SV (for example, the average value of the signals of the adjacent upper and lower scanning lines). An interpolation signal S20 is generated.

動き補償補間部11は、画像信号SVの隣接する前後のフィールドの走査線の信号から、後述する様に、動き補償の補間処理に適した対の走査線の信号を補間動きベクトル信号IVで選択し、これらの信号の平均値で、補間信号S21を生成する。   The motion compensation interpolation unit 11 selects a pair of scan line signals suitable for motion compensation interpolation processing from the scan line signals of the previous and next fields adjacent to the image signal SV with the interpolation motion vector signal IV, as described later. Then, an interpolation signal S21 is generated with an average value of these signals.

係数加重部12−1と12−2では、補間信号S20とS21に対して混合比率係数kと1−k(01)の係数値を加重する。そして、加算部13で、係数加重した両者の信号の加算を行い、動き補償補間信号S22を生成する。 The coefficient weighting units 12-1 and 12-2 weight the interpolation signals S20 and S21 with the coefficient values of the mixing ratio coefficients k and 1-k (0 < k < 1). Then, the addition unit 13 performs addition of the coefficient-weighted signals to generate a motion compensation interpolation signal S22.

遅延部14は、動き補償補間信号の生成の信号処理で発生する時間遅延の補正を行い、時間遅延の一致した画像信号S23を生成する。そして、時系列多重部15は、信号S23とS22をそれぞれ水平方向に時間軸を1/2に圧縮し、時系列に多重して、順次走査の画像信号S13を生成する。   The delay unit 14 corrects a time delay generated in the signal processing for generating the motion compensation interpolation signal, and generates an image signal S23 having the same time delay. Then, the time-series multiplexing unit 15 compresses the signals S23 and S22 in the horizontal direction to 1/2 the time axis, multiplexes the signals in a time-series manner, and generates a sequentially-scanned image signal S13.

また、MC制御部16は、動き情報データS12の動きベクトル信号MVと予測誤差信号PEをもとに、後述する様に、補間動きベクトル信号TVと混合比率係数k,1−kを生成する。   Further, the MC control unit 16 generates the interpolation motion vector signal TV and the mixing ratio coefficients k and 1-k based on the motion vector signal MV and the prediction error signal PE of the motion information data S12, as described later.

さて、補間動きベクトル生成の概略を図3で説明する。同図は、画像の動きが垂直方向の場合を示す。図中の白丸はインタレース走査で伝送される走査線、黒丸は補間走査線を示し、また、Vi は動きベクトル信号MVで得られる1フレーム間の動きベクトルである。フィールド1の走査線aの信号は、1フレーム期間後のフィールド3では、動きベクトルV0 (静止)では走査線a,V1 では走査線b,V2 では走査線cの位置に移動する。また、V-1では走査線d,V-2では走査eの位置に移動する。したがって、動きベクトル信号のうち、補間走査線とクロスする動きベクトル(図ではV0 ,V2 ,V-2の三種類)は、動き補償の補間処理に使用することができる。そこで、これらの動きベクトルに対しては、補間動きベクトル信号IVとして、V0 ではIV=0,V2 ではIV=1,V-2ではIV=−1の信号を生成する。一方、動きベクトル信号のうち、伝送走査線とクロスする動きベクトル(図ではV1 ,V-1の二種類)は、動き補償の補間処理には使用できないので、補間動きベクトル信号IVにはIV=0の信号を生成する。 Now, an outline of generation of an interpolation motion vector will be described with reference to FIG. The figure shows a case where the motion of the image is in the vertical direction. Scanning line white circles transmitted in interlaced scan in the drawing, a black circle represents an interpolated scanning line, also, V i represents a motion vector of one frame obtained by the motion vector signal MV. The signal of the scanning line a in the field 1 moves to the position of the scanning line a in the motion vector V 0 (still), the scanning line b in the V 1 , and the scanning line c in the V 2 in the field 3 after one frame period. In addition, the scanning line moves to the position of the scanning line d at V- 1 and to the scanning line e at V- 2 . Therefore, of the motion vector signals, the motion vectors (three types of V 0 , V 2 , V −2 in the figure) crossing the interpolation scanning line can be used for the motion compensation interpolation processing. Therefore, for these motion vectors, as the interpolation motion vector signal IV, and it generates a signal V 0 at IV = 0, V 2 the IV = 1, V -2 the IV = -1. On the other hand, among the motion vector signals, the motion vectors (two types of V 1 and V −1 in the figure) crossing the transmission scanning line cannot be used for the motion compensation interpolation processing. = 0 is generated.

つぎに、図4で動き補償補間信号生成の概略を説明する。同図は先の図3と同様、画像の動きが垂直方向の場合を示す。フィールド2の補間走査線αの信号は、これと隣接する前後のフィールド1,フィールド3の信号より生成する。すなわち、補間動きベクトル信号IV=0では、フィールド1の走査線aとフィールド3の走査線a′,IV=1ではフィールド1の走査線bとフィールド3の走査線b′,IV=2ではフィールド1の走査線cとフィールド3の走査線c′, IV=−1ではフィールド1の走査線dとフィールド3の走査線d′,IV= −2ではフィールド1の走査線eとフィールド3の走査線e′、をそれぞれ対の走査線の信号として選択する。そして、これら信号の平均値で、動き補償の補間処理による補間走査線の信号を生成する。   Next, the outline of generation of a motion compensation interpolation signal will be described with reference to FIG. This figure shows the case where the motion of the image is in the vertical direction, as in FIG. The signal of the interpolation scanning line α of the field 2 is generated from the signals of the field 1 and the field 3 before and after the signal adjacent thereto. That is, when the interpolation motion vector signal IV = 0, the scan line a of the field 1 and the scan line a 'of the field 3 are used. 1 scan line c and field 3 scan line c ', IV = -1 for field 1 scan line d and field 3 scan line d', IV = -2 for field 1 scan line e and field 3 scan The line e 'is selected as a signal of each pair of scanning lines. Then, an average value of these signals is used to generate an interpolated scanning line signal by interpolation processing for motion compensation.

