JP2004235169A - Solid polymer fuel cell, its manufacturing process and electrolyte film therefor - Google Patents

Solid polymer fuel cell, its manufacturing process and electrolyte film therefor Download PDF

Info

Publication number
JP2004235169A
JP2004235169A JP2004151672A JP2004151672A JP2004235169A JP 2004235169 A JP2004235169 A JP 2004235169A JP 2004151672 A JP2004151672 A JP 2004151672A JP 2004151672 A JP2004151672 A JP 2004151672A JP 2004235169 A JP2004235169 A JP 2004235169A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
fuel cell
electrolyte
cell
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004151672A
Other languages
Japanese (ja)
Other versions
JP4046706B2 (en
Inventor
Takahiro Isono
隆博 礒野
Yukinori Akiyama
幸徳 秋山
Yasuo Miyake
泰夫 三宅
Ikuro Yonezu
育郎 米津
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004151672A priority Critical patent/JP4046706B2/en
Publication of JP2004235169A publication Critical patent/JP2004235169A/en
Application granted granted Critical
Publication of JP4046706B2 publication Critical patent/JP4046706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength and high power efficiency electrolyte film and a solid polymer fuel cell using the same. <P>SOLUTION: The electrolyte film 10 is a film for a solid polymer electrolyte fuel cell, and comprises an electrode forming region 12 to which an anode 20 and a cathode 22 is formed, and a peripheral region 14 to which no electrode is formed. The electrode forming region 12 is formed thinner than that of the peripheral region 14. The solid polymer electrolyte fuel cell 60 is formed by stacking a plurality of cell units 26 having a fuel chamber 30 formed in the anode side and an oxidizing agent chamber 34 formed in the cathode side, to a cell 24 that has the anode 20 formed in an electrode forming region 12 of the above electrolyte film 10 and the cathode 22 formed in another electrode forming region 12. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、発電効率及び耐久性にすぐれた固体高分子形燃料電池用電解質膜と、これを用いた固体高分子形燃料電池に関するものである。   The present invention relates to an electrolyte membrane for a polymer electrolyte fuel cell having excellent power generation efficiency and durability, and a polymer electrolyte fuel cell using the same.

固体高分子形燃料電池60は、図8に示すように、電解質膜10の一方の側にアノード20、他方の側にカソード22の両電極を配したセル24を、片面に燃料室30が形成された燃料プレート32と、片面に酸化剤室34が形成された酸化剤プレート36によって挟持したセルユニット26を多数積層して構成される。なお、図では1つのセルユニットのみを示している。   As shown in FIG. 8, the polymer electrolyte fuel cell 60 has a cell 24 having an anode 20 on one side of an electrolyte membrane 10 and a cathode 22 on the other side, and a fuel chamber 30 formed on one side. And a plurality of cell units 26 sandwiched by an oxidant plate 36 having an oxidant chamber 34 formed on one side. Note that only one cell unit is shown in the figure.

燃料室30には、純水素ガス又は改質器で改質された水素リッチガスなどの燃料ガスが供給される。また、酸化剤室34には、ファンなどによって送給された酸素ガスを含む酸化剤ガスが供給される。   The fuel chamber 30 is supplied with a fuel gas such as pure hydrogen gas or hydrogen-rich gas reformed by a reformer. The oxidizing agent chamber 34 is supplied with an oxidizing gas containing an oxygen gas sent from a fan or the like.

燃料ガスと酸化剤ガスが供給されると、アノード側では、燃料ガス中の水素ガスがH2→2H++2e-の反応によってプロトンと電子を生成する。プロトンは固体高分子電解質膜を通ってカソードに進み、電子は外部回路(図示せず)を流れる。カソードでは、酸化剤中の酸素ガスと、固体高分子電解質膜を通って移動したプロトン、及び外部回路を通って流入した電子が、1/2O2+2H++2e-→H2Oの反応により、水を生ずるとともに起電力を発生する。 When the fuel gas and the oxidizing gas are supplied, on the anode side, the hydrogen gas in the fuel gas generates protons and electrons by a reaction of H 2 → 2H + + 2e . Protons pass through the solid polymer electrolyte membrane to the cathode, and electrons flow through an external circuit (not shown). At the cathode, oxygen gas in the oxidant, protons that have moved through the solid polymer electrolyte membrane, and electrons that have flowed through the external circuit are reacted by a reaction of 1 / 2O 2 + 2H + + 2e → H 2 O. It generates water and generates electromotive force.

電解質膜10は、図8に示すように、膜厚Cが全面に亘ってほぼ均一に形成されており、アノード20及びカソード22の両電極は、図9に示すように、燃料室30、酸化剤室34と対向する領域(以下「電極形成領域」という)に形成されている。   As shown in FIG. 8, the electrolyte membrane 10 is formed so that the film thickness C is substantially uniform over the entire surface, and the anode 20 and the cathode 22 are connected to the fuel chamber 30 and the oxidation chamber 30 as shown in FIG. It is formed in a region (hereinafter, referred to as an “electrode formation region”) facing the agent chamber 34.

