JP2004235044A - Sealed storage battery and its charger - Google Patents

Sealed storage battery and its charger Download PDF

Info

Publication number
JP2004235044A
JP2004235044A JP2003022935A JP2003022935A JP2004235044A JP 2004235044 A JP2004235044 A JP 2004235044A JP 2003022935 A JP2003022935 A JP 2003022935A JP 2003022935 A JP2003022935 A JP 2003022935A JP 2004235044 A JP2004235044 A JP 2004235044A
Authority
JP
Japan
Prior art keywords
battery
terminal
storage battery
charger
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003022935A
Other languages
Japanese (ja)
Inventor
Manabu Kanemoto
金本  学
Mitsuhiro Kodama
充浩 児玉
Seijiro Ochiai
誠二郎 落合
Minoru Kurokuzuhara
実 黒葛原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2003022935A priority Critical patent/JP2004235044A/en
Publication of JP2004235044A publication Critical patent/JP2004235044A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To discriminate a sealed storage battery having a pressure switch function and/or a temperature switch function from a conventional sealed storage battery having the same dimensions and outline shape as that of the storage battery and avoiding the erroneous charging of the conventional storage battery by a charger for the storage battery. <P>SOLUTION: In the storage battery in which a protruded positive or negative electrode terminal 2 is disposed on the surface thereof and an electrical insulative material 3 is disposed at the peripheral section of the terminal 2, a donut-shaped conductive belt-like area 4 is disposed around the terminal 2 as the center on the surface of the storage battery of the peripheral section of the terminal 2. A dedicated charger for charging the storage battery has a detecting mechanism for detecting the existence of output terminals of a pair of positive and negative electrodes and the belt-like area 4 of a storage battery to be charged and outputs electric power for charging, only when the belt-like area 4 is detected. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、密閉式蓄電池とその充電器に関するものであり、特に高率での充電が可能な密閉式蓄電池およびその専用充電器に関するものである。なおここでいう密閉式蓄電池とは物理的に完全に密閉された電池以外の例えば電池の内圧が異常に上昇したときに電池内のガスを外に排出するための安全弁や制御弁式鉛蓄電池のように逆止弁を備えた蓄電池をも対象とする。
【0002】
【従来の技術】
密閉形のアルカリ蓄電池や制御弁式鉛蓄電池等の密閉式蓄電池は、耐過充電特性に優れ、一般ユーザーにとって使い易い電池であるところから、携帯電話、小型電動工具、小型パーソナルコンピュータ等の携帯用小型電子機器類用の電源、自動車積載用電源および非常用電源として広く利用されている。
【0003】
アルカリ蓄電池を例にとると、従来のアルカリ蓄電池の場合、容量を使い果たした電池を100%充電しようとすると少なくとも1時間を要した。充電所要時間を短縮できれば、ユーザーにとって利便性が高くなるので放電容量の向上とともに充電所要時間のさらなる短縮を可能とする高率充電技術(例えば30分間以内での充電が可能)の開発が求められている。
【0004】
密閉型蓄電池を高率で充電するために例えば特許文献1にはニッケルカドミウム電池を定電圧充電により超高速で充電する方法が提案されている。しかし、この提案の方法はニッケルカドミウム電池にのみ適用できるものであり、かつサイクル性能など電池特性への影響については触れられていない。従来の密閉式蓄電池を30分以内で充電が完了するような高率で充電すると、電池の発熱が大きく、電池温度が上昇して電池の特性劣化を招く虞がある。図9(ロ)に示すグラフは円筒形の密閉式蓄電池を1.65Vの定電圧で充電したときの充電電流と電池温度の推移を模式的に示した図である。該充電方法は15〜30分間で充電を完了させるという高率充電であるが、このように高率で従来の電池を充電すると図に示すように電池温度が80℃以上の高温になり電池特性の劣化を招く。
【0005】
【特許文献1】
特解平2−109273号公報(ページ4,右上欄8〜13行目)
【0006】