なお、図3と図4では、画像の動きが垂直方向の場合を示したが、水平方向の動きの時は、隣接する前後のフィールド1とフィールド3の、補間走査線αと同一位置の走査線の画素の信号より生成する。すなわち、補間動きベクトル信号で選択するフィールド1と3の対の画素の信号の平均値で、動き補償の補間処理による補間走査線の信号を生成する。また、斜め方向の動きの時は、その垂直方向と水平方向の動きに対して、それぞれ動き補償の補間処理を行い、所望の補間走査線の信号を生成する。   FIGS. 3 and 4 show the case where the motion of the image is in the vertical direction. However, when the motion is in the horizontal direction, the scanning of the same position as the interpolation scanning line α between the adjacent front and rear fields 1 and 3 is performed. Generated from the signal of the line pixel. That is, a signal of an interpolated scanning line is generated by an interpolation process of motion compensation using an average value of a signal of a pair of pixels of fields 1 and 3 selected by an interpolated motion vector signal. In the case of a movement in an oblique direction, interpolation processing for motion compensation is performed on the movement in the vertical direction and the movement in the horizontal direction to generate a signal of a desired interpolation scanning line.

図5は、上述の動き補償の補間処理を行う、動き補償補間部11のブロック図である。垂直補償生成部17は、1フレーム遅延部19と、1ライン遅延部20と、選択部21とで構成し、補間動きベクトル信号IVで、垂直方向の動きに対する動き補償の補間処理に用いる対の走査線の信号S30とS31(例えば、図4のフィールド3の走査線b′とフィールド1の走査線bの信号)を生成する。
一方、水平補償生成部18は、1サンプル遅延部22と、選択部23とで構成し、補間動きベクトル信号IVで、水平方向の動きに対する動き補償の補間処理に用いる対の画素の信号S32とS33とを生成する。そして、演算部24は、両者の信号S32とS33との平均値を演算し、その出力に補間信号S21を生成する。
FIG. 5 is a block diagram of the motion compensation interpolation unit 11 that performs the above-described motion compensation interpolation processing. The vertical compensation generation unit 17 includes a one-frame delay unit 19, a one-line delay unit 20, and a selection unit 21, and uses the interpolated motion vector signal IV for a pair used for motion compensation interpolation processing for vertical motion. It generates scanning line signals S30 and S31 (for example, signals of scanning line b 'of field 3 and scanning line b of field 1 in FIG. 4).
On the other hand, the horizontal compensation generation unit 18 includes a one-sample delay unit 22 and a selection unit 23, and generates a pair of pixel signals S32 used for interpolation processing of motion compensation for horizontal motion by using an interpolation motion vector signal IV. S33 and are generated. Then, the calculation unit 24 calculates the average value of the two signals S32 and S33, and generates an interpolation signal S21 at the output.

なお、動きベクトル信号MVが動き補償の補間処理に不可の場合は、前述した様に、補間動きベクトル信号IV=0(静止)で処理を行い、従来技術の動き適応の補間処理における静止部に適した補間信号と同様な信号を、補間信号S21に生成する。   If the motion vector signal MV cannot be used for the motion compensation interpolation processing, as described above, the processing is performed using the interpolation motion vector signal IV = 0 (still), and the processing is performed by the stationary unit in the conventional motion adaptive interpolation processing. A signal similar to a suitable interpolation signal is generated as an interpolation signal S21.

図6は、MC制御部16における動作の説明図である。同図(a)は、混合比率係数を連続的に変化させるソフトスイッチ制御、(b)は二値で変化させるオンオフ制御の動作を示す。   FIG. 6 is an explanatory diagram of the operation in the MC control unit 16. FIG. 3A shows the operation of soft switch control for continuously changing the mixing ratio coefficient, and FIG. 4B shows the operation of on / off control for changing the ratio in a binary manner.

同図(a)のソフトスイッチ制御では、動きベクトル信号MVが動き補償の補間処理に適する場合(図3のV0 ,V2 ,V-2の動きベクトルに相当)には、この動きベクトル信号より補間動きベクトル信号IVを生成する。また、混合比率係数は、(1)のMV動き補償補間可の時の特性に示す様に、予測誤差信号PEの絶対値の大小に応じて係数値を設定する。 In the soft switch control shown in FIG. 3A, when the motion vector signal MV is suitable for interpolation processing of motion compensation (corresponding to the motion vectors V 0 , V 2 , and V -2 in FIG. 3), Then, an interpolation motion vector signal IV is generated. Further, as shown in the characteristic (1) when the MV motion compensation interpolation is possible, the value of the mixture ratio coefficient is set according to the magnitude of the absolute value of the prediction error signal PE.

すなわち、|PE|がE1未満では、動きベクトル信号の精度が高いので、k=0に設定し、動き補償の補間処理で生成した信号を用いる。一方、|PE|がE2以上では、動きベクトル信号の精度が悪く、画像の本来の動きとは異なる動きで動き補償の補間処理を行う可能性が高いため、k=1に設定し、フィールド内の補間処理で生成した信号を用いる。また、|PE|がE1からE2の領域では、E1近傍では動き補償の補間処理の成分を主体,E2近傍ではフィールド内の補間処理の成分を主体になる様に、|PE|の値に応じてkを0から1まで変化させる。   That is, when | PE | is less than E1, the accuracy of the motion vector signal is high. Therefore, k = 0 is set, and the signal generated by the motion compensation interpolation processing is used. On the other hand, if | PE | is equal to or greater than E2, the accuracy of the motion vector signal is low, and it is highly likely that interpolation processing for motion compensation is performed with a motion different from the original motion of the image. Is used. In the region where | PE | is from E1 to E2, the component of the motion compensation interpolation process is mainly in the vicinity of E1, and the component of the interpolation process in the field is mainly in the vicinity of E2, depending on the value of | PE |. To change k from 0 to 1.