電解質膜10の電極の形成されない外周領域14と、燃料プレート32及び酸化剤プレート36の外周部分との間には、反応ガスの漏洩を防止するためのシール部材40が、図9に示すように、燃料室30及び酸化剤室34の外側を夫々一周して装着されている。   As shown in FIG. 9, a seal member 40 for preventing the leakage of the reaction gas is provided between the outer peripheral region 14 of the electrolyte membrane 10 where the electrodes are not formed and the outer peripheral portions of the fuel plate 32 and the oxidant plate 36. , And the fuel chamber 30 and the oxidant chamber 34 are mounted around the outer circumference of the fuel chamber 30, respectively.

電解質膜10は、電気抵抗を低減すると共に、膜中の水移動を活発化させ、さらに湿潤状態を容易に維持するために、薄く形成することが望ましい。しかしながら、電解質膜10を薄くすると、外周シール部分での強度が低下して、電解質膜10が破損することがある。シール部分で電解質膜10が破損すると、反応ガスが漏洩するため、燃料ガスや酸化剤ガスの利用率が低下し、発電効率が低下してしまう。   The electrolyte membrane 10 is desirably formed to be thin in order to reduce electric resistance, activate water movement in the membrane, and easily maintain a wet state. However, when the thickness of the electrolyte membrane 10 is reduced, the strength at the outer peripheral seal portion is reduced, and the electrolyte membrane 10 may be damaged. If the electrolyte membrane 10 is damaged at the seal portion, the reaction gas leaks, so that the utilization rates of the fuel gas and the oxidizing gas are reduced, and the power generation efficiency is reduced.

本発明の目的は、発電効率を低下させることなく、強度を高めた電解質膜及びこれを用いた固体高分子形燃料電池を提供することである。   An object of the present invention is to provide an electrolyte membrane having increased strength without lowering the power generation efficiency, and a polymer electrolyte fuel cell using the same.

上記課題を解決するために、本発明の固体高分子形燃料電池用電解質膜10は、アノード20及びカソード22の両電極が形成される電極形成領域12と、電極が形成されない外周領域14を有する固体高分子形燃料電池用電解質膜であって、電極形成領域12の膜厚を、外周領域14の膜厚よりも薄くなるように形成したものである。   In order to solve the above problem, the polymer electrolyte membrane for a polymer electrolyte fuel cell 10 of the present invention has an electrode forming region 12 in which both electrodes of an anode 20 and a cathode 22 are formed, and an outer peripheral region 14 in which no electrodes are formed. An electrolyte membrane for a polymer electrolyte fuel cell, wherein the thickness of the electrode formation region 12 is formed to be smaller than the thickness of the outer peripheral region 14.

また、本発明の固体高分子形燃料電池60は、電解質膜10の一方の電極形成領域12にアノード20、他方の電極形成領域12にカソード22を形成したセル24に対し、アノード側に燃料室30、カソード側に酸化剤室34を形成してなるセルユニット26を複数積層した固体高分子形燃料電池において、電解質膜10として、電極形成領域12の膜厚を、外周領域14の膜厚よりも薄くなるように形成した電解質膜を用いているものである。   Further, the polymer electrolyte fuel cell 60 of the present invention has a fuel chamber on the anode side with respect to the cell 24 in which the anode 20 is formed in one electrode forming region 12 and the cathode 22 is formed in the other electrode forming region 12 of the electrolyte membrane 10. 30, in a polymer electrolyte fuel cell in which a plurality of cell units 26 each having an oxidant chamber 34 formed on the cathode side are stacked, the thickness of the electrode forming region 12 as the electrolyte membrane 10 is set to be smaller than the thickness of the outer peripheral region 14. Also, an electrolyte membrane formed so as to be thin is used.

本発明の電解質膜10は、アノード20及びカソード22の両電極が形成される電極形成領域12の膜厚を薄く形成しているから、電気抵抗が小さく、また、電解質膜中での水移動を活発化でき、さらに電解質膜の湿潤状態を容易に維持することができる。   In the electrolyte membrane 10 of the present invention, the electrode formation region 12 in which both the anode 20 and the cathode 22 are formed is formed to be thin, so that the electric resistance is small and water movement in the electrolyte membrane is reduced. The electrolyte membrane can be activated and the wet state of the electrolyte membrane can be easily maintained.

また、両電極が形成されない外周領域14の膜厚を厚くしているから、強度が高く、シール部材40が強く押し当てられても破損することはない。従って、反応ガスの漏洩は防止され、燃料ガスや酸化剤ガスについての所定の利用率を確保することができる。   Further, since the film thickness of the outer peripheral region 14 where both electrodes are not formed is large, the strength is high, and even if the seal member 40 is strongly pressed, there is no breakage. Therefore, leakage of the reaction gas is prevented, and a predetermined utilization rate of the fuel gas and the oxidizing gas can be secured.