高率での充電を可能にするため、特許文献2には密閉式蓄電池に電池の内圧が規定値以下のときにのみ充電を受け入れ(電気回路がONで充電用電流が流れる)、電池の内圧が規定値を超えているときは充電を受け入れない(電気回路がOFFになり充電用電流が流れない)機能(圧力スイッチ機能)を持たせた密閉形電池が提案されている。該該圧力スイッチ機能を有する密閉形電池を前記と同じ1.65V定電圧充電を行ったときの充電電流と電池温度の推移を模式的に示したのが図9(イ)である。圧力スイッチ機能を有する密閉式蓄電池を定電圧様式の充電機能を有する充電器で充電した場合には、大きな充電電流が流れて発熱が起きても、充電中の電池の内圧が規定値に達した以降においては、図9(イ)のグラフに示すように充電のONとOFFが交互に繰り返されて電池温度が規定値以上(例えば60℃)を超えて上昇しないようにすることにより、電池特性に影響が及ばないようにしている。
【0007】
【特許文献2】
WO 02/35618 A1号公報(FIG.2A)
【0008】
しかし、圧力スイッチ機能および/または温度スイッチ機能を備えない従来の密閉式蓄電池を定電圧様式の充電機能を有する充電器で充電した場合には大きな充電電流が流れて電池内で発熱が起きるために電池の温度が規定値を超えて上昇する。電池の温度が規定値を超えて上昇すると電池を構成する部材の変質を招き、電池特性の低下が速まる。
【0009】
前記圧力スイッチ機能および/または温度スイッチ機能を備えた密閉式電池と従来の密閉型式蓄電池は、寸法形状において差がない。もし、圧力スイッチ機能および/または温度スイッチ機能を備えない従来の密閉型蓄電池を、定電圧様式による充電機能を備えた充電器で充電すると、前記のように特性劣化が速まるので好ましくない。そこで、前記従来の密閉型電池を誤って定電圧様式の充電機能を有する充電器で充電できないようにする方策が求められる。
【0010】
【発明が解決しようとする課題】
本発明は、前記従来技術の欠点に鑑みなされたものであって、圧力スイッチ機能および/または温度スイッチ機能を備えない従来の密閉型蓄電池を、定電圧様式による充電機能を備えた充電器に装填しても充電器から充電用電力を供給しないことによって充電できないようにしようとするものである。
【0011】
【課題を解決するための手段】
本発明に係る密閉式蓄電池は、寸法外形形状を従来の密閉式蓄電池と同じとすることによって従来の電池との互換性を持たせ、且つ、電池内の気体圧力および/または電池温度が、規定値以下のときは充電が可能であり、規定値を超えるときは充電不能となる機能を持たせた密閉式蓄電池において、正極端子または負極端子を設けた面の端子以外の部分に電気絶縁性物質を配置した密閉式蓄電池であって、前記電気絶縁性物質を配置した部分に導電性領域を設ける。このことによって本発明に係る密閉式電池と従来の同形同寸法の密閉式電池の識別を可能にする。
【0012】
本発明に係る密閉式蓄電池を充電するための専用充電器は、正負極1対の出力端子と被充電電池の前記導電性領域の存在を検知するための検知機構を備え、前記導電性帯状領域を検知したときにのみ充電用電力を出力する。このことによって本発明に係る密閉式蓄電池と従来の密閉式蓄電池とを識別し、本発明に係る密閉式蓄電池にのみ充電用電力を供給する。
【0013】
【発明の実施の形態】
(密閉式蓄電池表面への導電性帯状領域の配置)
図1は、本発明に係る円筒形の密閉式蓄電池1の外観を示す斜視図である。図2は、従来の円筒形の密閉式蓄電池21の外観を示す斜視図である。両者は寸法、外形形状が同じである。ただし、図2に示した従来の密閉式蓄電池21においては突状端子22の周辺が全て合成樹脂の成型品等からなる円盤状の絶縁性物質により覆われ電気絶縁性領域23であるのに対して、図1に示した本発明に係る密閉式蓄電池は、突状端子2の周辺部分に突状端子2を中心として、ドーナツ状に帯状の導電性領域4を配置し、その外側に電気絶縁性領域3を配置している点において相違している。ちなみに、図1の5および図2の24は、金属製電槽の外面を覆う合成樹脂製チューブである。前記凸状端子2は、円筒型電池の正極の端子として広く採用されている端子である。
【0014】
図3は、本発明に係る円筒形の密閉式蓄電池31の突状端子32を含む上部封口部分の断面構造を示す模式図である。また、図4は、従来の円筒形の密閉式蓄電池41の突状端子42を含む上部封口部分の断面構造を示す模式図である。図4に示した従来の密閉式電池41の場合には、前記のように突状端子42の周辺が全て合成樹脂の成型品からなる円盤状の絶縁性物質43により覆われているのに対して、図3に示した本発明に係る円筒形の密閉式蓄電池31の場合には前記絶縁性の円盤状の絶縁性物質33の表面にドーナツ形の導電性領域34が配置されている。ちなみに、図3の36および図4の45は、金属製電槽、図3の37および図4の46は、合成樹脂成形体からなるガスケット、図3の35および図4の44は、金属製電槽の外面を覆う合成樹脂製チューブである。
【0015】
前記帯状の導電性領域(図1の4、図3の34)を構成する部材の材質は、特に限定されるものではないが、電池の外面に位置するので、耐食性に優れ且つ、機械的強度に優れていることが好ましい。また、後記充電器に設けた導電性領域検知用端子と接触させたときに、検知用端子との間で良好な電気的導通を確保する必要があるので、接触抵抗が小さいことが好ましい。導電性領域を構成する部材の好適な材質としては、アルミニウムやニッケル、ニッケルメッキを施した鉄または銅等が挙げられる。
【0016】
前記帯状の導電性領域の配置方法は、特に限定されるものではないが、前記突状端子の周辺に配置した絶縁性物質の表面に例えばドーナツ状に打ち抜いた厚さ20〜100μmのニッケル箔(導電性領域を構成するための部材)を貼付することによって配置することができる。あるいは、ドーナツ状に打ち抜いた厚さ0.1〜0.3mmのニッケル条を前記突状端子の周辺に配置した絶縁性物質の表面に埋め込んでもよい。
【0017】
本発明に係る密閉形蓄電池においては、図3に示すように、導電性領域34が前記突状端子32の側壁にコンタクトし電気的に導通状態にあることが好ましい。コンタクトさせる方法は特に限定されるものではない。例えばドーナツ状導電性帯状領域34の突状端子に嵌合させ、突状端子の側壁と導電性帯状領域の内壁を物理的に接触させてもよい。また、図3に示したように導電性帯状領域34の内側部分に突状端子の側壁に沿った立ち上がり部分を設け、該立ち上がり部分を溶接により突状端子32の側壁に接合させてもよい。
【0018】
(専用充電器)
(充電用の出力)
本発明に係る密閉式蓄電池用専用充電器は、被充電電池を30分間以内好ましくは20分間以内で充電できるものである。出力の様式は特に限定されず、定電圧、定電流、定電力のいずれでもよい。ただし、完全放電状態にある電池を30分間以内に100%充電するに足る大きさの出力が要求される。
【0019】
(充電器の導電性領域検知機構)
図6は、本発明に係る密閉式蓄電池の専用充電器61の実施形態を示す図である。該充電器は突状端子に接続する凹部形端子62とその対極63とからなる一対の出力用端子以外に前記導電性帯状領域の存在の有無を検知するための検知用端子64を備える。被充電電池を該充電器に装着した状態において、前記検知用端子64は、前記密閉式電池に配置した導電性帯状領域に接触する。前記図3に示した電池31のように、被充電電池の導電性帯状領域34と突状端子32が電気的に導通している場合には、該充電器は前記凹部形出力端子と検知用端子間に電気的導通があることを検知して、出力する。前記凹部形出力端子と検知用端子間に電気的導通が無い場合には出力しない。