つぎに、動きベクトル信号MVが動き補償の補間処理に不適な場合(図3の V1 ,V-1の動きベクトルに相当)には、補間動きベクトル信号IVはIV=0(静止)を生成する。また、混合比率係数は、(2)のMV動き補償補間不可の時の特性に示す様に、動きベクトル信号MVの絶対値の大小に応じて係数値を設定する。すなわち、|MV|がVα未満の静止あるいは極めてゆっくりした速度の画像の動きでは、k=0に設定し、IV=0の動き補償の補間処理で生成した静止部に適した補間信号を用いる。また、|MV|がVβ以上の早い速度の画像の動きでは、k=1に設定し、動画部に適したフィールド内の補間処理で生成した信号を用いる。一方、|MV|がVα からVβ の領域では、|MV|の値に応じてkを0から1まで変化させる。これにより、画像の動きの速度に応じた動き適応の補間処理を行うことができる。 Next, when the motion vector signal MV is not suitable for the interpolation processing of the motion compensation (corresponding to the motion vectors of V 1 and V -1 in FIG. 3), the interpolation motion vector signal IV generates IV = 0 (still). I do. Further, as shown in the characteristic (2) when the MV motion compensation interpolation is not possible, the value of the mixture ratio coefficient is set according to the magnitude of the absolute value of the motion vector signal MV. That, | MV | In the movement of the stationary or very slow speed of the image below V alpha, set k = 0, using the interpolation signal suitable for stationary portion generated by interpolation processing of the motion compensation of IV = 0 . Moreover, | MV | in motion of V beta more rapid rate of the image, is set to k = 1, using a signal generated by the interpolation processing in a field suitable for moving image part. On the other hand, | MV | is in the region of from V alpha V beta is, | changes the k in accordance with a value from 0 to 1 | MV. This makes it possible to perform a motion adaptive interpolation process according to the speed of the motion of the image.

同図(b)のオンオフ制御では、動きベクトル信号MVが動き補償の補間処理に適する場合には、動きベクトル信号より補間動きベクトル信号IVを生成し、混合比率係数は(1)のMV動き補償補間可の時に示す様に、予測誤差信号 |PE|がE1未満はk=0,E1以上ではk=1に設定する。一方、動きベクトル信号MVが動き補償の補間処理に不適な場合には、補間動きベクトル信号 IV=0を生成し、混合比率係数は(2)のMV動き補償補間不可の時に示す様に、動きベクトル信号|MV|がVα 未満はk=0,Vα 以上ではk=1に設定し、画像の動きの速度に応じた動き適応の補間処理を行う。ただ、オンオフ制御では、場合によっては混合比率係数の変動に起因する画質の劣化が発生する。
このため、画質の観点からは、ソフトスイッチ制御を行うことが望ましい。
In the on / off control shown in FIG. 3B, when the motion vector signal MV is suitable for the interpolation processing of the motion compensation, the interpolation motion vector signal IV is generated from the motion vector signal, and the mixing ratio coefficient is the MV motion compensation of (1). As shown when interpolation is possible, k = 0 when the prediction error signal | PE | is less than E1, and k = 1 when the prediction error signal | PE | is greater than E1. On the other hand, if the motion vector signal MV is not suitable for the interpolation process of motion compensation, an interpolated motion vector signal IV = 0 is generated, and the mixture ratio coefficient is calculated as shown in (2) when MV motion compensation interpolation is not possible. vector signal | MV | less than the V alpha is at k = 0, V α or set to k = 1, interpolation is performed for motion-adaptive in response to the speed of movement of the image. However, in the on / off control, in some cases, the image quality is deteriorated due to the fluctuation of the mixing ratio coefficient.
Therefore, it is desirable to perform soft switch control from the viewpoint of image quality.

この様に、図2によれば、動きベクトル信号をもとに、補間動きベクトル信号による動き補償の補間処理,動きの速度に応じた動き適応の補間処理によって、画像の動きに整合した補間走査線の信号が生成できる。   As described above, according to FIG. 2, based on the motion vector signal, the interpolation scanning matched to the motion of the image is performed by the interpolation process of the motion compensation using the interpolated motion vector signal and the interpolation process of the motion adaptation according to the speed of the motion. A line signal can be generated.

つぎに、本実施例のMC走査変換部6の第2のブロック図を、図7に示す。フィールド内補間部10,動き補償補間部11,係数加重部12,加算部13,遅延部14,時系列多重部15,モード設定部25、および、MC制御部26で構成し、動き補償の補間処理でインタレース走査から順次走査への走査変換を行う。   Next, FIG. 7 shows a second block diagram of the MC scan conversion unit 6 of the present embodiment. It is composed of an intra-field interpolation unit 10, a motion compensation interpolation unit 11, a coefficient weighting unit 12, an addition unit 13, a delay unit 14, a time series multiplexing unit 15, a mode setting unit 25, and an MC control unit 26. In the processing, scan conversion from interlaced scanning to sequential scanning is performed.

フィールド内補間部10は、画像信号SVの同一フィールド内の走査線の信号の演算処理で、補間信号S20を生成し、動き補償補間部11は、画像信号SVの隣接する前後のフィールドの走査線の信号を補間動きベクトル信号IVで選択する動き補償処理で、補間信号S21を生成する。   The intra-field interpolation unit 10 generates an interpolation signal S20 by performing arithmetic processing on signals of scanning lines in the same field of the image signal SV, and the motion compensation interpolation unit 11 generates scanning signals of adjacent fields before and after the image signal SV. The interpolation signal S21 is generated by the motion compensation processing of selecting the signal of the above with the interpolation motion vector signal IV.

係数加重部12−1,12−2は、混合比率係数k,1−k(01)の係数値を加重し、加算部13で係数加重した両者の信号を加算して、動き補償補間信号S22を生成する。 The coefficient weighting units 12-1 and 12-2 weight the coefficient values of the mixture ratio coefficients k and 1-k (0 < k < 1), add the two signals weighted by the addition unit 13 and add A compensation interpolation signal S22 is generated.

遅延部14は、信号処理で生じる時間遅延を調整し、時間遅延の一致した画像信号S23を生成する。時系列多重部15は、信号S23とS22をそれぞれ水平方向に時間軸を1/2に圧縮し、時系列に多重して、順次走査の画像信号S13を生成する。   The delay unit 14 adjusts a time delay generated in the signal processing, and generates an image signal S23 having the same time delay. The time-series multiplexing unit 15 compresses the signals S23 and S22 in the horizontal direction to 1/2 the time axis, multiplexes the signals in a time-series manner, and generates a sequentially-scanned image signal S13.

モード設定部25は、動き情報データS12の動きベクトル信号MVをもとに、後述する様に補間処理のモードを設定し、第1の補間モード(前述の第1の構成例と同様な補間処理に相当)はL,第2の補間モードではHのモード信号MOD を生成する。そして、MC制御部26は、モード信号MODに従って、動きベクトル信号MVと予測誤差信号PEをもとに、補間動きベクトル信号IV、および混合比率係数k,1−kを生成する。   The mode setting unit 25 sets the mode of the interpolation process as described later based on the motion vector signal MV of the motion information data S12, and sets the first interpolation mode (interpolation process similar to the first configuration example described above). Generates a mode signal MOD of L and H in the second interpolation mode. Then, the MC control unit 26 generates the interpolation motion vector signal IV and the mixing ratio coefficients k and 1-k based on the motion vector signal MV and the prediction error signal PE according to the mode signal MOD.