本発明の電解質膜10を利用した固体高分子形燃料電池60は、高いセル性能を有すると共に、長寿命化を達成できる。   The polymer electrolyte fuel cell 60 using the electrolyte membrane 10 of the present invention has high cell performance and can achieve long life.

電解質膜10は、パーフルオロカーボンスルホン酸などの高分子材料から形成することができる。   The electrolyte membrane 10 can be formed from a polymer material such as perfluorocarbon sulfonic acid.

電解質膜10は、電極形成領域12の膜厚を薄くするために、図1(b)に示すように、電極形成領域12に対応する部分が凸形状に張り出した膜型52に、イオン交換樹脂溶液(例えば、Nafion溶液:アルドリッチケミカル社製)を流し込み、溶媒を揮発させることによって作製することができる。膜型52を用いて作製された電解質膜10を図1(a)に示している。また、作製された凹形状の電解質膜を張り合わせたり、凸形状の膜型52を2個準備し、両面から押し当てることによって、両面が凹んだ電解質膜を作製することもできる。   In order to reduce the film thickness of the electrode forming region 12, the electrolyte membrane 10 is formed into a film mold 52 in which a portion corresponding to the electrode forming region 12 protrudes in a convex shape as shown in FIG. It can be prepared by pouring a solution (for example, Nafion solution: manufactured by Aldrich Chemical Co., Ltd.) and evaporating the solvent. FIG. 1A shows an electrolyte membrane 10 manufactured using the membrane mold 52. Alternatively, the prepared concave electrolyte membranes may be bonded together, or two convex membrane dies 52 may be prepared and pressed from both sides to prepare an electrolyte membrane having concave sides.

また、図2に示すように、膜厚がほぼ均一な電解質材11の片面又は両面に、電極形成領域に相当する部分が切り取られた電解質材11aを配置し、ホットプレスなどによって、これら電解質材11、11aを接合して、電解質膜10を作製することもできる。   As shown in FIG. 2, an electrolyte material 11a having a portion corresponding to an electrode formation region is disposed on one or both sides of an electrolyte material 11 having a substantially uniform film thickness, and these electrolyte materials are hot-pressed or the like. The electrolyte membrane 10 can also be manufactured by joining 11 and 11a.

セル24は、電解質膜10の電極形成領域12に、図3に示すように、白金担持カーボンを材料とするアノード20及びカソード22を、ホットプレスにより接合して作製される。   As shown in FIG. 3, the cell 24 is formed by joining an anode 20 and a cathode 22 made of platinum-supporting carbon to the electrode forming region 12 of the electrolyte membrane 10 by hot pressing.

セル24を挟持するプレート32、36は、カーボン多孔体から作製され、図9に示すように、両プレートの内、アノード側の燃料プレート32には、アノードに対向して燃料室30が形成され、カソード側の酸化剤プレート36には、カソードに対向して酸化剤室34が形成されている。なお、図では、燃料プレート32と酸化剤プレート36を夫々別部材で形成しているが、燃料室の裏面に酸化剤室を形成した所謂バイポーラプレート(図示せず)から構成することもできる。   The plates 32 and 36 sandwiching the cell 24 are made of a porous carbon material. As shown in FIG. 9, a fuel chamber 30 is formed in the fuel plate 32 on the anode side of the two plates so as to face the anode. An oxidant chamber 34 is formed in the oxidant plate 36 on the cathode side so as to face the cathode. Although the fuel plate 32 and the oxidant plate 36 are formed of different members in the drawing, they may be formed of a so-called bipolar plate (not shown) having an oxidant chamber formed on the back surface of the fuel chamber.

セルユニット26は、図9に示すように、上記セル24の外周領域の両面に夫々シール部材40を配し、アノードと燃料室30、カソードと酸化剤室34が対向するように、両プレートでセルを挟持することによって作製される。   As shown in FIG. 9, the cell unit 26 is provided with seal members 40 on both surfaces of the outer peripheral region of the cell 24, and the two plates are arranged so that the anode and the fuel chamber 30 and the cathode and the oxidant chamber 34 face each other. It is produced by sandwiching a cell.

図3は、本発明のセルユニット26の断面図である。図に示すように、本発明の電解質膜10は、外周領域の膜厚Bを電極形成領域の膜厚Aよりも厚くしているから、図8示すように、膜厚Cが全面に亘ってほぼ同じである従来の電解質膜10を使用した場合に比べて、外周領域の強度を高めることができる。   FIG. 3 is a sectional view of the cell unit 26 of the present invention. As shown in the figure, in the electrolyte membrane 10 of the present invention, the film thickness B in the outer peripheral region is larger than the film thickness A in the electrode forming region, and therefore, as shown in FIG. The strength of the outer peripheral region can be increased as compared with the case where the conventional electrolyte membrane 10 which is almost the same is used.