【0020】
図7は、本発明に係る密閉式蓄電池の別の実施形態に係る専用充電器72の構成を示す図である。該充電器72は、凹部形端子72を中心にして対象の位置に2つの検知用端子74を備える。被充電電池を該充電器に装着した状態において、前記2つの検知用端子74は、同時に前記導電性帯状領域に接触する。図5に示した電池51のように被充電電池の導電性帯状領域54と突状端子52が電気的に導通していなくても、前記2つの検知用端子間に電気的導通があると、本発明に係る密閉形蓄電池であることを識別して出力する。前記2つの検知用端子間に電気的導通が無い場合には本発明に係る充電器が対象とする蓄電池ではないと識別して出力しない。
【0021】
(本発明に係る密閉式蓄電池の圧力スイッチ・温度スイッチの機構の例)
図8は、本発明の1実施形態に係る密閉式蓄電池81の上部の断面図である。図8において外側に安全弁93を備え、突状端子を接合した金属性蓋89の内壁面に圧力スイッチ82が取り付けられている。該圧力スイッチ82は、金属製カバー83、金属製薄板85、金属製剛性板86、金属製薄板85と金属製剛性板86とによって囲まれた空間を気密にし、かつ金属製薄板85および金属製剛性板86とカバー83を絶縁するためのガスケット87および金属製薄板85と金属製剛性板86によって囲まれた空間に封入されたスプリング88からなる。前記カバー83の周縁部分を蓋89の内面に接合し、かつカバー83に透孔84を設け気体が自由に通れるようにしてある。
【0022】
通常の状態{電池内の気体圧力(電池の内圧)が高まっていない状態}においては、前記金属製薄板85は、前記蓋89と接触しており電気的な導通状態にある。電池の内圧が高まると、該気体がスプリング88の弾性に抗して金属製薄板85を押し下げ、電池の内圧が規定値を超えたときに金属製薄板85と蓋89が離れるために電気的な導通が絶たれる。電池の内圧が低下するとスプリング88の弾性により金属製薄板85が押し上げられ、再び金属製薄板85と蓋89が接触して両者の間の電気的導通が回復する。このような機構を持たせることによって、充電中に電池内の気体圧力が高まったときに充電をOFFにし、電池内の気体圧力が低下したときに充電をONにする機能(以下圧力スイッチ機能と記述する)を持たせる。
【0023】
図8に示した例は、前記圧力スイッチの他に温度スイッチが配置されている。図の90は、一方の電極(例えば正極)の集電端子91に接合したバイメタル製のリード板である。該リード板90は、通常の状態(電池温度が上昇していない状態)では前記圧力スイッチ82の金属製剛性板86と接触しており両者の間に電気的な導通が保たれている。温度が上昇するとリード板14は図の下方方向に変形し、温度が規定値を上回ったときに、リード板90と金属製剛性板86が離れ、両者の間の電気的な導通が絶たれる。温度が低下するとリード板14の形状が元の戻るため、両者の間の電気的な導通が回復する。このような機構を持たせることによって、充電中に電池温度が高まったときに充電をOFFにし、電池温度が低下したときに充電をONにする機能(以下温度スイッチ機能と記述する)を持たせる。
【0024】
前記電池の内圧および電池温度の規定値は電池の種類、機種に応じて設定する。アルカリ蓄電池や鉛蓄電池においては電池の内圧の規定値を0.5〜3MPa、電池温度の規定値を50〜80℃に設定するのが好ましい。
【0025】
前記図8に示したように、本発明に係る密閉式蓄電池においては、圧力スイッチ機能と温度スイッチ機能の両方を具備させることができる。しかし、本発明においては、必ずしも圧力スイッチ機能と温度スイッチ機能の両方を具備する必要はない。どちらか、一方の機能を備えておればよい。
【0026】
温度スイッチ機能は、必ずしも電池に備えつける必要はない。電池の外部に温度検知を配し、電池の表面温度を検知して電池に接続する充電回路をON、OFFして充電を制御することも可能である。この場合、例えば被充電電池を充電器に装着したときに充電器に取り付けた温度センサーが電池の側壁に接触するように温度センサーを配置し、充電のON、OFF機能も同時に充電器に付与する。このように電池温度検知機能および充電のON、OFFによる充電の制御機能を充電器に備え付ける(図示せず)ことが簡便であり、好ましい。
【0027】
(本発明に係る密閉形電池の別の実施携帯)
また、図10に本発明に係る密閉形電池の別の実施形態を示す。該実施形態に係る密閉式電池101は、突状端子102を中心として突状端子102の周辺部分に絶縁性物質103で被覆されない部分を設け、突状端子102と一体になったキャップの一部を露出させることによってもドーナツ状導電性帯状領域104を形成することができる。
【0028】
図11に示した本発明に係る別の実施形態に係る電池111は、前記のように凸状端子ではなく平面状端子112を配置した面に導電性領域114を配置した例である。図11に示した平面状の端子は、円筒型電池の底面に設けた負極端子としてよく見受けられる端子形状である。図11で115は金属製電槽、116は電池の側面を被覆する合成樹脂性のチューブである。電槽の底面に絶縁板が配置され、該絶縁板は前記合成樹脂性チューブによる係り止めによって電槽の底面に固定されている。また、前記絶縁板の中心部分に透孔を設けて負極端子112を形成する。本発明に係る電池においては前記負極端子を形成するための透孔以外に、前記絶縁板に少なくとも1箇所透孔を設けて導電性領域114を形成する。該電池を充電するための充電器には、前記図6に示した充電器において、正極の出力端子62の側ではなく、負極の出力端子63の側に前記導電性領域を検知するための検知用端子を配置し、被充電電池を充電器に装着して、検知よう端子が前記電池の底面に設けた導電性領域114にコンタクトすることによって、充電器の負極の出力端子と検知用端子の間の電気的道通を検知した場合にのみ充電用の電力を出力し、電気的道通が検知されない場合には出力しないようにする。
【発明の効果】
【0029】
本発明の請求項1、請求項2および請求項3によれば、寸法、外形が同じである本発明に係る密閉型電池と従来の密閉式蓄電池を容易に識別することができる。
【0030】
本発明の請求項4および請求項5によれば、充電器が本発明に係る密閉型電池と従来の密閉型蓄電池を識別することによって、従来の密閉式蓄電池の誤充電を避けることができる。
【0031】
本発明の請求項6によれば密閉形蓄電池を高率で且つ電池性能に悪影響を及ぼすことなく充電することができる。
【図面の簡単な説明】
【図1】図1は、本発明に係る密閉式電池の外観を示す斜視図である。
【図2】図2は、従来の密閉式電池の外観を示す斜視図である。
【図3】図3は、本発明に係る密閉式電池の突状端子および上部封口部分の構造を示す模式図である。