図8は、このモード設定部25のブロック図である。主走査線信号補間部27は、動きベクトル信号MVのうちの伝送走査線とクロスする動きベクトル(例えば図3でのV1 ,V-1)をもとに、動き補償の補間処理を行い、伝送走査線補間信号SV′を生成する。演算部28は、同一位置の走査線の画像信号SVと伝送走査線補間信号SV′との減算演算を行い、誤差信号ERを生成する。 FIG. 8 is a block diagram of the mode setting unit 25. The main scanning line signal interpolation unit 27 performs a motion compensation interpolation process based on a motion vector (for example, V 1 , V −1 in FIG. 3) of the motion vector signal MV that crosses the transmission scanning line. A transmission scan line interpolation signal SV 'is generated. The operation unit 28 performs a subtraction operation between the image signal SV of the scanning line at the same position and the transmission scanning line interpolation signal SV 'to generate an error signal ER.

動きベクトル信号が精度の高いものでは、伝送走査線補間信号SV′は画像信号SVとほぼ同じ信号となるため、誤差信号ERは成分がほぼ零の信号になる。
一方、動きベクトル信号の精度が悪いものでは、この誤差信号ERの成分は大きくなる。したがって、誤差信号ERの成分の大小で、動きベクトル信号の精度を検証することができる。
When the motion vector signal has high accuracy, the transmission scanning line interpolation signal SV 'is almost the same as the image signal SV, and thus the error signal ER is a signal having almost zero component.
On the other hand, if the accuracy of the motion vector signal is low, the component of the error signal ER becomes large. Therefore, the accuracy of the motion vector signal can be verified based on the magnitude of the component of the error signal ER.

そこで、判定部29は、誤差信号ERの絶対値の大小で動きベクトル信号の精度を検証する。そして、閾値Th未満の時には動きベクトル信号をもとに動き補償の補間処理を行う第1の補間モード,閾値Th以上の時には動きの速度に応じた動き適応の補間処理を行う第2の補間モードに設定し、これに対応したモード信号MODを生成する。   Therefore, the determination unit 29 verifies the accuracy of the motion vector signal based on the magnitude of the absolute value of the error signal ER. When the threshold value is less than the threshold Th, a first interpolation mode for performing motion compensation interpolation processing based on the motion vector signal, and when the threshold value is equal to or greater than the threshold Th, a second interpolation mode for performing motion adaptive interpolation processing according to the speed of the motion. And a mode signal MOD corresponding to this is generated.

図9は、このMC制御部26の動作の説明図である。同図(a)はMOD信号がHの第2の補間モードでの動作を示す。このモードでは動きの速度に応じた動き適応の補間処理を行うため、動き補償補間部11で静止部に適した補間信号を生成する様に、補間動きベクトル信号IVにはIV=0(静止)の信号を生成する。また、混合比率係数は、動きベクトル信号MVの絶対値の大小に応じて、 Vα未満ではk=0,VαからVβまでは0から1まで連続的に増加し、Vβ以上ではk=1の係数値を生成する。 FIG. 9 is an explanatory diagram of the operation of the MC control unit 26. FIG. 7A shows the operation in the second interpolation mode in which the MOD signal is H. In this mode, since the interpolation processing of the motion adaptation according to the speed of the motion is performed, the interpolation motion vector signal IV is set to IV = 0 (still) so that the motion compensation interpolation unit 11 generates an interpolation signal suitable for the stationary unit. Generate a signal of The mixing ratio factor, depending on the magnitude of the absolute value of the motion vector signal MV, is less than V alpha increases from 0 from k = 0, V alpha to V beta continuously to 1, k is a V beta or = 1 is generated.

同図(b)はMOD信号がLの第1の補間モードでの動作を示す。動きベクトル信号MVが動き補償の補間処理に適する場合(図3のV0 ,V2 ,V-2の動きベクトルに相当)は、この動きベクトル信号で補間動きベクトル信号IVを生成する。また、混合比率係数は、(1)のMV動き補償補間可の時の特性の様に、予測誤差信号PEの絶対値の大小に応じて、E1未満ではk=0,E1からE2までは0から1まで連続的に増加し、E2以上ではk=1の係数値を生成する。
一方、動きベクトル信号が動き補償の補間処理に不適な場合(図3のV1 ,V-1の動きベクトルに相当)は、補間動きベクトル信号IVはIV=0を生成する。
また、混合比率係数は、(2)のMV動き補償不可の時の特性の様に、動きベクトル信号MVの絶対値の大小に応じて、Vα未満ではk=0,VαからVβまでは0から1まで連続的に増加し、Vβ以上ではk=1の係数値を生成する。
FIG. 11B shows the operation in the first interpolation mode in which the MOD signal is L. When the motion vector signal MV is suitable for the motion compensation interpolation process (corresponding to the motion vectors V 0 , V 2 , V −2 in FIG. 3), the motion vector signal is used to generate an interpolation motion vector signal IV. Further, like the characteristic (1) when the MV motion compensation interpolation is possible, the mixing ratio coefficient is k = 0 when E1 is less than E1 and 0 when E1 to E2 according to the magnitude of the absolute value of the prediction error signal PE. From 1 to 1, and when E2 or more, a coefficient value of k = 1 is generated.
On the other hand, if the motion vector signal is inappropriate for the motion compensation interpolation processing (corresponding to the motion vectors V 1 and V -1 in FIG. 3), the interpolation motion vector signal IV generates IV = 0.
Further, like the characteristic (2) when the MV motion compensation is not possible, the mixture ratio coefficient varies from k = 0, V α to V β when V is less than V α according to the magnitude of the absolute value of the motion vector signal MV. increases from 0 continuously to 1, the V beta or generating a coefficient value of k = 1.

以上述べた様に、第2の構成例によれば、動きベクトル信号の精度が高いものでは動き補償の補間処理,精度の悪いものでは動きの速度に応じた動き適応の補間処理によって、画像の動きに整合した補間走査線の信号を生成できる。   As described above, according to the second configuration example, when the accuracy of the motion vector signal is high, the interpolation process of the motion compensation is performed, and when the accuracy of the motion vector signal is low, the interpolation process of the motion adaptation according to the speed of the motion is performed. It is possible to generate an interpolated scanning line signal that matches the motion.