上記構成のセルユニット26を多数積層することによって固体高分子形燃料電池60が作製され、作製された固体高分子形燃料電池60の燃料室30に燃料ガス、酸化剤室34)に酸化剤ガスを供給することによって発電を行なうことができる。   A polymer electrolyte fuel cell 60 is manufactured by stacking a large number of the cell units 26 having the above-described configuration. The fuel cell 30 of the manufactured polymer electrolyte fuel cell 60 has a fuel gas, and an oxidant gas has an oxidant gas 34). , Power can be generated.

電極形成領域12の膜厚A(最小値)に対する外周領域14の膜厚B(平均値)を、種々変えた電解質膜10を準備し(表1参照)、これら電解質膜10に電極を形成したセル1乃至セル4を用いた固体高分子形燃料電池60を組み立てて、セル性能の比較を行なった。膜厚の比A/Bを併せて表1に示す。   Electrolyte films 10 were prepared by changing the thickness B (average value) of the outer peripheral region 14 with respect to the film thickness A (minimum value) of the electrode formation region 12 (see Table 1), and electrodes were formed on these electrolyte films 10. A polymer electrolyte fuel cell 60 using cells 1 to 4 was assembled, and the cell performance was compared. Table 1 also shows the film thickness ratio A / B.

Figure 2004235169
アノード20及びカソード22の両電極は、カーボンペーパーからなる電極基材に、白金担持カーボン60重量%、Nafion溶液20重量%、PTFE20重量%からなる触媒層をスクリーン印刷することによって作製した。
Figure 2004235169
Both electrodes of the anode 20 and the cathode 22 were prepared by screen-printing a catalyst layer composed of 60% by weight of platinum-supported carbon, 20% by weight of Nafion solution, and 20% by weight of PTFE on an electrode substrate made of carbon paper.

得られた両電極を、電解質膜の電極形成領域12に、150℃、50kg/cm2の条件で、60秒間ホットプレスして、セル1及びセル4を作製した。 Both of the obtained electrodes were hot-pressed in the electrode forming region 12 of the electrolyte membrane at 150 ° C. and 50 kg / cm 2 for 60 seconds, thereby producing Cell 1 and Cell 4.

作製されたセルを用いてセルユニット26を組み立て、運転開始直後と、500時間運転後のセル電圧を測定した。なお、運転条件は、電流密度0.5A/cm2、セル温度80℃、燃料ガス利用率70%、酸化剤ガス(空気)利用率20%である。 The cell unit 26 was assembled using the produced cells, and cell voltages were measured immediately after the start of operation and after 500 hours of operation. The operating conditions were a current density of 0.5 A / cm 2 , a cell temperature of 80 ° C., a fuel gas utilization of 70%, and an oxidizing gas (air) utilization of 20%.

結果を図4に示す。図4を参照すると、電池運転開始直後のセル電圧は、外周領域14の膜厚Bの厚さに拘わらず、ほぼ同じであった。これは、運転開始直後は、電解質膜10の外周領域14における劣化が生じていないためである。一方、500時間運転後は、外周領域14の膜厚Bが厚いほど、高いセル電圧を示しており、外周領域14の膜厚Bが薄いセル、つまり、膜厚の比A/Bが大きいセルほど、セル電圧の減少が大きいことがわかる。これは、外周領域14の膜厚Bが薄いほど、電解質膜10の外周シール部分における強度が低いためであり、長時間の運転によって、シール部分が破損して、ガスリークを生じ、セル電圧が低下したためである。逆に、外周領域14の膜厚Bが厚いセル、つまり、膜厚の比A/Bが小さいセルは、外周シール部分における強度が高いため、長時間の運転後も、シール部分からのガスリークはほとんど生じず、高いセル電圧を維持している。   FIG. 4 shows the results. Referring to FIG. 4, the cell voltage immediately after the start of the battery operation was substantially the same regardless of the thickness B of the outer peripheral region 14. This is because the outer peripheral region 14 of the electrolyte membrane 10 has not deteriorated immediately after the start of the operation. On the other hand, after the operation for 500 hours, the cell voltage is higher as the film thickness B of the outer peripheral region 14 is larger. It can be seen that the smaller the cell voltage, the greater the decrease in cell voltage. This is because the thinner the film thickness B of the outer peripheral region 14 is, the lower the strength of the outer peripheral seal portion of the electrolyte membrane 10 is. That's because Conversely, a cell having a large film thickness B in the outer peripheral region 14, that is, a cell having a small film thickness ratio A / B, has a high strength in the outer peripheral sealed portion, and therefore, even after a long operation, gas leakage from the sealed portion does not occur. There is almost no occurrence, and a high cell voltage is maintained.

これらの結果より、膜厚の比A/Bは、0.7以下とすることが望ましい。   From these results, it is desirable that the film thickness ratio A / B be 0.7 or less.