【図4】図4は、従来の密閉式電池の突状端子および上部封口部分の構造を示す模式図である。
【図5】図5は、本発明に係る密閉式電池の突状端子および上部封口部分の構造を示す模式図である。
【図6】図6は、本発明に係る充電器の外観を示す斜視図である。
【図7】図7は、本発明に係る充電器の外観を示す斜視図である。
【図8】図8は、本発明の1実施形態に係る密閉式蓄電池の圧力スイッチ機構および温度スイッチ機構を説明するための模式図である。
【図9】図9(イ)は、本発明に係る密閉式蓄電池を定電圧充電したときの充電電流および電池温度の経時変化を模式的に示したグラフである。図9(ロ)は、従来の密閉式蓄電池を定電圧充電したときの充電電流および電池温度の経時変化を模式的に示したグラフである。
【図10】図10は、本発明に係る密閉式電池の突状端子および上部封口部分の構造を示す模式図である。
【図11】図11は、本発明に係る密閉式電池底面の平面状端子部分の構造を示す模式図である。
【符号の説明】
2、32、52、102 突状端子
4、34、54、104、114 導電性領域
3、33、53、103、113 絶縁材
64、74 検知用端子
112 平面状端子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sealed storage battery and a charger therefor, and more particularly to a sealed storage battery capable of being charged at a high rate and a dedicated charger therefor. In addition, the sealed storage battery referred to here is a safety valve or a control valve type lead storage battery for discharging gas in the battery to the outside when the internal pressure of the battery is abnormally increased, other than a battery that is physically completely sealed, for example. Thus, the present invention also covers a storage battery provided with a check valve.
[0002]
[Prior art]
Sealed storage batteries such as sealed alkaline storage batteries and control valve lead storage batteries have excellent overcharge resistance and are easy to use for general users. It is widely used as a power source for small electronic devices, a power source mounted on a vehicle, and an emergency power source.
[0003]
Taking an alkaline storage battery as an example, in the case of a conventional alkaline storage battery, it takes at least one hour to try to fully charge a battery that has run out of capacity. If the required charging time can be shortened, the convenience for the user will be increased. Therefore, the development of a high-rate charging technology (for example, charging within 30 minutes is possible) is required to improve the discharging capacity and further shorten the required charging time. ing.
[0004]
In order to charge a sealed storage battery at a high rate, for example, Patent Literature 1 proposes a method of charging a nickel cadmium battery at a very high speed by constant voltage charging. However, this proposed method can be applied only to nickel cadmium batteries, and does not mention effects on battery characteristics such as cycle performance. When a conventional sealed storage battery is charged at a high rate such that charging is completed within 30 minutes, the battery generates a large amount of heat, and the battery temperature may increase, leading to deterioration of battery characteristics. The graph shown in FIG. 9 (b) is a diagram schematically showing changes in charging current and battery temperature when a cylindrical sealed storage battery is charged at a constant voltage of 1.65V. The charging method is a high-rate charging in which the charging is completed in 15 to 30 minutes. When the conventional battery is charged at such a high rate, the battery temperature becomes higher than 80 ° C. as shown in FIG. Causes deterioration.