つぎに、本実施例のMC走査変換部6の第3の構成例を、図10に示す。フィールド内補間部10,動き補償補間部30,係数加重部12,加算部13,遅延部14,時系列多重部15、および、MC制御部31で構成し、動きの速度に応じた動き適応の補間処理で、インタレース走査から順次走査への走査変換を行う。   Next, FIG. 10 shows a third configuration example of the MC scan conversion unit 6 of the present embodiment. It is composed of an intra-field interpolation unit 10, a motion compensation interpolation unit 30, a coefficient weighting unit 12, an addition unit 13, a delay unit 14, a time series multiplexing unit 15, and an MC control unit 31, which performs motion adaptation according to the speed of motion. In the interpolation processing, scan conversion from interlaced scanning to sequential scanning is performed.

フィールド内補間部10は、画像信号SVの同一フィールド内の走査線の信号の演算処理で、補間信号S20を生成する。動き補償補間部30は、画像信号 VSの隣接する前後のフィールドの走査線の信号で、補間動きベクトル信号IV=0の静止部に適した補間信号S24を生成する。   The intra-field interpolation unit 10 generates an interpolation signal S20 by performing arithmetic processing on signals of scanning lines in the same field of the image signal SV. The motion compensation interpolation unit 30 generates an interpolation signal S24 suitable for a stationary portion with an interpolation motion vector signal IV = 0, using a signal of a scanning line of a previous and next field adjacent to the image signal VS.

係数加重部12−1,12−2は、混合比率係数k,1−k(01)の係数値を加重し、加算部13で係数加重した両者の信号を加算して、動き補償補間信号S22を生成する。 The coefficient weighting units 12-1 and 12-2 weight the coefficient values of the mixture ratio coefficients k and 1-k (0 < k < 1), add the two signals weighted by the addition unit 13 and add A compensation interpolation signal S22 is generated.

遅延部14は、上記の信号処理で生じる時間遅延の調整を行い、時間遅延の一致した画像信号S23を生成する。時系列多重部15は、信号S22とS23をそれぞれ水平方向に時間軸を1/2に圧縮し、時系列に多重して、順次走査の画像信号S13を生成する。   The delay unit 14 adjusts the time delay generated in the above-described signal processing, and generates an image signal S23 having the same time delay. The time-series multiplexing unit 15 compresses the signals S22 and S23 in the horizontal direction to 1/2 the time axis, multiplexes the signals in a time-series manner, and generates a sequentially-scanned image signal S13.

MC制御部31は、動き情報データS12の動きベクトル信号MVをもとに、混合比率係数k,1−kを生成する。   The MC control unit 31 generates the mixing ratio coefficients k and 1-k based on the motion vector signal MV of the motion information data S12.

図11は、このMC制御部31の動作の説明図である。動きベクトル信号MVの絶対値の大小に応じて、Vα未満ではk=0,VαからVβまでは0から1まで連続的に増加,Vβ以上ではk=1の係数値を生成する。なお、同図に示す様なソフトスイッチ制御の特性の他にも、Vα未満はk=0,Vα以上ではk=1のオンオフ制御の特性で係数値を生成することもできる。 FIG. 11 is an explanatory diagram of the operation of the MC control unit 31. Depending on the magnitude of the absolute value of the motion vector signal MV, it is less than V alpha continuously increases from zero from k = 0, V alpha to V beta to 1, the V beta or generating a coefficient value of k = 1 . Incidentally, in addition to the characteristics of the soft switch control, such as shown in the figure, less than V alpha is at k = 0, V alpha or can generate a coefficient value by the characteristics of the on-off control of k = 1.

以上、図10によれば、動きベクトル信号によって、動きの速度に応じた動き適応の補間処理を行うことで、画像の動きに整合した補間走査線の信号を生成できる。   As described above, according to FIG. 10, by performing the motion adaptive interpolation processing according to the motion speed using the motion vector signal, it is possible to generate an interpolated scanning line signal that matches the motion of the image.

なお、本実施例におけるその他の各ブロックについては、従来技術によって容易に実現することができる。   The other blocks in this embodiment can be easily realized by the conventional technology.

本実施例によれば、第1のテレビジョン信号に対しては動き適応の補間処理,第2のテレビジョン信号に対しては、ビデオ符号化信号の動き情報データを用いた動き補償の補間処理を行うことで、インタレース妨害のない高品質,高精細なテレビジョン画像を受像するテレビジョン受像機が実現できる。   According to the present embodiment, interpolation processing of motion adaptation is performed on the first television signal, and interpolation processing of motion compensation is performed on the second television signal using the motion information data of the video coded signal. , A television receiver that receives a high-quality, high-definition television image without interlace interference can be realized.

つぎに、本発明の第2の実施例について、図12に示すブロック図で説明する。   Next, a second embodiment of the present invention will be described with reference to a block diagram shown in FIG.

第1のテレビジョン信号S1は、ベースバンド復調部1で所定の復調処理を行い、ベースバンド帯域の複合カラーテレビジョン信号S2を復調する。ビデオ復調部2は、YC分離,色復調などの所定の復調処理を行う。また、アスペクト比が16対9の画面に画像を表示するための信号処理、例えば、現行のNTSC方式のテレビジョン信号に対しては、アスペクト比が4対3の画像を画面の左右に無画部領域を設けて表示するために、水平方向に時間軸を3/4倍圧縮する処理を行う。そして、インタレース走査の画像信号S3(輝度信号と二つの色差信号)を復調する。この信号は動き検出部32に供給し、例えば、フレーム間の差分信号の有無などをもとに、動きの情報MDを検出する。   The first television signal S1 undergoes a predetermined demodulation process in the baseband demodulation unit 1 to demodulate the composite color television signal S2 in the baseband. The video demodulation unit 2 performs predetermined demodulation processing such as YC separation and color demodulation. In addition, signal processing for displaying an image on a screen having an aspect ratio of 16: 9, for example, with respect to the current NTSC television signal, an image having an aspect ratio of 4: 3 is displayed on the left and right sides of the screen. In order to provide a partial area for display, processing for compressing the time axis in the horizontal direction by 3/4 is performed. Then, the image signal S3 (the luminance signal and the two color difference signals) of the interlaced scanning is demodulated. This signal is supplied to the motion detection unit 32, and the motion information MD is detected based on, for example, the presence or absence of a difference signal between frames.