一方、膜厚の比A/Bを0.1よりも小さくすること(外周領域の膜厚Bを電極形成領域の膜厚Aの10倍よりも大きくすること)は、製造上困難であり、また、図4からもわかるとおり、膜厚の比A/Bを0.1よりも小さくしても、これ以上の性能向上は期待できない。さらに、発電に直接寄与しない外周領域の膜厚を必要以上に厚くすると、電解質膜の材料コストが高くなる不都合がある。   On the other hand, it is difficult to make the film thickness ratio A / B smaller than 0.1 (the film thickness B in the outer peripheral region is larger than 10 times the film thickness A in the electrode forming region) in production. Further, as can be seen from FIG. 4, even if the film thickness ratio A / B is smaller than 0.1, further improvement in performance cannot be expected. Further, if the thickness of the outer peripheral region that does not directly contribute to power generation is made unnecessarily large, there is a disadvantage that the material cost of the electrolyte membrane increases.

従って、膜厚の比A/Bは、0.1以上とすることが望ましい。   Therefore, it is desirable that the film thickness ratio A / B be 0.1 or more.

つぎに、電極形成領域12の膜厚Aと外周領域14の膜厚Bの比A/Bを一定にしつつ、膜厚Aと膜厚Bを表2に示すように変えた電解質膜10を準備し、これら電解質膜10に電極を形成したセル5及びセル10を用いた固体高分子形燃料電池60を組み立てて、運転開始直後のセル電圧を測定した。なお、電解質膜10の膜厚が異なる以外、製造条件、実験条件等は、実施例1と同じである。   Next, an electrolyte membrane 10 was prepared in which the film thickness A and the film thickness B were changed as shown in Table 2 while keeping the ratio A / B of the film thickness A of the electrode forming region 12 and the film thickness B of the outer peripheral region 14 constant. Then, a polymer electrolyte fuel cell 60 using the cell 5 and the cell 10 having the electrodes formed on the electrolyte membrane 10 was assembled, and the cell voltage immediately after the start of the operation was measured. Except for the difference in the thickness of the electrolyte membrane 10, the manufacturing conditions, experimental conditions, and the like are the same as those in the first embodiment.

電極形成領域12の膜厚Aと、セル電圧との関係を示す実験結果を図5に示す。   FIG. 5 shows experimental results showing the relationship between the film thickness A of the electrode formation region 12 and the cell voltage.

Figure 2004235169
表2及び図5を参照すると、電極形成領域12の膜厚Aが5μmよりも薄いと、セル性能が低下している。これは、電極形成領域12の膜厚Aが薄くなりすぎて、電極どうしの短絡が生じているためと考えられる。また、膜厚Aが200μmよりも大きい場合も、セル電圧が低下している。これは、電極形成領域12の膜厚Aが厚くなりすぎると、電解質膜自体の電気抵抗が大きくなるのと共に、電池運転時の膜中の水の移動が阻害されて、膜が乾燥し、電気抵抗が大きくなってしまうためであると考えられる。
Figure 2004235169
Referring to Table 2 and FIG. 5, when the film thickness A of the electrode formation region 12 is smaller than 5 μm, the cell performance is deteriorated. It is considered that this is because the film thickness A of the electrode formation region 12 was too thin, and a short circuit occurred between the electrodes. Also, when the film thickness A is larger than 200 μm, the cell voltage decreases. This is because if the film thickness A of the electrode formation region 12 is too large, the electric resistance of the electrolyte film itself increases, and the movement of water in the film during battery operation is hindered. It is considered that the resistance was increased.

従って、電極形成領域12の膜厚Aは、5μm以上200μm以下にすることが望ましい。   Therefore, it is desirable that the film thickness A of the electrode formation region 12 be 5 μm or more and 200 μm or less.

つぎに、外周領域14の膜厚Bが、電解質膜10の耐久性に及ぼす影響を調べるために、電解質膜10の湿潤と乾燥を繰り返すサイクル試験を行ない、試験後のガスリーク量を調べた。サイクル試験には、図6に示すように、電極形成領域12の膜厚Aが、外周領域14の膜厚Bと同じ厚さの電解質膜10を用いたセルユニット26を使用した。なお、本実施例において、膜厚Aと膜厚Bを同じ厚さにしたのは、本実施例におけるサイクル試験が、外周領域14におけるガスリークの測定を目的としたものであり、ガスリークが生じない電極形成領域12の膜厚は、外周領域14からのガスリークとは直接関係しないためである。   Next, in order to examine the influence of the thickness B of the outer peripheral region 14 on the durability of the electrolyte membrane 10, a cycle test in which the electrolyte membrane 10 was repeatedly wetted and dried was performed, and the amount of gas leak after the test was examined. In the cycle test, as shown in FIG. 6, a cell unit 26 using the electrolyte membrane 10 in which the film thickness A of the electrode forming region 12 was the same as the film thickness B of the outer peripheral region 14 was used. In the present embodiment, the reason why the film thickness A and the film thickness B are set to be the same is that the cycle test in the present embodiment is for the purpose of measuring the gas leak in the outer peripheral region 14, and no gas leak occurs. This is because the film thickness of the electrode forming region 12 does not directly relate to gas leak from the outer peripheral region 14.