[0005]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 2-109273 (page 4, upper right column, lines 8 to 13)
[0006]
In order to enable charging at a high rate, Patent Literature 2 discloses that a sealed storage battery accepts charging only when the internal pressure of the battery is equal to or lower than a specified value (an electric circuit is ON and a charging current flows). There is proposed a sealed battery having a function (pressure switch function) of not accepting charging when the voltage exceeds a specified value (the electric circuit is turned off and the charging current does not flow). FIG. 9A schematically shows the transition of the charging current and the battery temperature when the sealed battery having the pressure switch function is charged at the same 1.65 V constant voltage as described above. When a sealed storage battery with a pressure switch function was charged by a charger with a constant voltage mode charging function, the internal pressure of the battery during charging reached the specified value even if a large charge current flowed and generated heat. Thereafter, as shown in the graph of FIG. 9A, the ON and OFF of the charging are alternately repeated so that the battery temperature does not rise above a specified value (for example, 60 ° C.), thereby improving the battery characteristics. Is not affected.
[0007]
[Patent Document 2]
WO 02/35618 A1 (FIG. 2A)
[0008]
However, when a conventional sealed storage battery having no pressure switch function and / or temperature switch function is charged by a charger having a constant voltage mode charging function, a large charge current flows and heat is generated in the battery. Battery temperature rises above a specified value. When the temperature of the battery rises beyond the specified value, the components constituting the battery are deteriorated, and the battery characteristics are rapidly deteriorated.
[0009]
There is no difference in the size and shape between the sealed battery provided with the pressure switch function and / or the temperature switch function and the conventional sealed battery. If a conventional sealed storage battery having no pressure switch function and / or temperature switch function is charged by a charger having a charging function in a constant voltage mode, the characteristic deterioration is accelerated as described above, which is not preferable. Therefore, a measure is required to prevent the conventional sealed battery from being erroneously charged by a charger having a charging function of a constant voltage mode.
[0010]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks of the related art, and is intended to load a conventional sealed storage battery having no pressure switch function and / or temperature switch function into a charger having a charge function in a constant voltage mode. Even if the charging power is not supplied from the charger, charging cannot be performed.
[0011]
[Means for Solving the Problems]
The sealed storage battery according to the present invention has compatibility with a conventional battery by having the same dimensions and external shape as a conventional sealed storage battery, and the gas pressure and / or the battery temperature in the battery are regulated. If the value is less than the specified value, charging is possible.If the value exceeds the specified value, charging is not possible. And a conductive region is provided in a portion where the electric insulating material is disposed. This makes it possible to distinguish between the sealed battery according to the present invention and the conventional sealed battery of the same shape and size.
[0012]
The dedicated charger for charging a sealed storage battery according to the present invention includes an output terminal of a pair of positive and negative electrodes and a detection mechanism for detecting the presence of the conductive region of the battery to be charged, and the conductive band region The charging power is output only when is detected. This distinguishes the sealed storage battery according to the present invention from the conventional sealed storage battery, and supplies charging power only to the sealed storage battery according to the present invention.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
(Placement of conductive strips on the surface of the sealed storage battery)
FIG. 1 is a perspective view showing the external appearance of a cylindrical sealed storage battery 1 according to the present invention. FIG. 2 is a perspective view showing the appearance of a conventional cylindrical sealed storage battery 21. Both have the same dimensions and outer shape. However, in the conventional sealed storage battery 21 shown in FIG. 2, the periphery of the protruding terminal 22 is an electrically insulating region 23 which is entirely covered with a disc-shaped insulating material made of a synthetic resin molded product or the like. The sealed storage battery according to the present invention shown in FIG. 1 has a donut-shaped conductive region 4 around the projecting terminal 2 around the projecting terminal 2, and electrically insulating outside the region. The difference is that the sex region 3 is arranged. Incidentally, 5 in FIG. 1 and 24 in FIG. 2 are synthetic resin tubes that cover the outer surface of the metal battery case. The convex terminal 2 is a terminal widely used as a positive electrode terminal of a cylindrical battery.
[0014]
FIG. 3 is a schematic diagram showing a cross-sectional structure of an upper sealing portion including a protruding terminal 32 of a cylindrical sealed storage battery 31 according to the present invention. FIG. 4 is a schematic diagram showing a cross-sectional structure of an upper sealing portion including a projecting terminal 42 of a conventional cylindrical sealed storage battery 41. In the case of the conventional sealed battery 41 shown in FIG. 4, the periphery of the protruding terminal 42 is entirely covered with the disk-shaped insulating material 43 made of a synthetic resin molded product as described above. In the case of the cylindrical sealed storage battery 31 according to the present invention shown in FIG. 3, a donut-shaped conductive region 34 is disposed on the surface of the insulating disk-shaped insulating material 33. Incidentally, 36 in FIG. 3 and 45 in FIG. 4 are metal battery cases, 37 in FIG. 3 and 46 in FIG. 4 are gaskets made of a synthetic resin molded body, and 35 in FIG. 3 and 44 in FIG. This is a synthetic resin tube that covers the outer surface of the battery case.
[0015]
The material of the members forming the strip-shaped conductive regions (4 in FIG. 1 and 34 in FIG. 3) is not particularly limited, but is located on the outer surface of the battery, so that it has excellent corrosion resistance and mechanical strength. It is preferable to be excellent. Further, when it comes into contact with the conductive area detecting terminal provided in the charger described below, it is necessary to ensure good electrical conduction with the detecting terminal, so that the contact resistance is preferably small. Suitable materials for the members constituting the conductive region include aluminum, nickel, nickel-plated iron or copper, and the like.
[0016]
The method for arranging the strip-shaped conductive regions is not particularly limited, but a nickel foil (for example, a 20 to 100 μm-thick punched into a donut shape) on the surface of an insulating material arranged around the protruding terminals is used. (A member for forming the conductive region) can be attached. Alternatively, a nickel strip having a thickness of 0.1 to 0.3 mm punched in a donut shape may be embedded in the surface of an insulating material disposed around the protruding terminal.