一方、第2のテレビジョン信号S10は、チャネル復号化部4で所定のデジタル復調処理を行い、符号化ビットストリーム信号を復号する。また、符号誤りの訂正処理、および修正処理(訂正が不能な符号誤りを相間の高い信号で置換)を行い、ビデオ符号化信号S11を復号する。ビデオ復号化部5は、所定の復号化処理、例えば、可変長符号復号化,逆量子化,変換係数復号化などを行い、符号化フレームの画像データを復号する。そして、所定の画像フォーマットの変換処理を行い、インタレース走査の画像信号SV(輝度信号と二つの色差信号)と、動き情報データの動きベクトル信号MVとを出力する。   On the other hand, the second television signal S10 performs a predetermined digital demodulation process in the channel decoding unit 4, and decodes the encoded bit stream signal. Further, it performs a code error correction process and a correction process (replace a code error that cannot be corrected with a signal having a high phase) to decode the video encoded signal S11. The video decoding unit 5 performs predetermined decoding processing, for example, variable-length code decoding, inverse quantization, transform coefficient decoding, and the like, and decodes image data of an encoded frame. Then, a conversion process of a predetermined image format is performed, and an interlaced scanning image signal SV (a luminance signal and two color difference signals) and a motion vector signal MV of motion information data are output.

選択部33は、第1のテレビジョン信号の受信では画像信号S3,第2のテレビジョン信号の受信では画像信号SVを、画像信号S7に出力する。また、動き信号MIには、第1のテレビジョン信号の受信では動きの情報MD,第2のテレビジョン信号の受信では動きベクトル信号MVを出力する。   The selection unit 33 outputs the image signal S7 when receiving the first television signal and outputs the image signal SV when receiving the second television signal to the image signal S7. Further, as the motion signal MI, motion information MD is output when the first television signal is received, and a motion vector signal MV is output when the second television signal is received.

MA走査変換部34は、インタレース走査で抜けた走査線の信号を動き信号 MIに応じた動き適応の補間処理で生成し、インタレース走査から順次走査への走査変換処理を行い、順次走査の画像信号S8(輝度信号と二つの色差信号)を生成する。そして、ビデオプロセス部8は、所定のマトリクス演算の信号処理を行い、三原色RGB系の画像信号S6に変換する。この信号は、画像表示部9でアスペクト比が16対9、順次走査の形態で表示して、高品質,高精細なテレビ画像を受像する。   The MA scan conversion unit 34 generates a signal of a scan line that has been dropped in the interlace scan by a motion adaptive interpolation process according to the motion signal MI, performs a scan conversion process from the interlace scan to the sequential scan, and An image signal S8 (a luminance signal and two color difference signals) is generated. Then, the video processing unit 8 performs signal processing of a predetermined matrix operation, and converts the signal into an image signal S6 of three primary colors, RGB. This signal is displayed on the image display section 9 in the form of progressive scanning with an aspect ratio of 16: 9 to receive a high-quality and high-definition television image.

図13は、MA走査変換部34の説明図である。同図(a)に示す様に、フィールド内補間部10,フィールド間補間部35,係数加重部12,加算部13,遅延部14,時系列多重部15、および、係数設定部36とで構成する。   FIG. 13 is an explanatory diagram of the MA scan conversion unit 34. As shown in FIG. 1A, the inter-field interpolation unit 10, the inter-field interpolation unit 35, the coefficient weighting unit 12, the addition unit 13, the delay unit 14, the time-series multiplexing unit 15, and the coefficient setting unit 36 are provided. I do.

フィールド内補間部10は、画像信号S7の同一フィールド内の走査線の信号の演算処理(例えば上下の走査線の信号の平均)で、動画部に適した補間信号 S40を生成する。フィールド間補間部35は、隣接する前後のフィールドの走査線の信号の演算処理で、静止部に適した補間信号S41を生成する。   The intra-field interpolation unit 10 generates an interpolation signal S40 suitable for a moving image portion by performing arithmetic processing (for example, averaging the signals of the upper and lower scanning lines) on the signals of the scanning lines in the same field of the image signal S7. The inter-field interpolation unit 35 generates an interpolation signal S41 suitable for a stationary unit by performing a calculation process on signals of scanning lines of adjacent fields before and after.

係数加重部12−1,12−2は、混合比率係数k,1−k(01)の係数値を加重し、加算部13で係数加重した両者の信号を加算し、動き適応の補間信号S42を生成する。 The coefficient weighting units 12-1 and 12-2 weight the coefficient values of the mixing ratio coefficients k and 1-k (0 < k < 1), add the two signals weighted by the addition unit 13, and perform motion adaptation. Is generated.

遅延部14は、上記の信号処理で生じる時間遅延を調整し、時間遅延の一致した画像信号S43を生成する。そして、時系列多重部15は、信号S42とS43とをそれぞれ水平方向に時間軸を1/2に圧縮し、時系列に多重して、順次走査の画像信号S8を生成する。   The delay unit 14 adjusts the time delay generated in the above-described signal processing, and generates an image signal S43 having the same time delay. Then, the time-series multiplexing unit 15 compresses the signals S42 and S43 in the horizontal direction to 1/2 the time axis, multiplexes the signals in a time-series manner, and generates a sequentially-scanned image signal S8.

同図(b)は、混合比率係数の一特性例である。第1のテレビジョン信号に対しては、(1)に示す様に、動きの情報MDの絶対値の大小に応じて、M1未満ではk=0,M1からM2までは0から1まで連続的に増加し、M2以上ではk=1の係数値を生成する。一方、第2のテレビジョン信号に対しては、(2)に示す様に、動きベクトル信号MVの絶対値の大小に応じて、Vα未満ではk=0,VαからVβまでは0から1まで連続的に増加し、Vβ以上ではk=1の係数値を生成する。これにより、動きの速度に応じた適応処理が実現でき、視覚の特性に整合した形態の補間処理を行うことができる。 FIG. 6B is a characteristic example of the mixing ratio coefficient. For the first television signal, as shown in (1), depending on the magnitude of the absolute value of the motion information MD, k = 0 for less than M1, and 0 to 1 continuously from M1 to M2. And a coefficient value of k = 1 is generated for M2 and above. On the other hand, for the second television signal, as shown in (2), in response to the magnitude of the absolute value of the motion vector signal MV, from the less than V α k = 0, V α to V beta 0 From 1 to 1, and when V β or more, a coefficient value of k = 1 is generated. As a result, the adaptive processing according to the speed of the movement can be realized, and the interpolation processing conforming to the visual characteristics can be performed.