実験には、10cm角で外周領域14の膜厚Bが表3に示す厚さの電解質膜10(パーフルオロカーボンスルホン酸製)の外周両面にシール部材40を配して、実施例1と同じ条件でセルユニット26を作製した。   In the experiment, the sealing members 40 were disposed on both outer peripheral surfaces of the electrolyte membrane 10 (made of perfluorocarbon sulfonic acid) having a thickness of 10 cm square and the outer peripheral region 14 having a thickness shown in Table 3 under the same conditions as in Example 1. The cell unit 26 was produced.

Figure 2004235169
作製されたセルユニット26について、セル温度が80℃となるように維持しつつ、燃料室30及び酸化剤室34に、燃料ガス及び酸化剤ガスに代えて、80℃の飽和状態にあるN2ガスを30分間供給し、その後、乾燥状態のN2ガスを30分間供給するサイクルを100回繰り返し行なった。
Figure 2004235169
While maintaining the cell temperature of the produced cell unit 26 at 80 ° C., the fuel chamber 30 and the oxidant chamber 34 are filled with N 2 in a saturated state of 80 ° C. instead of the fuel gas and the oxidant gas. A cycle of supplying gas for 30 minutes and then supplying dry N 2 gas for 30 minutes was repeated 100 times.

上記サイクルを行なうことによって、電解質膜10は、膨張と収縮、湿潤と乾燥を繰り返す。その結果、強度の低い電解質膜10は、外周シール部分にて劣化が加速的に進行するので、本サイクル試験によって、短時間で電解質膜10の耐久性を判断できる。   By performing the above cycle, the electrolyte membrane 10 repeats expansion and contraction, and wet and dry. As a result, the deterioration of the low-strength electrolyte membrane 10 is accelerated in the outer peripheral sealing portion. Therefore, the durability of the electrolyte membrane 10 can be determined in a short time by this cycle test.

100回のサイクル終了後、外部と1atmの差圧が生じるように、セルユニットの内部にN2ガスを導入し、密閉状態で5分間放置し、5分経過後の内圧変化量を測定した。結果を図7に示す。 After the completion of 100 cycles, N 2 gas was introduced into the cell unit so as to generate a pressure difference of 1 atm from the outside, and the cell unit was allowed to stand in a sealed state for 5 minutes. FIG. 7 shows the results.

図7を参照すると、外周領域14の膜厚Bが10μmよりも薄くなると、内圧が急激に低下しており、ガスリーク量が増大することがわかる。ガスリークが増大すると、燃料ガスや酸化剤ガスの利用率が低下し、発電効率が低下する。このため、外周領域14の膜厚Bは10μm以上とすることが望ましい。   Referring to FIG. 7, when the film thickness B of the outer peripheral region 14 becomes thinner than 10 μm, it can be seen that the internal pressure sharply decreases and the gas leak amount increases. When the gas leak increases, the utilization rates of the fuel gas and the oxidizing gas decrease, and the power generation efficiency decreases. For this reason, it is desirable that the thickness B of the outer peripheral region 14 be 10 μm or more.

上記実施例1乃至実施例3の結果をまとめると、電極形成領域12の膜厚Aと、外周領域14の膜厚Bについて、少なくとも膜厚Aの厚さが膜厚Bの厚さよりも薄い条件の下で、膜厚の比A/Bが0.1以上0.7以下、膜厚Aが5μm以上200μm以下、膜厚Bが10μm以上の3条件の少なくとも1つを満足するように電解質膜10を作製することが望ましく、これら条件のうち2つを満足させることがより望ましく、これら条件をすべて満足させることが最も望ましい。   Summarizing the results of Examples 1 to 3 above, the film thickness A of the electrode forming region 12 and the film thickness B of the outer peripheral region 14 are at least such that the film thickness A is smaller than the film thickness B. Under the following conditions, the electrolyte membrane satisfies at least one of the three conditions of a film thickness ratio A / B of 0.1 to 0.7, a film thickness A of 5 μm to 200 μm, and a film thickness B of 10 μm. It is desirable to fabricate 10, and it is more desirable to satisfy two of these conditions, and it is most desirable to satisfy all of these conditions.

上記実施例の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或は範囲を減縮する様に解すべきではない。又、本発明の各部構成は上記実施例に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。   The description of the above embodiments is intended to explain the present invention, and should not be construed as limiting the invention described in the claims or reducing the scope thereof. Further, the configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims.