[0017]
In the sealed storage battery according to the present invention, as shown in FIG. 3, it is preferable that the conductive region 34 contacts the side wall of the protruding terminal 32 and is in an electrically conductive state. The method of contact is not particularly limited. For example, the protruding terminal of the donut-shaped conductive band-shaped region 34 may be fitted, and the side wall of the protruded terminal may be in physical contact with the inner wall of the conductive band-shaped region. Further, as shown in FIG. 3, a rising portion along the side wall of the protruding terminal may be provided inside the conductive strip region 34, and the rising portion may be joined to the side wall of the protruding terminal 32 by welding.
[0018]
(Dedicated charger)
(Output for charging)
The dedicated charger for a sealed storage battery according to the present invention can charge a battery to be charged within 30 minutes, preferably within 20 minutes. The type of output is not particularly limited, and may be any of constant voltage, constant current, and constant power. However, it is required that the output be large enough to fully charge a fully discharged battery within 30 minutes.
[0019]
(Conductive area detection mechanism of charger)
FIG. 6 is a diagram showing an embodiment of a dedicated charger 61 for a sealed storage battery according to the present invention. The charger includes a detection terminal 64 for detecting the presence or absence of the conductive strip region, in addition to a pair of output terminals including a concave terminal 62 connected to the protruding terminal and a counter electrode 63 thereof. In a state where the battery to be charged is mounted on the charger, the detection terminal 64 comes into contact with the conductive band-shaped region arranged on the sealed battery. As in the case of the battery 31 shown in FIG. 3, when the conductive strip-shaped region 34 and the protruding terminal 32 of the battery to be charged are electrically connected, the charger is connected to the concave output terminal for detection. Detects the presence of electrical continuity between terminals and outputs. No output is made when there is no electrical connection between the concave output terminal and the detection terminal.
[0020]
FIG. 7 is a diagram showing a configuration of a dedicated charger 72 according to another embodiment of the sealed storage battery according to the present invention. The charger 72 includes two detection terminals 74 at target positions around the concave terminal 72. In a state where the battery to be charged is mounted on the charger, the two detection terminals 74 simultaneously contact the conductive strip region. Even if the conductive strip region 54 and the protruding terminal 52 of the battery to be charged are not electrically conductive as in the battery 51 shown in FIG. 5, if there is electrical conduction between the two detection terminals, The storage battery according to the present invention is identified and output. If there is no electrical continuity between the two detection terminals, the charger according to the present invention is identified as not a target storage battery and is not output.
[0021]
(Example of mechanism of pressure switch and temperature switch of sealed storage battery according to the present invention)
FIG. 8 is a cross-sectional view of the upper part of a sealed storage battery 81 according to one embodiment of the present invention. In FIG. 8, a safety switch 93 is provided on the outside, and a pressure switch 82 is attached to an inner wall surface of a metal lid 89 to which a protruding terminal is joined. The pressure switch 82 makes the metal enclosure 83, the metal thin plate 85, the metal rigid plate 86, the space surrounded by the metal thin plate 85 and the metal rigid plate 86 airtight, and makes the metal thin plate 85 and the metal thin plate It comprises a gasket 87 for insulating the rigid plate 86 and the cover 83, a metal thin plate 85, and a spring 88 enclosed in a space surrounded by the metal rigid plate 86. The peripheral portion of the cover 83 is joined to the inner surface of the lid 89, and a hole 84 is provided in the cover 83 so that gas can freely pass therethrough.
[0022]
In a normal state {a state in which the gas pressure in the battery (the internal pressure of the battery) is not increased}, the thin metal plate 85 is in contact with the lid 89 and is in an electrically conductive state. When the internal pressure of the battery increases, the gas pushes down the thin metal plate 85 against the elasticity of the spring 88, and when the internal pressure of the battery exceeds a specified value, the thin metal plate 85 and the lid 89 are separated, so that an electric current is generated. The continuity is broken. When the internal pressure of the battery decreases, the thin metal plate 85 is pushed up by the elasticity of the spring 88, and the thin metal plate 85 and the lid 89 come into contact again, and the electrical conduction between the two is restored. By providing such a mechanism, a function of turning off charging when the gas pressure in the battery increases during charging and turning on charging when the gas pressure in the battery decreases (hereinafter referred to as a pressure switch function). To describe).
[0023]
In the example shown in FIG. 8, a temperature switch is arranged in addition to the pressure switch. Reference numeral 90 in the figure denotes a bimetal lead plate joined to a current collecting terminal 91 of one electrode (for example, a positive electrode). The lead plate 90 is in contact with the metal rigid plate 86 of the pressure switch 82 in a normal state (a state in which the battery temperature has not risen), and electrical conduction is maintained between the two. When the temperature rises, the lead plate 14 is deformed in the downward direction in the figure, and when the temperature exceeds a specified value, the lead plate 90 and the metal rigid plate 86 are separated, and electrical conduction between them is cut off. When the temperature decreases, the shape of the lead plate 14 returns to its original shape, so that electrical conduction between the two is restored. By providing such a mechanism, a function of turning off charging when the battery temperature rises during charging and turning on charging when the battery temperature decreases (hereinafter referred to as a temperature switch function) is provided. .
[0024]
The specified values of the internal pressure and the battery temperature of the battery are set according to the type and model of the battery. In the case of an alkaline storage battery or a lead storage battery, it is preferable to set the specified value of the internal pressure of the battery to 0.5 to 3 MPa and the specified value of the battery temperature to 50 to 80 ° C.