なお、本実施例におけるその他の各ブロックについては、従来技術で容易に実現可能である。   The other blocks in this embodiment can be easily realized by the conventional technology.

本実施例によれば、第1のテレビジョン信号に対しては動き適応の補間処理,第2のテレビジョン信号に対しては動きの速度による動き適応の補間処理を行うことで、インタレース妨害の極めて少ない、高品質,高精細なテレビ画像を受像するテレビジョン受像機が実現できる。   According to the present embodiment, by performing motion adaptive interpolation processing for the first television signal and performing motion adaptive interpolation processing based on the motion speed for the second television signal, interlace interference is prevented. A television receiver that receives a high-quality, high-definition television image with extremely little image quality can be realized.

なお、実施例において、混合比率係数の設定パラメーター(例えば、E1, E2,Vα ,Vβ 、およびM1,M2)は、実用上の支障がない範囲内で自由に設定することができる。 In the embodiment, the setting parameters of the mixing ratio coefficient (for example, E1, E2, V α , V β , and M1, M2) can be set freely within a range that does not hinder practical use.

本発明の第1の実施例のブロック図。FIG. 2 is a block diagram of a first embodiment of the present invention. 図1におけるMC走査変換部の第1のブロック図。FIG. 2 is a first block diagram of an MC scan converter in FIG. 1. 本発明における補間動きベクトル生成の説明図。FIG. 3 is an explanatory diagram of generation of an interpolation motion vector according to the present invention. 本発明における動き補償補間信号生成の説明図。FIG. 4 is an explanatory diagram of generating a motion compensation interpolation signal according to the present invention. 図2における動き補償補間部のブロック図。FIG. 3 is a block diagram of a motion compensation interpolation unit in FIG. 2. 図2におけるMC制御部の動作の説明図。FIG. 3 is an explanatory diagram of the operation of the MC control unit in FIG. 2. MC走査変換部の第2のブロック図。FIG. 5 is a second block diagram of the MC scan conversion unit. 図7におけるモード設定部のブロック図。FIG. 8 is a block diagram of a mode setting unit in FIG. 7. 図7におけるMC制御部の動作の説明図。FIG. 8 is an explanatory diagram of the operation of the MC control unit in FIG. 7. MC走査変換部の第3のブロック図。FIG. 13 is a third block diagram of the MC scan conversion unit. 図10におけるMC制御部の動作の説明図。FIG. 11 is an explanatory diagram of the operation of the MC control unit in FIG. 10. 本発明の第2の実施例のブロック図。FIG. 6 is a block diagram of a second embodiment of the present invention. 図12におけるMA走査変換部の説明図。FIG. 13 is an explanatory diagram of an MA scan converter in FIG. 12.

符号の説明Explanation of reference numerals

1…ベースバンド復調部、2…ビデオ復調部、3…MA走査変換部、4…チャネル復号化部、5…ビデオ復号化部、6…MC走査変換部、7…選択部、8…ビデオプロセス部、9…画像表示部。
DESCRIPTION OF SYMBOLS 1 ... Baseband demodulation part, 2 ... Video demodulation part, 3 ... MA scan conversion part, 4 ... Channel decoding part, 5 ... Video decoding part, 6 ... MC scan conversion part, 7 ... Selection part, 8 ... Video process Part, 9 ... Image display part.

Claims (6)

輝度信号に搬送色信号を重畳した第1のテレビジョン信号,高能率符号化した
ビデオ符号化信号の第2のテレビジョン信号を、アスペクト比が16対9の順次
走査の形態の画像表示部で受像するテレビジョン受像機において、インタレース
走査で抜けた走査線の信号を、上記第1のテレビジョン信号に対しては動き適応
の補間処理,上記第2のテレビジョン信号に対しては動き補償の補間処理でそれ
ぞれ生成し、インタレース走査から順次走査への走査変換を行うことを特徴とす
るテレビジョン受像機。
A first television signal in which a carrier chrominance signal is superimposed on a luminance signal, and a second television signal of a video encoding signal in which high-efficiency encoding has been performed are processed by an image display section in a progressive scanning mode having an aspect ratio of 16: 9. In a television receiver for receiving an image, a signal of a scanning line which has been dropped by interlaced scanning is subjected to motion adaptive interpolation processing for the first television signal and motion compensation for the second television signal. A television receiver, wherein each of the television receivers is generated by an interpolation process of (1) and performs scan conversion from interlaced scanning to sequential scanning.
請求項1において、上記動き補償の補間処理とは、同一フィールドの信号から
補間信号を生成するフィールド内補間部と、隣接フィールドの信号の動き補償処
理で補間信号を生成する動き補償補間部とを有し、動き補償補間の可能な場合は
、ビデオ符号化信号を復号して得る予測誤差信号の大小に応じて、上記フィール
ド内補間部の出力信号と上記動き補償補間部の出力信号との混合比率を変化させ
て補間信号を生成し、動き補償補間の不可な場合は、ビデオ符号化信号を復号し
て得る動きベクトル信号の大小に応じて、上記フィールド内補間部の出力信号と
、補間動きベクトル信号が零の上記動き補償補間部の出力信号との混合比率を変
化させて補間信号を生成することであるテレビジョン受像機。
In claim 1, the interpolation process of the motion compensation includes: an intra-field interpolation unit that generates an interpolation signal from a signal of the same field; and a motion compensation interpolation unit that generates an interpolation signal by a motion compensation process of a signal of an adjacent field. When the motion compensation interpolation is possible, the output signal of the intra-field interpolation unit and the output signal of the motion compensation interpolation unit are mixed according to the magnitude of the prediction error signal obtained by decoding the video encoded signal. If the interpolation signal is generated by changing the ratio and motion compensation interpolation is not possible, the output signal of the intra-field interpolation unit and the interpolation motion are calculated according to the magnitude of the motion vector signal obtained by decoding the video encoded signal. A television receiver for generating an interpolation signal by changing a mixing ratio of a vector signal and an output signal of the motion compensation interpolation unit having zero.
請求項1において、上記動き補償の補間処理とは、同一フィールドの信号から
補間信号を生成するフィールド内補間部と、隣接フィールドの信号を零の補間動
きベクトル信号で補間信号を生成する動き補償補間部とを有し、ビデオ符号化信
号を復号して得る動きベクトル信号の大小に応じて、上記フィールド内補間部の
出力信号と、上記動き補償補間部の出力信号との混合比率を変化させて補間信号
を生成することであるテレビジョン受像機。
2. The motion compensation interpolation process according to claim 1, wherein the motion compensation interpolation processing includes: an intra-field interpolation unit that generates an interpolation signal from a signal of the same field; and a motion compensation interpolation that generates an interpolation signal of a signal of an adjacent field using a zero interpolation motion vector signal. Having an output signal of the intra-field interpolation unit and a mixing ratio of the output signal of the motion compensation interpolation unit according to the magnitude of the motion vector signal obtained by decoding the video encoded signal. A television receiver that is to generate an interpolation signal.
請求項1,2または3において、ビデオ符号化信号を復号して得る動きベクト
ル信号の精度に応じて第1の補間モードと第2の補間モードを設定するモード設
定部を有し、上記第1の補間モードでは上記動き補償の補間処理で補間信号を生
成し、上記第2の補間モードでは上記動き補償の補間処理で補間信号を生成する
テレビジョン受像機。
4. The mode setting unit according to claim 1, further comprising a mode setting unit configured to set a first interpolation mode and a second interpolation mode in accordance with the accuracy of a motion vector signal obtained by decoding a video encoded signal. A television receiver that generates an interpolation signal by the motion compensation interpolation process in the interpolation mode, and generates an interpolation signal by the motion compensation interpolation process in the second interpolation mode.
輝度信号に搬送色信号を重畳した第1のテレビジョン信号,高能率符号化した
ビデオ符号化信号の第2のテレビジョン信号を、アスペクト比が16対9の順次
走査の形態の画像表示部で受像するテレビジョン受像機において、
インタレース走査で抜けた走査線の信号を動き適応の補間処理で生成し、イン
タレース走査から順次走査への走査変換を行う手段を有し、上記動き適応の補間
処理に用いる動きの情報を、上記第1のテレビジョン信号では複数フレーム間の
有意差信号、上記第2のテレビジョン信号ではビデオ符号化信号を復号して得る
動きベクトル信号で検出することを特徴とするテレビジョン受像機。
A first television signal in which a carrier chrominance signal is superimposed on a luminance signal, and a second television signal of a video encoding signal in which high-efficiency encoding has been performed are processed by an image display unit in a progressive scanning mode having an aspect ratio of 16: 9. In a television receiver that receives images,
A signal of a scanning line lost in interlaced scanning is generated by motion adaptive interpolation processing, and means for performing scan conversion from interlaced scanning to sequential scanning is provided. A television receiver, wherein the first television signal is detected by a significant difference signal between a plurality of frames, and the second television signal is detected by a motion vector signal obtained by decoding a video coded signal.
請求項1,2,3,4または5において、上記ビデオ符号化信号とは、直交変
換符号化と動き補償のフレーム間予測符号化との組み合せによる高能率符号化し
た信号であるテレビジョン受像機。
6. The television receiver according to claim 1, wherein the video coded signal is a signal obtained by performing high efficiency coding by a combination of orthogonal transform coding and inter-frame predictive coding for motion compensation. .
JP2004110648A 2004-04-05 2004-04-05 Television receiver Pending JP2004236353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004110648A JP2004236353A (en) 2004-04-05 2004-04-05 Television receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004110648A JP2004236353A (en) 2004-04-05 2004-04-05 Television receiver

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP25500194A Division JP3617088B2 (en) 1994-10-20 1994-10-20 Television receiver

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006230008A Division JP4305480B2 (en) 2006-08-28 2006-08-28 Television receiver, television receiving method, image signal processing apparatus, image signal processing method, motion vector detection method

Publications (1)

Publication Number Publication Date
JP2004236353A true JP2004236353A (en) 2004-08-19

Family

ID=32959911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004110648A Pending JP2004236353A (en) 2004-04-05 2004-04-05 Television receiver

Country Status (1)

Country Link
JP (1) JP2004236353A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8345156B2 (en) 2006-12-26 2013-01-01 Kabushiki Kaisha Toshiba Progressive scanning conversion apparatus and progressive scanning conversion method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8345156B2 (en) 2006-12-26 2013-01-01 Kabushiki Kaisha Toshiba Progressive scanning conversion apparatus and progressive scanning conversion method

Similar Documents

Publication Publication Date Title
US6509930B1 (en) Circuit for scan conversion of picture signal using motion compensation
JP4119092B2 (en) Method and apparatus for converting the number of frames of an image signal
JPH07212761A (en) Hierarchical coder and hierarchical decoder
KR19990039411A (en) Directive video format converter and method
JPH11298861A (en) Method and device for converting frame number of image signal
JPH043151B2 (en)
JPH10112845A (en) Interlace/sequential scanning conversion method for image signal and its circuit
JP3972938B2 (en) Display device
US20070230918A1 (en) Video Quality Enhancement and/or Artifact Reduction Using Coding Information From a Compressed Bitstream
JP2000259146A (en) Image display device
JP3617088B2 (en) Television receiver
JPH0346479A (en) Television signal converter
JP2004236353A (en) Television receiver
JP4305480B2 (en) Television receiver, television receiving method, image signal processing apparatus, image signal processing method, motion vector detection method
US6542197B1 (en) Three-dimensional signal processor using motion information upon decoding image signal
JP2000261768A (en) Motion compensation scanning conversion circuit for image signal
JPH11266440A (en) Scanning conversion circuit for image signal and image decoder
JP4258537B2 (en) Image signal generation method and image signal generation apparatus
JP3612739B2 (en) Image signal decoding apparatus and image signal decoding method
JP3915802B2 (en) Image decoding method and image decoding apparatus
JP4035808B2 (en) Moving image scanning structure conversion apparatus and moving image scanning structure conversion method
JPH03179890A (en) Television receiver
JPH10126749A (en) Sequential scanning conversion device
WO2001078384A1 (en) Image processing device
JPH10174105A (en) Motion discrimination device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040506

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014