(a)は、本発明の異なる電解質膜の実施例を示す断面図、(b)は、(a)の電解質膜を作製する膜型の作製方法を示す断面図である。(a) is a cross-sectional view illustrating an example of a different electrolyte membrane of the present invention, and (b) is a cross-sectional view illustrating a method of manufacturing a membrane type for manufacturing the electrolyte membrane of (a). 本発明の電解質膜の異なる作製方法を示す斜視図である。It is a perspective view which shows the different manufacturing methods of the electrolyte membrane of this invention. 本発明の電解質膜を適用した固体高分子形燃料電池の1セルユニットを示す断面図である。FIG. 2 is a cross-sectional view showing one cell unit of a polymer electrolyte fuel cell to which the electrolyte membrane of the present invention is applied. 実施例1の結果を示すグラフである。4 is a graph showing the results of Example 1. 実施例2の結果を示すグラフである。9 is a graph showing the results of Example 2. 実施例3に用いたセルユニットの断面図である。FIG. 14 is a sectional view of a cell unit used in Example 3. 実施例3の結果を示すグラフである。9 is a graph showing the results of Example 3. 従来の固体高分子形燃料電池の1セルユニットを示す断面図である。It is sectional drawing which shows 1 cell unit of the conventional polymer electrolyte fuel cell. 固体高分子形燃料電池の1セルユニットを示す組立図である。FIG. 2 is an assembly view showing one cell unit of the polymer electrolyte fuel cell.

符号の説明Explanation of reference numerals

10 電解質膜
12 電極形成領域
14 外周領域
26 セルユニット
60 固体高分子形燃料電池


Reference Signs List 10 electrolyte membrane 12 electrode formation region 14 outer peripheral region 26 cell unit 60 polymer electrolyte fuel cell


Claims (5)

固体高分子形燃料電池に用いられる電解質膜であって、
前記電解質膜は、少なくとも一方の面に電極が嵌合する凹みを備えることを特徴とする固体高分子形燃料電池用電解質膜。
An electrolyte membrane used for a polymer electrolyte fuel cell,
An electrolyte membrane for a polymer electrolyte fuel cell, characterized in that the electrolyte membrane has at least one surface with a recess in which an electrode fits.
固体高分子形燃料電池に用いられる電解質膜の製造方法であって、
凸部を有する膜型に前記電解質膜の溶液を投入することよって、前記電解質膜の少なくとも一方の面に電極が嵌合する凹みが形成される溶液投入ステップと、
前記電解質膜の溶液から溶媒分を除去する溶媒除去ステップと、
を有することを特徴とする固体高分子形燃料電池用電解質膜の製造方法。
A method for producing an electrolyte membrane used in a polymer electrolyte fuel cell,
By introducing the solution of the electrolyte membrane into a membrane having a convex portion, a solution introduction step in which a recess for fitting an electrode is formed on at least one surface of the electrolyte membrane,
A solvent removing step of removing a solvent component from the solution of the electrolyte membrane,
A method for producing an electrolyte membrane for a polymer electrolyte fuel cell, comprising:
固体高分子形燃料電池に用いられる電解質膜の製造方法であって、
前記電解質膜に部材を押し当てることによって、前記電解質膜の少なくとも一方の面に電極が嵌合する凹みが形成される電解質膜圧縮ステップ
を有することを特徴とする固体高分子形燃料電池用電解質膜の製造方法。
A method for producing an electrolyte membrane used in a polymer electrolyte fuel cell,
Pressing the member against the electrolyte membrane to form a recess in which an electrode is fitted on at least one surface of the electrolyte membrane. An electrolyte membrane for a polymer electrolyte fuel cell, comprising: Manufacturing method.
固体高分子形燃料電池に用いられる電解質膜の製造方法であって、
第1の電解質材と第2の電解質材とを接合することによって、前記電解質膜の少なくとも一方の面に電極が嵌合する凹みが形成される電解質材接合ステップ
を有することを特徴とする固体高分子形燃料電池用電解質膜の製造方法。
A method for producing an electrolyte membrane used in a polymer electrolyte fuel cell,
An electrolyte material joining step of forming a recess for fitting an electrode on at least one surface of the electrolyte membrane by joining the first electrolyte material and the second electrolyte material. A method for producing an electrolyte membrane for a molecular fuel cell.
電解質膜と、前記電解質膜の一方の面に形成された第1の電極と、前記電解質膜の他方の面に形成された第2の電極と、を備える固体高分子形燃料電池において、
前記電解質膜は、少なくとも一方の面に前記電極が嵌合する凹みを備えることを特徴とする固体高分子形燃料電池。


In a polymer electrolyte fuel cell comprising: an electrolyte membrane; a first electrode formed on one surface of the electrolyte membrane; and a second electrode formed on the other surface of the electrolyte membrane.
The polymer electrolyte fuel cell according to claim 1, wherein the electrolyte membrane has a concave portion on at least one surface where the electrode fits.