[0025]
As shown in FIG. 8, the sealed storage battery according to the present invention can have both a pressure switch function and a temperature switch function. However, in the present invention, it is not always necessary to provide both the pressure switch function and the temperature switch function. Either or one of the functions may be provided.
[0026]
The temperature switch function does not necessarily need to be provided in the battery. It is also possible to control the charging by arranging a temperature detection outside the battery, detecting the surface temperature of the battery, and turning on and off a charging circuit connected to the battery. In this case, for example, when the battery to be charged is attached to the charger, the temperature sensor is arranged so that the temperature sensor attached to the charger contacts the side wall of the battery, and the ON / OFF function of charging is simultaneously provided to the charger. . As described above, it is simple and preferable to provide the battery temperature detection function and the charge control function by charging ON / OFF (not shown) in the charger.
[0027]
(Another embodiment of the sealed battery according to the present invention)
FIG. 10 shows another embodiment of the sealed battery according to the present invention. The sealed battery 101 according to this embodiment has a portion that is not covered with the insulating substance 103 around the projecting terminal 102 around the projecting terminal 102, and a part of the cap integrated with the projecting terminal 102. The donut-shaped conductive strip region 104 can also be formed by exposing.
[0028]
A battery 111 according to another embodiment of the present invention shown in FIG. 11 is an example in which the conductive region 114 is disposed on the surface on which the planar terminal 112 is disposed instead of the convex terminal as described above. The flat terminal shown in FIG. 11 has a terminal shape often seen as a negative electrode terminal provided on the bottom surface of a cylindrical battery. In FIG. 11, reference numeral 115 denotes a metal battery case, and 116 denotes a synthetic resin tube for covering the side surface of the battery. An insulating plate is arranged on the bottom surface of the battery case, and the insulating plate is fixed to the bottom surface of the battery case by engagement with the synthetic resin tube. Further, a through hole is provided in a central portion of the insulating plate to form the negative electrode terminal 112. In the battery according to the present invention, the conductive region 114 is formed by providing at least one through hole in the insulating plate in addition to the through hole for forming the negative electrode terminal. In the charger for charging the battery, in the charger shown in FIG. 6, a detection for detecting the conductive region is provided not on the positive output terminal 62 side but on the negative output terminal 63 side. The battery terminal to be charged is mounted on the charger, and the terminal for detection contacts the conductive region 114 provided on the bottom surface of the battery, whereby the output terminal of the negative terminal of the charger and the terminal for detection are connected. The power for charging is output only when an electric road between the vehicle is detected, and is not output when the electric road is not detected.
【The invention's effect】
[0029]
According to the first, second and third aspects of the present invention, the sealed type battery according to the present invention having the same dimensions and outer shape can be easily distinguished from the conventional sealed type storage battery.
[0030]
According to the fourth and fifth aspects of the present invention, the charger distinguishes the sealed battery according to the present invention from the conventional sealed storage battery, so that erroneous charging of the conventional sealed storage battery can be avoided.
[0031]
According to the sixth aspect of the present invention, the sealed storage battery can be charged at a high rate without adversely affecting the battery performance.
[Brief description of the drawings]
FIG. 1 is a perspective view showing the appearance of a sealed battery according to the present invention.
FIG. 2 is a perspective view showing the appearance of a conventional sealed battery.
FIG. 3 is a schematic diagram showing a structure of a protruding terminal and an upper sealing portion of the sealed battery according to the present invention.
FIG. 4 is a schematic view showing a structure of a protruding terminal and an upper sealing portion of a conventional sealed battery.
FIG. 5 is a schematic view showing a structure of a protruding terminal and an upper sealing portion of the sealed battery according to the present invention.
FIG. 6 is a perspective view showing an external appearance of a charger according to the present invention.
FIG. 7 is a perspective view showing an external appearance of a charger according to the present invention.
FIG. 8 is a schematic diagram for explaining a pressure switch mechanism and a temperature switch mechanism of the sealed storage battery according to one embodiment of the present invention.
FIG. 9 (a) is a graph schematically showing changes over time in charging current and battery temperature when the sealed storage battery according to the present invention is charged at a constant voltage. FIG. 9 (b) is a graph schematically showing a change over time in charging current and battery temperature when a conventional sealed storage battery is charged at a constant voltage.
FIG. 10 is a schematic view showing a structure of a protruding terminal and an upper sealing portion of the sealed battery according to the present invention.
FIG. 11 is a schematic diagram showing the structure of a planar terminal portion on the bottom surface of a sealed battery according to the present invention.
[Explanation of symbols]
2, 32, 52, 102 Projecting terminals 4, 34, 54, 104, 114 Conductive regions 3, 33, 53, 103, 113 Insulating materials 64, 74 Detection terminals 112 Planar terminals

Claims (6)

電池内の気体圧力および/または電池温度が、規定値以下のときは充電が可能であり、規定値を超えるときは充電不能となる機能を持たせた密閉式蓄電池で、かつ、正極端子または負極端子を設けた面の端子以外の部分に電気絶縁性物質を配置した密閉式蓄電池であって、前記電気絶縁性物質を配置した部分に導電性領域を設けたことを特徴とする密閉式電池。When the gas pressure and / or battery temperature in the battery is below a specified value, charging is possible. When the gas pressure and / or battery temperature exceeds the specified value, charging is not possible. What is claimed is: 1. A sealed storage battery in which an electrically insulating substance is disposed on a portion of a surface on which a terminal is provided other than a terminal, wherein a conductive region is provided on a portion where the electrically insulating substance is disposed. 正極端子および負極端子のうち、少なくとも一方の端子が突状端子であり、該突状端子の周辺部分の電池表面に端子を中心としてドーナツ状の導電性帯状領域を配置したことを特徴とする請求項1記載の密閉式蓄電池。At least one of the positive electrode terminal and the negative electrode terminal is a protruding terminal, and a donut-shaped conductive strip region is disposed around the terminal on the battery surface around the protruding terminal. Item 7. A sealed storage battery according to Item 1. 前記導電性帯状領域が前記密閉式電池の正極または負極端子と電気的に導通状態にあることを特徴とする請求項1記載載の密閉式蓄電池。2. The sealed storage battery according to claim 1, wherein the conductive strip region is in electrical conduction with a positive electrode or a negative electrode terminal of the sealed battery. 前記密閉式蓄電池を充電するための専用の充電器であって、正負極1対の出力端子と被充電電池の前記導電性帯状領域の存在を検知するための検知機構を備え、前記導電性帯状領域を検知したときにのみ充電用電力を出力することを特徴とする請求項1に記載の密閉式電池の充電器。A dedicated charger for charging the sealed storage battery, comprising: a pair of output terminals of a positive electrode and a negative electrode; and a detection mechanism for detecting the presence of the conductive band region of the battery to be charged. The battery charger according to claim 1, wherein the charging power is output only when the area is detected. 被充電電池を充電器に装着した状態において前記導電性帯状領域に位置する電池の表面に接触する1または2個の導電性帯状領域の存在を検知するための検知用端子を備え、該検知用端子と前記突状端子に接触する充電器の出力端子あるいは、2個の検知用端子間に電気的導通が存在することを検知することによって前記導電性帯状領域が存在することを検知する請求項4記載の密閉式蓄電池の充電器。A detection terminal for detecting the presence of one or two conductive strips in contact with the surface of the battery located in the conductive strip when the battery to be charged is mounted on the charger; The presence of the conductive strip region is detected by detecting the presence of electrical continuity between the output terminal of the charger or the two detection terminals, which contacts the terminal and the protruding terminal. A charger for a sealed storage battery according to claim 4. 電池の表面温度を検知するための温度検知機能を備え、検知した温度が規定値以下のときにのみ充電用電力を出力することを特徴とする請求項4記載の密閉式蓄電池の充電器。5. The battery charger according to claim 4, further comprising a temperature detection function for detecting a surface temperature of the battery, and outputting charging power only when the detected temperature is equal to or lower than a specified value.
JP2003022935A 2003-01-31 2003-01-31 Sealed storage battery and its charger Pending JP2004235044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003022935A JP2004235044A (en) 2003-01-31 2003-01-31 Sealed storage battery and its charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003022935A JP2004235044A (en) 2003-01-31 2003-01-31 Sealed storage battery and its charger

Publications (1)

Publication Number Publication Date
JP2004235044A true JP2004235044A (en) 2004-08-19

Family

ID=32951882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003022935A Pending JP2004235044A (en) 2003-01-31 2003-01-31 Sealed storage battery and its charger

Country Status (1)

Country Link
JP (1) JP2004235044A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538505A (en) * 2006-05-24 2009-11-05 エバレデイ バツテリ カンパニー インコーポレーテツド Battery current interrupting device
CN104332584A (en) * 2014-11-07 2015-02-04 宁波超霸能源有限公司 Insulating structure of 3V lithium battery
JP2019500723A (en) * 2016-06-22 2019-01-10 エルジー・ケム・リミテッド Secondary battery and secondary battery current interruption method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538505A (en) * 2006-05-24 2009-11-05 エバレデイ バツテリ カンパニー インコーポレーテツド Battery current interrupting device
CN104332584A (en) * 2014-11-07 2015-02-04 宁波超霸能源有限公司 Insulating structure of 3V lithium battery
JP2019500723A (en) * 2016-06-22 2019-01-10 エルジー・ケム・リミテッド Secondary battery and secondary battery current interruption method
US11139532B2 (en) 2016-06-22 2021-10-05 Lg Chem, Ltd. Secondary battery and method for interrupting current of secondary battery

Similar Documents

Publication Publication Date Title
JP5275298B2 (en) Secondary battery
CN101615694B (en) Electrode assembly and lithium secondary battery using the same
US8097358B2 (en) Cylindrical secondary battery
JP4259890B2 (en) Sealed storage battery
US20050266302A1 (en) Secondary battery
JP2005285770A (en) Cap assembly and secondary battery with the same
JPH05251076A (en) Organic electrolyte battery
CN111133626B (en) Cylindrical battery embedded with pressure sensor and method for measuring internal pressure of cylindrical battery
BRPI0820355B1 (en) compact structure secondary battery pack
EP2581959A2 (en) Secondary battery
JP6574471B2 (en) Secondary battery
JP2006313741A (en) Secondary battery
CN110120557B (en) Protection device and battery
JP2005044626A (en) Battery
WO2015177621A1 (en) Secondary battery and manufacturing method of secondary battery
CN106133945B (en) Electricity storage device
JP2003308881A (en) Battery
JP4215538B2 (en) Secondary battery
KR100686839B1 (en) Secondary battery
JP2004235044A (en) Sealed storage battery and its charger
JP2008016190A (en) Battery pack
JP4068403B2 (en) Battery pack
JPH0877995A (en) Battery provided with explosion-proof safety device
JP4393791B2 (en) Sealed battery
KR100696799B1 (en) Secondary Battery and Pack Battery of using the same