JP2004151672A 2004-05-21 2004-05-21 Electrolyte membrane for polymer electrolyte fuel cell, method for producing the same and polymer electrolyte fuel cell Expired - Fee Related JP4046706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004151672A JP4046706B2 (en) 2004-05-21 2004-05-21 Electrolyte membrane for polymer electrolyte fuel cell, method for producing the same and polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004151672A JP4046706B2 (en) 2004-05-21 2004-05-21 Electrolyte membrane for polymer electrolyte fuel cell, method for producing the same and polymer electrolyte fuel cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11044237A Division JP2000243413A (en) 1999-02-23 1999-02-23 Electrolyte film for solid polymer fuel cell and solid polymer fuel cell using same

Publications (2)

Publication Number Publication Date
JP2004235169A true JP2004235169A (en) 2004-08-19
JP4046706B2 JP4046706B2 (en) 2008-02-13

Family

ID=32960056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004151672A Expired - Fee Related JP4046706B2 (en) 2004-05-21 2004-05-21 Electrolyte membrane for polymer electrolyte fuel cell, method for producing the same and polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4046706B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004164866A (en) * 2002-11-08 2004-06-10 Dainippon Printing Co Ltd Catalyst layer formation sheet for fuel cell, catalyst layer-electrolyte membrane layered product, and manufacturing method for them
JP2009009916A (en) * 2007-06-29 2009-01-15 Dainippon Printing Co Ltd Electrolyte membrane with catalyst layer
JP2010257669A (en) * 2009-04-23 2010-11-11 Toppan Printing Co Ltd Membrane electrode assembly, method for manufacturing the same, and polymer electrolyte fuel cell
KR20180110460A (en) * 2017-03-29 2018-10-10 류보현 Integrated Molten Carbonate Fuel Cell and Manufacturing Thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004164866A (en) * 2002-11-08 2004-06-10 Dainippon Printing Co Ltd Catalyst layer formation sheet for fuel cell, catalyst layer-electrolyte membrane layered product, and manufacturing method for them
JP4538684B2 (en) * 2002-11-08 2010-09-08 大日本印刷株式会社 Catalyst layer forming sheet for fuel cell, catalyst layer-electrolyte membrane laminate, and production method thereof
JP2009009916A (en) * 2007-06-29 2009-01-15 Dainippon Printing Co Ltd Electrolyte membrane with catalyst layer
JP2010257669A (en) * 2009-04-23 2010-11-11 Toppan Printing Co Ltd Membrane electrode assembly, method for manufacturing the same, and polymer electrolyte fuel cell
KR20180110460A (en) * 2017-03-29 2018-10-10 류보현 Integrated Molten Carbonate Fuel Cell and Manufacturing Thereof
KR102005377B1 (en) 2017-03-29 2019-07-30 류보현 Integrated Molten Carbonate Fuel Cell and Manufacturing Thereof

Also Published As

Publication number Publication date
JP4046706B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
JP3052536B2 (en) Solid polymer electrolyte fuel cell
JP4890787B2 (en) Fuel cell and manufacturing method thereof
JP3256649B2 (en) Method for manufacturing polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2002289230A (en) Polymer electrolyte fuel cell
JP2003178780A (en) Polymer electrolyte type fuel cell system and operating method of polymer electrolyte type fuel cell
CN101030653A (en) Fuel cells comprising moldable gaskets, and methods of making
JPH11345620A (en) Polymer electrolyte fuel cell and its manufacture
JP5294550B2 (en) Membrane electrode assembly and fuel cell
JP5162884B2 (en) Solid polymer electrolyte fuel cell
JP4553861B2 (en) Fuel cell
JPH08167416A (en) Cell for solid high polymer electrolyte fuel cell
JP2000243413A (en) Electrolyte film for solid polymer fuel cell and solid polymer fuel cell using same
JP4760027B2 (en) Method for producing membrane / electrode assembly of solid polymer electrolyte fuel cell
JP2007193948A (en) Fuel cell
JP4046706B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, method for producing the same and polymer electrolyte fuel cell
KR101065375B1 (en) Bipolar plate for fuel cell, method of preparing same and fuel cell comprising same
KR20190089418A (en) Method of manufacturing membrane electrode assembly and laminate
KR20190037878A (en) Membrane-electrode assembly, method for manufacturing the same, and fuel cell stack comprising the same
JPH1116584A (en) Cell for solid high polymer type fuel cell and its manufacture
JP5870643B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
JP2004296216A (en) Manufacturing method of membrane electrode jointed body of solid polymer fuel cell
JP2012109074A (en) Fuel cell system
JP2004071324A (en) Polymer electrolyte fuel cell and its manufacturing method
JP5155207B2 (en) Membrane-electrode assembly for fuel cell, method for producing the same, and fuel cell system including the same
JP2001185162A (en) Fuel cell and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040615

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees